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Abstract 

The design of the Eppi MIMD shared memory multiprocessor is described, 
and its performance evaluated by simulation. The Eppi has a dancehall archi-
tecture with p instruction interleaved RISC processors connected to p shared 
memories by a packet switched, combining, indirect binary n-cube multistage 
network composed of P2 1092 p 2 x 2 crossbar switches. There is no processor cache 
or local memory, and no paged virtual memory. Memory addresses are low or-
der interleaved across the memories. The fetch-and-add instruction is used for 
inter-process synchronisation, and the switches support the combining of load 
and fetch-and-add memory requests. Simulation results of a single Eppi pro-
cessor with varying interleaving level and instruction mix are presented, and of 
an isolated network with varying queue size and network load. A distributed 
time-driven, instruction level simulator of the Eppi design has been implemented 
in Occam, and runs on a transputer based, distributed memory multiprocessor. 
Three parallel benchmark programs: matrix multiply, bitonic merge sort and 
Moore shortest path, have been written in the processor assembly language, and 
are used as workloads in the simulations. The programs use the fetch-and-add 
instruction to implement process control primitives. A number of simulation 
experiments have been carried out using the Eppi simulator which investigate 
the effect on performance of increasing the system size (speed-up), varying the 
switch queue and wait-buffer size, increasing the combining level, increasing the 
interleaving level, and varying the network and memory speed relative to the 
processor. These experiments are repeated for each benchmark program, and de-
tailed execution statistics are presented for each simulation. A dynamic execution 
profile for each benchmark program is also presented. 



Dedicated to Trish and Benjamin, and in memory of my grandfather Apa. 



Eli 

Acknowledgements 

I would like to thank my supervisors Nigel Topham and Roland Ibbett for getting 

me started and helping me along, and Peter Osmon for enabling me to finish. 

Many people have provided moral and technical support during the past few 

years, so thanks also to: Tim Lees, Pawel Paczkowski and Richard Eyre-Todd for 

putting up with me in the office; Mikeee Norman, Greg Wilson, Lyndon Clarke, 

Steve Booth and Mike Brown for help with the ECS; Angus Duggan for PostScript 

and Latex hackery; and Steve Renals for being my buddy and flatmate. The final 

thanks go to STC Research Ltd. and Dad for their financial support. 

Declaration 

I declare that this thesis was written by myself, and that the work described 

herein is my own. 



111 

Quotations 

"A general purpose multiprocessor should be scalable, i.e., show higher perfor-

mance when more hardware resources are added to the machine. Architects of 

such multiprocessors must address the loss in processor efficiency due to two 

fundamental issues: long memory latencies and waits due to synchronisation 

events." [1] 

"It seems that enough research has already been done in evaluating intercon- 

nection networks in isolation. We strongly feel that more work is needed at the 

system level that includes the interconnection network as a major component." [2] 

"An extant microprocessor was chosen as the PME processor. We feel that this 

was an appropriate design decision in that we were able to concentrate on other 

design issues instead of designing yet another microprocessor." [3] 

"Fully-fledged, cycle-by-cycle simulation of the multiprocessor is very tedious, 

especially if the goal of the analysis is to understand the performance of the mul-

tiprocessor for very large configurations and very large problem sizes." [4] 

"Precise estimates of the interaction between components of such a system can 

only be obtained by simulation at or below the memory reference level, requir-

ing excessive computing resources. Results of detailed simulation will depend 

strongly on the specific algorithm being simulated, providing results that are not 

easily generalised." [5] 
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Chapter 1 

Introduction 

An MIMD shared memory multiprocessor consists of a number of processors con-

nected by a network to a number of memories. Each processor can access all 

the memories, and executes one or more independent processes. The processes 

communicate and synchronise using variables in the shared memory. Such mul-

tiprocessors are attractive for a• number of reasons: similar programming and 

operating system techniques to those found in multiprogrammed uniprocessors 

can be used, the homogeneity of the processors allows load balancing to be easily 

achieved using self-scheduling [6], the low inter-process communication cost allows 

the execution of fine-grain processes, and message-passing interprocess commu-

nication can be implemented on top of the shared memory. To be scalable, i.e., 

to maintain performance with increasing size, shared memory systems must be 

able to overcome the increasing cost of memory access and inter-process commu-

nication as the system size increases. The interconnection requirements of small 

shared memory systems, with a maximum of 16 processors say, can be satisfied 

by the combination of a fast shared bus and "snoopy" -caching [7]. For larger 

systems it is necessary to use a higher performance, more scalable network such 

as a multistage network [8]. 

This thesis describes the design and simulation of an MIMD shared mem- 
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ory multiprocessor system which is named the Edinburgh parallel processor One 

(Eppi). The Eppi multiprocessor has a conventional "dancehaIl' architecture 

with processors on one side of a multistage network connected to an equal num-

ber of memories on the other side. The processors have a reduced instruction 

set (RISC) architecture, and support the concurrent execution of multiple pro-

cesses (the terms "process", "context" and "instruction stream" are used rather 

inter-changeably in this thesis) by replicating register files and other resources in 

each processor. An atomic fetch-and-add instruction is provided for inter-process 

synchronisation. The network is packet switched, and consists of 2 x 2 switches 

connected in an indirect binary n-cube topology. The switches support the com-

bining of load and fetch-and-add memory requests directed at the same memory 

location. There is no processor cache, local memory, or paged virtual memory, 

and all memory requests traverse the network to one of the shared memories. 

The Eppi design exists on paper and as a simulation program only, and is 

used as a didactic tool for investigating the components of the design and their 

interaction in the whole system. No implementation of the design is intended. 

The main features of the design are the interleaving of processes on each processor, 

the combining of memory requests in the multistage network, and the use of the 

fetch-and-add instruction as the synchronisation primitive. These features have 

been separately included into other MIMD shared memory multiprocessor designs 

(Section 2.5), but they have not previously been included together in the same 

system. 

The performance of the Eppi design is evaluated by detailed simulation of 

the complete design at the instruction level. The availability of a powerful com-

puting resource, the Edinburgh Concurrent Supercomputer (ECS), allows the 

simulation of large Eppi configurations (up to 256 processors) within reasonable 

time scales. The ECS is a distributed memory multiprocessor constructed from 

transputers, and the Eppi simulator is written in Occam to execute in parallel 

on the ECS. The simulated Eppi processors execute instructions from programs 
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that are loaded into the simulated memories. The programs are written in the 

Eppi assembly language and assembled into Eppi machine code. Benchmark 

programs are used to provide workloads for the simulation experiments, these are 

assembly language implementations of three well known parallel algorithms: ma-

trix multiply, bitonic merge sort and Moore shortest path. The matrix multiply 

program multiplies two integer matrices, the bitonic merge sort program sorts 

a sequence of integers, and the Moore shortest path program finds the shortest 

path from a source node to every other node in a weighted directed graph. All 

process control and synchronisation in the programs is implemented using the 

fetch-and-add instruction. 

The simulation experiments are performed by executing the benchmark pro-

grams with various values of the Eppi system parameters. The simulator records 

the program execution time and the system execution statistics, and any changes 

in these can then be related to changes in the system parameters. The simulation 

experiments described here investigate the effect on performance of: increasing 

the system size while keeping the program size constant (relative speed-up), vary-

ing the switch queue and wait-buffer size, increasing the combining level, increas-

ing the interleaving level, and varying the network and memory speed relative to 

the processor. A dynamic execution profile of each benchmark program is also 

presented which shows how the execution statistics vary during the execution of 

the program. 

1.1 Original work 

The following original work has been carried out as part of the research leading 

to this thesis: 

• The context-flow processor design of Topham (Section 2.1.4) was extended 

to a 32-bit instruction set including the fetch-and-add instruction. 
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• Simulations of a single Eppi processor were carried out to find the perfor-

mance bounds of the processor, executing synthetic instruction mixes, with 

increasing interleaving level and memory latency. 

• Simulations of the isolated Eppi network were carried out to find the per-

formance bounds of the network, using randomised addresses, with varying 

switch queue sizes, network loads and hot-spot percentages. 

A parallel simulator of the complete Eppi design was implemented in Oc-

cam on a transputer based distributed memory multiprocessor, allowing the 

simulation of a 256 processor Eppi system on 128 transputers. 

• An assembler of the Eppi instruction set was written to produce machine 

code executable by the simulator. 

• Three benchmark programs were written in Eppi assembly code to imple-

ment parallel matrix multiply, bitonic merge sort and Moore shortest path 

algorithms. Existing fetch-and-add based process control and synchronisa-

tion mechanisms were used in the programs. 

• Simulations of the complete Eppi design executing the benchmark pro-

grams were carried out to observe the effect of various system parameters 

on performance, and to collect dynamic execution traces of the programs. 

1.2 Chapter overview 

The chapters in the thesis are ordered so that the Eppi design, the Eppi simula-

tor, and the benchmark programs are described before the main results, gathered 

from the simulations of the complete Eppi design, are presented. 

Chapter 2 describes the relevant background and previous research. First, 

instruction interleaved processor design is introduced, and examples of previous 
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single processor instruction interleaved designs are described. Second, multi-

stage networks are introduced, and aspects of their design including topology 

and combining are described. Third, synchronisation using fetch-and-add is in-

troduced, and example algorithms for implementing semaphores, barriers, and 

parallel queues are described. Fourth, performance evaluation of multiprocessor 

systems is reviewed, and parallel time-driven simulation methodology is intro-

duced. Finally, a number of example MIMD shared memory systems are de-

scribed. 

Chapter 3 describes the Eppi design in three sections on the processor, 

network switch and memory. The processor section includes a detailed descrip-

tion of the structure and function of the processor pipeline, a description of the 

instruction set, and simulation results showing performance characteristics of a 

single processor. The network section includes a description of the network switch 

functions, such as routing and combining, and simulation results of an isolated 

network with randomised addressing. 

Chapter 4 describes the Eppi simulator. First, the Occam language and 

the transputer are reviewed briefly. Second, the Edinburgh Concurrent Super-

computer is introduced, and the structure of its transputer domains described. 

Third, the operation and function of the simulator is described, including how 

the simulation is parallelised and how the parallel modules communicate. Fourth, 

the user-interface and commands available are described. Fifth, the clocking of 

the modules is described. Finally, performance results of the simulator itself are 

presented. 

Chapter 5 describes the three benchmark programs. First, the choice of 

algorithms is discussed. Second, the process control mechanisms are described. 

Each program is then described in turn, showing how it was implemented in the 

assembly language of the Eppi processor. 

Chapter 6 describes and presents results from the simulation experiments 

which investigate the effect on system performance of system size, queue and 
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wait-buffer size, combining level, interleaving level and relative processor speed. 

A dynamic execution profile for each program is also presented. 

Chapter 7 summarises the research and results described in the thesis. Im-

provements to the design and simulator, and further research topics, are sug- 

gested. 

Appendix A contains Eppi assembly code listings for the benchmark pro- 

grams which are described in Chapter 5. 

Appendix B contains the detailed execution statistics from the simulation 

experiments which are described in Chapter 6. 



Chapter 2 

Background 

This chapter provides the relevant background information for the chapters which 

follow. The first section introduces instruction interleaving, and gives examples 

of processor designs that implement instruction interleaving. The second section 

introduces packet-switched multistage interconnection networks, and discusses 

the topology, routing of packets, and contention in such networks. The third 

section introduces synchronisation using the fetch-and-add instruction, and de-

scribes some synchronisation algorithms implemented with fetch-and-add. The 

fourth section discusses performance evaluation of multiprocessor designs, and 

describes parallel time-driven simulation. The final section briefly describes some 

example MIMD shared memory multiprocessor designs. 

2.1 Instruction interleaving 

Pipelining increases processor throughput, defined as the number of instructions 

executed in unit time, by reducing the machine cycle time and allowing concurrent 

execution of a number of instructions. Generally processor pipelining is divided 

into two levels: instruction pipelining, and function or arithmetic pipelining [9, 

10, 111. Instruction pipelining divides the normal instruction execution sequence 

7 
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into a number of stages, typically: instruction fetch, instruction decode, operand 

fetch, instruction execution, and result store. Current microprocessors are usually 

pipelined at this level. To achieve maximum performance particular function 

blocks, such as a floating point arithmetic unit, are further pipelined. Function 

pipelining is found in vector supercomputers for example. 

2.1.1 Single instruction stream pipelines 

In a conventional instruction pipeline, which is executing a single instruction 

stream, each stage of the pipeline contains an instruction from that stream (or 

is empty). To utilise the pipeline efficiently there must be a sufficiently long se-

quence of instructions to fill the pipeline. Due to discontinuities in the instruction 

stream only pipelines with a small number of stages can be utilised efficiently. 

Three possible causes of discontinuities are: branch dependence, data dependence 

and memory latency. 

When a branch instruction occurs and the branch is taken, assuming that 

instructions are not prefetched from the branch address, then instructions in the 

pipeline after the branch have to be flushed from the pipeline and new instructions 

fetched from the branch address. To reduce the loss of performance caused by 

branch dependence a number of methods such as branch prediction, branch target 

buffers and delayed branching are used [9, 12, 13, 111. 

Sequential instructions in an instruction stream are likely to have data de-

pendencies between them. These can lead to reduced utilisation because reading 

of operands may have to be delayed to satisfy the dependency. Such data de-

pendence conflicts occur particularly in processors with a long pipeline, or with 

multiple pipelines of differing lengths in which the order of instruction comple-

tion must be maintained. To ensure that the dependencies are satisfied methods 

such as register scoreboarding, internal forwarding and compiler data dependence 

analysis are used [9, 11, 141. 
Pipeline throughput is limited by memory latency, as the pipeline can only 
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execute as fast as the instructions are supplied. In a single processor system the 

memory latency is usually equal to the memory access time. In multiprocessor 

systems memory requests generally have to traverse an interconnection network, 

so the memory latency is higher due to network delay and contention. Methods of 

reducing memory latency include the use of caches, local memory, separate data 

and instruction busses (Harvard architecture), and decoupling memory access 

from instruction execution [15, 161. 

One way of side-stepping these dependency and latency problems, and in-

creasing the utilisation of the pipeline, is to implement a multiple instruction 

stream pipeline. 

2.1.2 Multiple instruction stream pipelines 

In an instruction interleaved pipeline instructions from more than one instruction 

stream are executed concurrently. If only one instruction from each instruction 

stream is allowed to be executed at any one time, then each stage of the pipeline 

contains an instruction from a different instruction stream (or is empty). Effec-

tively the pipeline switches context to a different instruction stream every cycle. 

Instruction interleaving is also variously known as: micro-multiprogramming [17], 

virtual-processing [18], context-flow [19], circulating-contexts [20], state multi-

plexing [21], and multi-threading [1]. 

The main aim of instruction interleaving is greater pipeline utilisation. If each 

instruction stream is restricted to executing a single instruction at a time, then 

the dependency problems described above do not occur. Because each stage of the 

pipeline contains an instruction from a different instruction stream, there are no 

branch dependencies and thus no branch penalty. Also, because each instruction 

in an instruction stream is completed before the next one is issued, there are 

no data dependencies. So two possible causes of discontinuities in the pipeline 

have been removed, and as long as sufficient instruction streams are provided 

the pipeline can operate at maximum throughput. The multiple functional units 
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may also be better utilised if the instruction streams execute different instruction 

types. 

Although instruction interleaving does nothing to reduce memory latency, 

it does allow the pipeline to tolerate higher memory latency. This is because 

memory access and execution can be overlapped, since while some instruction 

streams wait for memory accesses to complete others can be executed. Memory 

access and instruction execution are thus de-coupled. If the memory system is 

also pipelined, for instance in shared memory multiprocessor systems that have 

pipelined multistage networks, then this effectively extends the length of the 

execution pipeline and more instruction streams must be executed to achieve 

maximum pipeline utilisation. 

To implement instruction interleaving starting with a. conventional single in-

struction stream processor requires the addition of extra hardware (registers and 

other function blocks) to the pipeline. Each instruction stream requires extra 

state information, such as a process number in addition to the usual registers and 

flags, and all the state information must be replicated for each instruction stream. 

Extra logic is required to control the multiple instruction streams, but conversely 

none of the logic to handle branch and data dependency is required. To maintain 

a high pipeline utilisation the processor must support a sufficient number of in-

structions streams to fill the pipeline, and the operating system and applications 

programs must be sufficiently parallel to keep all the instruction streams busy. 

Data-flow systems [22] have similarities to instruction interleaved systems, 

and also use the arguments for greater processor utilisation given above [23, 1]. A 

process (instruction stream) in a data-flow machine is typically a single instruc-

tion, and processes, are not associated with any one processor. An advantage 

of data-flow systems over the instruction interleaved systems described here is 

that they also provide implicit synchronisation between processes. The hardware 

implementation and programming of data-flow systems is not straightforward 

though [24]. 
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2.1.3 Performance of instruction interleaved pipelines 

Assuming a simple linear pipeline with P stages executing p instruction streams 

(p :!~ P), then (ignoring start-up time): 

pipeline throughput = p/P instructions per cycle 

instruction stream throughput = 11P instructions per cycle 

The pipeline throughput is the number of instructions executed per cycle, and 

the instruction stream throughput is the number of instructions executed per 

stream per cycle. The maximum pipeline throughput is achieved when p = P. 

If the number of streams is greater than the number of stages (p> P), then the 

throughput per stream will be reduced as there will be contention for the pipeline. 

The performance of the HEP processor (Section 2.5.1), which supports multi-

pie instruction streams, has been characterised using the r (maximum through-

put) and n112  (half-performance vector length) parameters that have previously 

been applied only to vector and array processors [25]. The half-performance 

vector length in an instruction interleaved system is the number of instruction 

streams required to achieve half the maximum throughput. Topham [26] also 

describes a simple analytical model of a context-flow processor. These models 

provide 'similar results to the actual performance results of a single HEP pro-

cessor [27], which show that pipeline throughput increases linearly as more in-

struction streams are added, up to the maximum defined by the pipeline length. 

Generally, the effective pipeline length is greater than the actual pipeline length 

because of memory access latency. 

A number of single processor designs which support instruction interleaving 

are summarised below. 

2.1.4 Example instruction interleaved processor designs 

In the shared resource processor design [18], up to 32 concurrently executing 

instruction streams share 7 pipelined functional units and a memory interface. 
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Each instruction stream has its own instruction decoder, register set and instruc-

tion and data caches. Contention for the functional units is minimised by allo-

cating time-slices during which each instruction decoder can issue an instruction. 

The instruction set includes a spawn instruction for starting a new instruction 

stream and fetch-and-add instructions for synchronisation. Simulations of the 

design indicate that a high processor throughput and functional unit utilisation 

can be achieved. 

The P or multiple stream registerless shared resource processor design [28], 

consists of fetch, decode and execute pipeline stages combined with special as-

sociative queues which buffer and merge instruction streams. Each instruction 

stream state consists of a program counter, instruction register and status bits. 

Instructions are memory to memory and there are no explicitly addressable reg-

isters. There are five memory ports which can all make concurrent requests, so 

multiport memory is required. The design provides high utilisation of individual 

processor components, decouples processor throughput from memory access time, 

and the additional hardware cost per instruction stream scales well. 

The virtual multiprocessor design [29], is a pipelined processor support-

ing multiple instruction streams. Various pipeline layouts and control strate-

gies were compared for this design. A straight through pipeline gives the best 

cost/ performance ratio for varying degrees of multiprocessing. A single chip im-

plementation of the virtual multiprocessor was also considered [30]. The use of a 

central register file was compared to incorporating the registers into the pipeline 

stages. The latter allows the use of dynamic logic and minimises interconnections, 

but the cost of the processor will depend heavily on the size of the register set, 

since it is replicated in each pipeline stage. Instruction traces were used to find 

an optimum register set size for a central register file, and adding registers was 

shown to be substantially less effective in improving performance than increasing 

the level of multiprocessing. 

The cyclic pipeline computer design [31], is a pipelined processor support- 
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ing multiple instruction streams which is to be implemented in Josephson-junction 

technology. Because Josephson-junction gates are self-latching there is no need 

for latches between pipeline stages, and this allows the pipeline to be clocked 

using only a single-phase clock. The memory is also to be implemented using 

Josephson-junction devices, and has a four stage pipeline. A silicon version of 

the processor (FLATS-2) is being implemented. 

The VMP or virtual multiprocessor design [32], is based on the 1BM370 CPU 

and uses multiprogramming at the instruction level. Each virtual CPU (instruc-

tion stream) has a separate register set, but shares all other processor resources. 

The optimum number of virtual CPU's in the design is dependent on the average 

instruction completion time. 

The Context-flow processor design [19, 26, 331, is a VLSI pipelined RISC pro-

cessor supporting multiple instruction streams. A proposed implementation [34] 

is based around an off-the-shelf pipelined floating-point ALU, with a multiport 

register file, three merging queues, and some custom VLSI implementing the con-

trol unit. Up to 64 concurrently executing instruction streams can be spawned 

on demand. The original context-flow proposal also included a message-passing 

interprocess communication mechanism in which processes communicate through 

special channels in memory. The Eppi processor described in Chapter 3 is based 

on the context-flow processor design. - 

Because instruction interleaved processors can execute efficiently even with 

high memory latencies they are obvious candidates for multiprocessor systems. 

Two shared memory multiprocessor designs that support instruction interleav-

ing, the REP and CCMP, are described in Section 2.5. There are other multi-

processor designs which although not strictly instruction interleaved do support 

fast context-switching of processes within the processor [35, 36]. There are also 

a number of hybrid multiprocessor designs which combine features of message-

passing and data-flow systems [37, 38, 391, and have similarities to instruction 

interleaved systems. 
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This concludes the background section on instruction interleaving; the next 

section introduces multistage networks. 

2.2 Packet-switched multistage networks 

A multistage network consists of a number of stages of small crossbar switches in 

which the outputs of one stage are connected to the inputs of the next stage ac-

cording to some permutation. There are many flavours of multistage network [8], 

and only rectangular, two-sided, uni-directional, packet-switched, blocking net-

works are considered here. Such a network with n inputs and k x k switches 

has 109k  n stages with. n/k switches in each stage, the same number of outputs 

as inputs (rectangular), the outputs are on the opposite side of the network to 

the inputs (two-sided), messages are transmitted across the network in packets 

using store-and-forward routing (packet-switched), and there is only one path be-

tween each input and each output in the network (blocking). The indirect binary 

n-cube [40} and the omega [41] networks, shown in Figure 2.1, are examples of 

this type of network. A number MIMD shared memory multiprocessor systems 

use this kind of multistage network to connect the processors to the memories, 

for example the RP3, ITEP, CHoPP and Monarch (see Section 2.5), and also the 

Eppi design described in the next chapter. 

To restrict the discussion further only relevant aspects of multistage network 

design and performance are discussed here. In particular, VLSI implementa-

tion [42, 431, and fault-tolerance/error-correction [44, 451 are not reviewed. 

2.2.1 Network topology 

There are many different classifications of multistage networks. Some of these 

describe classes of networks such as SW-banyan [46], delta [47] and cube [44]; 

and some describe a particular network topology such as the indirect binary n-

cube, omega, baseline [48] and flip [49]. A number of these network topologies 
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aQ 	a 	a 

Omega 

-1 

Indirect binary n-cube 

Figure 2.1: Omega and indirect binary n-cube multistage network topologies 

have been shown to be isomorphic [48]. 

The topology of a multistage network can be defined by the degree of the 

switches in the network, and how the switches are connected. These connections 

can be conveniently described using permutation functions [14], some of which 

are defined below. The argument to each function is the binary representation of 

a network port input number x. 

x = {b,b_1,. . .,bk+l ,bk ,bk _l ,... 7 b 2 ,b1 } 

The identity permutation is i, where: 

i(x) = x 

The shuffle permutation 0k  is defined as the cyclic left shift of the k least signif-

icant bits of x. 

0k(X) = {b,.. .,bk+l,bk_l,..  .,bl,bk} 

The inverse shuffle permutation a is defined as the cyclic right shift of the k 

least significant bits of x. 

—1 
or k (x) = {b,.. .,b l ,bk ,.. .,b2 } 
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The butterfly permutation /3k  exchanges the first and k 1 bits of x. 

13k(x) = {b ...... bl,bk_l,. . . ,b} 

As shown in Figure 2.1, the stages of the omega network are connected by re-

peated shuffle permutations (where k = log n), and a final identity permutation. 

The stages of the indirect binary n-cube are connected by butterfly permutations 

(where k varies with the stage), and a final inverse perfect shuffle. 

In a shared memory multiprocessor system with a dancehall configuration, 

two of the multistage networks described above are required: one (the request 

network) to route the request packets from the processors to the memories, and 

one (the acknowledge network) to route the acknowledge packets back from the 

memories to the processors. 

2.2.2 Packet routing 

Packet switching allows packets to be pipelined through the network, and the 

network cycle time is only limited by the time it takes to transmit a packet from 

one stage to the next (routing and wire delay). A packet typically consists of 

a number of fields including: a type field, a source address field, a destination 

address field and a data field. In a memory request packet the type field defines 

the type of memory access, the source address field contains the number of the 

requesting processor, and the destination field contains a memory number and 

an offset within that memory. In a memory acknowledge packet the destination 

field contains the processor number to which the acknowledge packet should be 

routed back. 

Routing is controlled at each switch by a number of bits from the destination 

address [50]. If the network has k x k switches, then 1092k  bits are required in 

each switch to specify where the packet is routed. Therefore 1092k  x logk  n bits 

are required to route a packet through an n input network. To maintain the same 
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numerical ordering of inputs and outputs, the routing bits must be interpreted 

from the most significant end of the destination address in an omega network, 

and from the least significant end in an indirect binary n-cube network. After 

the packet has been routed in the switch, the destination address can simply be 

shifted 109 2  k places to discard the used bits. The return address can be included 

in the request packet before it is transmitted, or more conveniently, it can be 

generated as the packet moves through the network [51]. 

2.2.3 Routing conflicts 

If two packets in a switch are addressed to the same output, then some conflict 

resolution strategy is required. Possible options are to block, re-route or discard 

one of the conflicting packets. Blocking is discussed below. Re-routing was pro-

posed for the Burroughs FMP network [52, 53], and implemented in the HEP 

network. The choice of which packet proceeds depends on the priority algorithm 

used, for example: random, round-robin, or adaptive priority [54]. 

Packets that have been blocked must be queued in the switch until they can be 

routed onwards. Incorporating queues in a switch improves network performance 

because it allows packets from a preceding switch to progress even when a packet 

in the current switch is blocked. The queues can be positioned either at the 

inputs or outputs of the switch, or incorporated into the crossbar [55]. The 

network throughput increases as the queue size is increased, but the network 

latency increases as well, and therefore small queues of length 4 to 8 packets are 

optimal [56, 571. 

2.2.4 Hot-spot contention 

Apart from the existence of routing conflicts, network performance can be further 

reduced by contention for the memories which occurs when a number of memory 

requests are addressed to the same memory bank. So that sequential memory 
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requests are not directed at the same memory, logical memory addresses can be 

interleaved or hashed to produce the physical address. The RP3 and Monarch 

designs both use hashing, which has the effect of randomising the memory access 

pattern. This method does not reduce contention when the memory requests are 

addressed to the same location however. 

Memory locations which have a statistically significant higher percentage of 

requests directed at them than other locations are termed hot-spots. As the num-

ber of requests addressed to the hot memory location increase eventually a point 

is reached where more packets arrive than the memory can service per cycle, and 

the requests are queued. Ultimately an effect called tree saturation [58] occurs, 

in which the switch queues from the hot memory back to the network inputs are 

all full. Then, not only the traffic directed at the hot-spot is blocked, but all 

other traffic which must pass through those switches. A hot-spot can arise from 

access to shared variables [58, 59, 60], or from block transfers [61]. Simulations 

show that network performance degrades soon after a hot-spot becomes active, 

and that the effects of the hot-spot remain for some time after it is no longer 

active [62]. 

A number of ways to reduce hot-spot contention have been proposed. A 

method of combining memory requests to the same location is described in the 

following section. Other methods include moving the location of the hot-spot 

between memories [63]. Such a roving memory location (RML) is implemented 

as a special packet which moves from memory to memory, satisfying any requests 

for the hot-spot which have been queued in the memory. Instead of implement-

ing hardware combining, accesses to shared variables could be implemented in 

software [64]. Each shared variable is then replaced by a tree of variables which 

are evenly distributed among the memories. A different network architecture 

could also be used, for instance the circuit-switched multistage network of the 

BBN Butterfly [65, 66]. This network is non-blocking, and therefore no situation 

analogous to tree saturation occurs, although there is still contention for access 
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to the network. 

2.2.5 Combining 

The Ultracomputer, RP3, Monarch and CHoPP multiprocessor designs all include 

some form of combining. Only a brief description of the combining mechanism is 

given here as the details depend on the particular switch design [67, 68, 69, 701. 

Also the combining mechanism used in the Eppi design is similar to that used in 

the Ultracomputer and RP3, and is described in detail in Chapter 3. 

Combining [71, 72] occurs in the network switches. If two request packets 

addressed to the same memory location meet in a switch they can be combined. 

The combining operation involves updating the packets' data fields, depending 

on the memory request type, and then one of the packets is forwarded and the 

other packet is stored in the switch. When the returning acknowledge packet 

passes back through the switch from memory, the stored packet is decombined. 

Again, the specific decombining operation depends on the request type. 

A request packet may be combined more than once on its way to memory. 

The number of times a packet can combine in each switch is given by the com-

bining level [73], and depends on the switch implementation. With a combining 

level k, or k-way combining, a packet can combine k - 1 times in each switch. 

For example with 2-way combining, also called pairwise combining, a packet 

can only combine once per switch. An initial performance analysis of pairwise 

combining [58] showed that combining improves network performance, and that 

tree-saturation can be prevented. Subsequent research [73, 74] suggests that, for 

large networks and heavy loads, pairwise combining is not enough to reduce tree 

saturation effectively, and 3-way combining must be used. 

Combining is particularly effective when used in conjunction with the fetch-

and-add operation described in the following section, and was originally pro-

posed in the Ultracomputer design to allow simultaneous fetch-and-add memory 

accesses to be carried out efficiently [51]. 
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2.3 Synchronisation with fetch-and-add 

In a shared memory multiprocessor interprocess communication and synchroni-

sation occurs using shared variable's. Synchronisation primitives, such as mutual 

exclusion and condition synchronisation [75], are implemented using atomic read-

modify-write operations such as fetch-and-add or test-and-set. 

The fetch-and-add instruction has been used in single processor machines 

such as the 1BM370, and in shared memory multiprocessor designs such as the 

Ultracomputer, RP3, Monarch and CHoPP. The instruction f&a(v , x) adds the 

given value x to the variable v, and returns the variables previous value. Fetch-

and-add has efficiency advantages over the simpler test-and-set instruction, for 

example it can be used directly to update a shared variable, so removing the 

need for locking. A number of synchronisation and other algorithms using fetch-

and-add have been developed in conjunction with the Ultracomputer and RP3 

designs [76, 77]. Versions of some of these algorithms implementing semaphores, 

barrier synchronisation, test-modify-retest functions, and a parallel queue are 

described below. These algorithms are used subsequently in the Eppi benchmark 

programs described in Chapter 5. 

2.3.1 Semaphores 

Implementations of the p0 and v0 semaphore operations [75], are shown in 

Figure 2.2 using a pseudo-C syntax. The function f&a(s ,x) behaves as defined 

above. The address of the semaphore is passed in argument s. 

The p0 function first waits for the semaphore's value to be greater than 

zero. The semaphore is then decremented using f&a, and if the returned value is 

greater than zero the function returns. Otherwise the semaphore is incremented 

using f&a, and the function loops back to the beginning. This implementation of 

the p0 function is blocking, since the process calling the function will busy-wait 

until the function succeeds. The v 0 function increments the semaphore using 
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mt p(s) 
mt *s;{ 

mt t; 

while(1){ 
whi1e(*s<0); 
if((t=f&a(s,-1))>0) 

return(t); 
else 

f&a(s,1) ;}} 

mt v(s) 
mt *s;{ 

return(f&a(s, 1)); } 

Figure 2.2: P and V semaphore functions 

Ma, and returns. 

