13 research outputs found

    DSIM: A distributed simulator

    Get PDF
    Discrete event-driven simulation makes it possible to model a computer system in detail. However, such simulation models can require a significant time to execute. This is especially true when modeling large parallel or distributed systems containing many processors and a complex communication network. One solution is to distribute the simulation over several processors. If enough parallelism is achieved, large simulation models can be efficiently executed. This study proposes a distributed simulator called DSIM which can run on various architectures. A simulated test environment is used to verify and characterize the performance of DSIM. The results of the experiments indicate that speedup is application-dependent and, in DSIM's case, is also dependent on how the simulation model is distributed among the processors. Furthermore, the experiments reveal that the communication overhead of ethernet-based distributed systems makes it difficult to achieve reasonable speedup unless the simulation model is computation bound

    A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    Get PDF
    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models

    Time warp on a shared memory multiprocessor

    Get PDF
    Journal ArticleA variation of the Time Warp parallel discrete event simulation mechanism is presented that is optimized for execution on a shared memory multiprocessor. In particular, the direct cancellation mechanism is proposed that eliminates the need for anti-messages and provides an efficient mechanism for cancelling erroneous computations. The mechanism thereby eliminates many of the overheads associated with conventional, message-based implementations of Time Warp. More importantly, this mechanism effects rapid repairs of the parallel computation when an error is discovered. Initial performance measurements of an implementation of the mechanism executing on a BBN Butterfly? multiprocessor are presented. These measurements indicate that the mechanism achieves good performance, particularly for many workloads where conservative clock synchronization algorithms perform poorly. Speedups as high as 56.8 using 64 processors were obtained. However, our studies also indicate that state saving overheads represent a significant stumbling block for many parallel simulations using Time Warp

    Virtual time synchronization in distributed database systems

    Full text link
    Distributed systems synchronized by Virtual Time have been topics of recent interest. Virtual Time follows an optimistic philosophy relying on rollback for synchronization instead of abortion or blocKing Although many applications have been suggested as candidates for Virtual Time, few were simulated or implemented. This research reports on the first implementation and results of a Distributed Database Management System synchronized by virtual time. We argue that virtual time is a viable alternate concurrency control method for distributed database systems if its memory overhead can be absorbed

    Structural approach to the mapping problem in parallel discrete event logic simulations

    Get PDF

    Parallel simulation techniques for telecommunication network modelling

    Get PDF
    In this thesis, we consider the application of parallel simulation to the performance modelling of telecommunication networks. A largely automated approach was first explored using a parallelizing compiler to speed up the simulation of simple models of circuit-switched networks. This yielded reasonable results for relatively little effort compared with other approaches. However, more complex simulation models of packet- and cell-based telecommunication networks, requiring the use of discrete event techniques, need an alternative approach. A critical review of parallel discrete event simulation indicated that a distributed model components approach using conservative or optimistic synchronization would be worth exploring. Experiments were therefore conducted using simulation models of queuing networks and Asynchronous Transfer Mode (ATM) networks to explore the potential speed-up possible using this approach. Specifically, it is shown that these techniques can be used successfully to speed-up the execution of useful telecommunication network simulations. A detailed investigation has demonstrated that conservative synchronization performs very well for applications with good look ahead properties and sufficient message traffic density and, given such properties, will significantly outperform optimistic synchronization. Optimistic synchronization, however, gives reasonable speed-up for models with a wider range of such properties and can be optimized for speed-up and memory usage at run time. Thus, it is confirmed as being more generally applicable particularly as model development is somewhat easier than for conservative synchronization. This has to be balanced against the more difficult task of developing and debugging an optimistic synchronization kernel and the application models

    Time warp and its applications on a distributed system

    Get PDF
    corecore