119,914 research outputs found

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment

    Logic Programming in Space-Time: The Case of Situatedness in LPaaS

    Get PDF
    Situatedness is a fundamental requirement for today\u2019s complex software systems, as well as for the computational models and programming languages used to build them. Spatial and temporal situatedness, in particular, are essential features for AI, enabling actors of the system to take autonomous decisions contextual to the space-time they live in. To support spatio-temporal awareness in distributed pervasive systems, we adopt the standpoint of Logic Programming (LP) by focussing on the Logic Programming as a Service (LPaaS) approach, promoting the distribution of situated intelligence. Accordingly, we provide an interpretation about what it means to make LP span across space and time, then we extend the LPaaS model and architecture towards spatio-temporal situatedness, by identifying a set of suitably-expressive spatio-temporal primitives

    A computer architecture for intelligent machines

    Get PDF
    The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems

    Models of higher-order, type-safe, distributed computation over autonomous persistent object stores

    Get PDF
    A remote procedure call (RPC) mechanism permits the calling of procedures in another address space. RPC is a simple but highly effective mechanism for interprocess communication and enjoys nowadays a great popularity as a tool for building distributed applications. This popularity is partly a result of their overall simplicity but also partly a consequence of more than 20 years of research in transpaxent distribution that have failed to deliver systems that meet the expectations of real-world application programmers. During the same 20 years, persistent systems have proved their suitability for building complex database applications by seamlessly integrating features traditionally found in database management systems into the programming language itself. Some research. effort has been invested on distributed persistent systems, but the outcomes commonly suffer from the same problems found with transparent distribution. In this thesis I claim that a higher-order persistent RPC is useful for building distributed persistent applications. The proposed mechanism is: realistic in the sense that it uses current technology and tolerates partial failures; understandable by application programmers; and general to support the development of many classes of distributed persistent applications. In order to demonstrate the validity of these claims, I propose and have implemented three models for distributed higher-order computation over autonomous persistent stores. Each model has successively exposed new problems which have then been overcome by the next model. Together, the three models provide a general yet simple higher-order persistent RPC that is able to operate in realistic environments with partial failures. The real strength of this thesis is the demonstration of realism and simplicity. A higherorder persistent RPC was not only implemented but also used by programmers without experience of programming distributed applications. Furthermore, a distributed persistent application has been built using these models which would not have been feasible with a traditional (non-persistent) programming language

    Self organization of tilts in relay enhanced networks: a distributed solution

    Get PDF
    Despite years of physical-layer research, the capacity enhancement potential of relays is limited by the additional spectrum required for Base Station (BS)-Relay Station (RS) links. This paper presents a novel distributed solution by exploiting a system level perspective instead. Building on a realistic system model with impromptu RS deployments, we develop an analytical framework for tilt optimization that can dynamically maximize spectral efficiency of both the BS-RS and BS-user links in an online manner. To obtain a distributed self-organizing solution, the large scale system-wide optimization problem is decomposed into local small scale subproblems by applying the design principles of self-organization in biological systems. The local subproblems are non-convex, but having a very small scale, can be solved via standard nonlinear optimization techniques such as sequential quadratic programming. The performance of the developed solution is evaluated through extensive simulations for an LTE-A type system and compared against a number of benchmarks including a centralized solution obtained via brute force, that also gives an upper bound to assess the optimality gap. Results show that the proposed solution can enhance average spectral efficiency by up to 50% compared to fixed tilting, with negligible signaling overheads. The key advantage of the proposed solution is its potential for autonomous and distributed implementation

    Enabling Runtime Self-Coordination of Reconfigurable Embedded Smart Cameras in Distributed Networks

    Get PDF
    Smart camera networks are real-time distributed embedded systems able to perform computer vision using multiple cameras. This new approach is a confluence of four major disciplines (computer vision, image sensors, embedded computing and sensor networks) and has been subject of intensive work in the past decades. The recent advances in computer vision and network communication, and the rapid growing in the field of high-performance computing, especially using reconfigurable devices, have enabled the design of more robust smart camera systems. Despite these advancements, the effectiveness of current networked vision systems (compared to their operating costs) is still disappointing; the main reason being the poor coordination among cameras entities at runtime and the lack of a clear formalism to dynamically capture and address the self-organization problem without relying on human intervention. In this dissertation, we investigate the use of a declarative-based modeling approach for capturing runtime self-coordination. We combine modeling approaches borrowed from logic programming, computer vision techniques, and high-performance computing for the design of an autonomous and cooperative smart camera. We propose a compact modeling approach based on Answer Set Programming for architecture synthesis of a system-on-reconfigurable-chip camera that is able to support the runtime cooperative work and collaboration with other camera nodes in a distributed network setup. Additionally, we propose a declarative approach for modeling runtime camera self-coordination for distributed object tracking in which moving targets are handed over in a distributed manner and recovered in case of node failure

    LBSim: A simulation system for dynamic load-balancing algorithms for distributed systems.

    Get PDF
    In a distributed system consisting of autonomous computational units, the total computational power of all the units needs to be utilized efficiently by applying suitable load-balancing policies. For accomplishing the task, a large number of load balancing algorithms have been proposed in the literature. To facilitate the performance study of each of these load-balancing strategies, simulation has been widely used. However comparison of the load balancing algorithms becomes difficult if a different simulator is used for each case. There have been few studies on generalized simulation of load-balancing algorithms in distributed systems. Most of the simulation systems address the experiments for some particular load-balancing algorithms, whereas this thesis aims to study the simulation for a broad range of algorithms. After the characterization of the distributed systems and the extraction of the common components of load-balancing algorithms, a simulation system, called LBSim, has been built. LBSim is a generalized event-driven simulator for studying load-balancing algorithms with coarse-grained applications running on distributed networks of autonomous processing nodes. In order to verify that the simulation model can represent actual systems reasonably well, we have validated LBSim both qualitatively and quantitatively. As a toolkit of simulation, LBSim programming libraries can be reused to implement load-balancing algorithms for the purpose of performance measurement and analysis from different perspectives. As a framework of algorithm simulation can be extended with a moderate effort by following object-oriented methodology, to meet any new requirements that may arise in the future.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .D8. Source: Masters Abstracts International, Volume: 43-05, page: 1747. Adviser: A. K. Aggarwal. Thesis (M.Sc.)--University of Windsor (Canada), 2004
    corecore