The test of the semaphore's value at the start of the p0 function, before the 

first f&a, is necessary to avoid the possibility of livelock. Assume a p 0 function 

without this initial test. If a large number of processes all executed p0 on a 

semaphore in parallel, then the semaphore would have a large negative value 

after the f&a. If another process executed vU at the same time, the semaphore 

would still have a negative value. Therefore all the processes executing p 0 would 

be locked out, perhaps indefinitely. 

The main application of these semaphore functions is to implement mutual 

exclusion, for instance to lock a shared variable during an update. If the shared 

variable has an associated semaphore s, which is initialised to 1, then a process 

calls p(s) to lock and v(s) to release the variable. If the update is simply 

an addition, then it may be possible to use f&a directly on the shared variable 

without explicitly using a lock. 
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void join(count,maximum) 
mt *count ,maximum;{ 

f&a(count, 1); 
while(* count <maximum) ; } 

Figure 2.3: A join function 

void barrier (count,maximum) 
mt *count ,maximuiu;{ 

mt t; 

t=(*count<maximum); 
if(f&a(count, 1)==(2*maximuin-1)) *countO; 
while((*count<maximum) !=t) ;} 

Figure 2.4: A barrier function 

2.3.2 Barrier synchronisation 

A barrier synchronisation is used to ensure all parallel parts of a computation 

have completed before the next is - scheduled [75, 781. If the barrier is used only 

once then a simple join (which is counterpart to a fork) can be used, such as the 

function shown in Figure 2.3. The count variable is initialised to zero. Processes 

calling j oinO increment the count, and are blocked until the count equals the 

maximum. 

If the barrier is to be re-used, for instance if it separates iterations of a loop, 

then care must be taken that there is no possibility of processes from different 

iterations overtaking each other and thus causing deadlock. The barrier algorithm 

shown in Figure 2.4 is a re-usable implementation [79], allowing the same counting 

variable to be used in subsequent barriers. The count variable is initialised to 

zero. As processes call barrier() they are blocked until the count equals the 

maximum, and then maximum processes are allowed to pass. When the processes 

reach the barrier again in the next iteration, they are blocked until the count 

equals 2*maximum-1. Then maximum processes are again allowed to pass, and the 
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mt tir(semaphore, increment ,maximum) 
jut * semaphore, increment ,maximuxn; { 

mt t; 

while(1){ 
while(*semaphore>=maximum); 
if((t=f&a(semaphore, increment))<maximum) 

return(t); 
else 

f&a(semphore,-increment); }} 

Figure 2.5: Test-increment-retest function 

jut tdr (semaphore,decrement) 
jut *semaphore,decrement ; { 

jut t; 

while (1) { 
while(*semaphore<=0); 
if ((t=f&a(semaphore ,-decrement)) >0) 

return(t); 
else 

f&a(semaphore ,decrement) ; 

Figure 2.6: Test-decrement-retest function 

count is reset. 

2.3.3 Test-modify-retest functions 

The test-increment-retest (TIR) and test-decrement-retest (TD R) functions are 

used frequently in fetch-and-add based algorithms [76, 71]. Blocking implemen-

tations of these functions are described here, and are used in the parallel queue 

algorithm described below. 

The tir() function shown in Figure 2.5 has three arguments: the semaphore, 

the value of the increment, and the maximum the semaphore can reach. The 

function first tests the value of the semaphore to prevent livelock (as explained 
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above), and then increments the semaphore. If the returned value is below the 

maximum then the function succeeds. TIR can be used to spawn a number of 

processes, giving each one a unique index number (the value returned by the 

function). This index number can then be used for accessing parts of a shared 

data structure such as an array. 

The tdr() function shown in Figure 2.6 has two arguments: the semaphore 

and a decrement. Tithe value of the semaphore is greater than zero, the semaphore 

is decremented and the function returns, otherwise it is blocked. TDRis similar 

to the p0 function defined above, except that the decrement is passed as an 

argument. 

2.3.4 Parallel queue algorithm 

Blocking implementations of parallel insert and delete functions for a parallel 

FIFO queue [76] are presented here. The queue is implemented using a circular 

buffer, and consists of a header and an array of entries as defined below: 

struct{ 
mt insert, delete, entry;} entrystruct 

struct{ 
mt size, upper, lower, insert, delete; /* header */ 
struct entrystruct entries I]; } queuestruct 

The queue header contains five fields: the queue size, an upper bound, a lower 

bound, an insert pointer and a delete pointer. The upper bound contains the 

number of items in the queue plus the number of active insertions. The lower 

bound contains the number of items in the queue minus the number of active dele-

tions. The insert pointer points to the tail of the queue. The delete pointer points 

to the head of the queue. Each queue entry has three fields: an insert semaphore, 

a delete semaphore and a data value. The insert semaphore indicates whether the 

data field is empty and available for insertion. The delete semaphore indicates 

whether the data field is full and available for deletion. These semaphores are 
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void insert(queue ,value) 
struct queuestruct *queue; 
mt value;{ 

mt t; 

tir((queue->upper) , 1, (queue->size)); 
tf&a((queue->insert) ,1)%(queue->size); 
p(queue->entries It] ->insert); 
queue->entries Et] ->entryvalue; 
v (queue->entries It] ->delete); 
f&a((queue->lower) ,1) ;} 

Figure 2.7: Insert function 

void delete(queue,value) 
struct queuestruct *queue; 
mt *value;{ 

mt t; 

tdr((queue->lower) ,1); 
tf&a((queue->delete) , 1)'/.(queue->size); 
p(queue->entries[t] ->delete); 
*value=queue->entries It] ->entry; 
v(queue->entries It] -> insert); 
f&a((queue->upper) ,-1) ;} 

Figure 2.8: Delete function 

necessary to ensure correct synchronisation when there is a concurrent insertion 

and deletion of the same entry, or when there are two concurrent insertions of 

the same entry. 

The insert() function appends the given data value to the tail of the queue. 

The tiro ) function is first called on the upper bound, and blocks until there is 

room in the queue for insertion. Then the insert pointer is incremented, and the 

offset of the entry in the queue calculated. Next p0 is called on the entry's insert 

semaphore. When this succeeds the data value is written, vO is called on the 

delete semaphore, and the lower bound is incremented. 
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The delete() function removes the entry at the head of the queue. First 

the tdr() function is called on the lower bound, which blocks until an item is 

available to delete. Then the delete pointer in incremented, and the offset of the 

entry in the queue calculated. Next p0 is called on the entry's delete semaphore. 

When this succeeds the data value is read, vO is called on the insert semaphore, 

and the upper bound is decremented. 

The queue can be used as a parallel data structure or to schedule processes 

for example. For process scheduling each queue entry can point to a process 

control block, and processes are removed from the queue when a processor be-

comes free (self-scheduling). Only individual processes can be scheduled this 

way, which is not efficient for scheduling a large number of identical processes. 

To do this efficiently a multi-queue algorithm can be used, in which each queue 

entry also contains a multiplicity count [76]. Unfortunately the parallelism of 

the multi-queue has to be restricted, compared to the above algorithm, to ensure 

correctness. 

2.4 Performance evaluation of multiprocessors 

To evaluate the performance of multiprocessor designs the same techniques used 

for uniprocessor designs are applied [SO], but can be complicated by the size, par-

allelism and synchronisation inherent in the design to be evaluated. Performance 

evaluation methodologies are divided into analytical and simulation based tech-

niques. The application of parallelism to increase simulation speed has required 

the development of new simulation algorithms. 

2.4.1 Analytical models 

Analytical models try to capture the behaviour of a system in a set of equations, 

and are frequently based on a stochastic analysis of the system's changes of state 

(for instance using queueing network theory) [SO, 81]. Because such models are 
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quite general they have a wide applicability, and may be used to evaluate similar 

systems without much change. Assuming closed-form equations can be derived 

for the model, then it can be solved efficiently and will not require excessive 

computing resources, although many iterations may be needed before the model 

settles down and produces reliable results. The size of parallel systems complicate 

the solution of queueing network models due to the combinatorial explosion in 

the number of possible states, and the correct modelling of synchronisation is 

difficult because of the loose-coupling assumed in some of the models. Because 

of their formulation, analytical models can generally only provide information 

about the average steady-state behaviour, or performance bounds, of the system 

being modelled. To validate an analytical model also usually requires comparing 

the model to a more detailed simulation of the same system. 

Various stochastic models including queueing networks have been used to 

model multiprocessor network performance [47, 57, 21. These models assume 

that memory addresses are uniformly distributed and that all addresses are inde-

pendent, and provide results forrbest-case network throughout and delay under 

these conditions. To evaluate the effect of a memory hot-spot the models have 

been extended to account for a fraction of the memory requests, the hot-spot 

percentage, being directed at the hot-memory [58, 73, 74]. Stochastic Petri nets 

have been used to model bus-based multiprocessor systems [81]. The RP3 project 

developed a spreadsheet program which used queueing analysis to show network 

performance for various configurations [5]. 

2.4.2 Simulation models 

Simulation models try to capture the behaviour of a system in the code of the 

simulator program. A simulation model is more specific to the system being 

evaluated, and is also more computationally intensive than an analytical model. 

There is no restriction on what can be modelled, allowing dynamic effects to be 

investigated, and simulation models can also be used for functional verification 
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as well as performance evaluation. 

Simulation models are generally divided into instruction, register-transfer and 

gate level models. As the model becomes more detailed the amount of structural 

information in the model increases. General simulator systems allow the modelled 

design to be specified using a hardware description language, which may be a high 

level description such as ISP [82] and VHDL [83], or in terms of function blocks 

and registers, or logic gates, depending on the level of the simulation. Custom 

simulators are usually implemented using a high-level language in the form of 

a behavioural description. Specific language features may guide the choice of 

language, for example using Occam to explicitly describe the parallelism in a 

system [84, 851. 

The input to instruction level simulators consists of either synthetic test data, 

which may be stochastically generated, or actual program code, or traces of in-

structions or memory accesses taken from existing machines. The latter is tra-

ditionally referred to as trace-driven simulation. To use a trace-driven simulator 

the appropriate traces must first be available, which may not be the case if the 

system to be simulated uses novel instructions for example. A number of sys-

tems to produce multiprocessor traces have been developed [80, 4, 86, 87]. An 

example is PSIMUL which is a simulation tool developed in conjunction with the 

RP3 project [87]. PSIMUL simulates the execution of a shared memory machine 

using instruction traces collected from the execution of parallel applications on 

a uniprocessor. The memory reference traces generated by PSIMUL have been 

used to analyse memory reference behaviour [88], to drive multiprocessor and 

network simulations [89], and to analyse multiprocessor cache performance [90]. 

A number of projects involving the design of a multiprocessor system have 

developed simulators for performance evaluation. For example the NYU Ultra-

computer was first simulated using the Washcloth simulator [91] which ran on 

a CDC6600. Rather than simulating a processor, the CDC processor itself was 

used, and programs could be compiled from a high level language and executed 
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directly. Special instructions were added to implement fetch-and-add. A number 

of different machine models were simulated, including the paracomputer model, 

and a model with a multistage network. An extension to the simulator included 

tag-bits in each memory word, to compare the efficiency of tag-bits to fetch-and-

add synchronisation. 

2.4.3 Parallel simulation 

To increase simulation speed, and allow larger systems to be simulated, parallel 

simulators have been developed to run on multiprocessor machines. Peacock et 

al [92] have defined a taxonomy of distributed simulation (which could also be 

applied to shared memory simulation), in which simulators are divided depending 

on how simulation time is treated. In an event-driven simulation the simulated 

system changes state at varying, unpredictable simulation time intervals, whereas 

in a time-driven simulation the state changes occur at constant time intervals. 

The simulation is further defined as being tight if each component of the simula-

tion has exactly the same value of simulation time at any instant, or loose if the 

components may have differing values. 

In an event-driven simulation the simulated system changes state in response 

to events. Because these events can arrive out of order they must first be ordered 

into the correct sequence. There has been much research on algorithms for im-

proving the efficiency of distributed event-driven simulators [92, 93, 94, 95, 96]. 

The generality of event-driven simulation systems allows them to be used in 

simulating a variety of different systems. Parallel logic gate simulators have 

been implemented using distributed event-driven simulation on transputer net-

works [97, 98]. 

Algorithms for time-driven simulation have not received an equivalent amount 

of attention to those for event-driven simulation. This may be because time-

driven simulation is less general, and has been used mostly for bespoke simu- 

lations. A shared memory time-driven simulation has been used to simulate a 
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multistage interconnection network on a shared memory multiprocessor [99, 100]. 

After each network cycle the processes simulating the network switches are syn-

chronised using a barrier. In a distributed time-driven simulation the simulator 

modules synchronise using message-passing. This allows more parallelism than 

a shared memory time-driven simulation using barrier synchronisation, because 

connected modules synchronise directly by the exchange of packets. The Eppi 

simulator described in Chapter 4 uses a loose distributed time-driven simulation 

methodology. 

2.5 Example shared memory multiprocessors 

A number of MIMD shared memory multiprocessor designs have been referred 

to and are now described briefly below. These designs are relevant because they 

include either combining multistage networks and/or instruction interleaved pro-

cessors. The descriptions are brief and only include gross architectural features 

such as processor and network configuration, and synchronisation mechanisms. 

2.5.1 Heterogeneous element processor (HEP) 

The HEP [101] is a shared memory MIMD multiprocessor machine consisting of 

up to 16 instruction interleaved processors connected to memories by a packet-

switched multistage network. Each processor, shown in Figure 2.9, can support 

up to 1024 instruction streams, and contains 8 pipelined functional units, 2048 

general-purpose registers, 4096 constant registers and 4 Mbytes of local instruc-

tion memory. The network is constructed from bi-directional three port switches, 

and can re-route blocked packets. Each processor also has a direct connection 

to one of the memories (called its home memory). Synchronisation is through 

full/empty bits in the memory and processor registers, using blocking load and 

store instructions. 
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Network hterface 	 Rome memey 

Figure 2.9: Block diagram of HEP processor 

2.5.2 Circulating context multiprocessor (C CMP) 

The CCMP [20, 102, 63] is an MIMD shared memory multiprocessor design sup-

porting extensive pipelining and multiple instruction streams (processes). The 

CCMP design shown in Figure 2.10 is split up into home modules, memory mod-

ules and execution modules which are connected by buffered singlestage cube 

networks. The instruction counter and other context of each process is stored in 

the process's home module. The execution modules contain an instruction de-

coder and an execution pipeline, and can execute instructions from any process, 

allowing automatic dynamic load balancing. Instruction execution starts with a 

process fetching an instruction from memory and then the operands specified in 

the instruction, then the process is routed to one of the execution modules and 

the instruction is executed with the result being stored in memory or a regis-

ter in the process's home module. Synchronisation is based on an atomic swap 

operation. 

2.5.3 Columbia homogeneous parallel processor (CHoPP) 

The CHoPP-1 [36] is an MIMD shared memory multiprocessor machine which 

consists of up to 16 processors connected to a "conflict free" memory. The 
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IN = Cuba network 	H = Hone module 	M = Memory module 

E = Execution module 

Figure 2.10: Overview of a closely coupled CCMP configuration 

CHoPP-1 design is more closely related to the GEM architecture of Cohn [103], 

rather than the original CHoPP proposal [104]. The processors have a very long 

instruction word (VLIW) architecture, with each instruction being 256 bits long. 

Each processor can store the context of up to 64 processes, and a context switch 

within the processor takes three cycles. The execution units are not instruction 

interleaved however. Synchronisation is achieved using 2-bit memory tags and 

special load and store instructions. Processor registers are also tagged, allowing 

asynchronous memory accesses. There is also a compare-and-swap instruction 

and a fetch-and-add instruction, with fetch-and-adds being combined in the net-

work. 

2.5.4 BBN Monarch 

The Monarch [105] is an MIMD shared memory multiprocessor design consisting 

of up to 65K processors connected to memories by a synchronous hybrid mul-

tistage network. The processors are 64-bit with a RISC architecture, have an 

instruction cache, and overlap memory access with instruction execution to mask 

memory latency. The network is non-rectangular (more processors than memory 
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modules), with multiple paths between each source and destination, and uses a 

hybrid switching strategy. Memory requests are submitted synchronously by the 

processors, allowing efficient implementation of read combining. Memory words 

and processor registers have an 8-bit tag, which is used to implement garbage 

collection algorithms and interprocess synchronisation. 

2.5.5 NYU Ultracomputer 

The Ultracomputer [106] is an MIMD shared memory multiprocessor design con-

sisting of up to 4K processors connected to memories by a combining omega mul-

tistage network. The major contribution has been the development of the fetch-

and-add synchronisation primitive and network combining mechanisms. Other 

areas of investigation include synchronisation algorithms using fetch-and-add, 

operating system issues such as process scheduling and memory management, 

and application code development. A number of bus-based prototypes of the Ui-

tracomputer have been constructed using off-the-shelf processors, and are used 

for software development, particularly a parallel UNIX' implementation. The 

VLSI design of combining switches is also in progress. Much of the design has 

been realised in the RP3 described below. 

2.5.6 IBM Research parallel processor prototype (RP3) 

The RP3 [107] is a shared memory MIMD multiprocessor machine consisting of 

up to 512 processor-memory elements (PME's), connected by two multistage net-

works. Each PME, shown in Figure 2.11, contains a 32-bit RISC microprocessor, 

a 32 Kbyte cache and 4 Mbytes of memory. Memory stores are executed asyn-

chronously allowing overlap of memory access and execution. Two networks are 

provided, one is a high-bandwidth bipolar non-combining banyan network with 

128 inputs, and the other a low bandwidth CMOS combining omega network with 

'UNIX is a trademark of AT&T Bell Labs. 
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Figure 2.11: Block diagram of RP3 processor-memory element 

64 inputs. The latter is used exclusively for transmitting fetch-and-add requests. 

The PME memory has a soft division into local and shared memory, and shared 

memory addresses are hashed to reduce contention. A number of fetch-and-op 

functions are provided for interprocess synchronisation. 

2.6 Comments 

The areas of processor instruction interleaving, packet-switched combining mul-

tistage networks, and fetch-and-add synchronisation have all been introduced in 

this chapter. Existing shared memory multiprocessor designs which include one 

or more of these features were briefly described. The Eppi multiprocessor design 

described in the next chapter combines all these features in a single design. 



Chapter 3 

Eppi multiprocessor design 

The Eppi MIMD shared memory multiprocessor design consists of p instruc-

tion interleaved RISC processors connected to p memories by a packet-switched 

combining indirect binary n-cube multistage network constructed from 2  1092  p 

switches. The processors have no local memory or caches, and there is no virtual 

memory support. Figure 3.1 shows an 8 processor Eppi system with 12 network 

switches and 8 memories. 

The following sections describe in detail the design of the Eppi processor, 

network switch and memory. The processor section includes a description of the 

processor pipeline, the instruction set, and the results from the simulation of a 

single processor. The network section includes a description of the combining 

mechanism, and the results from the simulation of an isolated network. 

3.1 The processor 

The Eppi processor supports the concurrent execution of a number of interleaved 

instruction streams (or processes), and should be implementable as a single-chip 

VLSI pipelined RISC microprocessor (although implementation issues are not 

discussed here). This design is an extension of Topham's context-flow processor 

35 
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Processors 	 Switches 	 Memories 

Figure 3.1: Components of an 8 processor Eppi system 

(Section 21.4), and has been deliberately kept simple and idealised. Some of 

the features required in a real processor implementation, but not necessary for 

the simulations, have been left out to simplify the processor design. For example 

floating-point support, supervisor mode and exception/interrupt handling. Some 

of these issues are discussed in [19, 26]. This section effectively describes the 

Eppi processor as it is simulated in the Eppi simulator. 

The processor has a general purpose instruction set with a single 32-bit in-

struction format. Instruction decoding is hard-wired, and there is no microcode. 

All instructions complete in one instruction cycle, but require a number of clock 

cycles. Most instructions have a three address register-to-register format (two 

sources, one destination), and load/store instructions are used for memory ac-

cess. 

Figure 3.2 shows a block diagram of the processor which consists of an 8 
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To switch 	From switch 

IFU = Instruction fetch unit 

IDU = Instruction decode unit 

RRU = Register read unit 

BSU = Barrel shift unit 

ALTJ = Arithmetic logic unit 

CSU = Context store unit 

MRQ = Memory request queue 

DFU = Data fetch unit 

RWQ = Register write queue 

RWU = Register write unit 

PCU = Program counter unit 

RFU = Register file unit 

MRU = Memory request unit 

MAU = Memory acknowledge unit 

Figure 3.2: Block diagram showing pipeline units of Eppi processor 



CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 38 

stage circular execution pipeline, three register files, two merging queues, and a 

memory interface. The pipeline stages all have a 1 clock cycle latency and are 

clocked continuously and simultaneously by the same clock signal. The number 

of processes that are executed concurrently by the processor depends on the 

implementation, and on reset all the processes start executing together. In the 

processor simulations described in this chapter up to 64 processes are executed 

per processor. Each process has only a single instruction in execution at any 

one time, and each instruction requires one pass around the execution pipeline 

to complete. Each stage of the pipeline contains either an instruction from one 

of the executing processes or is empty (contains a null process). 

3.1.1 Process context 

Each process has a context in the processor (apart from any other context in main 

memory associated with the program being executed). This context is shown in 

Table 3.1 and consists of: a process identification number (pid), a register set, 

some condition flags, and various operands and control signals used in instruction 

execution. These are described further below. 

Some of the context of a process will move around the pipeline with the process 

and is called dynamic context, while the rest will be grouped together and only 

accessed at certain stages, and is called static context [33, 108]. Examples of 

dynamic context are the pid, condition flags, operands and control signals, which 

move with the process from one pipeline stage to the next. The registers are 

examples of static context, they are accessed only at certain pipeline stages and 

it is more area efficient to group them together. Some of the dynamic context, 

such as the operands and control signals, may exist only for a few pipeline stages. 

When an instruction is decoded by the instruction decode unit (IDU) a number 

of control signals are generated, which move from stage to stage with the process. 

This is called data-stationary control [109, 1101 because the control signals move 

with the data. 
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context size (bits) 
] 	

description 

r0-r13 32 general purpose registers 
PC (r14) 32 program counter 
sr (r1,5) 32 statusregister 
valid 1 valid process bit 
pid 6 process number 
carry 1 carry flag 
minus 1 minus flag 
overflow 1 overflow flag 
zero 1 zero flag 
instruction 32 instruction code 
immediate 32 immediate operand 
opbsel 1 operand B select 
readienable 1 enable register read port 1 
readiaddress 4 read port 1 register address 
read2enable 1 enable register read port 2 
read2address 4 read port 2 register address 
writelenable 1 enable register write port 1 
writeiaddress 4 write port 1 register address 
write2enable 1 enable register write port 2 
write2address 4 write port 2 register address 
opa 32 operand A 
opb 32 operand B 
result 32 result 
bsufunc 2 barrel shift control 
alufunc 4 arithmetic unit control 
dfufunc 2 data fetch unit control 
isifetch 1 instruction fetch 
status 2 memory access type 
daddress 32 destination address 
saddress 32 source address 
data 32 memorydata 

Table 3.1: Process context 
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The register set of each process consists of 14 general purpose registers (rO-

r13), which are stored in the register file unit (RFU). The RFU has 2 read-ports 

and 2 write-ports, and contains a register set for each process. Register r14 refers 

to the program counter (pc), and r15 to the status register (sr). The pc is stored 

separately from the other registers in the program counter unit (PCU). The PCU 

also has 2 read-ports and 2 write-ports, and contains a pc for each process. The sr 

does not explicitly exist since the condition flags that make up the status register 

are part of the process's dynamic context. Only the bottom 4 bits of the sr are 

used. 

A process is identified in a pipeline stage by a valid bit and the pid. The valid 

bit indicates whether the pipeline stage contains a real process or a null process. 

The pid is an integer process number, and is used to index into the register sets 

and to identify returning memory acknowledge packets. 

Each process has four condition flags: carry, minus, overflow and zero. Shift 

instructions can set carry in the barrel shift unit (BSU). All the flags can be 

set by the arithmetic and logic instructions executed in the arithmetic logic unit 

(ALU). 

The remaining context consists of either control signals or operands, and is 

not user accessible. Instruction contains the current instruction, and if it includes 

an immediate constant then this is sign extended into the 32-bit Immediate by the 

IDU. Opbsel indicates whether opB should be a register value or an immediate, 

and readXenable and readXaddress enable register access and specify a register 

number respectively. OpA and opB are the two register operands, and result is the 

result of the ALU operation. Bsufunc, alufunc and dfufunc define the operation of 

the relevant pipeline stages. Ifetch indicates whether the current memory access 

is an instruction or data fetch. The status, daddress, saddress and data fields 

make up a memory access packet. 
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3.1.2 Merging queues 

The memory request queue (MRQ) and the register write queue (R\VQ) are both 

two-input, one-output FIFO queues. They are used to merge and buffer process 

contexts going to and returning from memory, so that there is a smooth flow of 

contexts around the execution pipeline. 

The MRQ merges memory requests from the instruction fetch unit (IFU) 

and the data fetch unit (DFU), and passes them on to the memory request unit 

(MRU). It is large enough to queue all the processes, and has static storage 

elements since memory requests may be queued for a number of cycles due to 

network conflicts. At reset the processes are initialised by the MRQ. Each MRQ 

entry is set up to contain, for each process, a memory request to fetch the first 

instruction from the reset location. 

The RWQ merges processes coming from the DFU and the memory acknowl-

edge unit (MAU), and passes them to the register write unit (RWU). Because 

processes are clocked out of the RWQ every cycle, dynamic storage elements can 

be used, and the queue length need only be p/2 + 1, where p is the number of 

executing processes [111]. 

3.1.3 Memory interface 

Memory requests are issued by the MRU, and returning memory acknowledge-

ments are received by the MAU. The format of the memory request packets is 

described in Section 3.2.2. Since not all the dynamic context of a process is re-

quired for a memory access some of it is stored in the context store unit (CSU), 

while the memory access is in progress. The CSU is a register file with 1 read-port 

and 2 write-ports, and contains an entry for each process (what is stored in the 

entry is described below). The CSU is written to by the IFU and DFU before 

a memory request, and read from by the MAIJ when a memory acknowledge 

returns. 
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The MRU uses two signals, validout and read yin, to control the transfer of 

memory request packets with the network. Validout is a boolean output signal and 

indicates to the connected network switch that a packet is ready to be transferred. 

Readyin is a boolean input signal which indicates that the connected switch is 

ready to receive a packet. If there is a memory request waiting in the MRU, and 

read yin has been asserted by the network, then the MRU asserts validout and 

transfers the packet. The MAU also has equivalent validin and readyout signals, 

but can receive an acknowledge packet every cycle, and so its read yout signal is 

permanently asserted. 

3.1.4 Instruction execution 

The new instruction cycle of each process starts at the IFU. The IFU reads 

the processes pc from the PCU, increments the pc by 1, and writes the new value 

back to the PCU. Concurrently the dynamic, context not required for the memory 

access, which at this point consists only of the condition and ifeich flags, is written 

to the CSU. The ifetch flag is set' before it is written to the CSU to indicate that 

an instruction fetch is in progress. On the following cycle the process is passed on 

to the MRQ in the form of a memory request. The status field is set to indicate 

a memory load, the new pc value is used as the daddress, the pid forms part of 

the saddress, and the data field is zeroed. 

The process is then queued in the MRQ, for one cycle minimum, and passed to 

the MRU on the following cycle. The MRU then handshakes with the network as 

described above and issues a memory request packet. Because of network latency 

a number of cycles may elapse before the memory acknowledge packet returns 

to the MAU. The MAU then extracts the pid and data from the acknowledge 

packet and uses the pid to index into the CSU. The stored context is read from 

the the CSU, and since the ifetch bit is set, the process is passed to the IDU on 

the following cycle. 

The IDU decodes the new instruction and sets all the relevant register enables 



CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 43 

and control functions for the execution units. The process is then passed to the 

RRU which uses the pid, readladdress and readaddress values to index into the 

RFU and read the given operands. Opa is read from read-port 1, and opb from 

read-port 2. In the following cycle the BSU executes the shift function indicated 

by the bsufunc field on opa. If the opbsd flag is set then the immediate value is used 

as the shift value rather than opb. The process is then passed to the ALU which 

executes the function indicated by the alufunc field, opbsel again determining the 

source of one of the operands. After the result has been calculated the flags are 

updated, and the process is passed to the DFU on the next cycle. 

If dfufunc indicates that a memory access should occur, then the DFU clears 

isifetch, and some of the process context is written to the CSU. In this case the 

context written includes isifetch, the register write-port signals, the flags, and the 

result. The status field of the memory request is set to indicate either load, store 

or fetch-and-add. The daddress field takes the value of result. The data field is 

zeroed for a load, set to the value of opb for a store, or is set to either immediate 

or opb (depending on opbsel) for a fetch-and-add. The memory request is then 

passed to the MRQ and progresses as described above. When the acknowledge 

returns to the MAU the stored context is read from the CSU, and the process 

is passed to the RWQ (since isifetch is cleared) along with the returning data 

value. If dfufunc indicates that no memory access should occur then the process 

is passed directly from the DFU to the RWQ on the following cycle. 

The RWQ receives the process from either the DFU or the MAU, and the 

process is queued for a minimum of one cycle. The process is then passed to 

the RWU which uses pid, write 1 port and write2port to index into the RFU. The 

value of result is written to write-port 1, and data or opb to write-port 2. This 

completes the instruction cycle, and the process is passed to the IFU once again. 
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func 	I 	mode 	dest 	srcel 	i 	srcc2 

Figure 3.3: Instruction format 

3.1.5 Instruction format 

The Eppi instructions have a single 32-bit format similar to the RISC I [112]. The 

instruction has six fields as shown in Figure 3.3. The func (function) field specifies 

the general instruction type, for example: branch, compare or arithmetic. The 

mode field specifies the particular instruction type, for example: branch always or 

branch greater-than. The dest (destination) field specifies the destination register 

address to which the result of the instruction is written. The srcel (source 1) field 

specifies a source register address. The i (immediate) bit specifies whether the 

srce2 (source 2) field contains either a 15-bit signed immediate constant (i = 1), 

or a source register address in the lower 4 bits (i = 0). 

The 4-bit register addresses in dest, srcel and srcc92 specify one of r0-r15. If 

PC (r14) is used then the PCU is accessed rather then the RFU. If Sr (r15) is used 

then the flags are accessed. 

3.1.6 Instruction set 

The assembly language mnemonics of the Eppi instruction set are shown in Ta-

ble 3.2, where rd,st  is a 4-bit destination register address, rrc,l  and r3rce2  are 4-bit 

source register addresses, and i15  is a 15-bit signed constant. The "quick" form of 

the instructions indicate that srce2 is a constant rather than a register address. 

The instruction set was chosen to cover the usual range of instructions and no 

attempt was made to optimise the number of instructions (for instance not can 

be implemented by exor-ing with 1 [112], and ble can be implemented by using 

bgt with the operands swapped [19]). 

The branch instructions conditionally change the value of the pc by an imme-

diate offset. The branch condition is evaluated in the IDU using the flags. If the 
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instruction description 

add rdes t, rsrce l, rsrce2 add 
addq rdesg, r,rce l , add quick 
sub rdest, rsrce l, rsrce2 subtract 
subq rd 3 , Tsrce l, 	15  subtract quick 
mul Tdes t, rsrcel, rsrce2 multiply 
mulq rdest, r3 1, i 15  multiply quick 
div rdest I  ' srcel , r3rce2 divide 
divq rdest, rsr 1, i 15  divide quick 
rem 7'dest, Tsr 1, rsrce2 remainder 
remq rdest, rsr 1, i 15  remainder quick 
and 7'dest, rsr 1, r3€2 logical and 
or 	rsrcel, rsrce2 logical or 
exor rdest, r31 , rsrce2 logical exclusive-or 
not Tdest, r3 1 logical not 
rol rdest, rsrcel, Tsrcc2 rotate left 
rolq r11, rsr 1, i5  rotate left quick 
ror rdest, rsrcel, Tsrce2 rotate right 
rorq rd 3 , rsrcel, i 5  rotate right quick 
cmp rsrcel, rsrce2 compare 
cmpq rsrcel, 2 15  compare quick 
bra i 15  branch always 
bcs 2 15  branch carry set 
bvs i15  branch overflow set 
beq i15  branch equal 
bne 2* 15  branch not equal 
bit i 15  branch less than 
ble Z15 branch less than or equal 
bgt i 15  branch greater than 
bge i 15  branch greater than or equal 
ido rdest, rsrcel, i 15  load offset 
sto rdest, rsrcel, 2* 1 store offset 
idi rdest, rsrcel, Z'15 load increment 
sti rdest 	rsrcei store increment 
ldq rdest, i 15  load quick 
stq Tdesj, 	15  store quick 
f&a Tdest, rsrcel, rsrce2 fetch-and-add 
f&aq rdest, rsrcel, i 15  fetch-and-add quick 
noop no operation 

Table 3.2: Eppi assembly code mnemonics 
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branch condition is true then the IDU sets alufunc to add, and the immediate 

offset is added to the pc. The result is then written back to the PCU and the new 

instruction is fetched at the start of the next instruction cycle. If the condition 

is false then alufunc is set to pass and the pc is not written back. The immediate 

offset must be adjusted to account for the pc increment by the IFU. 

Branch on condition instructions should be preceded by a compare instruction. 

The cmp and cmpq are implemented as a subtraction (r srcei - rsrce2 ), the result 

of which is discarded. The ALU sets the flags accordingly and they are used by 

the subsequent branch instruction. 

The shift instructions are executed by the BSU, with a shift magnitude be-

tween 0 and 32 bits (the bottom 5 bits of the shift operand). The value in Tjrce l is 

rotated by the value of r 3r 2, and stored in rd 8 . The last bit rotated is available 

in the carry flag after the rotate. 

The arithmetic and logic instructions are executed by the ALU. Only integer 

arithmetic is supported, and the ALU can perform both multiply, divide and 

remainder operations in a single cycle. This unrealistic assumption was made to 

simplify the design and in an implementation the ALU would itself be pipelined. 

For non-commutative operations such as subtract, divide and remainder rsrcel  is 

assumed to be the left-hand operand (for example rsrcel  7'srce2, rsrcel/rsrce2) cic). 

The carry, minus and zero flags are set by all ALU operations, while the overflow 

flag is set only for addition and subtraction. 

The load and store instructions have three addressing modes, each of which 

is implemented as a separate instruction. For a load the address register is rsrce l, 

and for a store it is rd 3 . The offset is always a 15-bit immediate constant. The 

offset addressing mode allows the memory address supplied from a register to 

be modified by an immediate offset, and the address register is not changed. 

The increment addressing mode allows the memory address to be modified by 

an immediate offset, and the address register is updated with the new value 

(pre-increment). The quick addressing mode allows an immediate constant to be 
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loaded into a register or to be stored in a memory word. 

The fetch-and-add instruction atomically adds a given value (which can be an 

immediate constant or from r srce2) to a memory word addressed to by TSrcej, and 

returns the previous value of the memory word to rcJest . 

The benchmark programs described in Chapter 5 are coded in the Eppi assem-

bly language mnemonics just described, and the assembly code for these programs 

is shown in Appendix A. 

3.1.7 Single processor simulation 

The number of processes required to achieve maximum pipeline utilisation in an 

instruction-interleaved processor depends on the pipeline length and the memory 

latency. To obtain steady-state performance bounds a single processor simulator 

was written using Pascal on a Sun workstation. 

The simulated processor has the same pipeline configuration as the Eppi pro-

cessor described above, but can only execute three "meta-instructions" called: 

icycle, acycle and dcycle. These specify that an instruction fetch, an arithmetic 

operation, or a memory access are to be executed. No actual operations are car-

ried out, the meta-instructions simply determine the path of a process through 

the processor. Various instruction mixes can be synthesised using the meta-

instructions. The simulator allows the meta-instruction sequence, the interleaving 

level (number of executing processes), the number of memory pipeline stages and 

the memory cycle time to be varied. The total memory latency is given by the 

number of memory pipeline stages times the memory cycle time. The simulator 

collects a number of execution statistics including: the processor pipeline utilisa-

tion, the memory interface utilisation, the processor instruction time which is the 

number of cycles per instruction per processor, and the process instruction time 

which is the number of cycles per instruction per process. These are displayed 

after the simulator has been clocked for a given number of cycles. 

Three synthetic workloads (meta-instruction sequences) called best, average 
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and worst are used in the simulations: 

best = icycle, acycle. 

average = icycle, acycle, icycle, dcycle. 

worst = icycle, dcycle. 

In the best case workload there is 1 memory access per instruction, in the average 

case 1.5, and in the worst case 2. As the simulator is clocked each of the processes 

repeatedly executes the given meta-instruction sequence (each process has its own 

meta-instruction counter). The number of instructions executed is equal to the 

number of icycles executed. In each simulation below the simulator was clocked 

until a total of 10000 instructions had been executed. 

Varying the workload 

The simulation results in Figures 3.4 to 3.7 show how the performance changes 

for the three workloads with the interleaving level increasing from 1 to 64 pro-

cesses (in single process increments). The number of memory pipeline stages and 

memory cycle time were both 1 (therefore memory latency is 1 cycle). 

For each workload the pipeline utilisation (Figure 3.4) increases as more pro-

cesses are added, and then levels off at between 9 and 12 processes as the pipeline 

becomes full (or saturated). The maximum pipeline utilisation drops from 100% 

in the best case workload to 50% in the worst case. This is because returning 

memory requests are passed from the MAU to the IDU or the RWQ, and the 

pipeline utilisation is measured in the IDU. So whenever a data fetch returns 

the IDU remains idle and some utilisation is lost. The memory utilisation (Fig-

ure 3.5) increases to 100% as more processes are added, for all three workloads. 

The worst case workload reaches maximum utilisation faster than the best case 

workload. The processor instruction time (Figure 3.6) decreases as more processes 

are added, and then levels off at the saturation point. The best case workload ex-

ecutes at about 1 cycle per instruction. The process instruction time (Figure 3.7) 
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remains level until near the saturation point, and then increases linearly as more 

processes are added. Above the saturation point the processes start to compete 

for resources and spend more time queued in the MRQ and RWQ. 

The workload of a real program would vary dynamically between the best 

case and the worst case shown. So for a system with unit memory latency the 

performance would be bounded by these results. 

Varying the number of memory pipeline stages 

The simulation results in Figures 3.8 to 3.11 show, using the average workload, 

how the performance changes with an increasing number of memory pipeline 

stages and interleaving level. The number of memory stages used are: 1, 2, 

4 7  8, and 16. The memory cycle time is 1 throughout, and so the memory 

latency is equal to the number of memory stages. This models the case in which 

the processor is connected to a pipelined network (such as a packet-switched 

multistage network), and the network cycle time equals the processor cycle time. 

For all memory pipeline lengths the pipeline utilisation (Figure 3.8) increases 

as more processes are added, and then levels off at the maximum utilisation pos-

sible with this workload. As the number of memory pipeline stages is increased, 

more processes are needed to reach the saturation point (with 16 stages, 24 pro-

cesses are needed to reach the maximum utilisation). The memory utilisation 

(Figure 3.9) increases to the maximum as more processes are added, but again 

more processes are required to reach the saturation point with greater numbers 

of stages. The processor instruction time (Figure 3.10) decreases as processes 

are added, and levels off at the saturation point. More processes are necessary to 

achieve the minimum instruction time as the number of stages increases. The pro-

cess instruction time (Figure 3.11) remains level as processes are added, and then 

starts to increase near the saturation point. All the instruction times converge 

after the saturation point. 

Increasing the number of memory pipeline stages increases the memory la- 
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tency, but still allows pipelined memory access. The general effect is to move 

the saturation point to a larger number of processes. Even with a large number 

of stages the maximum utilisation can still be achieved using correspondingly 

greater numbers of processes. 

Varying the memory cycle time 

The simulation results in Figures 3.12 to 3.15 show, using the average workload, 

how the performance changes with increasing memory cycle time and interleaving 

level. The memory cycle times used are: 1, 2, 4 and 8 cycles. The number of 

memory pipeline stages is 1 throughout, and so the memory latency is equal to 

the memory cycle time. This models the case in which the processor is connected 

to a local memory which has a larger cycle time than the processor. 

The pipeline utilisation (Figure 3.12) increases up to the saturation point, 

and then levels off. As the memory cycle time is increased, and memory accesses 

take longer, the maximum pipeline utilisation possible is reduced. The memory 

utilisation (Figure 3.13) quickly reaches the maximum as the interleaving level is 

increased. With longer memory cycle times the memory utilisation is increased 

as processes spend relatively more time in the memory. The processor instruction 

time (Figure 3.14) almost doubles with each doubling in memory cycle time, and 

few processes are required to reach the saturation point. The process instruction 

time (Figure 3.15) increases as processes are added, with the highest memory 

cycle time resulting in the highest rate of increase. 

Increasing the number of processes cannot compensate for large memory cycle 

times in the same way as for the memory pipeline stages, since memory access 

cannot be pipelined. The memory becomes a bottleneck on the performance of 

the processor. 
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Summary 

The simulation results show that the maximum processor utilisation possible is 

dependent on the workload and the memory cycle time. As the average number 

of memory accesses per instruction and the memory cycle time increase, the 

maximum utilisation possible is reduced. As the number of memory pipeline 

stages is increased, the interleaving 1eve1 must also be increased to reach the 

maximum utilisation. These results are in agreement with similar studies [27, 

26 7  25] (Section 2.1.3). Lees [108] has performed simulations of a context-flow 

processor design with pipelined floating point units, in which the maximum queue 

lengths of the various merging queues in the design are measured. 

This concludes the description of the Eppi processor; the following section 

describes the network used to connect the processors and memories together. 

3.2 The network 

The Eppi network is constructed from 2 x 2 combining switches connected in an 

indirect binary n-cube topology (Section 2.2.1 and Figure 3.1). The network is 

divided into a request half which routes request packets from the processors to the 

memories, and an acknowledge half which routes acknowledge packets from the 

memories to the processors. The request and acknowledge halves are physically 

merged to facilitate combining, so in a p input network there are 2 1092 p switches. 

The internal block structure of the switch is shown in Figure 3.16. The switch 

is also divided into a request and acknowledge halves. The request half consists of 

two input ports, two input latches, two ,request queues and two output ports. The 

request queues each have two inputs, and can accept two packets and output one 

packet in each cycle. If the queue is empty then the packet goes to the head of the 

queue, but is not output until the next cycle. Matching packets can be combined 

in the request queue. The acknowledge half consists two input ports, two input 

latches, two acknowledge queues and two output ports. The acknowledge queues 
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Figure 3.16: Internal structure of network switch 

each have four inputs and can accept four packets (or more with higher combining 

levels), and output one packet each cycle. Each packet spends at least one cycle 

in the queue. The request and acknowledge halves of the switch, are connected 

by the two wait-buffers. The wait-buffers are associative memories which are 

used to store one of a pair of combined packets, until the other one returns from 

memory and can be decombined. Each wait-buffer is written to by one of the 

request queues, and read by one of the acknowledge input latches. It is assumed 

that each request queue contains an adder unit used in combining fetch-and-add 

requests, and that each acknowledge input latch also contains an adder unit used 

in decombining fetch-and-add acknowledges (these adders are not shown in the 

diagram). 

The switches are synchronously clocked from the same signal. In each clock 

cycle a switch can input a packet to each input port, and output a packet from - 

each output port. A 'packet can be input and routed in one clock cycle, and 

output on the next clock cycle, although it may also be queued in the switch for 

a number of cycles. 
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Figure 3.17: Request and acknowledge packet format 

3.2.1 Ports 

Each port of the switch consists of a pair of handshake signals and the packet 

transfer wires. The transfer of packets between the switches is controlled by 

ready and valid signals (the processor has the same memory interface described 

in Section 3.1.3). 

An input port has a read yout output signal and a validin input signal. Readyout 

is asserted if the input latch is empty and the port can receive a new packet. If 

the connected switch has a packet to send then it will assert validin and the 

packet will be transferred. 

An output port has a read yin input signal and a validout output signal. If the 

read yin signal is asserted by the connected switch and there is a packet in the 

output queue, then the validout signal is asserted and the packet is output. The 

whole packet is transferred in the same cycle. 

3.2.2 Packet format 

Request and acknowledge packets have the same format. Each packet consists of 

five fields as shown in Figure 3.17. The type field defines the memory access type, 

the pid field contains the process number of the requesting process, the saddress 

field contains the return address, the daddress field contains the destination ad-

dress, and the data field contains a 32-bit datum. The saddress field in a request 

packet is initially empty, and the return address is generated as the packet tra-

verses the network (as described below). The daddress field can be subdivided 

into a memory number, and an offset within that memory. 
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3.2.3 Routing 

A packet is routed from the input latch to one of the queues depending on the 

routing bit, which is the least significant bit of the daddress. If the routing bit is 

0 the packet is routed to the upper queue, if it is 1 to the lower queue. Before 

the packet is output to the next stage the daddress is shifted one bit to the right, 

discarding the current routing bit. These operations are the same for both request 

and acknowledge halves of the switch. 

The return address is generated on the fly by the request half of the switch. 

When a packet is input to a port the saddress is shifted one bit to the left, and 

the port number (either 0 or 1) is shifted into the least significant bit. Assume 

a network with 8 inputs as shown in Figure 3.1, and that a request packet is 

transmitted from processor 5 destined for memory 7 (the bottom 3 bits of the 

daddress therefore have the value 111). Initially the saddress contains 000, after 

the first stage it contains 001, after the second stage 010, and after the third 

stage 101, which is the correct return address. This address is then used as the 

daddress in the acknowledge packet, again read from the least significant bit. 

3.2.4 Combining 

Combining occurs in the request queues. An incoming packet can be combined 

with one of the packets already in the request queue if the type and daddress 

fields of the two packets are identical. For simplicity combining is restricted to 

occurring between load and load packets, and fetch-and-add and fetch-and-add 

packets only. More general combining could also be implemented [72]. 

Figure 3.18 shows the combining of two packets originating from process A 

on processor A and process B on processor B, for both the load and fetch-and-

add case. The packet in the request port input latch (from processor B) is first 

compared to all packets in the request queue, starting at the head of the queue. If 

the wait-buffer is not full, then the matching packet in the queue (from processor 
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Load-load combine operation 
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Ma 	prcsBlprcsrB I addrX dataBi 	I prcsAprcsrA I  Ma I  prcsB lprcsrB  I dataA 

packet in latch 	 packet wait-buffered 

Figure 3.18: Combining operations 

A) can be combined. The pid and saddress of the queued packet are used as a 

tag in the wait-buffer to identify the stored packet. The saddress of the incoming 

packet is copied to the wait-buffer, and the daddress discarded. The contents of 

the data field of the stored packet is dependent on the type of memory request. 

For load combining the data field is left empty. For fetch-and-add combining the 

data field of the queued packet is copied into that of the stored packet, and the 

queued packets data field is updated with the sum of itself and the data field of 

the incoming packet. The queued packet can then proceed to the next switch. 

The request queues can allow more than 2-way or pairwise combining to occur 

(Section 2.2.5). If a queued packet is involved in a combine but is still in the queue 

- in a subsequent cycle, then it may combine again. Each combine results in a new 

wait-buffer entry. The maximum combining level is 4-way. 

3.2.5 Decombining 

Decombining occurs in the acknowledge half of the switch. The pid and daddress 

field of the returning packet are compared to all the tags in the wait-buffer (an 
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Load-load decombine operation 
type 	pid saddr daddr 	data 

I load I prcsAl null  IprcsrAI dataCi 	 load I  prcsA I  null IPAI dataCi 

packet in latch 	 packet queued 
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Figure 3.19: Decombining operations 

associative match). If there is a match then the returning packet was previously 

combined with the packet in the wait-buffer. 

Figure 3.19 shows the decombining operations for the packets combined in 

the previous diagram. For load decombining the returning packet's data field 

is copied to the decombined packet's data field, so the loaded value returns to 

both processes. For fetch-and-add decombining the returning packet's data field 

is added to the decombined packet's data field to generate the correct unique 

value. After decombining both packets are routed and queued. If the queue the 

decombined packet is to be routed to is full, then decombining is delayed until 

the next cycle. 

If more than 2-way combining is allowed then all matching packets are decom-

bined and queued in the same cycle (with higher combining levels this becomes 

rather idealised). If the acknowledge queues become full then the returning packet 

remains in the input latch, and decombining commences in the following cycle. 
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3.2.6 Isolated network simulation 

The performance of multistage networks has been well researched using both ana-

lytical techniques and simulation [113, 47, 57, 114, 58, 59, 73, 74, 21 (Section 2.2). 

For purposes of comparison a simulator of an isolated indirect binary n-cube 

multistage network was written using C on a Sun workstation. The simulated 

network has the same switch design and topology as the request half of the Eppi 

network, except that combining is not implemented. The network is isolated in 

that there are no attached processors or memories, and the network loading is 

not related to network throughput (defined as an open system in queueing the-

ory terminology). Packets are presented to the network inputs with a random 

destination address, unless a hot-spot is specified. The number of new packets 

entering the network is dependent on the given network loading. Packets output 

from the network are discarded. 

The simulator allows the switch queue size and network loading to be varied. 

The loading is the percentage of submittable packets that were submitted to 

the network, for example if the network can accept 100 new packets in a cycle 

then only submitting 50 packets results in a 50% loading. The simulator also 

allows a single hot-spot to be specified; this is a memory address to which a 

higher percentage of packets are addressed than the other locations. The hot-

spot percentage is the percentage of packets submitted that were addressed to the 

hot-spot, above the background traffic. The network performance is measured 

in terms of the network throughput and latency. The (normalised) throughput 

is the percentage of packets output by the network compared to the maximum 

throughput possible. The latency is the average number of cycles a packet takes 

to cross the network. 

The simulation results below show the effect of queue size and a hot-spot on 

network performance, for networks with between 2 and 256 inputs. For each 

simulation the simulator was clocked for 10000 cycles to allow a steady state to 

be reached. 
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Varying the queue size 

The simulation results in Figures 3.20 and 3.21 show the effect of increasing the 

queue size from 1 to 32 packets, with a 100% load. As the queue size is increased 

the throughput (Figure 3.20) increases for all network sizes, and approaches the 

maximum at a queue size of 32. The latency (Figure 3.21) increases unboundedly 

with queue size. This is because more packets can be accepted by the network as 

the queue size increases, resulting in longer waiting-times and thus higher latency. 

Increased throughput is desirable, but increased latency is not, so a small queue 

size of 4-8 packets appears to be optimal. 

Varying load 

The simulation results in Figures 3.22 and 3.23 show the effect of increasing 

the load from 50% to 100%, with a queue size of 4 throughout. As the load is 

increased the throughput (Figure 3.22) increases and then levels off, at which 

point the network is saturated and cannot accept more packets. The latency 

(Figure 3.23) increases with load, since there are more packets in the network 

resulting in higher contention. 

Varying queue size with hot-spot 

The simulation results in Figures 3.24 and 3.25 show the throughput and latency 

with varying queue size, but with 1% (above background traffic) of the 100% load 

directed at a hot-spot. Compared to Figure 3.20, the throughput (Figure 3.24) has 

been significantly reduced by the hot-spot for larger network sizes. For example a 

throughput of 95% drops to 30% for a queue size of 32 and 256 inputs. Increasing 

the queue size improves throughput only slightly for the larger network sizes. The 

latency (Figure 3.25) is also much higher with the hot-spot for all network sizes 

compared to Figure 3.21. 
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Varying hot-spot percentage 

The simulation results in Figures 3.26 and 3.27 show the effect of varying hot-spot 

percentages on throughput and latency with a 100% load and queue size 4. As 

the hot-spot percentage is increased from 0 to 1%, the throughput (Figure 3.26) 

decreases for networks larger than 16 inputs. The latency (Figure 3.27) only 

increases significantly for networks with more than 64 inputs. It is evident that 

even a very small hot-spot can cause a large reduction in network performance. 

Summary 

These results show similar characteristics to other network simulations, although 

the exact figures for throughput and latency depend on the switch design used. 

The actual performance of the network when used in the Eppi design will depend 

on the load resulting from the interleaving level, and the hot-spot percentage 

resulting from the memory access pattern. 

This concludes the description of the Eppi network; the following section 

describes the operation of the Eppi memory. 

3.3 The memory 

The Eppi processors are connected to an equal number of shared memories. 

Logical memory addresses are low-order interleaved across the memories, so that 

consecutive physical addresses are in consecutive memory modules. In a p pro-

cessor system, the lower 1092p  bits of the daddress are used to route the request 

packet to one of the memories. Then the remaining 32 -  log2  p bits are used as 

an offset in that memory. 

Each memory module has an input port, an array of memory, a memory 

controller and an output port as shown in Figure 3.28. The usual ready and 

valid signals are used to control the transfer of packets between the memory and 
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Figure 3.28: Block diagram of functional units in a memory module 

the network. The memory controller performs the memory access, which can be 

either a load, store, or fetch-and-add. In the latter case a read-memory-write 

cycle is necessary, and the memory controller also has an integer adder which is 

used in calculating the result of the fetch-and-add. All memory accesses including 

fetch-and-add take one cycle. 

3.3.1 Operation 

At the start of a cycle, if the input latch is empty, the memory module asserts 

the read yout output signal on its input port. If the connected network switch has 

a packet, then the validin input signal will in turn be asserted by the switch, and 

the packet transferred. Concurrently, if there is a packet in the memories output 

latch, and the read yin input signal has been asserted, then the output port's 

validout signal is asserted and the packet is transferred to the network. If the 

packet in the output latch has been successfully transferred, then the packet in 

the input latch starts its memory access, and the result is written into the output 

latch. If the output latch is full, because the network switch cannot accept the 

packet, then the memory access is deferred until the output latch is empty. 



CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 66 

When the memory module receives a request packet it copies the type and 

pid fields into the acknowledge packet, and transfers the saddress field, which 

contains the return address, to the daddress field of the acknowledge packet. The 

saddress field of the acknowledge packet is unused. If the memory request is a 

load the memory word at the offset given by the request packet's daddress field 

is copied into the acknowledge packet's data field. If it is a store then the request 

packet's data field is copied into the memory location. If it is a fetch-and-add 

the value of the memory location is copied to the acknowledge packet's data field, 

and the source packet's data field is added to the value in the memory location. 

Assuming there is no congestion at the memory output, a request packet is 

clocked into the memory on the one cycle, and the acknowledge packet clocked 

out on the next. The memory thus has a maximum throughput of one packet per 

cycle. 

3.4 Comments 

This chapter has described the Eppi design and presented simulation results 

for a single processor and isolated network. The processor simulation provided 

performance bounds for given meta-instruction mixes and memory latencies, and 

the network simulation for given queue sizes, loads and hot-spot percentages. 

Without previous experience it is difficult to predict what the instruction mix 

and memory access pattern of parallel programs executing on the Eppi will be, 

since relevant statistics are not available. The frequency of load and f&a memory 

accesses to hot-spots is particularly important, since it will affect the network 

performance. Such information can only be provided by detailed simulation of 

the whole Eppi system, and such a simulator is described in the next chapter. 



Chapter 4 

Eppi simulator 

The Eppi simulator is a distributed time-driven, instruction level simulation of 

the Eppl multiprocessor design described in the previous chapter. To increase the 

simulation speed and the size of Eppi system that can be simulated, the Eppi 

simulator has been implemented in Occam on a transputer based, distributed 

memory multiprocessor. The largest Eppi system that has been simulated is 

a 256 processor system using 128 transputers. The first section of this chapter 

briefly reviews Occam and the transputer. The following sections describe the 

machine on which the Eppi simulator runs, how the simulator is parallelised, 

the user-interface of the simulator, and how the Eppi components are simulated. 

The last section presents some performance results for the simulator. 

4.1 Occam and transputers 

Occam [115] is a strongly typed language based on CSP [116], and includes con-

structs to explicitly define parallelism and communication between processes. An 

Occam process can be anything from a single arithmetic statement to a large pro-

cedure, and processes communicate by passing messages through named channels. 

Only two processes may communicate through a channel, in one direction, using 

67 
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blocking input and output message-passing commands. 

Statements or procedures to be executed in parallel are included in the body 

of the PAR construct. Equivalently, statements to be sequentially executed must 

appear in the corresponding SEQ construct. A non-deterministic element is in-

troduced by the ALT construct, the body of which contains a number of guarded 

input commands. When a communication occurs on one of the input channel 

guards, the statements subordinate to the input are executed. Each of the con-

structs may also be used in a replicated form. In the case of a replicated PAR the 

given number of copies of the body of the construct are executed in parallel. 

In the transputer implementation of Occam [117] the level of parallelism must 

be statically defined at compile-time, and therefore the replication count in a 

replicated PAR must be constant. The placement of processes onto transputers 

is also static, and the top-level configuration part of the program specifies which 

processes are to be placed on which transputers using the PLACED PAR construct. 

Which Occam channels are to be associated with which transputer links is also 

defined at this level. 

The transputer [118] is a single-chip microprocessor intended for parallel pro-

cessing and embedded real-time applications. The highest performance T800 

transputer contains 4 Kbytes of local on-chip RAM, a 64-bit floating point unit, a 

32-bit microcoded processor, an external memory interface, and four 20 Mbits/sec 

serial communication links. The transputer design is optimised for executing Oc-

cam, and provides instructions and hardware support for Occam process commu-

nication and management. The Occam input and output instructions, and the 

PAR and ALT constructs compile almost directly into equivalent transputer assem-

bly code instructions. The processor maintains a queue of executable processes, 

and context-switches the current process when it executes a communication op-

eration or its time-slice has expired. The register set of each process is small so 

that context-switching is efficient. 

The Occam channels are implemented using memory locations, but they can 
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also be mapped onto the transputer links. A number of transputers can be con-

nected together using the links to form a distributed memory multiprocessor. 

Current transputers provide no hardware support for general, global communica-

tion between processes in such a multiprocessor. A process running on a trans-

puter can only communicate directly with other processes on the same transputer, 

or with the links. Programs which require global routing of messages must use 

some sort of communications harness to route messages between processes on 

different transputers. 

4.2 Simulation engine 

The Eppi simulator runs on a large Meiko Computing Surface called the Edin-

burgh Concurrent Supercomputer (ECS) [119, 120]. This is an MIMD distributed 

memory multiprocessor constructed from transputers. The current ECS config-

uration, of which an overview is shown in Figure 4.1, contains over 400 T800 

transputers with 4 Mbytes of external memory each. The ECS is a multi-user 

system, and provides a version of UNIX and a distributed file system, and can be 

programmed using Occam, and C or Fortran with added message-passing proce-

dures. 

The transputers in the ECS are divided up into about 20 single-user domains, 

each of which contains a fixed number of transputers. Each domain consists of 

a host transputer and a number of user transputers. The host transputer runs 

the system software and provides an interface to the i/o devices, while the user 

transputers are available for user programs. The domains range in size from 1 

user transputer, through 5, 17, 32, 65, and 132 user transputers. Some of the 

domains also have an attached graphics board and colour monitor. 

The user transputers in a domain can be connected in almost any topology 

using the transputer links. The Meiko hardware provides a number of link switch- 

ing chips to which all the transputer links are connected. These switching chips 
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Figure 4.1: Overview of the domain organisation of the ECS. 

can be electronically configured before a program is loaded, so that the user 

transputers are connected in the correct topology. This topology is static, and 

is not changed during a program run. The minimum connectivity necessary is a 

path through all the user transputers used, so that the program can be booted 

onto the transputers. All of the transputers in a domain are additionally con-

nected by a memory mapped 8-bit bus called the supervisor bus. This bus has a 

low bandwidth and is used mainly for system purposes, such as configuring the 

switch chips. It can also be used for sending debugging messages from the user 

transputers in a domain to the user's terminal, via the domain's host transputer. 

Disk 

VDU 

For most programs one of the user transputers is designated the master trans- 
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puter, and runs the control and user-interface part of the program. The master 

transputer is connected to the host transputer by one of its links (the host-link), 

so it can interface to the i/o devices. The other user transputers run the compu-

tation part of the program, and are referred to as slave transputers. In a typical 

task-farm application for example, the master sends work to be done to the slaves, 

which then return the result and wait for new work. 

4.3 Simulator structure 

The Eppi simulator is written entirely in Occam, and can be divided into three 

parts: the user-interface, the simulation modules and the communications har-

ness. The processor, network switch and memory of the Eppi system described 

in the previous chapter are each simulated by an Occam procedure (or module). 

The simulator is parallelised by replicating and distributing the modules across a 

transputer domain, and the modules communicate by message-passing; the mes-

sage packets being routed around the domain by the communications harness. 

4.3.1 Domain topology 

To execute the Eppi simulator, the transputers in the chosen domain are first 

configured in a de Bruijn graph or d-shuffle topology [121] using the transputer 

links. This graph has a logarithmic inter-node distance with fixed node degree, 

and has better performance for generalised communication than other topologies, 

such as a torus for example [122, 1231. The topology of an 8 slave domain is shown 

in Figure 4.2, in which the slave transputers are numbered 0-7. The de Bruijn 

graph has been slightly augmented to provide two end-around connections, one of 

which connects the master transputer. The host transputer, to which the master 

is connected, is not shown. 
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Figure 4.2: Topology and module distribution of an 8 processor Eppi system on 
an 8 transputer domain. 

4.3.2 Module distribution 

For the simulation of a p processor Eppi system a domain of maximum p slaves 

can be used. To balance the load of each slave the simulation modules are evenly 

distributed across the domain. If the slaves are numbered from 1 to p, then 

processor i is placed on slave i, switch j is placed on slave j mod p, and memory k 

on slave k. Table 4.1 shows how many modules there are per slave for increasing 

Eppi system sizes, using the largest domain possible in each case. Where the 

number of switches does not divide evenly over the number of slaves, half the 

slaves have one more switch than the other half (these latter slave transputers 

actually contain a dummy switch instead of a real switch, which swallows any 

packets it receives). In Figure 4.2 an 8 processor Eppi system (refer to Figure 3.1) 

is shown distributed across an 8 slave domain. The user-interface runs on the 

master transputer (and is shown as U). The processor (P0-P7 ), switch (N0-N11 ) 

and memory (M0-M7 ) modules run on the slave transputers. 

Due to the static parallelism of Occam a separate version of the simulator 

must be compiled for each different system and domain size. The simulator has 
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Processors I  Nodes  I  Memories  Total I  modules  I  Slaves  Modules I  per slave 
1 0 1 2 1 2 
2 1 2 5 2 2.5 
4 4 4 12 4 3 
8 12 8 28 8 3.5 
16 32 16 64 16 4 
32 80 32 144 32 4.5 
64 192 64 320 64 5 
128 448 128 704 128 5.5 
256 1024 	1 256 	1 1536 128 12 

Table 4.1: Number of modules with increasing simulation size 

two parameters number of processors and number of slaves which are simply set 

to the relevant values before compiling. The size of the memory array in each 

memory module is also set before compilation, and is calculated so that the 

total amount of memory in the system is 128 Kbytes for any given system size 

(this is sufficiently large for all the benchmark programs described in the next 

chapter). A number of other simulator parameters can be varied at run time and 

are described below. The largest Eppi system that has been simulated is 256 

processors using 128 slave transputers. Larger system sizes could be simulated, 

but the simulation becomes slow because of the high load on each slave. 

4.3.3 Communications harness 

A general transputer communications harness called Tiny [124], developed at 

Edinburgh University, is used to route packets around the domain. Tiny provides 

topology independent routing of variable sized packets between named processes 

in a domain. Each transputer in the domain has a number of harness processes 

running on it as well as the simulator modules. When the harness is started 

up it first explores the domain topology, and builds up routing tables containing 

the shortest paths between all the transputers. The processes using the harness 

must be given a unique domain-wide integer identifier, which is used to address 
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Figure 4.3: Connection of Tiny harness and user processes within a transputer. 

packets. A number of packet read and write functions are provided with Tiny. 

They differ in the routing strategy used, which can be either sequential, adaptive 

or broadcast. In sequential routing all packets are routed by the same path, and 

the order of sending is maintained. In adaptive routing the packet is routed by 

the least congested path, and subsequent packets may arrive out of order. In 

broadcast routing the packet is broadcast to all other processes. This is done 

efficiently since the harness builds a broadcast tree from the source transputer 

to all the destination processors. The packet write functions are non-blocking, 

and packets arriving at a destination transputer are buffered until the receiving 

process reads them. 

Each simulator module has a number of Occam channels that make up its 

interface. These channels are connected to the harness as shown in Figure 4.3, 

for the two modules P0 and P1. The harness receives messages from a module's 

output channels and routes them to the given input channel of the destination 

module. Each module knows its own logical module number, which is used along 

with the output channel number as arguments to a mapping function. This 

returns the logical module number of the connected module and the input channel 

number, using the permutation functions described in Chapter 2. The destination 
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module number is then converted to a Tiny process number, which is used to 

address the packet. Currently all packets are 2 words long, and contain the input 

channel number and a data word. Longer messages must be sent sequentially 

(this is a limitation of the simulator not the harness). 

4.4 The user-interface 

The user-interface of the Eppi simulator runs on the master transputer, inputs 

commands from the user or a batch file, and controls the simulated Eppi system 

in the manner of a host computer. Commands are sent to the modules using 

control packets, which are output from the user-interface's control-out channel 

and routed to the control-in channel of the modules. Acknowledgement packets 

from the modules' control-out channels are received on the user-interface's control-

in channel. The user-interface also has an jo-in channel which is used for receiving 

asynchronous messages from the modules, and various other channels to connect 

it to the user terminal and the filing system via the host transputer. These 

connections are shown in Figure 4.4, where the user-interface is shown connected 

to a processor, switch and memory module. 

The main commands of the user-interface are shown in Table 4.2, and are 

described below. There are a number of other commands which are used for 

debugging purposes, such as setdebug which instructs specified modules to print 

out debugging messages over the supervisor bus, and trace which is used to trace 

the path of specified Eppi processes, or to trace access to specified Eppi memory 

locations. 

The user commands are executed by the user-interface using module control 

packets. These are either sent to specific modules or broadcast to all modules, 

depending on the command. Some of the commands simply send the correspond-

ing control packet, while others use combinations of control packets in different 

ways. The main control packet types are shown in Table 4.3, and are also de- 
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Figure 4.4: Channels connecting the user-interface and three modules. 

scribed below. 

4.4.1 System reset and initialisation 

A number of parameters of the simulated Eppi system can be varied at run-

time. Currently these are: the interleaving level which is the number of processes 

executing per processor, the combining level used in the switches, the size of the 

queues and wait-buffers in the switches, and the relative clock speed of the three 

module types. The default values of the system parameters are changed using 

the Setup command. 

When the simulator is started up or the Reset command is executed, the 
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Command Description 

Clock single-step 1 cycle 
Display show the internal state 
Memory load a program, dump, or poke memory 
Nclock clock for n cycles 
Reset reset system 
Run run in either timed or clocked mode 
Setup set default parameters 
Toggle auto-display 
Quit terminate the simulator 

Table 4.2: User commands 

modules are reset using the default values of the system parameters, and the 

memory is cleared (zeroed). The modules are reset by sending a reset control 

packet and the relevant parameters to each module, as described in Section 4.5. 

4.4.2 Loading a program 

A program is loaded into the memories using the Memory (load) command. The 

program is read from a file in ascii-hex format, produced by the Eppi assembler, 

and consists of a number of code blocks. Each block contains the starting address 

of the block, the size of the code in words, and the machine code itself. The code 

usually starts at the reset location (memory address 16), from which the first 

instruction is read by the processors after a reset. To load a memory word the 

given address is decomposed into a memory number and an offset, and that 

memory module is sent a load control packet with the offset and code word. 

4.4.3 Program execution 

After the program is loaded the simulator modules are clocked to begin execution. 

The Clock and Nclock commands are used to clock the modules explicitly for either 

a single cycle or for a given number of cycles respectively, and are used mostly in 

the development and debugging of programs. 

The Run command is used to clock the modules implicitly (and continuously) 



CHAPTER 4. Epp] SIMULATOR 
	

78 

Control packet I Description 	 1 
clock clock for specified number of cycles 
interrogate return specified state information 
load load word into specified memory location 
poll return current clock count 
reset reset and initialise state 
run clock continuously until interrupted 
stop interrupt run 
quit terminate process 

Table 4.3: Module control packets 

for an unspecified number of cycles, and has two forms: timed or clocked. The 

timed form allows the clocking to be paused every given (real) time interval, for 

any internal state or utilisation statistics of the simulated system to be displayed, 

after which clocking is resumed. The clocked form allows the clocking to be 

paused every given number of clock cycles. The Run command finishes when an 

interrupt is received from either the modules or the user, and is used for executing 

complete programs since it is generally not possible to predict when the program 

will finish. A mechanism is provided which allows the program itself to send an 

interrupt to the user-interface indicating that the program has finished. Clocking 

and interrupts from a modules viewpoint are described further in Section 4.5. 

4.4.4 Displaying state and statistics 

The Display command is used to show the internal state or utilisation statistics 

of the modules on the user terminal. The internal state of the modules is ac-

cessed by sending an interrogate control packet and parameters which specify the 

particular piece of information. The state and statistics available in each module 

are described in the next section. The Toggle command is used to enable automatic 

execution of the Display command after a clock cycle, or during a run. 

The execution of the Eppi system can also be visualised on a colour monitor (if 

a graphics domain is used). The display represents each of the modules as a box, 

and the colouring of the box is used to indicate some given value of utilisation. 
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Figure 4.5: Visualisation of a hot-spot in a 16 processor system 

The display can be updated each cycle, allowing the memory access pattern of a 

program to be seen, for example. Effects such as tree saturation (Section 2.2.4) 

can be observed in this way, as shown in Figure 4.5. This shows a 16 processor 

simulation in which an artificial hot-spot has been created at memory module 

0. The requests and acknowledge halves of the networkare displayed separately, 

and the dark shading of the modules indicates the presence of a packet (the scale 

at the bottom is not meaningful in this display mode). The current clock count 

is shown in the lower right hand corner. 

4.5 The modules 

The three module types simulate the Eppi processor, switch and memory. The 

Occam code for each module is serial, apart from packet input-output, which 

reduces the number of wasted cycles due to frequent context-switching on the 



CHAPTER 4. EppI SIMULATOR 	 80 

transputers. The body of each module consists of two parts: a control part which 

executes the commands from the user-interface, and a simulation part which 

simulates the corresponding Eppi component. 

The modules communicate with the user-interface using the control-in/out 

channel pair as shown in Figure 4.4, and execute a continuous loop waiting on 

the control-in channel for a control packet from the user-interface. When a control 

packet is received the command is executed, and possibly some result packets are 

sent back to the user-interface. Each module also has a number of ports for 

inter-module communication, equivalent to those described in Section 3.2.1. An 

input port has channels called ready-out, valid-in and packet-in, and an output-

port has channels called ready-in, valid-out and packet-out. The ready-in/out 

and valid-in/out channels (which are not shown Figure 4.4) transmit and receive 

single word packets containing a boolean value, and the packet-in/out channels 

transmit and receive four-word memory access packets (although each word is 

transmitted sequentially). 

Each module has a number of parameters which are initialised on reset, and 

some state and utilisation statistics which can be accessed by the user-interface. 

On reset the processor module is sent the interleaving level and the processor clock 

factor. The state of the processor that can be accessed includes: the contents 

of the pipeline stages, the contents of the register file, and the context of each 

process. The statistics recorded include: the number of instructions executed, the 

number of memory requests issued and the average latency of memory requests. 

The switch module is sent four parameters on reset: the combining level, the 

queue size, the wait-buffer size and the switch clock factor. The request and 

acknowledge queues are both set to the same size. The accessible state is: the 

contents of all the latches, queues and wait-buffers in the switch. The statistics 

recorded include: the number of packets received and transmitted, the number, 

type and level of packets combined, and the number of request, acknowledge and 

wait-buffer conflicts. 
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The memory module is sent only the memory clock factor on reset, the memory 

size having been defined at compile-time. The accessible state is the contents of 

the latches and the memory locations. The only statistic recorded is the number 

of memory accesses. 

The parts of the module code which simulate the Eppi components were de-

veloped before the rest of the simulator. To ensure that they worked correctly 

simple tests were performed, such as verifying the correct execution of all the 

instructions in the processor. When a complete system was assembled the execu-

tion of simple test programs was analysed, and at a later stage also the execution 

of the benchmark programs described in the next chapter. 

4.5.1 Clocking 

When a clock control packet with an argument is received the simulator part 

of the module is invoked to execute the given number of cycles, after which an 

acknowledgement is returned to the user-interface. The modules are not clocked 

by repeatedly broadcasting single clock packets, which would be inefficient as 

shown in the performance section below. With a run control packet, the modules 

start clocking themselves as above, but only finish when a stop control packet 

with an argument is received. The control-in channel is therefore polled every 

cycle to see if a packet has arrived. 

During clocking the modules are synchronised by the exchange of packets 

between ports, and therefore clock at the maximum rate possible. Because of the 

loosely-coupled synchronisation between the modules, each module can be one 

cycle out of step with a connected module (the simulation is loose time-driven). 

In a p processor simulation it is possible for a processor to be up to (log p)+l cycles 

out of step with a memory (the module that is furthest from the processors), and 

vice versa. The modules therefore need to be synchronised after a run, so that 

they have all reached the same clock cycle. To do this the user-interface first 

sends a poll control packet to all the modules (this does not interrupt the run), 
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which then return their local clock count to the user-interface. The maximum 

value returned is added to the maximum separation in cycles possible (as defined 

above), and sent to the modules as an argument to the stop control packet. The 

modules then stop when they reach this combined clock count, and return an 

acknowledgement to the user-interface. The poll control packet is also used to see 

how many cycles have been executed during a run. 

4.5.2 Interrupts 

A run may be paused periodically using the poll/stop mechanism, or may be 

stopped by user keyboard input. The program being executed by the simulator 

also has the capability to stop the run, by sending an interrupt to the user-

interface. The first sixteen logical memory addresses (#00  to #OF) of the Eppi 

memory space are designated as special memory mapped i/o locations. By writ-

ing to the designated interrupt location (#03),  the program causes the memory 

module to which that address is mapped to send an interrupt packet to the 

user-interface, through its jo-out channel. When the user-interface receives an 

interrupt packet during a run it stops the run as described above, otherwise the 

user is simply alerted that an interrupt has been received. 

Interrupts are used to stop clocking after a program has finished. Generally it 

is the last executing process to complete its work that invokes the interrupt. The 

current clock period of the memory module is sent with the interrupt packet, and 

this value is used as the completion time of the program. Because the modules 

are clocked for a further number of cycles to synchronise them, the statistics 

displayed after the run are not exactly the same as those at the moment the 

program finished. 
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4.5.3 Clock factor 

Usually the modules are set to clock at the same rate, but using the module 

clock factor parameter they can be given differing clock rates. The module clock 

factor dictates how many external clock cycles equal one internal clock cycle. For 

instance if the switches and memories are to clock twice as fast as the processors, 

then this is achieved by making the processors half as fast as the other modules by 

setting the processor clock factor to two. The processors will then only execute an 

internal cycle every two external clock cycles. The connected modules still expect 

to receive ready and valid signals (packets) every cycle, therefore a dummy clock 

routine is executed which outputs valid false and ready false to the connected 

modules. 

4.6 Simulator performance 

Generally a p transputer domain is used when simulating a p processor Eppi 

system up to 128 processors, although it is possible to use a smaller domain. With 

a small domain size the number of modules executing on each slave is larger, but 

as the domain size is increased the average distance between the slaves increases, 

resulting in higher message transmission times. This section presents results for 

the relative speed-up of the simulator with increasing domain size, and looks at 

the simulator as a parallel application in its own right. 

Table 4.4 shows the cycle time, relative speed-up and efficiency of simulating 

a 64 processor system with increasing domain sizes of 4 to 64 slaves. Due to 

a limitation of the harness the simulation could not be carried out for 1 and 2 

slaves. The cycle time is the time in seconds to execute one clock cycle, and 

is averaged over the execution of 1000 cycles. The speed-up is calculated rela-

tive to the 4-slave cycle time, and the efficiency is the ratio of actual speed-up 

to the linear speed-up (shown in brackets). During clocking the processes are 

simply executing no-operation instructions. A comparison of the cycle times of 
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Slaves I Cycle time(s) I Speedup (ideal) J _Efficiency 

4 0.31 1.0 (1) 1.0 
8 0.17 1.8 (2) 0.89 

16 0.09 3.3 (4) 0.81 
32 0.05 5.9 (8) 0.74 
64 0.03 10.1 (16) 0.63 

Table 4.4: Performance of simulator, simulating a 64 processor system, with 
increasing domain size 

the benchmark programs under similar conditions did not show any significant 

difference to executing no-operation instructions, although the memory access 

pattern of the program can affect the simulation speed as discussed below. Using 

64 slaves the simulator can execute about 33 simulated cycles per second, which 

is about 106  times slower than one might expect a hardware implementation to 

perform. As the domain size increases, the efficiency progressively falls to 63% 

for 64 slaves, which indicates that the simulator becomes communication bound 

using the larger domain sizes. 

As mentioned above the modules are not clocked by repeatedly broadcast-

ing a clock control packet for each clock cycle. The overhead introduced by the 

repeated broadcasts and acknowledgements would certainly slow the simulator 

down considerably. To compare the speed of broadcasting repeated clock control 

packets with no argument (i.e., clock for one cycle only) to using a single clock 

control packet with an argument, a 64 processor system was clocked for 1000 

cycles on a 64 slave domain using both methods. The repeated broadcast results 

in an average clocking time of 0.0987 seconds per cycle, while the more efficient 

method results in a clocking time of 0.0304 seconds per cycle. The repeated broad-

cast method corresponds to the barrier synchronisation between each clock cycle 

used in a shared memory time-driven simulation of a multistage network [100]. 

In the Eppi simulator the modules are synchronised by the exchange of packets 

between ports, and can therefore clock at the maximum rate possible. Global 

synchronisation of the modules is only required when the system state is to be 
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accessed. 

Because the pattern of packet traffic in the domain is dependent on the pro-

gram being executed by the simulator, the performance can vary with different 

programs. For example if the program exhibits hot-spot behaviour, in which a 

large number of memory requests are directed at one memory location, then the 

number of packets routed to the memory module containing that memory loca-

tion increases. A hot-spot in the program can therefore not only increase the 

execution time of the program (measured in clock cycles), but also the execution 

speed of the simulator (measured in cycles per second). A similar observation 

was reported in the shared memory simulation cited above. 

4.7 Comments 

A more recent version of the Tiny communications harness [1241  can monitor the 

transputer link utilisation, allowing potential bottlenecks to be discovered. As 

the speed-up results show, the simulator is communication bound and its per-

formance could be improved by reducing the number and size of packets trans-

mitted between the modules, and by optimising the placement of the modules, 

which would reduce the average distance each packet has to travel. Due to time 

constraints these improvements were not attempted, and work was concentrated 

on evaluating the performance of the Eppi design executing three assembly code 

benchmark programs which are described in the following chapter. 



Chapter 5 

Benchmark programs 

Because the Eppi simulator models the Eppi design at the instruction level it 

can be used to execute realistic parallel programs. This allows the development 

and evaluation of parallel algorithms for this kind of shared memory architec-

ture. In the simulation experiments described in the next chapter three parallel 

benchmark programs are used as system loads, under the assumption that they 

generate memory access patterns similar to those of real parallel applications. 

Since no high-level language compiler for the Eppi instruction set was available 

all programming of the Eppi has been done using the Eppi assembly code defined 

in Section 3.1.6. 

This chapter describes the algorithms and implementation of the three bench-

mark programs. The first section explains the choice of algorithm, the next section 

describes the process control mechanisms used in the programs, and the following 

sections describe the algorithm and implementation of each of the programs. The 

assembly code of each program is shown in Appendix A. 
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5.1 Choice of algorithms 

The three algorithms used for the benchmark programs are: parallel matrix mul-

tiply, bitonic merge sort and Moore shortest path. These algorithms were chosen 

because they were readily available in the literature [125, 126, 127], and they 

satisfied the constraints for execution on the Eppi simulator. Most of these con-

straints were of a practical nature, for example: 

• the algorithms should be short and easy to code in assembly language. 

• they should exhibit plenty of obvious parallelism, enough to keep all the 

processes busy. 

• they should have reasonable time and space complexity, so that the pro-

grams do not take too long to run and do not need too much data space. 

On the other hand they should be long enough to be interesting. 

they should not require floating point arithmetic, as the simulated Eppi 

processors only support integer arithmetic. 

• they should not require dynamic process creation or memory allocation, 

since there is no operating system to provide these functions. 

The implementations of the algorithms each exhibit a different mode of exe-

cution, and use different parallel constructs and data structures as described in 

the next section. Therefore each program should present a qualitatively differ-

ent load to the system when executed. These algorithms have been frequently 

used in the evaluation of other multiprocessor designs, for example a variant of 

the Moore algorithm used here has been implemented on the HEP [128], and a 

paracomputer simulator [76]. The term "benchmark" is used loosely here though, 

since no direct comparisons with other machines are made here. 
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5.2 Process control 

The benchmark programs use a single-program-multiple-data (SPMD) execution 

model [129], in which all the processes execute the same shared code, but are each 

given a different set of data to work on. All the processes are spawned at the 

beginning of the program, and continue to execute until the program is finished. 

Each process performs a repeated cycle of fetching some work, executing that 

work, returning the results, and then fetching more work. When all the work has 

been completed the processes terminate, and the program is finished. The SPMD 

model is simple to implement in a shared memory multiprocessor, and the algo-

rithms used here fit the model well. Process control in the benchmark programs 

consists of spawning, synchronising and terminating processes. Since there is no 

Eppi operating system all process control must be coded into the programs, and 

the fetch-and-add synchronisation algorithms described in Section 2.3 form the 

basis of process control for the benchmark programs as described below. 

Spawning involves assigning work to a process. In the matrix multiply and 

bitonic merge sort programs the test-modify-retest functions (Section 2.3.3) are 

used to initially give each process a unique integer identifier which the process 

uses to index into the data arrays. The Moore shortest path program uses a 

parallel queue (Section 2.3.4) as a central data structure, and processes fetch 

work from this queue. Since all the processes are self-scheduled [6], the load on 

each processor is automatically balanced. 

Apart from the implicit synchronisation which occurs during process spawn-

ing and termination, explicit synchronisation used to control access to shared 

variables occurs only in the Moore shortest path program. The blocking p0 and 

v() semaphore functions (Section 2.3.1) are used to lock entries in an array of 

shared variables which are updated in parallel. 

Termination in all three programs is detected using a termination count which 

counts how much work has been completed. When a process finishes its portion 

of work it increments the termination count, and then loops to the start of the 
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program to see if there is more work to be allocated. This will be the case in 

programs where the program parallelism (the amount of work to be done) is 

greater than the machine parallelism (the number of processes executing). When 

the termination count has reached the given maximum value then all the work 

has been completed, and the program is finished. All the processes then loop 

forever doing nothing. The end of the program is identified by the last process 

sending an interrupt to the user-interface (Section 4.5.2). In the pseudo-code 

descriptions of the programs below, the function done C) is assumed to send the 

interrupt. 

Because the Eppi system provides many executing processes, context-switching 

of processes in the usual operating system sense is assumed to be unnecessary 

and is not used. This greatly simplifies the amount of process control necessary. 

In the assembly code implementations of the benchmark programs the process 

context size is kept very small, and all private variables are stored in registers. 

All function calls are also expanded in-line by hand, so that no manipulation of 

stacks or swapping of register sets is necessary. These optimisations have been 

made to minimise the execution time of the benchmark programs. 

To test the correctness of the benchmark programs the results of executing 

the programs on the Eppi simulator, with various data sets, were compared with 

the results of executing serial versions of the same algorithms written in C and 

executing on a workstation. 

5.3 Matrix multiply 

The matrix multiply program calculates the product of an 1 x m integer matrix 

A with an rn x n matrix B to get an 1 x n result matrix C. Each entry of the 

result matrix is given by: 

ce,, = 	
1' a1,kbk, where 1 = 0, 1 - 1 and j = 0, n - 1. 
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mt i,j,k; 

mt a[1] Cm] ,b[in) [n] ,c[i] En]; 

forall(i=O; i<1; j++) 
fora11(j0;j<n;j++){ 

C [i] [j]O; 
for(k0 ;k<m;k++) 

c[i] [j]=c[i] [j]+a[i] [k]*b[k] [j] } 

Figure 5.1: Matrix multiply algorithm 

5.3.1 Parallel algorithm 

The parallel matrix multiply algorithm is shown in pseudo-C form in Figure 5.1. 

The forall () statement is a parallel equivalent of the normal for() statement 

and spawns the given number of processes, assigning each process a unique value 

of the index. In this algorithm each entry of the result array c C] C] is evaluated in 

parallel. There are three loops, the outer two loops are parallelised and spawn 1 x n 

processes, and each process executes the inner loop sequentially summing the in 

products. It would be possible to parallelise the inner loop as well, but this would 

require an indivisible array update or some form of mutual exclusion. It would 

be possible to use fetch-and-add to do the summing directly [79], but this is not a 

general solution (there is no arithmetic error detection in the combining hardware 

of the network switches). The matrix multiply algorithm has a parallelism of 1 x n, 

and time complexity ®(m) (assuming constant spawning time). 

5.3.2 Implementation 

The matrix multiply program is implemented as shown in Figure 5.2, using normal 

C syntax, and is intended to be equivalent to the actual assembly code shown 

in Appendix A. On reset each of the processes begins executing the function 

mmult 0. The variables declared above the function are globally accessible, and 

the variables declared inside the function are private to the process. The constants 



CHAPTER 5. BENCHMARK PROGRAMS 	 91 

1, n and in contain the size of the arrays, the spawning count p and termination 

count d are initialised as shown, and the data arrays a [] [] and b [] [I are assumed 

to be initialised with the data. 

The body of the function is an infinite while() loop. Within the loop the 

process first calls tdrO, the blocking test-decrement-retest function defined in 

Section 2.3.3, to get a unique identifier ip from which it calculates the array 

indices i and j. The process then executes in iterations of the sequential for() 

loop, multiplying entries from arrays a [] L] and b 1] 1] and summing the result in 

temporary variable t. The result of the summation is then written to the result 

array entry c Li] Ii], and the termination count d is decremented using the fetch-

and-add function f&aQ. If the result is zero the done() function is called to send 

an interrupt indicating the end of the program. The process then loops back to 

the beginning, and if the parallelism of the result array is larger than the number 

of active processes then the process is given a new entry to evaluate, otherwise 

the process blocks forever in function tdrO. This concludes the description of 

the matrix multiply program. 

5.4 Bitonic merge sort 

The bitonic merge sort is a parallel sorting algorithm based on the recursive 

application of the bitonic merge [130]. The sequence of numbers 

A={a1 ,a2,...,a} 

is bitonic if either: 

1. there exists an integer i, where 1 < i < n, such that: 

a i <a2 <...<a ~:a +i > ... >a 

2. the sequence A can be cyclically shifted to satisfy the above condition. 



CHAPTER 5. BENCHMARK PROGRAMS 
	

92 

mt p1*n-1, d1*n-1; 
mt a Ell [m], b[m][n], c[1][n]; 

void mmultQ{ 
mt ip, i, j, k, t; 

while(1){ 
lptdr(&p,-1); 
ilp/n; 
jlp%n; 
t0; 
for(k0 ;k<m;k++) 

tt+a[iJ [k]*b[k] Li]; 
cli] [j]t; 
if(f&a(&d , -1)0) 

done() ;}} 

Figure 5.2: Matrix multiply program 

A bitonic sequence of length n can be sorted in I09 2 (n) stages using a bitonic 

merge. An example of sorting a bitonic sequence of 8 integers in 3 stages is 

shown in Figure 5.3. Each stage of the bitonic merge consists of a shuffle permu-

tation (Section 2.2.1), followed by a compare-exchange operation. In this case the 

compare-exchange sorts each pair of numbers into increasing order (as indicated 

by the> in each box), so the final sequence is sorted in increasing order from top 

to bottom. 

To sort an unordered sequence of integers A of length n (assuming n is even), 

the list A is first divided into R unsorted bitonic subsequences of length 2: 

A = {{a 1 ,a2 },. . 

Each of these subsequences is labelled 

A= {s1,...,s_1,s} 
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Figure 5.3: Example bitonic merge of a bitonic sequence of 8 integers 

The subsequences Sodd(i) are then sorted into ascending order and the subse-

quences Seven (j) into descending order, using bitonic merge. The result is 11  bitonic 

subsequences of length 4. By repeatedly applying bitonic merge to larger and 

larger subsequences the whole sequence A is eventually sorted. To sort a Se-

quence of length n requires 1092  n iterations of bitonic merge. 

5.4.1 Parallel algorithm 

A parallel algorithm for bitonic merge sort is shown in Figure 5.4. The n integers 

to be sorted are stored in array a[] (again assume n is even). The first sequential 

for() loop executes 1092n  iterations, each of which is a bitonic merge. The 

second sequential for() loop executes the i stages of the bitonic merge. Since 

the length of each subsequence to be merged is 2t,  then 1092  2(—= i) stages of 

merge are required to sort the subsequence. 

In each stage of the merge n parallel processes are spawned by the first 

forallO, and execute a shuffle permutation. The function shuffle() takes 

an index to the array (k), it shuffles the index (the shuffle being dependent on 

the iteration of the merge), and moves the entry from its original index to the 

new index. Note that since the shuffle() functions are spawned in parallel 
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mt 1, j, k; 
mt a[n]; 

for(i.=1 ; i<log2(n) ; j++) 
for(j=1 ;j<i;j++){ 

fora11(k=1 ;k<=n;k++) 
shuffle(a,k, i); 

fora11(k1 ;k<n;k+=2) 
compare_exchange(a,k,i) ;} 

Figure 5.4: Bitonic merge sort algorithm 

there may be conflicts for the array entries, therefore some form of conflict reso-

lution is assumed. The second forall 0 then spawns 11  processes which execute 

a compare-exchange operation. The compare-exchange 0 function is given an 

index to the array (k), and compares and perhaps exchanges entry a[k] and 

a[k+1]. The direction of the exchange (greater than or less than) is dependent 

on the iteration of the sort. 

To sort a sequence of ii = 2k numbers a total of Rk + 1) stages of bitonic 

merge are needed, and the algorithm has a time complexity of e (log 2  n) (assum-

ing constant spawning time) [125]. A parallel quicksort algorithm for a shared 

memory multiprocessor with a combining network [131] also has a time complex-

ity of 0(log2  n). Because the number of processes in each stage is not constant 

the parallel quicksort algorithm would not perform as well as the bitonic merge 

sort when executed on the Eppi system. 

5.4.2 Implementation 

The bitonic program shown in Figure 5.5 implements the algorithm described 

above, except that in each stage of the merge only 11  processes are spawned. 

Each process must therefore shuffle two array entries sequentially, and then do a 

compare-exchange. This arrangement appears more efficient than first spawning 

n shuffles and then 2  compare-exchanges, during which the other processes must 
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mt i0, j=O, k0, d0; 
mt a[n], b[n]; 

void bitonicQ{ 
mt 1k, id, P' q, s; 
mt *from, *to, *t; 

froma; 
to=b; 
vhile(1){ 

lk=tir(&k, 1 ,n/2); 
p=ips(lk*2,i); 
qips((lk*2)+1,i); 
s(lk/(1<<i))%2; 
if(((s0)&&(from[p]>fromiq]))I I((sl)&&(fromlp]<from[q]))){ 

to [lk*2] =from[q]; 
to[(lk*2)+1]from[p] ;} 

else{ 
to[lk*2]from[p]; 
to[(lk*2)+1]from[q] ;} 

ldf&a(&d, 1); 
if((ld+1)=(n/2)){ 

if (i >i) { 
j0; 

if(i1og2(n)) 
done() ;} 

else{ 
tfrom; 
froin=to; 
tot; 
f&a(&d,-(n/2)); 
f&a(&k,-(n/2)) ;}}}} 

Figure 5.5: Bitonic merge sort program 
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idle (assuming there are n processes active). Also the problem of contention for 

the array entries during the shuffle is solved by having two arrays a[] and b[ ]. 

Initially the integers to be sorted are assumed to be in array a [], and array b C] 

is empty. The global variable i is the iteration count, j is the stage count, and k 

and d are the spawning and termination counters respectively. All these variables 

are initialised to zero. 

On reset each process starts executing function bitonicO. The local vari-

ables of this function, which are private to each process, are mainly local count 

values and indices, with the exception of from, to and t which are pointers to 

the base of an array. At the start of the function from is set to point at array 

a[], and to at array b[]. 

The body of the while() loop starts with a call to tiro, a blocking test-

increment-retest function (Section 2.3.3), which returns an index 1k. Using this 

index and the inverse (perfect) shuffle function ipsO, two indices p and q are 

generated. These indices then index into the array from C] (which is actually array 

a[] at this point). The correct direction for the subsequent compare-exchange 

is evaluated in the sign variable s, using the current iteration count i. In the 

if 0 statement the entries of array from C] indexed by p and q are compared, 

and moved into the entries of array to C] (which is actually array b 0 at this 

point) indexed by 1k*2 and lk*2+1. If the sign s=O and from[p] is greater than 

from[q], then from[p] is moved into to[lk*2+1] and from[q] into to[lk*2]. 

The same occurs if s=1 and from[p] is less than from[q]. Otherwise from[p] is 

moved into to[lk*2] and from[q] into totlk*2+11. Having two arrays means 

that no locking has to be performed, and the pointers to the arrays simply have to 

be exchanged at the end of the stage. After -the compare-exchange the termination 

count d is incremented. If all the processes in that stage have finished, then the 

stage count j is incremented by the last process to finish. If all the stages in the 

iteration have been executed this process resets the stage count and increments 

the iteration count i. If all the iterations have been executed the process then 
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calls done 0, indicating the end of the program. If the current iteration has 

not been completed then the array pointers from and to are swapped, and the 

spawning and termination counters are reset to zero. All the processes then loop 

back to the start and try to get another index. 

The test of the termination count d effectively forms a barrier, since the 

spawning count k is only reset when all the processes have passed through the 

barrier. A re-usable barrier of the sort described in Section 2.3.2 is not necessary 

here, since processes can only re-enter the loop once all the other processes have 

exited. This concludes the description of the bitonic merge sort program. 

5.5 Moore shortest path 

The Moore shortest path algorithm [132] solves the single-source shortest path 

problem, that is: to find the shortest paths from a single source node to all other 

nodes in a weighted directed graph. The serial algorithm is shown in Figure 5.6. 

The array weight [u] [v] contains a weight for all pairs of nodes u, v. If u and 

v are connected then weight [u] [v] is a positive integer greater than 0. For nodes 

that are not connected weight [u] [v] =0, and also weight [u] [u] =0. The array 

distance  contains the distance from the source node s to all other nodes, where 

initially distance [s1 =0 and the distance to all other nodes is oo. The nodes to 

be searched are stored in a FIFO queue. The function enqueue() appends the 

given node to the tail of the queue, and the function dequeue 0 removes a. node 

from the head of the queue. The function queue_empty 0 returns non-zero if the 

queue is empty, and the function in_queue() returns non-zero if the given node 

is already in the queue. 

The algorithm first enqueues the source node s. Then the while 0 loop is 

repeatedly executed until the queue is empty. In the body of the loop a node 

is dequeued (initially this will be the source node), and the for() then loops 

though all the nodes. If node u is connected to node v, then newdistance is set 
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jut s, newdistance, u, v; 
mt distance [n], weight [n][n]; 
struct fifoq queue; 

enqueue(s); 
while (queue_emptyQ){ 

dequeue(u); 
for(u0;u<n;u++) 

if (weight [u] Ev] >0) { 
newdistance=distance Eu] +weight [u] Ev]; 
if(newdistance<distanceEv] ){ 

distance [v] =newdistance; 
if(in...queue(v)) 

enqueue(v) ;}}} 

Figure 5.6: Moore shortest path serial algorithm 

equal to distance [u] +weight [u] [v). If newdistance is less than distance [v], 

then a shorter path to s from v has been found, and distance Ev] is updated. 

If node v is not already in the queue then it is appended, and the next node 

connected to u is examined. When there are no further nodes in the queue the 

array distance E] will contain the shortest paths between s and all other nodes. 

5.5.1 Parallel algorithm 

The parallel Moore shortest path algorithm [125] achieves speed-up by allowing 

the queued nodes to examined concurrently. A number of processes are spawned 

which wait to dequeue a node from the queue, and then proceed as in the serial 

algorithm. The parallel algorithm is essentially the same as the serial algorithm, 

and is therefore not shown as a separate figure. Because the array distance[] 

and the queue are shared data structures some form of mutual exclusion is neces-

sary to ensure correctness, for example semaphores could be used to lock both the 

array and the queue during update. Also, before the algorithm terminates one 

must make sure that no processes are active as well as that the queue is empty, 
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since it is possible that another process is still examining a node even though 

there are no queued nodes. 

The Moore shortest path algorithm differs from the other two algorithms 

described in this chapter in that it is not so explicitly data parallel. In the 

matrix multiply and bitonic merge algorithms the number of processes executing 

is constant, but for the Moore algorithm the amount of parallelism available will 

depend in part on the size of the graph and its density, and the contention for the 

shared data structures. A comparison of two parallel implementations of single-

source and all-pairs shortest path algorithms on the HEP shows that single-source 

shortest path performs more efficiently with sparse graphs [128]. 

5.5.2 Implementation 

The implementation of the parallel Moore algorithm is shown in Figure 5.7. 

To reduce the size of the data describing the graph each node has been limited 

to having eight outgoing arcs. The weights of each arc are stored in the array 

arc C] 11, which for each node has eight entries containing the connected node 

and the weight of the arc to that node. The parallel FIFO queue structure used 

to queue nodes is similar to the one described in Section 2.3.4, with a number of 

changes to make it more efficient. For example, the queue upper and lower bound 

counters have been replaced by the variable count, and since the queue size is 

made equal to the number of nodes queue overflow is not checked for. Also each 

queue entry no longer contains insert and delete semaphores, rather a special 

value (-1) is used to indicate that the entry is empty. Because the maximum 

number of processes is also equal to the number of nodes, there can be no race 

conditions between two processes trying to delete the same queue entry. 

A number of global structures and variables are defined at the start of the 

program. The structure queue is assumed to be initialised with the source node 

s as the first entry (in the assembly code of the Moore program the source node 

is always node 0). The variable ps counts the number of active processes, and is 
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struct { 

mt count, insert, delete; 
mt entries[n] ;}queuestruct 

struct{ 
mt node, weight;}arcstruct 

struct queuestruct queue; 
struct arcstruct arc [n] [8]; 
mt ps, ws, distance[n], iqsem[n], disem[n]; 

void mooreQ{ 
mt u, v, *qn, i, newdistance; 

while (1) { 

tdr(queue->count, 1); 
qn=& (queue. entries [f&a(queue->delete, 1) '/.n]) ; 
while((u=*qn)==(-1)); 

f&a(&iqseinEu] ,-i); 
f&a(&ps,1); 
for(i=O; i<8; i++){ 

varc[u] [i] .node; 
newdistance=distance Eu] +arc [u] Li] weight; 
p(&disexnEv]); 
if (newdistance<dj stance Lv] ){ 

distance Lv] =newdistance; 
v(&disem[v]); 
if (f&a(&iqsem Lv] , 

f&a(&ws, 1); 
qn=&(queue.entriesEf&a(queue->insert) , 
while(*qn!(-1)); 
*qn=v; 

f&a(queue->count, 1); 
} 

else 

f&a(&iqsemEv] ,-1) ;} 
else 

v(&disem[v]) ;} 
if(f&a(&ws ,-1)i) 

done() ;}} 

Figure 5.7: Moore program 
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initialised to 0. The variable us is used to detect termination, and is initialised 

to 1 (since the source node is already queued at the start of the program). The 

array iqsem[] indicates whether a node is in the queue (playing the part of 

the in-queue( function). If node u has been queued then iqsem[u]1, or 0 

otherwise. The array distance C] contains the distances from the source node, 

and is initialised so that distance [s] =0 and all other entries have a very large 

value. The array disem[] contains the semaphores used to lock entries in the 

distance[] array. If disem[u]1 then distance[u] is locked, and the process 

must wait to access the array. 

On reset the processes start executing function moore 0. Each process has 

a number of private variables including u and v which are node numbers, and 

qn which is a pointer to a queue entry. The process first calls tdr0, which 

decrements the queue count. If the queue is empty (countO), then tdr() will 

block. The queue delete pointer is then incremented, and qn set to point at 

the head queue entry. The process then checks that the queue entry has a valid 

node in it, reads it into u, and marks the queue entry empty. Since node u 

has now been dequeued iqsem [u] is decremented, and the process count ps is 

incremented. The process then loops though each of the 8 outgoing arcs from 

node u. For each connected node v the process calculates the newdistance, 

and then locks distance[v] using the p0 semaphore function (Section 2.3.1). 

Assuming that the new path length is shorter than the current path length, the 

process updates distance[v] and unlocks the entry using the v() semaphore 

function. The node v must then be enqueued, so iqsem[v] is first checked to 

make sure it is not already in the queue. If not, the termination count us is 

incremented, and qn is set to point to the tail queue entry. The process then 

waits until the queue entry is empty. Node v is then written to the queue entry, 

and count incremented. If after all the arcs have been examined wsl, then the 

program is finished and done() is called. 

The process count ps is not used directly in the algorithm, but allows the 
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number of active processes to be traced by examining the value of this variable 

during execution. The termination count ws is incremented when a new node 

is enqueued, and decremented when a process finishes examining a node. Its 

value is therefore similar to count, but it is not possible to use count directly to 

detect termination because of race conditions which can occur. This concludes 

the description of the Moore shortest path program. 

5.6 Comments 

For the simulation experiments described in the next chapter a number of versions 

of each benchmark program were assembled with different data sizes. The data 

for the programs is randomly generated. Each assembled program is referred to 

by a combination of mnemonic and number: for example mm256, bit4096, and 

moo32. The mnemonic refers to the program type, and the number indicates 

the parallelism of the program. For matrix multiply and bitonic merge sort the 

program parallelism is directly related to the data size: for example the mm256 

program has a result array of 256 entries and a parallelism of 256, the bit4096 

program has a sequence of 8192 entries to sort and a parallelism of 4096. For the 

Moore shortest path program the number refers to the number of nodes in the 

graph: for instance the moo32 program has a graph with 32 nodes. This defines 

the maximum parallelism possible, but the exact parallelism is data dependent. 



Chapter 6 

Performance evaluation 

This chapter describes the simulation experiments carried out using the Eppi sim-

ulator. The majority of the experiments involve observing the effect of changing 

the Eppi system parameters on the performance of the Eppi design, as measured 

by the execution time of the programs and other execution statistics collected by 

the simulator. The first section investigates the speed-up of the programs exe-

cuting on increasing system sizes. The following sections investigate the effect on 

performance of increasing the switch queue and wait-buffer size, combining level, 

processor interleaving level, and the module clock factor. Most of the simulation 

results are shown as graphs of program execution time (in clock cycles), and the 

other execution statistics are shown as tables in Appendix B. The final section 

presents dynamic execution profiles for each of the benchmark programs. 

For most of the simulations the data size of the program being executed is 

chosen to be a saturation load. This means the program parallelism is the same 

as the system parallelism, and all processes have some work to do. For example 

with a 16 processor system and an interleaving level of 16, giving a total of 

256 processes, a 256 entry result array is used for the matrix multiply program 

(mm256). In all simulations the given switch queue size applies to both request 

and acknowledge queues, and the given wait-buffer size applies to each wait-buffer. 

103 
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6.1 Program speed-up 

The speed-up simulation experiments investigate how the execution time of each 

benchmark program (with constant data size) changes as the system size is in-

creased. The speed-up of a program is dependent on both the scalability of the 

system on which the program is being executed, and the scalability of the pro-

gram itself. The scalability of the Eppi design is predominantly dependent on 

the interconnection network: the memory access latency grows logarithmically 

with network size and is further increased by contention. The Eppi processor ar-

chitecture tries to overcome the increased latency by instruction interleaving, and 

the switch architecture tries to reduce the contention by combining. The scala-

bility of the program depends on how the program parallelism increases with the 

problem size, and the amount of process control overhead.. 

6.1.1 Simulation details 

For the speed-up simulations the mm4096, bit4096 and moo4096 programs were 

executed on increasing system sizes of 1 to 256 processors. The default values 

of the system parameters were: an interleaving level of 16, 2-way combining, a 

queue size of 4 packets, a wait-buffer size of 16 packets, and equal module clock 

factors. 

The graphs of execution time, speed-up, efficiency and memory latency for 

the programs are shown in Figures 6.1 to 6.4. The speed-up and efficiency are 

additionally shown numerically in Table 6.1. The detailed simulation results are 

shown in Tables B.2 to B.4 of Appendix B. 

6.1.2 Description of results 

For all three programs the execution time (Figure 6.1) is reduced as system size 

increases. Bitonic has the longest execution time, and matrix multiply and Moore 

have (coincidentally) similar execution times. The speed-up (Figure 6.2) is calcu- 
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program matrix multiply bitonic Moore 

processors speed-up efficiency speed-up efficiency speed-up I efficiency 

1 1.00 1.00 1.00 1.00 1.00 1.00 

2 2.00 1.00 1.94 0.97 1.88 0.94 

4 3.99 1.00 3.51 0.88 3.34 0.84 

8 7.30 0.91 6.35 0.79 5.93 0.74 

16 13.23 0.83 11.64 0.73 10.08 0.63 

32 24.55 0.77 21.25 0.66 16.49 0.52 

64 44.80 0.70 37.58 0.59 22.39 0.35 

128 82.35 0.64 63.40 0.50 26.60 0.21 

256 152.23 0.59 100.43 0.39 29.35 0.11 

Table 6.1: Speed-up and efficiency of matrix multiply (mm4096), bitonic (bit4096) 
and Moore (moo4096) programs with increasing system size. 

lated relative to the single processor execution time of each program, the dashed 

line on the graph showing the ideal linear speed-up. Matrix multiply has the 

best speed-up, and Moore the worst - already reaching the knee of the curve 

at 32 processors. How much the programs fall below the ideal speed-up is shown 

more clearly by the graph of efficiency (Figure 6.3). The efficiency is derived by 

dividing the actual speed-up by the expected linear speed-up, and the resulting 

fraction shows how well the system is being utilised with each increase in sys-

tem size. The numerical results in Table 6.1 show that the efficiency for matrix 

multiply is 59% compared to 11% for Moore with 256 processors. The memory 

latency (Figure 6.4) for matrix multiply is almost at the minimum possible for 

each system size (shown by the dashed line), and for the other two programs it 

is close to the minimum. 

The detailed results (Tables B.2 to B.4) show that the processor utilisation 

decreases as the system size increases for all programs, mainly due to the increas-

ing memory latency. With 64 or more processors the memory latency is higher 

than the interleaving level. Also, the number of instructions executed to complete 

each program should ideally be almost the same as the system size is increased. 

This is the case for matrix multiply, but for bitonic and Moore the number of 

instructions executed increases monotonically with system size. This indicates 
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that the processes are spending more time busy-waiting. 

6.1.3 Summary 

The speed-up experiments show the matrix multiply program is executing near 

the design's limit, since the execution efficiency of the program is similar to the 

processor efficiency. The other programs have worse performance caused by con-

tention and lack of program parallelism. Whether increasing the interleaving level 

can increase processor utilisation, and improve execution time, is investigated in 

Section 6.4. 

6.2 Queue and wait-buffer size 

The queue and wait-buffer size simulation experiments investigate the effect of 

varying the switch queue and wait-buffer size on system performance. Previous 

research on non-combining networks [56, 59] and the network simulations in Sec-

tion 3.2.6 show that the network throughput improves as queue size is increased, 

but that the network latency also rises. When a hot-spot is present increasing the 

queue size is less effective in improving throughput. Previous research on com-

bining networks [73] shows that the number of combinations may be increased 

by larger request queues. Also the effectiveness of combining will be reduced if 

possible combinations cannot occur because the wait-buffers are full. 

6.2.1 Simulation details 

For the queue and wait-buffer simulations the saturation load programs were 

executed on system sizes of 2 to 128 processors (256 for matrix multiply), with 

varying queue size of 2 to 32 packets and varying wait-buffer size of 2 to 32 

packets. The default values of the other system parameters were: an interleaving 

level of 16, 2-way combining, and equal module clock factors. 

The graphs of execution time for the programs are shown in Figures 6.5 to 6.19, 
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and are arranged so that each graph shows the execution time of one program 

with a constant wait-buffer size and varying queue size. The detailed simulation 

results are shown in Tables B.5 to B.25 of Appendix B. 

6.2.2 Description of results 

The matrix multiply program with a wait-buffer size of less than 16 packets 

(Figures 6.5 to 6.7), shows an initial drop in execution time between a queue size 

of 2 and 4 packets. On systems larger than 32 processors, there is an increase in 

execution time as the queue size increases above 4 packets. With a wait-buffer 

size of 16 or more (Figures 6.8 to 6.9), increasing the queue size has little effect 

on execution time. Increasing the wait-buffer size decreases the execution time 

for each system size, up to a point above which there is no further improvement. 

For matrix multiply on the 256 processor system this maximum wait-buffer size 

is 16 packets. 

The bitonic program (Figures 6.10 to 6.14), shows a similar pattern to matrix 

multiply. The initial drop in execution time between queue size 2 and 4 occurs 

for all wait-buffer sizes. Above a wait-buffer size of 8 there is little change in 

execution time, though a wait-buffer size of 32 is necessary for there to be no 

wait-buffer full events with 128 processors (Table B.18). 

The results for the Moore program (Figures 6.15 to 6.19), are less consistent 

than the other two programs. In some cases a queue size of 8 gives the minimum 

execution time, and in others a queue size of 4. Again, increasing queue size with 

small wait-buffers increases execution time. Increasing the wait-buffer size above 

16 results in little change in execution time. 

The detailed results for all the programs (Tables B.5 to B.25), show that as 

queue size is increased the number of request and acknowledge queue conflicts 

decreases, leading to a decrease in memory latency. The number of combinations 

also increases slightly with queue size. With small wait-buffers the number of 

queue conflicts is significantly higher, resulting in increased memory latency. If 
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the wait-buffer size is sufficiently large then there are fewer or no queue conflicts. 

6.2.3 Summary 

There is a general drop in execution time as queue size increases from 2 to 4, 

and then little further change assuming the wait-buffers are sufficiently large. No 

increase in latency with queue size, comparable to that in the isolated network 

simulations in Section 3.2.6, occurs. This is because the Eppi network is part 

of a closed system, and so the load on the network is related to its throughput 

(as there are only a finite number of possible memory requests which can be in 

progress at any one time). The maximum wait-buffer size necessary for no wait-

buffer full events to occur increases with system size, and also varies with the 

program. Overall a queue size of 4 and a wait-buffer size of 16 is sufficient to give 

close to the best performance for all the simulated system sizes and programs. 

6.3 Combining level 

The combining level experiments investigate the effect of increasing the combining 

level (including no combining) on system performance. Previous research [58, 59] 

and the network simulations in Section 3.2.6 show that hot-spots degrade the 

performance of non-combining multistage networks. This is also the case in the 

Eppi system when combining is turned off: the execution times of the programs 

become so large with no combining, that only simulations with small numbers 

of processors could be completed within the time constraints on access to the 

ECS. Previous research [58] shows 2-way combining to be sufficient to improve 

performance for networks with up to 64 inputs, but for larger networks and higher 

loads 3-way combining must be used [73, 741. From the results of the previous 

two sections it appears that the Eppi network does perform acceptably with 2-

way combining, as indicated by the average memory latency being close to the 

minimum. Therefore the contention for any hot-spots must be sufficiently low 
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or transient for 2-way combining to remain effective. Increasing the combining 

level could improve performance though, by allowing more combinations to occur. 

With higher combining levels the acknowledge queues must be large enough to 

accept the multiple decombinations, and the maximum wait-buffer size necessary 

may be reduced even though the number of combinations increases [74]. 

6.3.1 Simulation details 

For the combining level simulations the saturation load programs were executed 

on system sizes of 2 to 256 processors, with no combining and 2-way to 4-way 

combining. The default values of the other system parameters were: an inter-

leaving level of 16, a queue size of 4 packets, a wait-buffer size of 64 packets and 

equal module clock factors. 

The graphs of execution time for the programs are shown in Figures 6.20 

to 6.22. Additionally the number of combinations occurring for the 3-way and 

4-way combining levels are shown in Table 6.2. The detailed simulation results 

are shown in Tables B.26 to B.28 in Appendix B. 

6.3.2 Description of results 

For the matrix multiply program (Figure 6.20), results with no combining were 

obtained for up to 32 processors (the last point was omitted from the graph 

and falls at 52434 cycles). It can be seen that from 8 processors the execution 

time becomes much higher with no combining compared to 2-way combining. As 

the combining level is increased above 2-way there no change in execution time. 

Most of-the possible combinations are already occurring with 2-way combining, 

and there are only very few 3 or 4-way combinations (Table 6.2). 

For the bitonic program (Figure 6.21), results with no combining were only 

obtained for up to 8 processors (above this the simulation did not finish even 

after 96 hours running time). Again the performance with no combining is im- 
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program - matrix multiply bitonic Moore 
4- way processors k 3-way 4-way 3-way 	(4-way 3-way 

2 30 0 1251 0 1227 0 

2 4 0 0 1359 117 1167 177 

4 33 0 4003 0 2986 0 

4 T 3 1 3993 325 2869 294 

8 31 0 9867 0 9419 0 

8 T 1 0 9598 747 9312 848 

16 3 0 0 23452 0 15884 0 

16 4 0 0 22847 1949 15631 1623 

32 3 3 0 54808 0 48713 0 

32 4 2 1 52732 5108 41621 4968 

64 3 0 0 123055 0 97673 0 

64 4 0 0 116873 13135 96503 11956 

128 3 0 0 271698 0 230059 0 

128 4 0 0 255587 31839 220639 27824 

256 3 0 0 - - 560267 0 

256 4 0 0 - - 567841 77392 

Table 6.2: 3 and 4-way combinations for matrix multiply, bitonic and Moore 

programs. 

mediately worse than with 2-way combining. As the combining level is increased 

the execution time does decrease slightly for the larger system sizes. The detailed 

results (Table B-27) show that the number of acknowledge queue conflicts is re-

duced, even though the number of multiple decombinations increases with the 

combining level. The total number of combinations increases, although in some 

cases there is a drop between 3-way and 4-way combining. 

For the Moore program (Figure 6.22), results with no combining were obtained 

for up to 32 processors (the final point was omitted from the graph and falls at 

5038280 cycles). Increasing the combining level above 2-way actually reduces 

performance in most cases. The detailed results (Table B.28) show that the 

memory latency is reduced as combining level increases, and that the number of 

combinations increases. 

Further simulations were carried out in which each only one decombine can 

occur every cycle (the detailed results are not presented here). This means that 

returning packets have to stay in the input latches of the acknowledge ports until 
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all matching packets in the wait-buffers are decombined. Increasing the combining 

level then results in a large decrease in performance, due to the blockage of the 

inputs of the return network by acknowledge packets waiting to decombine. This 

leads to request queue conflicts occurring in the switches connected to the hot 

memories. The ability to decombine multiple packets is necessary if greater than 

2-way combining is to be used. 

6.3.3 Summary 

With no combining the performance of the network is drastically reduced even 

with only 8 processors, as a result of the increased number of request queue con-

flicts and memory accesses. Increasing the combining level above 2-way may im-

prove the performance slightly depending on the program being executed. Over-

all, there is not enough improvement to warrant the extra implementation cost 

of increasing the combining level above 2-way. 

6.4 Interleaving level 

The interleaving level simulation experiments investigate the effect of increasing 

the interleaving level (number of processes per processor) on system performance. 

The single processor simulations in Section 3.1.7 show that, for a given memory 

latency and instruction mix, there is an optimal interleaving level which results 

in the maximum processor utilisation and throughput per process. Increasing the 

interleaving level above the optimal number reduces the throughput per process 

as the processes have to contend for the processor resources. In the Eppi system 

the size of the program being executed must be increased if the interleaving level 

is increased, otherwise the extra processes will not have any useful work to do and 

will simply busy-wait. The optimal program parallelism will also be determined 

by the system parallelism, and ideally the best performance should result when 

the program and system parallelism are equal. 
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6.4.1 Simulation details 

For the interleaving level simulations the programs were executed on system sizes 

of 1 to 64 processors, with interleaving levels of 16 to 64 processes per processor 

(incremented in steps of 8 processes). The program size used was large enough 

to saturate the highest interleaving level, and was used for all the simulations 

with that system size. For instance with the 64 processor system the mm4096 

program was used, which saturates all 4096 processes when the interleaving level 

is 64. Larger system sizes than 64 processors were not simulated because 4096 

was largest program size assembled, and also due to time constraints. The default 

values of the other system parameters were: 2-way combining, a queue size of 4 

packets, a wait-buffer size of 64 packets and equal module clock factors. 

The execution times of the programs with increasing interleaving level are 

shown in Figures 6.23 to 6.25. The detailed simulation results are shown in 

Tables B.29 to B.34 of Appendix B. 

6.4.2 Description of results 

For the matrix multiply program (Figure 6.23), an interleaving level of 32 pro-

cesses per processor results in the minimum execution time for all system sizes. 

With less than 16 processors the execution times with interleaving levels of 16, 

32 and 64 are similar, but with 16 or more processors an interleaving level of 16 

performs less well than an interleaving level of 32. In all cases an interleaving 

level of 56 results in the worst performance. 

The results from the bitonic program (Figure 6.24) are similar to matrix mul-

tiply. For up to 16 processors the minimum execution time is with an interleaving 

level of 16, changing to 32 as the system size increases above 16 processors. An 

interleaving level of 64 performs worse than an interleaving level of 16, and the 

maximum execution time again occurs with an interleaving level of 56. 

For the Moore program (Figure 6.25), an interleaving level of 16 initially 
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gives the best performance, changing to 24 with 32 or more processors. There 

is a monotonic increase in execution time as further processes are added. The 

detailed results (Tables B.33 to B.34) show an almost monotonic increase in 

memory latency with interleaving level, and a monotonic increase in request and 

acknowledge queue conflicts. The number of f&a combinations also increases with 

interleaving level. 

A further simulation was carried out in which the matrix multiply mm1024 

program was executed on a 16 processor system, with the interleaving level being 

varied from 1 to 64 processes in steps of one. The default values of the other 

system parameters were as above. The execution time, processor and network 

utilisation are shown in Figures 6.26 to 6.28. 

The minimum execution time (Figure 6.26) occurs at 32 processes, although 

the curve has almost leveled off by 16 processes after which there are three 

"ramps", with drops in execution time at 22, 32 and 64 processes. The graphs 

of processor (Figure 6.27) and network utilisation (Figure 6.28) show a similar 
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behaviour to the single processor simulations in Section 3.1.7. The processor util-

isation reaches a maximum at 22 processes, after which there are similar ramps, 

and the network utilisation reaches the maximum at 20 processes. 

6.4.3 Summary 

The best execution times for matrix multiply and bitonic occur with interleaving 

levels of 16, 32 or 64 depending on system size, since the program parallelism 

is a power of 2 for both these programs. The lowest execution time for these 

two programs occurs with an interleaving level of 32, even though each process 

has to do twice as much work as with an interleaving level of 64. Increasing the 

interleaving level above 32 results in increased contention, which is shown by the 

increase in memory latency for bitonic, and cannot be compensated for by adding 

more processes. For the Moore program it is clear that the program parallelism 

is not large enough to support an increased number of processes. With large 

interleaving levels the majority of processes have no work to do and busy-wait, 

as shown by the increased number of Ma combinations. 

6.5 Relative module speed 

The relative module speed simulation experiments investigate how the speed of 

the network and memory (or memory subsystem) affects the system performance. 

The speed of the memory subsystem is varied from 4 times slower to 4 times 

faster than the processors, using the module clock factor system parameter (Sec-

tion 4.5.3). Increasing the speed of the memory subsystem above that of the 

processors should reduce the memory latency and decrease the program execu-

tion time. 
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6.5.1 Simulation details 

For the relative module speed simulations the saturation load programs were exe-

cuted on system sizes from 2 to 256 processors, with varying module clock factors. 

To make the processors execute slower than the memory subsystem the proces-

sor module clock factor is increased, and vice versa for the memory subsystem. 

The default values of the other system parameters were: an interleaving level 16, 

2-way combining, a queue size of 4 packets and a wait-buffer size of 64 packets. 

The execution time and resulting speed-up for the programs are shown in 

Figures 6.29 to 6.34. The memory subsystem speed ratio shows the relative speed 

of the memory subsystem to the processors. The detailed simulation results are 

shown in Tables B.35 to B.40 of Appendix B. 

6.5.2 Description of results 

For all programs and system sizes (Figures 6.29 to 6.31), the execution time de-

creases as the speed of the memory subsystem is increased from 4 times slower 

than the processors to equal, but above this significant further decreases in execu-

tion time are seen only with 32 or more processors. The speed-up for each system 

size (Figures 6.32 to 6.34), is calculated relative to the execution time with equal 

module speed. When the speed ratio is below 1 the speed-up is similar to the 

speed ratio, but increases with system size for all programs. Slowing down the 

memory subsystem therefore slows down the larger systems comparatively less 

(an exception appears to be Moore on 256 processors). When the speed ratio is 

above 1 the speed-up is less than the speed ratio, but increases with system size. 

Increasing the memory subsystem speed therefore increases the overall speed of 

the larger systems comparatively more. 

The detailed results (Tables B.35 to B.40) show that the processor utilisation 

increases with memory subsystem speed, but reaches the maximum utilisation 

at some point depending on the system size. The network utilisation decreases 
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steadily, since the load on the network is reduced, converging to 25% utilisation 

with a speed ratio of 4 for all system sizes. Comparing the increases in memory 

latency with the speed ratio shows that although the changes in memory latency 

are lower than the speed ratio, they are greater than the values for speed-up. 

Therefore the network performance does increase with speed ratio, above what 

the execution times and speed-up suggest. As the speed ratio is increased the 

number of combinations decreases, since there is less congestion and fewer chances 

to combine, resulting in an increase in the number of memory accesses. 

6.5.3 Summary 

The results show that increasing the memory subsystem speed above the pro-

cessor speed does not necessarily result in an equal increase in overall system 

performance. With smaller systems the memory latency quickly drops to the 

minimum as the speed ratio is increased, and the processor throughput becomes 

the performance bottleneck, as shown by the processor utilisation. Larger sys- 
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tems show better response to increasing the memory subsystem speed, but the 

return in performance is not sufficient to justify the cost of increasing the mem-

ory subsystem speed. Reducing the memory subsystem speed below the processor 

speed results in an equal performance drop. 

6.6 Program execution profiles 

The execution profile simulation experiments investigate how the system perfor-

mance varies during the execution of the programs. In the above simulations the 

execution statistics were displayed at the end of each simulation. These statistics 

represent either the total number of occurrences or the averaged value of some 

variable during the simulation, and provide little information about the dynamic 

behaviour of the program. By displaying the execution statistics at regular inter-

vals during the program an execution profile (or trace) can be created. In addition 

to the usual execution statistics some of the program variables are displayed as 

well, in particular the process scheduling and termination counters, which allow 

the number of active processes to be derived. 

6.6.1 Simulation details 

For the execution profile simulations the mm1024, bit1024 and moo1024 pro-

grams were executed on a 64 processor system, and the execution statistics were 

displayed every 10 clock cycles during the simulation. The wait-buffer size used 

was 8 packets for the mm1024 and bit1024 programs, and 16 for the mool024 

program (so that some queue conflicts would occur). The default values of the 

other system parameters were: an interleaving level of 16, 2-way combining, a 

queue size of 4 packets, and equal module clock factors. 

The execution profiles for the programs are shown in Figures 6.35 to 6.63. 

The eventual totals of the execution statistics can be found in the relevant parts 

of the queue and wait-buffer simulation result Tables in Appendix B. 
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Figure 6.35: Execution profile for matrix multiply showing the number of active 
processes. 
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Figure 6.36: Execution profile for matrix multiply showing the processor utilisa-
tion. 
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Figure 6.37: Execution profile for matrix multiply showing the network utilisa-
tion. 
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Figure 6.38: Execution profile for matrix multiply showing the average memory 
latency. 
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Figure 6.39: Execution profile for matrix multiply showing the number of request 
queue conflicts. 
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Figure 6.40: Execution profile for matrix multiply showing the number of wait-
buffer full events. 
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Figure 6.41: Execution profile for matrix multiply showing the number of ac-
knowledge queue conflicts. 
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Figure 6.42: Execution profile for matrix multiply showing the number of load 
combinations. 
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Figure 6.43: Execution profile for matrix multiply showing the number of f&a 
combinations. 
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Figure 6.44: Execution profile for matrix multiply showing the number of memory 
accesses. 

6.6.2 Description of matrix multiply profile 

At the start of the program each process fetches the index of a result array 

element at 200 cycles, and the number of active processes (Figure 6.35) increases 

to the maximum of 1024 in about 100 cycles. There is a resulting peak in the 

number of load and f&a combinations (Figures 6.42 and 6.43), and wait-buffer 

full events (Figure 6.40) as the semaphore is accessed. The base addresses of the 

two operand arrays are then loaded into registers, resulting in another peak in 

the number of load combinations at 400 cycles. 

Each process then starts executing the 32 iterations of the product-sum loop. 

In each iteration two operand array elements are fetched, multiplied and added to 

the sum. The accesses to the operand arrays cause contention because they are all 

to different memory locations, and there is no combining. This is shown by the rise 

in request queue conflicts (Figure 6.39) and memory latency (Figure 6.38), and 

results in a reduction of processor and network utilisation (Figures 6.36 and 6.37) 

at 800 and 1200 cycles. The first iteration shows more features than subsequent 

iterations, probably because the processes become more "smeared out". 

When the iterations are finished the processes write to the result array, shown 

by the increase in memory accesses (Figure 6.44) at 12500 cycles. Each process 
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then increments the termination counter, resulting in an increase in f&a combina-

tions starting at 13000 cycles. There are about 1000 cycles between the first and 

last process to finish. The program finishes at 14031 cycles (when the interrupt 

is received by the user-interface). 

6.6.3 Description of bitonic merge sort profile 

The bit1024 program sorts an array of 2048 integers in 66 merge iterations, but 

only the first 3 iterations are shown in each profile since the subsequent 63 iter-

ations are essentially identical. The interrupt indicating the end of the program 

is received at 148008 cycles. Only the first iteration is described below, but the 

description applies equally to all iterations. 

Each process first fetches an index which points to the result array entries, 

with the number of active processes (Figure 6.45) reaching the maximum 1024 in 

about 100 cycles. Access to the index causes the two peaks in f&a combinations 

(Figure 6.53) at 100 and 200 cycles, and a high number of wait-buffer full events. 

Just after the start of the iteration at 400 cycles there is a peak in request queue 

conflicts (Figure 6.49), resulting in a peak in memory latency (Figure 6.48) and 

decreases in processor and network utilisation (Figure 6.46 and 6.47). 

The processes then calculate the positions of the two operand array entries by 

performing two inverse perfect shuffle operations. These are mainly arithmetic 

operations, so the processor and network utilisation is high, and there are many 

(instruction) load combinations (Figure 6.52). After the shuffles have been cal-

culated the entries are fetched from the operand array, compared and written to 

the result array, with corresponding peaks in memory accesses (Figure 6.54) at 

1100 and 1600 cycles. 

The processes then finish the iteration by incrementing the termination counter 

at 1500 cycles, with about 200 cycles between the first and last process to finish. 

During the next 900 cycles before the next iteration starts the last process to 

finish the iteration initialises the next iteration, while the other 1023 processes 
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Figure 6.45: Execution profile for bitonic showing the number of active processes. 
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Figure 6.46: Execution profile for bitonic showing the processor utilisation. 
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Figure 6.47: Execution profile for bitonic showing the network utilisation. 
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Figure 6.48: Execution profile for bitonic showing the average memory latency. 
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Figure 6.49: Execution profile for bitonic showing the number of request queue 

conflicts. 
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Figure 6.50: Execution profile for bitonic showing the number of wait-buffer full 

events. 
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Figure 6.51: Execution profile for bitonic showing the number of acknowledge 
queue conflicts. 
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Figure 6.52: Execution profile for bitonic showing the number of load combina-
tions. 
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Figure 6.53: Execution profile for bitonic showing the number of f&a combina-
tions. 
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Figure 6.54: Execution profile for bitonic showing the number of memory accesses. 

busy-wait. This results in the large peak in f&a combinations from 1500 cycles, 

and increased memory latency. 

6.6.4 Description of Moore shortest path profile 

The moo1024 program has an irregular profile compared to the other two pro-

grams, and the profile is also much longer ( as only a part of the bitonic profile 

was shown). It is therefore more difficult to match changes in the profile to what 

the processes are executing. There are no wait-buffer full events so this profile is 

not included. 

Initially there is only one process executing, which then places other nodes to 

be examined into the queue. The other processes busy-wait until a node becomes 

available on the queue. When a process gets a node it searches all the connected 

nodes, updates the distance if there is a shorter path, and queues that node. 

The profile of active processes (Figure 6.55) shows a slow increase up to the 

maximum 1024 processes in about 20000 cycles. The number of processes then 

drops and begins to tail-off at about 40000 cycles, taking another 40000 cycles 

to actually finish. The interrupt is received by the user-interface at 85871 cycles. 

The process profile shows that the processes spend their time busy-waiting. The 

processor and network utilisations (Figures 6.56) and 6.57) show large initial 
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Figure 6.55: Execution profile for Moore showing the number of active processes. 
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Figure 6.56: Execution profile for Moore showing the processor utilisation. 
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Figure 6.57: Execution profile for Moore showing the network utilisation. 
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Figure 6.58: Execution profile for Moore showing the average memory latency. 
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Figure 6.59: Execution profile for Moore showing the number of request queue 
conflicts. 
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Figure 6.60: Execution profile for Moore showing the number of acknowledge 
queue conflicts. 
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Figure 6.61: Execution profile for Moore showing the number of load combina-
tions. 
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Figure 6.62: Execution profile for Moore showing the number of f&a combina-
tions. 
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Figure 6.63: Execution profile for Moore showing the number of memory accesses. 
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oscillations which then average out as the number. of active processes increases. 

Both the request and acknowledge queue conflicts (Figures 6.59 and 6.60) show 

an increase as the number of active processes increases. The load combinations 

and f&a combinations (Figures 6.61 and 6.62) both show large initial oscillations, 

and decrease as more processes become active and there is less busy-waiting. The 

number of memory accesses increases (Figure 6.63) as more processes do useful 

work. 

6.7 Comments 

The execution profiles convey information which cannot be gleaned from the 

averaged execution statistics, such as the occurance of transient peaks in the 

memory latency. Such information can be used to improve the implementation of 

programs, for example the bitonic merge sort profile shows that the time between 

each iteration is almost as long the iteration itself. During this time most of the 

processes are idle and spin on a semaphore. It may be possible to change the 

bitonic program so this is avoided, and so improve the execution time. 

This concludes the simulation experiments chapter; in the final chapter the 

simulation results are summarised, and suggestions for further experiments made. 



Chapter 7 

Conclusion 

In this thesis the Eppi MIMD shared memory multiprocessor design has been 

described, and its performance evaluated by simulation. The hounds on processor 

utilisation with varying interleaving level and memory latency, and a synthetic 

instruction mix, were first investigated using a serial single processor simulator. 

Next the bounds on network throughput and latency with varying queue size, net-

work load and hot-spot percentage were investigated using a serial isolated net-

work simulator. After this an instruction level simulation of the complete Eppi 

system, capable of executing realistic programs, was implemented in Occam on 

a distributed memory multiprocessor using a distributed time-driven simulation 

methodology. Parallel versions of the matrix multiply, bitonic merge sort and 

Moore shortest path algorithms were implemented in the Eppi assembly code, 

using fetch-and-add based process control mechanisms. These benchmark pro-

grams were used as system loads for the simulator. Simulation experiments were 

then carried out using the Eppi simulator in which the speed-up and execution 

profile of the benchmark programs were investigated, as well as the effect on the 

performance of the Eppi system of switch queue and wait-buffer size, combining 

level, interleaving level and relative module speed. 

The simulation results are summarised below, and then some suggestions for 

139 
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future work are made. 

7.1 Summary of results 

The prominent features of the Eppi design are that it has instruction interleaved 

processors, the processors and memories are connected by a combining multi-

stage network, and the fetch-and-add instruction is used as the synchronisation 

primitive. A large amount of numerical data has been collected in the Eppi sim-

ulations, and these results are drawn together here in two sections focusing on 

instruction interleaving and combining, and the simulation methodology is also 

discussed in a third section. 

7.1.1 Instruction interleaving 

Instruction interleaving has been implemented in a number of single processor 

designs, the HEP multiprocessor machine, and also more recent hybrid message-

passing multiprocessor designs, and is likely to receive further attention in the 

future. The main advantage of instruction interleaving is that it gives the pro-

cessor a degree of latency tolerance, since other processes can be executed while 

memory accesses take place, increasing the processor utilisation. A subsidiary 

advantage, assuming only a single instruction is issued per process at any one 

time, is that the processor can be heavily pipelined despite performance limiting 

branch and data dependencies (it would be possible to issue multiple instructions 

per stream assuming it can be easily checked that no dependencies are violated). 

If the parallelism of the program to be executed is not greater than the inter-

leaving level, then there are also no context-switching costs, since the context 

of all the processes is stored in the processor. Of course there must be suffi-

cient parallelism in the application programs to be able to use all these processes 

effectively. 

The single Eppi processor simulation results in Chapter 3 showed that the 
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processor utilisation increases as more processes are added, up to a maximum 

level dependent on the instruction mix and the memory cycle time. With unit 

memory latency and an average workload, 9 processes are needed to achieve the 

maximum utilisation. When the memory latency is increased by increasing the 

number of memory pipeline stages, more processes must be added to maintain the 

same utilisation. If more processes are added after the maximum utilisation has 

been reached then the throughput of each individual process is correspondingly 

reduced. 

The complete Eppi system simulations in Chapter 6 showed, in the speed-up 

simulations, that the processor utilisation falls as the system size is increased 

since the fixed interleaving level of 16 processes is not enough to compensate for 

the increasing memory latency. With 256 processors the average memory latency 

is between 18 and 20 cycles, with transient peaks reaching values higher than 

this. The relative module speed simulations showed that as the network speed is 

increased the processor utilisation quickly reaches the maximum, and therefore 

fewer processes are necessary to maintain the same utilisation. 

The interleaving level and execution profile simulations showed that each 

benchmark program has an optimal interleaving level related to the program 

parallelism. For all three programs the best performance was achieved with a 

system parallelism less than the program parallelism. For the Moore program 

this was because the majority of processes were not doing useful work, while for 

the matrix multiply and bitonic programs the highest interleaving level (of 64 

processes) caused increased contention within the processors and network. 

The interleaving level required to utilise the processor pipeline fully is related 

to the length of the execution pipeline and the memory latency. In an implemen-

tation of the processor the interleaving level would be fixed, and thus the size of 

the system could only be scaled within this fixed limit. Also in small systems the 

interleaving level would be higher than required by the memory latency. One pos-

sible solution would be to dynamically vary the interleaving level by scheduling 
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new processes on demand, as in the HEP processor. 

The processor design assumed that integer multiply and divide operations 

could be done in a single pipeline stage, which is not realistic. In an implemen-

tation a number of pipeline stages would be required, and the interleaving level 

would have to be increased to maintain the processor utilisation. Similarly the 

benchmark programs were hand coded and included no subroutines or explicit 

context-switching, thus reducing their execution time considerably. The simu-

lation results can be regarded as optimistic because of these assumptions, and 

represent the best performance one could expect from an implementation of this 

design. 

7.1.2 Combining and fetch-and-add 

Multistage networks have received considerable attention in the context of shared 

memory multiprocessor designs, and have been implemented in the HEP and 

RP3 machines. A multistage network can provide similar throughput to a full 

crossbar but with higher latency. Memory hot-spots can seriously degrade the 

performance of these networks by causing tree-saturation. Combining requests 

to the same memory location reduces the number of accesses to the hot memory, 

thereby reducing the access time to the hot-spot and improving overall network 

throughput. The fetch-and-add instruction and associated algorithms have been 

developed by the Ultracomputer project, and with combining can provide efficient 

synchronisation. 

The isolated Eppi network simulations in Chapter 3 showed that with a uni-

form memory address distribution the network throughput reaches above 90% 

as the buffer size is increased to 32 packets, but that the network latency also 

increases. A small buffer size of 4 to 8 packets is thus optimal. When a hot-spot 

is introduced, which can be as small as 1 in every 200 memory accesses, the net-

work throughput is much reduced and does not improve when the queue size is 

increased. 
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The complete system Eppi simulations in Chapter 6 showed, in the queue 

size simulations, that with pairwise combining a queue size of 4 to 8 packets 

also provides acceptable performance. The wait-buffer size simulations showed 

that if the wait-buffers are not large enough to accept most combinations then 

performance is reduced as the queue size is increased, due to the increased memory 

latency. As the system size is increased the wait-buffer size must obviously be 

increased to cope with the increased number of combinations. A wait-buffer size 

of 16 packets or larger is required for the 256 processor system. The combining 

level simulations showed that with no combining the network performance is much 

reduced. With 16 or more processors none of the programs finished within the 

simulation time available. Overall, pairwise combining appears to be sufficient to 

maintain performance for the simulated system sizes and benchmark programs, 

and increasing the combining level does not produce a worthwhile improvement 

in performance. 

Because each processor executes a number of processes the number of possible 

concurrent requests to the same memory location is higher than in a machine 

with single instruction stream processors. Larger wait-buffer sizes are therefore 

necessary, and the number of combinations increases with increased interleaving 

level. The execution profiles show there is more load combining than fetch-and-

add combining, the majority of which are instruction fetches. Spinning on a lock 

with fetch-and-add does cause the average memory latency to increase, although 

no tree-saturation occurs. 

The switch design assumed that a packet could be combined and clocked 

through the switch in a single cycle, which is also not realistic. In an imple-

mentation the switch would be pipelined, which could increase the network la-

tency. Pairwise combining switches with one-input queues have already been 

designed and fabricated [67, 68]. The high hardware cost of multistage networks 

has prompted investigation of alternative networks [133], but regardless of the 

network topology some form of combining will still be necessary. 
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7.1.3 Time-driven simulation 

Simulation of large Eppi systems at the instruction level would not have been 

feasible using a conventional workstation due to the memory as well as the CPU 

requirements, and so a parallel simulator was used. To the author's knowledge 

the Eppi simulator is the largest simulator of its kind, and has provided detailed 

and accurate simulation results of larger system sizes than has been previously 

achieved. The simulator speed-up figures show that the performance of the simu-

lator becomes communication bound using the larger domain sizes. Simulating a 

64 processor system on a 64 transputer domain results in an order of magnitude 

speed-up over simulating the same system on a 4 transputer domain. 

In a distributed time-driven simulation the simulator modules synchronise us-

ing message-passing.. This allows more parallelism than a shared memory time-

driven simulation using barrier synchronisation, because connected modules syn-

chronise directly by the exchange of packets. The clocking and synchronisation 

method described here could be used for other time-driven simulators to be imple-

mented on distributed memory multiprocessors or shared memory multiprocessors 

supporting message-passing primitives. 

The Occam language allows the parallelism of the Eppi design at the module 

level to be easily expressed, and the packet communication of the Eppi intercon-

nection network can be naturally implemented using message-passing. The main 

drawback, due to the static nature of Occam and the transputer domains, is the 

re-compilation of the simulator necessary for each different domain size. 

7.2 Future work 

The suggestions for future work are divided into practical improvements which 

could be undertaken immediately, and more long term directions for further re- 

search. 
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7.2.1 Immediate improvements 

Both the Eppi design and simulator could benefit from improvements. In the case 

of the Eppl design to increase it's functionality without changing its structure, 

and in the case of the simulator to increase it's functionality and performance. 

The Eppi processor should have floating point instructions, which could be 

simply added in the same manner as the current integer arithmetic functions. 

Some extra flags to deal with floating point exceptions, and instructions for type 

conversion would also be required. The combining mechanism in the switch 

nodes should be extended so that all different types of memory access can be 

combined, not just load and fetch-and-add accesses. Also a more general fetch-

and-4 operation could be added (where q is one of or, mm, max, add, etc [721), 

allowing the most efficient instruction for the application to be used. 

Further developments to the simulator should include trying to improve its 

performance by reducing the number of packets that are sent between the mod-

ules, and also by optimising the placement of the modules (though this may be 

a non-trivial problem [1341). The number of statistics that the simulator collects 

should be increased to include the number of ready signals sent, the general in-

struction type executed, and the number of memory requests and accesses should 

be. broken down into the individual types. The ability to collect memory address 

traces efficiently should be added, so these can be used to drive higher perfor-

mance trace-driven simulators. The collection of the wait-buffer full events should 

be corrected so it counts all wait-buffer conflicts. The simulator should also allow 

the size of the acknowledge queues to be separately set. 

The addition of floating-point to the processors would allow a wider range of 

benchmark programs to be implemented, and the simulator could also be used to 

investigate parallel algorithms for real process scheduling [76, 77] and dynamic 

memory allocation [135] for example. 
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7.2.2 Further research 

Areas for further research involve adding to the structure of the Eppi design. 

An obvious next step would be to investigate the caching of instructions and/or 

data in each processor. Caching would have the effect of reducing network traffic 

and latency, and therefore fewer processes would be required per processor. In 

the situation where all the processes are executing the same program (as in the 

benchmark programs) a high hit rate could be expected from an instruction cache. 

An instruction cache would also be the simplest to add as there is no consistency 

problem. With data caches some form of cache coherence is necessary [136, 

137]. A possible solution would be not to cache fetch-and-add accesses, or to tag 

memory words which may not be cached. The RP3 for example allows pages to 

be marked non-cacheable, and cache lines can be selectively invalidated [3]. The 

easiest cache organisation to include in the design would be a fully-associative 

cache with line size 1, which would require no change to the network design. If 

the cache units were added between the processor interface and the network then 

no change to the processor would be required either. 

To investigate paged virtual memory using the Eppi design would require 

the addition of a translation look-aside buffer (TLB) to the processors, and some 

sort of block transfer page i/o mechanism to a (simulated) mass storage device. 

A current problem is maintaining consistency between the TLB's, and various 

mechanisms have been proposed [138, 139]. Other topics for research include 

operating system issues, for example process scheduling, process protection, and 

memory allocation. Some investigations into using fetch-and-add based operating 

primitives have already been carried out [76, 77], and an implementation of a 

UNIX-like operating system on the RP3 is being undertaken [140]. 

This concludes the final chapter of the thesis; the appendices following this 

chapter contain the assembly code listings of the benchmark programs, and the 

detailed simulation results from the complete Eppi system simulations. 
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Appendix A 

Assembly code 

This appendix contains example Eppi assembly code for the three benchmark 

programs. Each line in the assembly program has the format: 

label 	instruction 	operand(s) 

The label is optional, and the instruction is one of the Eppi assembly code in-

structions or an assembler directive. Multiple operands are seperated by commas. 

The Eppi assembly code instructions have been described in Section 3.1.6, and 

in addition there are a number of assembler directives: 

source include assembly code from given file. 

org  start assembly from given address. 

reg define a register name. 

equ define a constant name. 

dcl assemble a long constant. 

res reserve a block of memory and initialise. 

* indicates a comment follows. 

In the assembly code listings that follow the register names rO, . . . ,r13,pc and 

sr have been predefined and are read in from the file registers. asm. 
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A.1 mrnult.asrn 

1 
	* 
2 * Parallel matrix multiply program 

3 * 
4 * multiplies lxm matrix A with mxn matrix B 
5 * to give lxn result matrix C 

6 
	* 
7 * i is the row of result matrix 
8 * j is the column 
9 
	* 
10 * All the elements of C are calculated in parallel 

11 * 
12 
	 source 'registers .asin' 

13 elem 	equ 15 	 * (1n)-1 

14 1 	equ4 	 *1 

15 n 	equ4 
16 m 	equ4 
17 
18 
	

org 16 	 * reset address 

19 
20 start idi r1,pc,1 
	* load semaphore p address 

21 
	

dcl p 
22 
	

f&aq r0,r1,0 
	

* semaphore 

23 
	

cmpq rO,0 
24 
	

blt start 
	

* retry 

25 
	

f&aq rO,rl,-1 
	

* fdec semaphore 

26 
	

cmpq rO,0 
27 
	

bge begin 
	 • do mmult 

28 
	

f&aq rO,rl,1 
	

• finc semaphore 

29 
	

bra start 
30 
	

begin ldq rl,n 
	• load n 

31 
	

div r2,rO,rl 
	

• i=p/n 

32 
	 rem r3,rO,rl 
	

* j=p\n 

33 
	

ldq r4,0 
	

* k=0 

34 
	

ldq r5,0 
	

* t=0 

35 
	

ldq r6,l 
	

* load 1 

36 
	

ldq r7,m 
	 * load m 

37 
	

ldi r8,pc,1 
	

* load address a 

38 
	

dcl a 
39 
	

ldi r9,pc,1 
	

* load address b 

40 
	

dcl b 
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41 idi rlO,pc,1 * load address c 
42 dcic 
43 loop mul r12,r2,r7 * load a(i*m+k) 
44 add r12,r12,r4 
45 add r12,r12,r8 
46 ido r12,r12,0 
47 mul r13,r4,rl * load b(k*n+j) 
48 add r13,r13,r3 
49 add r13,r13,r9 
50 ido r13,r13,0 
51 mul r12,r12,r13 * multiply a x b 
52 add r5,r5,r12 * t = t + (a x b) 
53 addq r4,r4,1 * k = k + 1 
54 cmpr4,r7 
55 bit loop 
56 mui r12,r2,rl * store c(i*n+j) 
57 add r12,r12,r3 
58 add r12,r12,rlO 
59 sto r12,r5,0 
60 ldi rO,pc,1 * done semaphore 
61 dcld 
62 f&aq rl,rO,-1 
63 cmpq r1,0 * not last one 
64 bne start 
65 ldq rO,3 * send interrupt 
66 sto rO,rO,0 
67 bra start * back to start 
68 p dcl elem * scheduling count 
69 d dcl elem * termination count 
70 a source 'array' 
71 b source 'array' 
72 c res 0,0 
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A.2 bitonic.asm 

2 * Parallel Batcher Bitonic Merge Sort Program 
3 * 

4 * Sorts n numbers using n/2 processes. 

5 * 

6 source 'registers.asm' 
7 nn equ 16 * numbers to sort 
8 np equ 8 * number of processes (nn/2) 

9 ns equ 4 * number of stages (log2 xiii) 
10 * 

11 * Start 
12 * 

13 org 16 
14 reset idi rO,pc,1 * data address 
15 dcl data 
16 bitlO f&aq rl,rO,O * k 
17 cmpq rl,np * k>np? 
18 bge bitlO 
19 f&aq rl,rO,1 * finc k 
20 cmpq rl,np * k<np? 
21 bit bitli 
22 f&aq r1,r0,-1 * fdec k 
23 bra bitlO 
24 bitil addq r2,rO,2 * i address 
25 ido r2,r2,0 * read i 
26 mulq r3,rl,2 * 

27 addq r4,r3,1 * 2p+1 
28 ldq r5,2 * m=(2<<i)-1 
29 asi r5,r5,r2 
30 subq r5,r5,1 
31 not r6,r5 * m 
32 and r6,r6,r3 * x/Vm 
33 and r7,r3,r5 * x/\m 
34 asrq r7,r7,1 * >>1 
35 idq r8,1 
36 and r8,r3,r8 * x/\1 
37 asl r8,r8,r2 * <<s 
38 or r9,r7,r8 * \I 
39 or r9r9,r6 * \/ 
40 not r6,r5 * m 
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41 and r6,r6,r4 * x/Vm 
42 and r7,r4,r5 * x/\m 
43 asrq r7,r7,1 * >>1 
44 ldq r8,1 
45 and r8,r4,r8 * x/\1 
46 as]. r8,r8,r2 * <<s 
47 or rlO,r7,r8 * \/ 
48 or rlO,rlO,r6 * \/ 
49 ido rll,rO,4 * from address 
50 add r12,rll,r9 * a address 
51 add r13,rll,rlO * b address 
52 ido r5,r12,0 * read a 
53 ido r6,r13,0 * read b 
54 ldq r7,1 * find sign 
55 as]. r7,r7,r2 
56 div r7,rl,r7 
57 remq r7,r7,2 
58 ido rll,rO,5 * to address 
59 add r12,rll,r3 * a address 
60 add r13,rll,r4 * b address 
61 cmpq r7,0 * signo ? 
62 bne bit12 
63 cmp r5,r6 * r5>r6 ? 
64 bgt bit14 
65 bra bit13 
66 bit12 cmp r5,r6 * r5<r6 ? 
67 ble bit14 
68 bit13 sto r12,r5,0 * write a 
69 sto r13,r6,0 * write b 
70 bra bit15 
71 bitl4 sto r12,r6,0 * write b 
72 sto r13,r5,0 * write a 
73 bit15 addq rl,rO,1 * d address 
74 f&aq rl,rl,1 * finc d 
75 addq rl,rl,1 * d+1 
76 cmpq rl,np * d=np ? 
77 bne bitlO 
78 ido rl,rO,2 * read i. 
79 ido r2,rO,3 * read j 
80 addq r2,r2,1 * 
81 cmp r2,rl * j<i ? 
82 ble bit16 
83 ldq r2,0 * j0 
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84 
85 
86 
87 
88 bitl6 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 bitl7 
100 
101 
102 * 
103 * Data 
104 * 
105 data 
106 
107 
108 
109 
110 
111 from 
112 to  

addq rl,rl,1 
	

* ].++ 

cmpq rl,ns 
	* i=ns ? 

beq bi.t17 
sto rO,rl,2 
	

• store i 
sto rO,r2,3 
	

• store j 
ido rl,rO,4 
	

• read from 
ido r2,rO,5 
	

• read to 
sto rO,rl,5 
	

• store from 
sto rO,r2,4" 
	• store to 

ldq r2,0 
	

* -np 
subq r2,r2,np 
addq rl,rO,1 
	

• d address 
f&a rl,rl,r2 
	

• d=0 
f&a rl,rO,r2 
	

• k=0 
bra bitlO 
ldq rO,3 
	

* done 
stq rO,0 
bra reset 

dclO *k 
dclO *d 
dclO 
dclO *j 

dcl from * from 
dclto *to 
dcl 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 

res 16,0 
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A.3 moore.asm 

1 	* 

2 * Parallel Moore Shortest Path 
3 * 
4 source 'registers.asm' 
5 nn equ 64 * no nodes 
6 nnml equ 63 * (nnode-1) 
7 dd equ 8 * degree 
8 es equ 16 * degree*2 
9 s equ nn * queue size 
10 smi equ nnml * (size-1) 
ii empty equ -i * empty 
12 * 

13 * Code 
14 * 

15 org 16 
16 reset idi r3,pc,1 * d address 
17 dcld 
18 idi r4,pc,1 * dis address 
19 dcl dis 
20 idi r5,pc,i * qc address 
21 dcl qc 
22 idi r6,pc,i * iqs address 
23 dcl iqs 
24 idi r7,pc,1 * ps address 
25 dcl PS 
26 waiti f&aq r8,r5,0 * Qc 
27 cmpq r8,0 * Qc<0? 
28 ble waiti 
29 f&aq r8,r5,-1 * fdec Qc 
30 cmpq r8,0 * Qc>0? 
31 bgt conti 
32 faq r8,r5,1 * finc Qc 
33 bra waiti 
34 conti addq r8,r5,2 * Qd address 
35 f&aq r8,r8,1 * finc qd 
36 remq r8,r8,s * Qd\Qs 
37 addq r9,r5,3 * Q address 
38 add r9,r9,r8 * offset 
39 wait2 ido rO,r9,0 * get node 
40 cmpq rO,empty * rO=exnpty? 
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41 beq wait2 
42 stq r9,einpty * set empty 

43 add r9,r6,rO * iqsem offset 

44 f&aq r9,r9,-1 * fdec iqsem 

45 f&aq r9,r7,1 * finc PS 

46 ldq rl,O * i 
47 ldq r2,0 * v 

48 loop idi r8,pc,1 * weights address 

49 dclv 
50 mulq r9,rO,es * scale u*es 

51 add r8,r8,r9 * base 

52 mulq r9,rl,2 * scale i*2 

53 add r8,r8,r9 * offset 

54 ido r2,r8,0 * node v 

55 ido r8,r8,1 * weight 

56 add r9,r3,rO * d offset 

57 ido r9,r9,0 * distance[u] 
58 add r8,r8,r9 * new_distancedistance[u]+weight[u] Iv] 
59 add r9,r4r2 * disemu offset 

60 wait3 f&aq rlO,r9,0 * P(disem[v]) 

61 cmpq r10,0 * disemn<0? 

62 ble wait3 
63 f&aq rlO,r9,-1 * fdec disem 

64 cmpq r10,0 * disem>0? 

65 bgt cont2 
66 f&aq rlO,r9,1 * finc disem 

67 bra wait3 
68 cont2 add r9,r3,r2 * d offset 

69 ldo r9,r9,0 * distance[v] 
70 cmp r8,r9 * new_distance<distance[v]? 

71 blt write 
72 add r9,r4,r2 * disemu offset 

73 f&aq rlO,r9,1 * V(disem[v]) 

74 bra cont3 
75 write add r9,r3,r2 * d offset 
76 sto r9,r8,0 * store new-distance[v] 

77 add r9,r4r2 * disem offset 

78 f&aq rlO,r9,1 * V(disem[v]) 

79 add r9,r6,r2 * iqsem offset 
80 f&aq rlO,r9,1 * finc iqsem[v] 
81 cmpq r10,0 * iqsem[v]0? 
82 beq queue 
83 f&aq rlO,r9,-1 * fdec iqsem[v] 
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84 
85 queue 
86 
87 
88 
89 
90 
91 
92 wait4 
93 
94 
95 
96 
97 cont3 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 * 
109 * Data 
110 * 
111 Ps 
112 vs 
113 d 
114 
115 dis 
116 i.qs 
117 
118 qc 
119 qi 
120 qd 
121 
122 
123 w 

bra cont3 
addq r9,r7,1 
f&aq rlO,r9,1 
addq r8,r5,1 
f&aq r8,r8,1 
remq r8,r8,s 
addq r9,r5,3 
add r9,r9,r8 
ido rlO,r9,0 
cmpq rlO,empty 
bne vait4 
sto r9,r2,0 
f&aq rlO,r5,1 
addq rl,rl,1 
cmpq rl,dd 
bit loop 
f&aq r8,r7,-1 
addq r8r7,1 
f&aq r8,r8,-1 
cmpq r8,1 
bgt reset 
ldq r8,3 
stq r8,0 
bra reset 

res nnnil,0 
dcl 1 
dcl 1 
dci 0 
dci 0 

• vs address 
• finc vs 
• Qi address 
• finc Qi 

• Qi\Qs 
• Q address 
• offset 
• get node 
• node=empty? 

• put node (v) 
• fi.nc Qc 
* i=i+1 
* i<dd? 

• fdec ps 
• vs address 
• fdec vs 
• wsl? 

* interrupt 

• Qc count 
• Qi pointer 
• Qd pointer 
• buffer space 

res sml,empty 
source 'weights. asm' 

dci 0 	 * process count 
dcl 1 	 * termination count 
dcl 0 	 * distance 
res nnml,inf 
res nn,1 	* distance semaphores 
dcl 1 	 * inqueue semaphores 



Appendix B 

Detailed execution statistics 

This appendix contains the tables of detailed execution statistics from the simu-

lation experiments described in Chapter 6. The table headings are abbreviated 

as shown below in Table B.I. Statistics which were not collected for a particular 

simulation are marked with a dash. 

[key meaning key meaning 

prcrs processors mreqs memory requests 
prcs interleaving level miat memory latency 
k-way combining level rqcon request queue conflicts 
qu queue size wbfull wait-buffer full events 
wb wait-buffer size aqcon acknowledge queue conflicts 
ciks clock cycles ldcom load combinations 
putil processor utilisation f&acom Ma combinations 
insts instructions mutil memory utilisation 
nutil network utilisation Fmaccs I memory accesses 

Table B.1: Description of abbreviated table headings 
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txj 

prcrs ciks putil insts 
[ 

nutil  1 mreqs miat I rqcon I wbfull aqcon I ldcom 	I f&acom mutil maccs 

1 4081780 0.86 3517180 1.00 4081790 2.0 0 0 0 0 0 1.00 4081790 

2 2045150 0.86 3522850 1.00 4090320 5.0 0 0 0 1907930 4102 0.53 2178290 
4 1023170 0.86 3524430 1.00 4092700 7.0 0 0 0 2863680 6144 0.30 1222870 

8 559190 0.79 3521410 0.91 4088220 8.0 0 0 0 3337040 7168 0.17 744001 
16 308610 0.71 3521270 0.83 4088140 10.1 0 0 0 3575320 7680 0.10 505133 

32 166241 0.66 3511300 0.77 4073570 12.1 0 0 0 3680380 7936 0.07 385219 

64 91108 0.60 3512320 0.70 4075520 14.0 0 0 0 3741680 8064 0.06 325759 
128 49569 0.55 3514370 0.64 4079620 16.0 0 0 0 3904420 8128 0.03 167005 
256 26814 0.51 3518460 0.60 4087810 18.0 0 119420 0 3991770 8160 0.01 87627 

Table B.2: Execution statistics for matrix multiply (mm4096) with increasing system size (interleaving level 16, 2-way 
combining, queue size 4, wait-buffer size 16, equal module clock factors). 
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prcrs ciks putil insts J nutil  
[ 

mreqs miat rqcon wbfull I aqcon ldcom f&acom I mutil 
[ 

maccs 

1 24233200 0.85 20485100 1.00 24233200 2.0 0 0 0 0 0 1.00 24233200 

2 12518300 0.82 20547700 0.97 24316700 6.0 591893 0 0 1108170 110752 0.92 23097800 
4 6901930 0.75 20672700 0.89 24483500 8.8 338421 0 4723 2192760 212436 0.80 22078300 

8 3817530 0.69 20960300 0.81 24866900 8.8 84346 0 6164 4566940 395166 0.65 19904800 
16 2081840 0.64 21299200 0.76 25318900 10.9 18561 0 4443 8851630 734241 0.47 15733000 
32 1140610 0.59 21707000 0.71 25863100 12.7 7423 0 14224200 1133960 0.29 10504900 
64 644810 0.55 22585200 0.66 27034700 14.8 6304 0 

g167515 

19029300 1578160 0.16 6427120 
128 382218 0.50 24547100 0.61 29652200 16.3 9647 19 23325800 2320130 0.08 4006090 
256 241301 0.46 28444900 0.56 34852500 18.1 22767 16019  28448200 3667270 0.04 2736490 

Table B.3: Execution statistics for bitonic (bit4096) with increasing system size (interleaving level 16, 2-way combining, 
qUeUe SZC 4, wait-buffer size 16, equal module clock factors). 
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prcrs ciks 
[ 

putil insts nutil mreqs miat rqcon 
[ 

wbfull aqcon I ldcom f&acom 
] 

mutil maccs 

1 3892020 0.75 2937690 1.00 3892030 2.0 0 0 0 0 0 1.00 3892030 
2 2070030 0.72 2988150 0.96 3959200 6.0 164330 0 0 146256 3683 0.92 3809260 
4 1165230 ö 3086280 0.88 4089890 7.8 155218 0 1437 267092 10144 0.82 3812640 

8 656641 0.60 3169910 0.80 4202410 9.6 71459 0 2623 426888 26096 0.71 3749410 
16 386187 0.55 3424790 0.74 4544890 11.4 33312 0 2846 736636 72547 0.60 3735680 
32 236012 0.51 3876310 0.68 5155250 12.4 17873 0 2706 1324490 193721 0.48 3636980 
64 173839 0.48 5322490 0.64 7106960 14.5 11131 0 3446 2815060 584756 0.33 3707020 
128 146333 0.44 8319480 0.60 11172200 17.0 7352 27 5998 5968400 1532870 0.20 3670690 
256 132597 0.41 13831100 1 	0.55 18669400 19.9 6149 26989 25233 1  11495600 3261970 0.12 3911310 

Table B.4: Execution statistics for Moore (moo4096) with increasing system size (interleaving level 16, 2-way combining, 
queue size 4, wait-buffer size 16, equal module clock factors). 
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Cr 

qu wb ciks 	I putil insts I nutil mreqs miat rqcon 
[ 

wbfull aqcon ldcom 
[ 

f&acom mutil maccs 

32 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

16 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

8 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

4 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

2 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 	1  1684 

32 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

16 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

8 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

4 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

2 16 1587 1 	0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

32 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

16 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

8 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

2 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

32 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

16 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

8 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

4 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684 

2 4 1587 0.81 2573 1 	1.00 3194 1 	4.0 0 0 0 1476 32 0.53 1684 

32 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684 

16 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684 

8 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684 

4 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684 

2 2 1587 0.81 1  2573  1 	1.00 3194 4.0 0 595 0 1476 32 0.53 1684 

Table B.5: Execution statistics for matrix multiply (mm32) on 2 processors with varying queue and wait-buffer size (inter-
leaving level 16, 2-way combining, equal module clock factors). 
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ciks putil insts nutil mreqs miat J rqcon wbfull aqcon ldcom 
[ 

f&acom mutil maccs 

T 32 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

16 32 2557 0.83 - 1.00 - 7.5 0 0 0 7156 96 0.29 - 

8 32 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

4 32 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

2 32 2562 0.83 - 1.00 - 7.5 8 0 11 7143 96 0.29 - 

32 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

16 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

8 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

4 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

16 2562 0.83 - 1.00 - 7.5 8 0 11 7143 96 0.29 - 

32 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

16 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

8 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

4 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 - 

2 8 2562 0.83 - 1.00 - 7.5 8 0 11 7143 96 0.29 - 

32 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29  
16 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29 - 

8 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29 - 

4 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29 - 

2 4 2562 0.83 - 1.00 - 7.5 15 504 11 7134 96 0.30 - 

32 2 2786 0.77 - 0.93 - 9.5 0 1317 0 3458 56 0.61 - 

16 2 2786 0.77 - 0.93 - 9.5 0 1317 0 3458 56 0.61 - 

8 2 2804 0.76 - 0.92 - 8.8 10 1247 0 3256 57 0.63 - 

4 2 1  2783 0.77 - 0.93 - 8.2 135 1535 3 3568 57 0.60 - 

2 2 1 3140 0.69 - 0.84 - 9.2 2051 1 	1315 1348 2965 1 55 0.60 - 

Table B.6: Execution statistics for matrix multiply (mm64) on 4 processors with varying queue and wait-buffer size (inter-
leaving level 16, 2-way combining, equal module clock factors). 
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qu wb[ ciks putil insts nutil 
[ 

mreqs miat rqcon 
[ 

wbfull aqcon ldcom [ f&acom mutil maccs 

32 32 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
16 32 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
i 32 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
•T •2 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
2 32 2762 0.76 - 0.92 - 8.5 16 0 3 16672 224 0.16 - 
32 16 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
16 16 2756 0,77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
8 16 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
4 16 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16  
2 16 2762 0.76 - 0.92 - 8.5 16 0 3 16672 224 0.16 - 
T 8 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 

16 8 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 
8 8 2756 0.77 - 0,93 - 8.2 0 0 0 16651 224 0.16 - 
4 8 2756 0:77 - 0.93 - 8.2 0 0 0 16651 224 0.16 - 

8 0:76 - 0.92 - 8.5 16 0 3 16672 224 0.16 - 
32 4 3125 0.69 - 0.83 - 10.2 0 1022 0 8933 157 0.47 - 
16 4 3108 0.69 - 0.83 - 10.2 23 1042 0 8958 161 0.47 - 
8 4 3089 0.69 - 0.84 - 9.8 82 1094 0 9658 169 0.44 - 
T 4 3109 0.69 - 0.84 - 10.4 732 1200 25 9935 170 0.43 - 

2 4 3409 0.64 - 0.77 - 11.2 5107 1263 2872 8283 144 0.46 - 
32 2 3263 0.66 - 0.81 - 13.8 28 2833 0 7439 141 0.51 - 
16 2 3242 0.66 - 0.80 - 13.5 193 2954 0 7577 142 0.51 - 
8' 2 3233 0.66 - 0.81 - 13.2 659 3205 0 7990 144 0.49 - 
4 2 3266 0.66 - 0.80 - 12.0 1710 3428 15 7902 143 0.50 - 
2 1 	2 3584 0.61 - 0.74 - 12.5 69TY-1 3245 3762 7145 120 0.48 - 

Table B.7: Execution statistics for matrix multiply (mm128) on 8 processors with varying queue and wait-buffer size (inter-
leaving level 16, 2-way combining, equal module clock factors). 
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C/D 

j7 wb ciks 	
[ 

putil insts 	nutil mreqs 
[ 

rnlat rqcon wbfull 1 aqcon ldcom f&acom mutil maccs 

32 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 - 

• 1 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 - 

8 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 - 

4 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 - 

2 32 5348 0.71 - 0.84 - 10.1 1 0 0 62768 480 0.10 - 

32 16 5348 0.71 - 0.84 - 10.1 0 0 0 62768 480 0.10 - 

16 16 5348 0.71 - 0.84 - 10.1 0 0 0 62768 480 0.10 - 

8 16 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 - 

4 16 5348 1  0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 - 

2 16 5348 0.71 - 0.84 - 10.1 1 0 0 62768 480 0.10 - 

32 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 - 

16 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 - 

8 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 - 

T 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 - 

2 8 5348 0.71 - 0.84 - 10.1 1 1631 0 62768 480 0.10 - 

32 4 6163 0.62 - 0.74 - 12.9 1 2726 0 32339 328 0.41 - 

16 4 6198 0.62 - 0.74 - 12.6 138 2722 0 32704 331 0.41 - 

8 4 6130 0.63 - 0.74 - 12.8 550 2997 0 33711 335 0.40 - 

4 4 6198 0.62 - 0.74 - 12.4 5015 3296 111 33781 331 0.39 - 

2 4 6882 0.57 - 0.68 - 14.1 25123 3575 12955 30098 303 0.41 - 

32 2 6358 0.60 - 0.72 - 20.6 277 8201 0 26962 281 0.45 - 

16 2 6384 0.60 - 0.72 - 26.5 888 9198 0 28161 279 0.44 - 

1 2 6363 0.60 - 0.72 - 23.1 2834 9897 0 28954 285 0.43 - 

4 
P2 

2 6378 0.60 - 0.72 - 16.9 8281 10478 73 29184 297 0.43 - 

2 6994 0.56 - 0.67 - 15.3 1 29444 8874 13864 26625 250 0.43 - 

Table B.8: Execution statistics for matrix multiply (mm256) on 16 processors with varying queue and wait-buffer size 
(interleaving level 16, 2-way combining, equal module clock factors). 
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00 



ciks 	I putil insts nutil mreqs miat rqcon I wbfull aqcon ldcom 	I f&acom 
[ 

mutil 
 [ 

maccs 

32 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

16 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

8 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

4 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

2 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

32 16 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

16 16 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

8 16 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

4 16 5765 1 	0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

2 16 5765 1 	0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 - 

32 8 6631 0.58 - 0.69 - 13.8 0 5873 0 91771 748 0.26 - 

16 8 6641 0.58 - 0.69 - 13.6 145 5947 0 92268 759 0.25 - 

8 8 6605 0.58 - 0.69 - 14.2 636 5850 8 93443 770 0.25 - 

4 8 6692 0.58 - 0.69 - 13.7 9599 4961 139 89402 747 0.26 - 

2 8 7348 0.53 - 0.64 - 17.0 48118 4916 21136 80567 691 0.29 - 

32 4 6810 0.57 - 0.67 - 18.3 131 7213 0 78196 718 0.31 - 

16 4 6795 0.57 - 0.67 - 16.4 617 7360 0 79025 720 0.31 - 

8 4 6818 0.56 - 0.67 - 15.5 2797 8152 6 81493 695 0.30 - 

4 4 6885 0.56 - 0.67 - 14.9 12710 7583 181 77127 708 0.32 - 

2 4 7549 0.52 - 0.63 - 17.1 59760 7375 21261 75026 637 0.31 - 

32 2 7363 0.52 - 0.62 - 29.6 2856 1  24560 0 70110 574 0.32 - 

16 2 7235 0.53 - 0.63 1 	
- 32.0 6442 26283 0 70998 601 1 	0.32 - 

7247 0.53 - 0.64 - 29.1 14659 28558 0 72856 614 0.32 - 

4 2 7207 0.54 - 0.64 - 21.4 25691 29234 235 73248 616 0.32 - 

2 2 7886 1 	0.51 - 0.61 - 19.4 79382 28886 22279 73112 554 0.32 - 

Table B.9: Execution statistics for matrix multiply (mm512) on 32 processors with varying queue and wait-buffer size 
(interleaving level 16, 2-way combining, equal module clock factors). 
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tX 

rj 
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(r 

-4 



[qu wb I ciks 	1 putil insts 	I nutil 
[ 

mreqs I miat I rqcon 	
[ 

wbfull aqcon 
[ 

Idcom f&acom mutil maccs 

32 32 	1 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

16  32 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

T 32 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

T •2 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

T 11820 0.60 	1 - 0.70 	1 - 14.0 0 	1  0 0 502721 2016 0.03 - 

32 16 11820 0.60 	1 - 0.70 - 14.0 0 0 0 502721 1 2016 0.03 - 

ii iT 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

8 16 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

4 16 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

16 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 - 

32 T 13970 0.52 - 0.61 - 15.7 1434 12481 0 346318 1528 0.22 - 

16 T 13845 0.52 - 0.62 - 15.6 3595 13740 1 348102 1562 0.22 - 

1-  1-  13756 0.53 - 0.62 - 15.6 7310 10622 55 351886 1556 0.22 - 

4 8 14031 0.52 - 0.61 - 15.6 55700 7845 903 341305 1516 0.23 - 

2 8 14954 0.49 - 0.58 - 19.9 190323 9378 68999 341967 1434 0.23 - 

32 4 14825 0.49 - 0.58 - 24.2 11169 23939 0 328670 1364 0.23 - 

Ti 4 14502 0.50 - 0.59 - 24.6 18048 26318 0 333109 1412 0.23 - 

8 4 14296 0.51 - 0.60 - 22.5 32751 27410 235 336169 1405 0.23 - 

4 4 14095 0.52 - 0.61 - 18.6 61797 23190 720 334012 1430 0.24 - 

2 4 15122 0.49 - 0.58 - 21.6 217582 25321 68167 338765 1318 0.23 - 

32 2 16822 0.44 - 0.52 - 35.3 40441 136797 0 308852 1018 0.23 - 

16 2 16637 0.45 - 0.53 - 41.2 87485 144377 0 317192 1048 0.23 - 

8 2 15726 0.47 - 0.56 - 35.9 127619 151706 161 323533 1124 0.23 - 

T 2 15118 0.49 - 0.58 - 29.7 159489 156500 1896 327801 1217 0.24 - 

16426 0.46 - 0.55 - 23.9 361583 1  166779 70310 340680 1086 0.23 1 -  

Table B.10: Execution :statistics for matrix multiply (mm1024) on 64 processors with varying queue and wait-buffer size 
(interleaving level 16, 2-way combining, equal module clock factors). 

ti 
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00 



tZI 
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qu I wb elks putil insts nutil mreqs 
[ 

miat  J rqcon wbfull 	J aqcon ldcom 	J f&acom mutil maccs 
32 32 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
16  32••  12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
1 32 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
4 32 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 

W 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
32 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
ii 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
T 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
• F 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
2 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 - 
32 8 15646 0.47 - 0.56 - 19.6 6902 28398 0 815166 3285 0.15 - 
16 i 15271 0.48 - 0.56 - 19.1 13092 29336 0 810440 3366 0.15 - 

T 8 15161 0.48 - 0.57 - 17.9 29329 24357 165 810993 3409 0.15 - 
T 8 15257 0.48 - 0.56 - 18.0 117534 12013 2067 796322 3372 0.15 - 
i 8 16472 0.45 - 0.54 - 21.8 449101 21642 123916 806928 3030 0.15 - 
32 T 24077 0.33 - 0.40 - 29.5 232919 103556 0 825701 2367 0.14 - 
16  4 20184 0.38 - 0.45 - 41.7 266527 128170 0 801553 2767 0.14 - 
i T 16084 0.46 - 0.54 - 26.6 106798 107569 144 790171 3119 0.15 - 

T 15581 0.47 - 0.55 - 25.9 161920 100109 2401 788835 3196 0.16 - 
T 16856 0.44 - 0.53 - 24.5 572088 111377 128644 805782 2925 0.15 - 

32 2 34303 0.25 - 0.30 - 78.5 867180 389406 0 778009 1726 0.13 - 
16 2 36203 0.25 - 0.31 - 86.2 1594850 523223 0 884299 1870 0.12 - 

27670 0.30 - 0.37 - 70.8 1647390 568176 862 841812 2042 0.13 - 
•T 2 24580 0.34 - 0.41 - 49.0 1713910 654296 2413 888817 2421 0.13 - 
T 2 20012 0.39 - 0.47 - 35.4 1431000 576956 130680 824515 2307 1 	0.14 - 

Table B.11: Execution statistics for matrix multiply (mm2048) on 128 processors with varying queue and wait-buffer size 
(interleaving level 16, 2-way combining, equal module clock factors). 



ciks 	putil 	insts 	nutil 	mreqs 	miat 	rqcon 	wbfull 	aqcon 1 ldcom  I f&acom I mutil 
[ 

maccs] 

32 32 30989 0.81 50487 1.00 61860 6.0 0 0 0 11094 2029 0.79 48735 

16 
8 

•T 
2 

- 2 
32 
32 
32 

30989 
30983 
30995 
32207 

0.81 
0.81 
0.81 
0.78 

50487 
50480 
50445 
50292 

1.00 
1.00 
1.00 
0.96 

61860 
61851 
61804 
61602 

1  

6.0 
5.5 
6.0 
5.0 

0 
4 
130 
2832 

0 
0 
0 
0 

0 
0 
0 
0 

11094 
11257 
11057 
10548 

2029 
2035 
1999 
1713 

0.79 
0.78 
0.79 
0.77 

48735 
48556 
48745 
49340 

•16 
T11 
16 

30989 
30989 

0.81 
0.81 

50487 
50487 

1.00 
1.00 

61860 
61860 

6.0 
6.0 

0 
0 

0 
0 

0 
0 

11094 
11094 

2029 
2029 

0.79 
0.79 

48735 
48735 

8 
T 

16 
16 

30983 
30995 

0.81 
0.81 

50480 
50445 

1.00 
1.00 

61851 
61804 

5.5 
6.0 

4 
130 

0 
0 

0 
0 

11257 
11057 1  

2035 
1999 

0.78 
0.79 

48556 
48745 

•1 -  32207 0.78 50292 0.96 	1 61602 5.0 2832 0 	1 0 10548 1713 0.77 49340 

32 8 30989 0.81 50487 1.00 	1 61860 6.0 0 0 	1 0 11094 2029 0.79 48735 

16 8 30989 1 	0.81 50487 1.00 1 61860 6.0 0 0 0 11094 2029 0.79 48735 

8 8 30983 0.81 50480 1.00 61851 5.5 4 0 0 1 	11257 2035 0.78 48556 

1 1-  30995 0.81 50445 1.00 61804 6.0 130 0 0 11057 1999 0.79 48745 

32207 0.78 50292 0.96 61602 5.0 2832 0 0 10548 1713 0.77 49340 

32 •4T 30989 0.81 50487 1.00 61860 6.0 0 26 0 11094 2029 0.79 48735 

16 4 30989 0.81 50487 1.00 61860 6.0 0 26 0 11094 2029 0.79 48735 

8 4 30984 0.81 50482 1.00 61853 6.5 1 45 0 11525 2034 0.78 48291 

4 4 30995 0.81 50445 1.00 61804 1 	6.0 130 21 0 11057 1999 0.79 48745 

T 32207 0.78 50292 0.96 61602 5.0 2832 0 0 10548 1713 0.77 49340 

32 2 31035 0.81 50444 1.00 61804 5.5 0 4796 0 10625 2004 0.79 49172 

16 2 31035 0.81 50444 1.00 61804 5.5 0 4796 0 10625 2004 0.79 49172 

31107 0.81 50594 1.00 62002 6.5 4 4866 0 10836 1959 0.79 49204 

-4- 2 31026 0.81 50357 0.99 1 61686 1 	5.5 274 5103 0 11311 1932 0.78 48440 

32540 0.78 50482 0.95 61847 5.0 3253 3574 0 10379. 1669 0.76 49797 

Table B.12: Execution statistics for bitonic (bit32) on 2 processors with varying queue and wait-buffer size (interleaving level 
16, 2-way combining, equal module clock factors). 
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00 



macj 

	

0.60 	106140 

	

0.60 	106140 

	

0.60 	106086 

	

0.61 	106154 

	

0.55 	105237 

	

0.60 	106140 

	

0.60 	106140 

	

0.60 	106086 

	

0.61 	106154 

	

0.55 	105237 

	

0.60 	106140 
0.60 	106140 
0.60 	106086 
0.61 	106154 
0.55 	105237 
0.61 	106673 

0.61 	106673 
0.61 	106517 
0.61 	106591 
0.55 	105130 
0.61 	110253 
0.61 	110253 
0.61 	109732 
0.61 	109392 
0.56 	110459 

nd wait-buffer size (interleaving level 

ti 

z 

00 
CAD 

ciks 	putil insts 	nutil mreqs miat I rqcon wbfull aqcon ldcom f&acom 

32 32 43856 0.77 134967 0.94 165317 8.0 	0 	0 	0 	51011 8158 

16 32 43856 0.77 	134967 0.94 165317 8.0 	0 	0 	0 	51011 8158 

8 	32 43864 0.77 134990 0.94 165344 7.8 	17 	0 	0 	51065 8185 

	

32 43820 0.77 134712 0.94 164972 7.2 	647 	0 	81 	50712 8098 

2 	32 48226 0.70 134883 0.86 165204 8.2 	23845 0 	29053 50588 9371 

32 16 43856 0.77 	134967 0.94 	165317 8.0 	0 	0 	0 	51011 8158 

T 	16 43856 0.77 134967 0.94 165317 8.0 	0 	0 	0 	51011 8158 

8 	16 43864 0.77 	134990 0.94 165344 7.8 	17 	0 	0 	51065 8185

-

11 

	

T 16 43820 0.77 134712 0.94 164972 7.2 	6470 	81 	50712 8098 

	

16 48226 0.70 134883 0.86 165204 8.2 	23845 0 	29053 50588 9371 

	

32 8 	43856 0.77 	134967 0.94 	165317 8.0 	0 	0 	0 	51011 8158 

	

16 8 	43856 0.77 	134967 0.94 	165317 8.0 	0 	0 	0 	51011 8158 

	

8 	43864 0.(7 	134990 0.94 165344 7.8 	17 	0 	0 	51065 8185 

4 	8 	43820 0.77 134712 0.94 164972 7.2 	647 	0 	81 	50712 8098 

2 	8 	48226 0.70 134883 0.86 165204 8.2 	23845 1 	29053 50588 9371 

	

32 4 	43890 0.77 134905 0.94 165230 7.8 	0 	3588 	0 	50382 8166 

	

1J6 4 	43890 0.77 134905 0.94 165230 7.8 	0 	3588 	0 	50382 8166 

0.94 	165418 7.5 	13 

	

4 	43944 0.77 135045 	
3577 	0 	50723 8170 

	

4 	43858 0.77 	134673 0.94 164922 7.5 	690 	3212 	59 	50217 8107 

	

IT 4 	48116 0.70 134581 0.86 164800 10.2 24269 5466 	
27771 50481 9180 

	

2 	44888 0.75 134118 0.91 	164185 9.2 	0 	20450 0 	46598 7322 

	

116 2 	44888 0.75 134118 0.91 	164185 9.2 	0 	20450 0 	46598 7322 

2 	44729 0.75 133682 0.91 	163604 9.0 	63 	20506 0 	4663 	26 8 72 

2 	44882 0.75 134147 0.91 164216 8.5 	4722 	21188 103 	47448 7367 

2 	49240 0.69 	134968 0.84 165317 8.2 	
30378 25445 23666 46892 7958 

Table B.13: Execution statistics for bitonic (bit64) on 4 processors with varying queue a 

16, 2-way combining, equal module clock factors). 



iJ 
[Jwb ciks putil I insts nutil mreqs 	I miat 

[ 
rqcon I wbfull 

[ 
aqcon ldcom f&acom mutil maccs 

32 32 61709 0.70 348020 0.86 426244 9.2 0 0 0 186180 25664 0.43 214386 

16 32 61709 0.70 348020 0.86 426244 9.2 0 0 0 186180 25664 0.43 214386 
8 32 61682 0.70 347938 0.86 426145 9.5 4 0 0 186061 25611 0.43 214458 
4 32 61712 0.70 347957 0.86 426160 9.1 902 0 110 186139 25549 0.43 214453 
2 32 67276 0.64 344204 0.78 421172 11.0 53686 0 80958 175925 29197 0.40 216032 
32 - 16 61709 0.70 348020 0.86 426244 9.2 0 0 0 186180 25664 0.43 214386 
16 16 61709 0.70 348020 0.86 426244 9.2 0 0  0 186180 25664 0.43 214386 
8 16 61682 0.70 347938 0.86 426145 9.5 4 0 0 186061 25611 0.43 214458 
4 16 61712 0.70 347957 0.86 426160 9.1 902 0 110 186139 25549 0.43 214453 
2 16 67276 0.64 344204 0.78 421172 11.0 53686 0 80958 175925 29197 0.40 216032 
T 8 61709 0.70 348020 0.86 426244 9.2 0 5 0 186180 25664 0.43 214386 

16 8 61709 0.70 348020 0.86 426244 9.2 0 5 0 186180 25664 0.43 214386 
8 8 61682 0.70 347938 1  0.86 426145 9.5 4 4 0 186061 25611 0.43 214458 
4 8 61712 0.70 347957 0.86 426160 9.1 902 2 110 186139 25549 0.43 214453 
2 8 66947 0.64 343574 0.78 420323 11.5 52478 389 78643 175602 28987 0.40 215711 
32 4 61974 0.70 348523 0.86 426922 9.2 0 11782 0 184406 25548 0.44 216952 
16 4 61974 0.70 348523 0.86 426922 9.2 0 11782 0 184406 25548 0.44 216952 
8 4 61920 0.70 348316 0.86 426646 9.2 29 12323 0 185175 25510 0.44 215942 
4 4 61973 0.70 348416 0.86 426783 9.2 1034 12383 124 184169 25492 0.44 217104 

T 68012 0.63 343574 0.77 420322 12.6 74148 29886 80647 173057 28317 0.40 218924 
32 2 65014 0.67 348528 0.82 426924 10.8 0 72010 0 159113 23373 0.47 244418 
16 2 65050 0.67 348597 0.82 427019 11.0 228 71889 0 159440 23390 0.47 244168 
8 2 64859 0.67 347892 0.82 426088 10.9 2437 76219 0 163740 23186 0.46 239137 
4 2 64465 0.67 346953 0.82 424833 10.8 16752 81970 231 169566 23217 0.45 232024 
2 2 73434 0.60 350591 0.73 429672 13.4 149720 93374 78553 161873 25778 0.41 242001 

Table B.14: Execution statistics for bitonic (bit128) on 8 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 
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qu  wb] As putil I 	insts nutil mreqs miat rqcon I wbfull aqcon I ldcom f&acom I mutit Fmaccs 

32 32 84513 0.64 871593 0.79 1067440 10.9 0 0 0 608364 79420 0.28 379628 
16 32 84513 0.64 871593 0.79 1067440 10.9 0 0 0 608364 79420 0.28 379628 
8 32 84508 0.64 871590 0.79 1067420 10.9 70 0 0 608021 79390 0.28 379973 
4 32 84555 0.64 871946 0.79 1067920 10.8 1001 0 221 609116 79613 0.28 379153 
2 32 90384 0.59 855461 0.72 1045920 13.8 111789 0 164514 564462 83025 0.28 

1 
 398405 

32 16 84513 0.64 871581 0.79 1067430 10.9 0 0 0 608357 79419 0.28 379624 
16 16 84513 0.64 871581 0.79 1067430 10.9 0 0 0 608357 79419 0.28 379624 
8 16 84508 0.64 871590 0.79 1067420 10.9 70 0 0 608021 79390 0.28 379973 
4 16 84555 0.64 871946 0.79 1067920 10.8 1001 '0 221 609116 79613 0.28 379153 
2 16 90384 0.59 855461 0.72 1045920 13.8 111789 0 164514 564462 83025 0.28 398405 
32 8 84508 0.64 871427 0.79 1067210 11.2 0 2317 0 608141 79306 0.28 379726 
16 T 84508 0.64 871427 0.79 1067210 11.2 0 2317 0 608141 79306 0.28 379726 
8 8 84643 0.64 873022 0.79 1069340 10.8 67 2276 0 608569 79805 0.28 380937 
4 8 84493 0.64 871564 0.79 1067400 11.0 1025 2279 250 609453 79445 0.28 378458 
2 8 90642 0.59 855956 0.72 1046570 15.0 114980 7771 168784 564385 83077 0.28 399065 
32 T 86177 0.64 877887 0.78 1075830 11.2 0 47048 0 585465 79895 0.30 410432 
11 1 86142 0.64 877307 0.78 1075060 10.9 243 47907 0 586133 79775 0.30 409121 
8 4 85897 0.64 875714 0.78 1072930 11.0 2178 50262 0 590130 79483 0.29 403283 
4 4 85417 0.64 873436 0.78 1069880 11.2 6876 51547 384 594890 79114 0.29 395835 

T 91697 0.58 858124 0.72 1049480 15.2 194368 95342 161828 560529 81130 0.28 407771 
32 T 95245 0.58 890088 0.72 1092100 13.4 4326 253160 0 480138 76392 0.35 535514 
16 2 95389 0.58 886631 0.71 1087490 13.6 24491 273748 0 499974 75851 0.34 511614 
8 2 94465 0.58 881539 0.71 1080700 12.8 69725 293755 80 514072 75099 0.33 491476 

92236 1 	0.59 876839 0.73 1074440 12.9 1  120237 329379 1278 537987 75203 0.31 461198 
104004 1 	0.53 889536 0.66 1091370 15.2 1 544476 336037 177553 518081 80571 0.30 492674 

Table B.15: Execution statistics for bitonic (bit256) on 16 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

00 



qu  wb elks putil insts 	J _nutil mreqs miat rqcon wbfull aqcon I ldcom f&acom mutil maccs 
32 32 112975 0.59 2136350 0.72 2616680 12.6 0 0 0 1775430 230069 0.17 611111 
16 32 112946 0.59 2135670 0.72 2615770 12.7 16 0 0 1775830 229889 0.17 609981 
8 32 112979 0.59 2135740 0.72 2615870 12.6 342 0 0 1774800 229886 0.17 611114 
4 32 113009 0.59 2136630 0.72 2617040 12.8 2114 0 700 1777060 230163 0.17 609740 
2 32 119080 0.55 2100080 0.67 2568320 15.5 201968 0 305167 1675110 226807 0.17 666329 
32 16 112975 0.59 2136370 0.72 2616710 12.6 0 0 0 1775450 230074 0.17 611115 
16 rr 112946 0.59 2135670 0.72 2615770 12.7 16 0 0 1775830 229889 0.17 609981 
8 16 112979 0.59 2135740 0.72 2615870 12.6 342 0 0 1774800 229886 0.17 611114 
4 16 113009 0.59 2136630 0.72 2617040 12.8 2114 0 700 1777060 230163 0.17 609740 
2 16 119080 0.55 2100080 0.67 2568320 15.5 201968 0 305167 1675110 226807 0.17 666329 
32 8 112985 0.59 2135850 0.72 2616020 12.7 0 10264 0 1773610 229872 0.17 612471 
16 8 112985 0.59 2135850 0.72 2616020 12.7 0 10264 0 1773610 229872 0.17 612471 

112986 0.59 2136090 0.72 2616340 12.8 74 10352 0 1773690 229951 0.17 612631 
T 113013 0.59 2136710 0.72 2617170 12.6 1786 10561 627 1775490 230118 0.17 611499 

119119 0.55 2097920 0.67 2565480 13.9 219237 35736 305059 1674070 226753 0.17 664593 
32 4 118596 0.57 2182220 0.71 2677850 12.9 535 176828 0 1672520 239756 0.20 765503 
16 T 118113 0.58 2173790 0.71 2666590 12.9 9530 188040 0 1685280 237608 0.20 743632 
T T 116739 0.58 2158800 0.71 2646610 12.8 28401 211272 61 1711150 234011 0.19 701380 
4 4 115141 0.58 2145270 0.71 2628580 12,7 50713 242280 934 1734930 230946 0.18 662625 

T 122229 0.54 2109860 0.66 2581370 16.4 530725 330092 312190 1651170 224936 0.18 705171 
32 2 155735 0.41 2047160 0.50 2497720 22.2 272383 570528 0 1138120 151968 0.24 1207350 
16 2 161057 0.42 2171650 0.52 2663770 22.8 673700 749111 90 1282270 190035 0.23 1191180 
T 2 145628 0.46 2156040 0.57 2642920 21.0 817864 925140 370 1381950 202318 0.23 1058450 
4 2 132042 0.51 2152750 0.62 2638610 20.0 712721 1181180 5424 1516560 217578 0.21 904324 

2 147846 0.48 2254330 0.59 2773990 17.0 1937820 1147460 355671 1521510 245202 1 	0.21 1007160 

Table B.16: Execution statistics for bitonic (bit512) on 32 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

tZ 



110 
110 

i[ ciks putil lusts 
[ 

nutil  1 mreqs 	I miat rqcon wbfull aqcon 	I ldcorn I f&acom mutil maccs 

32 32 148015 0.54 5125190 0.66 6276870 15.1 0 0 0 4703450 605670 0.10 967616 
16 32 148015 0.54 5125190 0.66 6276870 15.1 32 0 0 4703450 605670 0.10 967616 

1-  32 147977 0.54 5123520 0.66 6274680 14.4 565 0 0 4704130 605205 0.10 965212 
4 32 147923 0.54 5123340 0.66 6274410 15.2 3543 0 1515 4703460 605234 0.10 965588 
2 32 154369 0.51 5080670 0.63 6217560 17.7 388798 0 514201 4572030 595892 0.11 1049490 
32 16 148015 0.54 5125190 0.66 6276870 15.1 0 0 0 4703450 605670 0.10 967616 
16 16 148015 0.54 5125190 0.66 6276870 15.1 32 0 0 4703450 605670 0.10 967616 
8 16 147977 0.54 5123490 0.66 6274630 14.4 565 0 0 4704100 605199 0.10 965208 
4 16 147923 0.54 5123340 0.66 6274410 15.2 3543 0 1515 4703460 605234 0.10 965588 
2 16 154283 0.51 5080780 0.63 6217690 17.8 391262 12 511221 4572400 595926 0.11 1049220 
32 8 148296 0.54 5130030 0.66 6283340 14.6 0 42465 0 4699980 606914 0.10 976308 
16 8 148296 0.54 5130030 0.66 6283340 14.6 0 42465 0 4699980 606914 0.10 976308 
8 8 148147 0.54 5127650 0.66 6280150 14.5 136 41955 0 4697960 606250 0.10 975803 
T 8 148008 0.54 5124970 0.66 6276580 14.8 3417 43886 1656 4699250 605596 0.10 971603 
i 154623 0.51 5089010 0.63 6228580 17.6 421264 112555 514823 4571750 597748 0.11 1058960 

32 4 169118 0.45 4924470 0.56 6009160 22.8 212642 644263 0 3881220 504115 0.15 1623340 
16 4 165014 0.47 5014220 0.58 6129000 22.3 321746 831315 0 4145070 543282 0.14 1440290 

1 T 160011 0.50 5070880 0.61 6204640 22.0 351896 1110040 9 4358330 571632 0.12 1274420 
T 156210 0.51 5088800 0.62 6228450 20.0 398434 1 1353240 3739 4484610 583343 0.12 1160310 
T 160866 0.49 5075980 0.60 6211330 19.9 1459240 1 1465050 556309 4445930 582471 0.11 1182760 

Table B.17: Execution statistics for bitonic (bitl024) on 64 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

IG 
0-01 

Co 



qu]wbj ciks putil insts nutil mreqs miat rqcon wbfull aqcon I ldcom f&acom mutil maccs 

T 32 190268 0.50 12149200 0.61 14881700 16.2 0 0 0 11786600 1516480 0.06 1578400 
16 32 190268 0.50 12149200 0.61 14881700 16.2 64 0 0 11786600 1516480 0.06 1578400 

1 '3 190063 0,50 12137900 0.61 14866600 16.2 1142 0 0 11777200 1512990 0.06 1576230 
4 32 190129 0.50 12140400 0.61 14870000 16.5 7403 0 4974 11779500 1513840 0.06 1576420 
2 32 197137 0.48 12166200 0.59 14904400 18.8 835472 0 793847 11693700 1520100 0.07 1690370 
32 '1 190085 0.50 12138500 0.61 14867400 16.4 0 93 0 11777500 1513110 0.06 1576520 
16 16 190085 0.50 12138500 0.61 14867400 16.4 64 93 0 11777500 1513110 0.06 1576520 

16 190356 0.50 12153300 0.61 14887200 16.3 1158 67 0 11791100 1517850 0.06 1577940 
'I 16 190302 0.50 12151200 0.61 14884500 16.2 7369 63 4929 11788700 1517180 0.06 1578300 
2 16 196520 0.48 12150700 0.59 14883700 20.2 835491 398 772797 11688900 1515650 0.07 1678990 
'2 8' 192471 0.50 12210200 0.61 14963100 16.5 132 294027 0 11763000 1532960 0.07 1666920 
"Ti 192447 0.50 12209700 0.61 14962300 16.5 1998 296032 0 11765000 1532840 0.07 1664280 

T 192161 0.50 12198600 0.61 14947500 16.5 11216 304735 1 11766000 1529730 0.07 1651550 
" 4 8' 191310 0.50 12170300 0.61 14909900 16.5 40159 317584 5085 11771400 1521770 0.07 1616460 

1 197685 0.48 12142600 0.59 14873000 20.1 1023260 462703 823988 11651600 1512130 0.07 1709010 

Table B.18: Execution statistics for bitonic (bit2048) on 128 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

ti 

rj 

1-3 



qu wb ciks 	I putil insts 	I nutil mreqs mlat rqcon 
[ 

wbfull aqcon ldcom f&acom mutil maccs 

2 32 28464 0,66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858 
1 32 24837 0.73 36130 0.97 48289 5.5 1208 0 0 5611 2054 0.82 40621 
8 32 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 

16 32 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 
T 32 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 

2 16 28464 0.66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858 
4 16 24837 0.73 36130 0.97 48289 5.5 1208 0 0 5611 2054 0.82 40621 
8 16 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 
16 16 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 
r -16--  25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 

28464 0.66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858 
•T T 24837 0.73 36130 0.97 48289 5.5 1208 0 0 5611 2054 0.82 40621 
8 8 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 
B 8 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 
32 8 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069 

T 28464 0.66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858 
1 •T 24837 0.73 36130 0.97 48289 5.5 1208 27 0 5611 2054 0.82 40621 

8 4 25758 0.74 38051 0.99 50860 6.0 0 77 0 6441 2384 0.82 42031 
16 4 25758 0.74 38051 0.99 50860 6.0 0 77 0 6441 2384 0.82 42031 

IT 1 25758 0.74 38051 0.99 50860 6.0 0 77 0 6441 2384 0.82 42031 
2 2 28374 0.66 37448 0.88 50050 4.5 6718 2065 0 4683 1703 0.77 43661 
T 2 25408 0.73 36909 0.97 49320 5.5 1290 3584 0 5720 2137 0.82 41461 
8 2 25104 0.74 36924 0.98 49332 6.5 5 3672 0 5720 2155 0.83 41454 
16 2 25276 0.74 37209 0.98 49716 5.0 0 3801 0 6034 2170 0.82 41509 

IT 2 25276 0.74 37209 0.98 1  49716  ty0 7 .  0 3801 0 6034 2170 0.82 41509 

Table B.19: Execution statistics for Moore (moo32) on 2 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

00 
c.o 



ciks putil insts nutil 
{ 

mreqs miat rqcon wbfull aqcon ldcom I f&acom mutil maccs 
2 32 30437 0.59 72437 0.80 97211 8.5 27409 0 18275 22023 9409 0.54 65772 
1 32 26933 0.68 73546 0.92 98716 7.8 1035 0 85 22509 9181 0.62 67019 
T 32 26067 0.68 71182 0.92 95516 7.5 1 0 0 21521 8615 0.63 65373 

16 32 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383 
32 32 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383 
2 16 30437 0.59 72437 0.80 97211 8.5 27409 0 18275 22023 9409 0.54 65772 

•T 16 26933 0.68 73546 0.92 98716 7.8 1035 0 85 22509 9181 0.62 67019 
8 16 26067 0.68 71182 0.92 95516 7.5 1 0 0 21521 8615 0.63 65373 
16 16 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383 
r 16 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383 

T 29577 0.60 71019 0.81 95280 10.0 25395 14 16897 22575 9327 0.54 63371 
4 8 26933 0.68 73546 0.92 98716 7.8 1035 0 85 22509 9181 0.62 67019 
8 8 26067 0.68 71182 0.92 95516 7.5 1 0 0 21521 8615 0.63 65373 
iT •' 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383 
32 8 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383 
2 4 30943 0.59 72958 0.79 97973 9.5 29125 4186 18598 22046 9442 0.54 66475 
T '4 26322 0.68 71448 0.91 95870 8.5 1408 3071 78 21130 8644 0.63 66087 
8 4 26539 0.68 72389 0.91 97155 7.8 1 3135 0 21700 8924 0.63 66523 
16 T 26793 0.68 73067 0.91 98060 8.5 0 2921 0 21958 9034 0.63 67061 
32 T 26793 0.68 73067 0.91 98060 8.5 0 2921 0 21958 9034 0,63 67061 
2 2 31941 0.58 73674 0.77 98867 9.2 33456 15817 14798 20468 8670 0.55 69722 

' 4 ' 2 27903 0.65 72749 0.87 97634 8.8 5291 13614 193 20181 8359 0.62 69084 
8 2 27511 0.65 71432 0.87 95885 9.8 54 12478 0 19038 7846 0.63 68988 

"16 '2" 28293 1 	0165 73471 1 	0.87 98631 9.5 5 13154 0 19547 8253 0.63 70821 
32 T 28461 1 	0.65 73824 1 	0.87 99099 9.0 0 13165 0 19696 8300 0.62 71092 

Table B.20: Execution statistics for Moore (moo64) on 4 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

tZ 

z 
cI- 



tri 
I q u wb ciks putil lusts iiutil 	

[ 
xnreqs 	1 mlat rqcon 	I wbfull aqcon ldcom 	

[ 
f&aconi unutil maccs 1 

2 32 62073 0.55 270870 0.73 363033 13.2 123988 0 80633 90523 34999 0.48 237492 

4 32 53569 0.62 265923 0.83 356167 9.2 3071 0 200 92503 30667 0.54 232979 

8 32 57016 0.62 282254 0.83 378682 9.5 5 0 0 96992 33574 0.54 248098 

16 32 57300 0.02 283900 0.83 380954 9.0 0 0 0 97005 33760 0.55 250166 

32 32 57360 0.62 283900 0.83 380954 1  9.0 0 0 0 97005 33766 0.55 250166 

2 16 62073 0.55 270870 0.73 363033 13.2 123988 0 80633 90523 34999 0.48 237492 

4 16 53569 0.62 265923 0.83 356167 9.2 3071 0 200 92503 30667 0.54 232979 

• 8 16 57016 0.62 282254 0.83 378682 9.5 5 0 0 96992 33574 0.54 248098 

-1 -•  16 57360 0.62 283900 0.83 380954 9.0 0 0 0 97005 33766 0.55 250166 

32 16 57360 0.62 283900 1 	0.83 380954 9.0 0 0 0 97005 33766 0.55 250166 

2 8 62801 0.54 272877 0.73 365935 12.1 126493 252 81601 89272 35380 0.48 241265 

4 8 58417 0.62 289199 0.83 387951 9.5 3040 34 307 101371 34931 0.54 251630 

8 •1 56664 0.62 280408 0.83 376131 9.2 4 26 0 95375 32791 0.55 247949 

16 8 56030 0.62 277262 0.83 371886 1 	9.4 0 29 0 93900 32262 0.55 245706 

32 8 56030 0.62 277256 0.83 371878 9.4 0 29 0 93898 32261 0.55 245703 

59270 0.53 253627 0.72 339528 12.5 136072 21150 75177 79607 30400 0.48 229504 

4 4 57601 0.62 283830 0.83 380555 9.1 3754 10385 301 95529 32876 0.55 252128 

8 4 53410 1 	0.62 263143 0.83 352785 9.9 7 9745 0 86678 29302 0.55 236787 

16 1 	4 57413 0.62 283317 0.83 380014 9.8 0 10997 0 96865 33460 0.54 249671 

32 4 57413 0.62 283317 0.83 380014 9.8 0 10997 0 96865 33460 0.54 249671 

2 2 65057 0.51 266666 0.69 357557 13.1 192131 55741 77283 77832 30368 0.48 249335 

4 2 57485 0.59 271678 0.79 364361 12.4 18410 48888 1768 83773 28997 0.55 251565 

8 2 59510 0.58 278376 0.78 373326 10.4 4385 48101 0 84067 29178 0.55 260057 

16 2 60309 0.57 272967 0.76 366103 15.6 401 41417 0 78036 26815 0.54 261222 

32 2 55891 0.56 252407 0.76 338349 15.8 12 34338 1 	0 68514 22773 0.55 1 247029 

Table B.21: Execution statistics for Moore (moo128), on 8 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

t:r 

tTI 

tri 
C) 
CZ 



qu I wb I ciks f putil 
} 
_insts I nutil I mreqs miat j rqcon I wbfull 

[ 
aqcon 	J _ldcom I f&acom I mutil maccs 

2 32 59011 0.51 480728 0.68 644700 15.7 192397 0 137513 217884 77494 0.37 349283 
4 32 53860 0.57 491834 0.76 659350 11.0 2338 0 446 237257 74662 0.40 347395 
8 32 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391 
16 32 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391 
32 32 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391 
2 16 59011 0.51 480728 0.68 644700 15.7 192397 0 137513 217884 77494 0.37 349283 
4 16 53860 0.57 491834 0.76 659350 11.0 2338 0 446 237257 74662 0.40 347395 

16 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391 
16 16 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391 
32 16 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391 
2 8 58726 0.50 473521 0.68 635060 15.2 192173 4770 143579 211832 76546 0.37 346644 
4 8 54151 0.57 494228 0.76 662750 10.5 2319 2299 428 240556 76162 0.40 345998 
8 8 54847 0.57 500658 0.76 671171 10.9 0 2339 0 243786 77164 0.40 350188 
16 8 54847 0.57 500658 0.76 671171 10.9 0 2339 0 243786 77164 0.40 350188 
32 8 54847 0.57 500658 0.76 671171 10.9 0 2339 0 243786 77164 0.40 350188 

T 59738 0.49 469639 0.66 629788 15.3 265906 61336 146682 205861 74030 0.37 349853 
4 4 54731 0.56 493277 0.76 661485 10.9 7627 31016 529 231844 73707 0.41 355894 
8 4 54340 0.56 488004 0.75 654156 11.1 2485 30346 0 227573 72089 0.41 354455 
16 4 55091 0.56 489717 0.75 656933 11.3 1083 30670 0 222955 71523 0.41 362416 
32 4 54661 0.56 485557 0.74 651456 11.1 38 31760 0 224674 72579 0.40 354166 
2 2 63086 0.46 461804 0.61 618851 13.1 451694 146155 133410 183223 64045 0.37 371528 
4 2 56996 0.51 468507 0.69 628146 14.5 93540 141877 10078 197064 62832 0.40 368195 
8 2 59399 0.49 467738 0.66 627116 15.5 67079 125435 4305 188093 59488 0.40 379487 
16 2 59169 0448 450126 0.64 603372 16.4 33006 111963 10 175141 54346 0.39 373839 
32 2 60170 0.47 448564 0.62 600996 16.2 14101 106804 0 170983 51798 0.39 378164 

Table B.22: Execution statistics for Moore (moo256) on 16 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

t1 

tri 

tri 

tri 

CZ 

E. 



qu I wb ciks j putil insts nutil mreqs J_miat rqcon wbfull aqcon Idcom f&acom mutil maccs 
32 74852 0.47 1134620 0.64 1524340 16.3 384268 0 279692 634103 206978 0.29 683190 

•1 32 72971 0.52 1214420 0.70 1633260 12.8 3119 0 999 717047 222978 0.30 693163 
8 32 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427 

•16 32 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427 
T 32 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427 

2 16 74852 0.47 1134620 0.64 1524340 16.3 384268 0 279692 634103 206978 0.29 683190 
T 16 72971 0.52 1214420 0.70 1633260 12.8 3119 0 999 717047 222978 0.30 693163 
- 8 16 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0,30 689427 
16 16 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427 
32 16 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427 
2 8 75303 0.47 1129910 0.63 1517540 15.5 395460 28819 292169 632093 207327 0.28 678046 
4 8 75495 0.52 1256240 0.70 1687560 12.6 3388 11185 973 749277 231965 0.29 706252 
8 8 68535 0.52 1134990 0.70 1525340 12.6 11 11584 0 654124 199761 0.31 671376 
16 8 70059 0.52 1161500 0.70 1560690 12.8 0 11521 0 671726 205422 0.30 683469 
32 8 70059 0.52 1161500 0.70 1560690 12.8 0 11521 0 671726 205422 0.30 683469 
2 4 76490 0.45 1101440 0.60 1479600 18.6 691120 198770 303897 593261 194615 0.28 691648 

4 71250 0.51 1158030 0.68 1555650 12.6 58887 129993 1059 658093 201190 0.31 696300 
4 75305 0.50 1203930 0.67 1617210 12.8 53846 137596 39 689015 213357 0.30 714761 

16 4 74413 0.49 1161260 0.65 1559450 12.7 31696 127852 0 643070 197820 0.30 718488 
32 ,T' 72361 0.47 1083490 0.63 1454540 12.9 21009 111148 0 572513 173251 0.31 708703 
2 2 83285 0.40 1071600 0.54 1438890 17.6 1483060 452931 240989 521859 171834 0.28 745088 
4 2 82663 0.42 1100230 0.56 1477130 21.6 838787 476388 3876 544218 169915 0.29 762840 
8 2 84794 0.39 1049660 0.52 1408750 24.5 694967 393467 30 487585 149831 0.28 771143 
16 2 96918 0.36 1111600 0.48 1491460 22.1 485645 1  383928 0 503945 153690 0.27 833622 
T 2 94289 0.34 1017330 0.45 1364330 25.4 238744 307264 0 443691 128798 0.26 791575 

Table B.23: Execution statistics for Moore (moo512) on 32 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

xj 



ciks putil I insts nutil mreqs miat I rqcon wbfull I aqcon ldcom f&acom mutil maccs 
2 32 89818 0.44 2526290 0.59 3398860 18.1 709488 0 509895 1701210 527115 0.20 1170410 
4 32 85871 0.48 2647010 0.65 3564140 14.5 3462 0 1750 1820800 552823 0.22 1190380 
8 32 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610 
16 32 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610 
32 32 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610 
2 16 89527 0.44 2522180 0.59 3392780 17.4 684221 167 515479 1701310 527453 0.20 1163850 
4 16 85871 0.48 2647010 0.65 3564140 14.5 3462 0 1750 1820800 552823 0.22 1190380 
8 16 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610 
16 16 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610 
32 16 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610 

•1 92630 0.43 2559870 0.58 3444800 17.6 823450 135973 558367 1709390 534214 0.20 1201060 
4 8 82789 0.48 2527030 0.64 3401860 14.5 7209 47428 1891 1708880 514763 0.22 1178090 
8 8 86790 0.48 2648410 0.64 3565140 14.4 2329 53837 0 1812090 549003 0.22 1203920 
16 8 87215 0.48 2661700 0.64 3582850 14.5 866 54407 0 1831940 557858 0.21 1192920 
32 8 87005 0.48 2651000 0.64 3568730 14.3 91 54999 0 1816570 553797 0.22 1198210 

4 97507 0.41 2535870 0.55 3409380 19.9 2052980 776939 559498 1643710 508115 0.20 1257390 
T 4 97327 0.41 2559780 0.55 3442890 21.1 1143730 748310 19368 1663310 504227 0.20 1275160 
T 4 93115 0.40 2407620 0.54 3236210 19.1 621173 590632 1313 1525340 456503 0.21 1254160 
16 4 101393 0.35 2279680 0.47 3063500 23.9 671709 447523 94 1364630 402573 0.20 1295920 
32 1 105719 0.31 2107790 0.42 2829350 27.4 416521 299363 0 1193050 339162 0.19 1296620 

104407 0.33 2225520 0.45 2984490 26.9 5392280 1175620 380432 1280900 387345 0.20 1315970 
103881 0.32 2132390 0.43 2859860 34.1 4227680 f  1000810 8899 1167200 343331 0.20 1348950 

1 T 107629 0.29 1999740 0.39 2679440 53.9 3736050 1 818706 809 1037030 293384 0.20 1348510 
16 2 114521 0.25 1840090 0.34 2463130 84.5 2597280 581678 76 874668 229608 0.19 1358170 

153470 0.20 2001820 0.27 2677680 1 222.3 23878801 594548 2 948838 248159 0.15 1479970 

Table B.24: Execution statistics for Moore (moo1024) on 64 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 

ti 

til 



[ qu wb elks putil insts 	1 nutil mreqs 	1 miat  1 rqcon 	
[ 

wbfull 	I aqcon ldcom 	I f&acom I mutil maccs 

2 32 114994 0.41 6051040 0.55 8142330 19.4 1326780 0 980364 4580680 1326770 0.15 2234640 

T •2 110503 0.44 6275280 0.60 8452590 17.8 4513 0 6553 4799090 1391410 0.16 2261830 

T 32 111031 0.44 6315720 0.60 8506390 17.9 1 0 0 4842010 1404450 0.16 2259700 

16 32 111031 0.44 6315720 0.60 8506390 17.9 0 0 0 4842010 1404450 0.16 2259700 

32 32 111031 0.44 6315720 0.60 8506390 17.9 0 0 0 4842010 1404450 0.16 2259700 

2 16 106109 0.41 5561660 0.55 7487320 19.2 1338100 6712 906008 4124410 1174010 0.16 2188650 

4 16 110427 0.44 6268990 0.60 8446080 17.8 4462 83 6507 4792760 1391230 0.16 2261820 

•1 111284 0.45 6358430 0.60 8562770 17.0 2 44 2 4900610 1421790 0.16 2240110 

16 16 111029 0.44 6306490 0.60 8500720 17.5 0 13 0 4824600 1406910 0.16 2268950 

32 16 111029 0.44 6306430 0.60 8500650 17.6 0 13 0 4824550 1406880 0.16 2268950 

2 8 116548 0.40 5959000 0.54 8014750 20.4 1909810 593687 1066630 4465120 1 1289380 0.15 2259980 

4 8 112544 0.42 6087830 0.57 8199160 18.6 294321 486225 25538 4589860 1318840 0.16 2290180 

8 8 113043 0.44 6295180 0.59 8480210 17.5 67090 280161 935 4781750 1395340 0.16 2302850 

16 T 125796 0.43 6933050 0.58 9339280 18.3 47301 332707 121 5361650 1601750 0.15 2375610 

32 T 112867 0.43 6144090 0.57 8267640 18.1 19635 276411 0 4637060 1338050 0.16 2292270 

1 T 114618 0.36 5258380 0.48 7073890 27.8 6616200 2013820 898585 3717900 1050210 0.16 2305370 

•1 •T 133924 0.33 5694420 0.45 7653230 34.3 7185500 2152700 33851 4041430 1149860 0.14 2461380 

1-  T 128314 0.29 4735750 0.39 6353450 50.4 6930060 1215600 5133 3119330 830787 0.15 2402460 

16 T 151043 0.23 4386460 0.30 5871560 92.4 6693810 750026 1021 2700480 667703 0.13 2502170 

32  T 223868 0.18 5109510 0.24 6828600 113.5 6715250 611899 918 f  2958640 703103 0.11 3165570 

Table B.25: Execution statistics for Moore (moo2048) on 128 processors with varying queue and wait-buffer size (interleaving 
level 16, 2-way combining, equal module clock factors). 
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Table 13.26: Execution statistics for matrix multiply with increasing combining level (interleaving level 16, queue size 4, 

wait-buffet size 64, equal module clock factors). 

z 

tZ 

tZ 
rj 

0 z 



k-way 

0 
2 
3 
4 
0 
2 
3 
4 
0 
2 
3 
4 
2 

1 3 
4 
2 
3 
4 
2 
3 
4 
2 
3 
4 

ciks 
37686 
30995 
31086 
30998 
72256 
43820 
43674 
43573 
103138 
61712 
61528 
61490 
84555 
83944 
84076 
113009 
112077 
112101 
147923 
146315 
146257 
190129 
187268 
187161 

putil [ 
0.67 
0.81 
0.81 
0.81 
0.52 
0.77 
0.77 
0.77 
0.47 
0.70 
0.71 
0.71 
0.64 
0.65 
0.65 
0.59 
0.60 
0.60 
0.54 
0.55 
0.55 
0.50 
0.51 
0.51 

insts 	[ 
50133 
50434 
50580 
50504 
151124 
134694 
134755 
134641 
389894 
347929 
348626 
348468 
871900 
871221 
872509 
2136580 
2134010 
2134580 
5123230 
5120110 
5118740 
12140300 
12117900 
12110900 

nutil 
0.81 
1.00 
1.00 
1.00 
0.65 1 
0.94 
0.94 
0.95 
0.58 
0.86 
0.87 
0.87 
0.79 
0.79 
0.79 
0.72 
0.73 
0.73 
0.66 
0.67 
0.67 
0.61 
0.62 
0.62 

mreqs 
61385 
61790 
61983 
61880 
186852 
164952 
165034 
164876 
482074 
426126 
427058 
426849 
1067851 
1066934 
1068652 
2616964 
2613552 
2614312 
6274294 
6270121 
6268305 
14869879 
14839999 
14830689 

miat 

6.5 
5.5 
6.0 
6.0 
10.2 
7.2 
7.0 
7.2 
15.8 
9,4 
9.0 
9.2 
10.9 
10.9 
10.9 
12.8 
12.6 
12.8 
15.1 
14.4 
14.3 
16.5 
16.3 
16.1 

rqcon 	] 
13935 
130 
161 
91 
116333 
647 
544 
512 
391777 
902 
645 
733 
1001 
1061 
1046 
2114 
1994 
1978 
3543 
3058 
2944 
7403 
4127 
4374 

wbfull 

0 
0 
0 
0 
0 
0 
0 
0 
0 	1  
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

aqcon 
0 
0 
0 
0 
15 
81 
66 
52 
164 
110 
118 
118 
221 
214 
211 
700 
536 
537 
1515 
1069 
1006 
4974 
2745 
2562 

ldcom 	[f&acom 

0 
11054 
11312 
11914 
0 
50705 
51827 
52645 
0 
186123 
188858 
189483 
609077 
615460 
617464 
1777015 
1789333 
1790304 
4703369 
4732399 
4731947 
11779443 
11818147 
11811109 

0 
1998 
2028 
2032 
0 
8097 
8296 
8340 
0 
25547 
26179 
25979 
79606 
79813 
80248 
230150 
230378 
230588 
605210 
606341 
605053 
1513820 
1510860 
1508690 

mutil 
0.81 
0.79 
0.78 
0.77 
0.65 
0.61 
0.60 
0.60 
0.58 
0.43 
0.43 
0.43 
0.28 
0.28 
0.28 
0.17 
0.17 
0.17 
0.10 
0.10 
0.10 
0.06 
0.06 
0.06 

maccs 
61380 
48736 
48641 
47931 
186836 
106141 
104904 
103885 
482029 
214438 
212005 
211372 
379134 
371626 
370906 
609728 
593773 
593358 
965576 
931256 
930271 
1576413 
1510713 
1510676 

rprcrs I 
2 
2 
2 
2 
4 
4 
4 
4 
8 
8 
8 
8 
16 
16 
16 
32 
32 
32 
64 
64 
64 
128 
128 
128 

Table B.27: Execution statistics for bitonic with increasing combining level (interleaving level 16, queue size 4, wait-buffer 

size 64, equal module clock factors). 
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prcrs k-way 
[ 

ciks putil insts nutil mreqs miat rqcon wbfull_[ aqcon ldcom f&acom mutil maccs 

2 0 31428 0.58 36730 0.78 49093 6.5 13684 0 0 0 0 0.78 49088 

2 2 24837 0.73 36118 0.97 48275 6.0 1208 0 0 5609 2052 0.82 40612 
2 3 25331 0.73 37018 0.98 49462 6.5 1055 0 0 6185 2233 0.81 41042 
2 4 25514 0.73 37383 0.98 49950 5.5 933 0 0 6460 2345 0.81 41143 
4 0 36162 0.44 63341 0.59 85035 11.8 71884 0 29 1 	0 0 0.59 85019 
4 2 26933 0.68 73531 0.92 98693 7.2 1035 0 85 22503 9178 0.62 67004 
4 3 27626 0.69 75929 0.92 101857 7.5 898 0 57 23839 9629 0.62 68383 
4 4 26861 0.69 73881 0.92 99124 7.2 905 0 51 23111 9399 0.62 66607 
8 0 72323 0.41 238250 0,55 318969 17.0 316626 0 167 0 0 0.55 318920 

8 2 53569 0.62 265898 0.83 356132 9.4 3071 0 200 92491 30659 0.54 232964 

8 3 57943 0.62 288753 0.84 387135 9.4 2489 0 242 102658 35096 0.54 249367 

8 4 57819 0.62 288103 0.84 386432 9.0 2419 0 246 102237 35294 0.54 248887 
16 0 72730 0.29 335970 0.39 448804 45.2 1084100 0 552 0 0 0.39 448679 
16 2 53860 0.57 491802 0.77 659313 11.1 2338 0 446 237235 74658 0.40 347384 
16 3 53568 0.57 492292 0.77 660061 10.8 1817 0 325 240185 75177 0.40 344665 
16 4 53888 0.58 495941 0.77 664742 10.9 1897 0 368 244239 76436 0.40 344037 
32 0 5038280 0.10 15471200 0.13 20630136 1933.0 261250000 0 2762570 0 0 0.13 20629956 
32 2 72971 0.52 1214370 0.70 1633194 12.9 3119 0 999 717002 222965 0.30 693151 
32 3 75346 0.53 1274050 0.71 1711549 12.4 2295 0 793 778302 240255 0.29 692931 
32 1 	4 69419 0.53 1168680 0.71 1570997 12.6 2219. 0 780 689325 211309 0.30 670301 
64 2 85871 0.48 2647010 0.65 3564134 14.5 3462 0 1750 1820800 552823 0.22 1190375 

64 3 87577 0.49 2736450 0.66 3681882 14.4 2690 0 1187 1921082 582302 0.21 1178374 
64 4 88021 0.49 2745410 0.66 3697301 14.3 2342 0 1201 1926820 589739 0.21 1180615 
128 2 110503 0.44 6275220 0.60 8452505 17.8 4513 0 6553 4799040 1391390 0.16 2261824 
128 1 	3 110547 0.45 6389540 0.61 8607945 16.8 3225 0 2270 4961044 1447580 0.16 2199075 
128 4 111204 0.45 6421320 0.61 8652800 17.0 3469 0 2243 4971042 1447110 0.16 2234399 
256 2 133299 0.41 13914800 0.55 18781441 20.3 6078 0 23098 11602533 3299950 0.11 3878504 
256 3 132860 0.42 14216000 0.56 19194554 19.2 3769 0 4798 11933883 3407320 0.11 3852884 
256 4 148910 0.42 16015300 0.57 21606227 18.2 3894 0 5076 13662894 4002950 0.10 3939929 

k 

C) 

0 

cI.  
H 

H 

Table 8.28: Execution statistics for Moore with increasing combining level (interleaving level 16, queue size 4, wait-huller 

size 64, equal IIIo(ltIIe clock factors). 	 COD 



prcrs] prcs ciks putil I insts nutil mreqs miat 
[ 

rqcon I wbfull aqcon [ ldcom f&acom I mutil maccs 

1 16 10043 0.83 8385 1.00 10054 2.0 0 0 0 0 0 1.00 10054 
1 24 11279 0.82 9209 1.00 11289 2.0 0 0 0 0 0 1.00 11289 
1 32 10021 0.83 8364 1.00 10031 2.0 0 0 0 0 0 1.00 10031 
1 40 12519 0.80 10028 1.00 12529 2.0 0 0 0 0 0 1.00 12529 
1 48 15008 0.78 11695 1.00 15018 2.0 0 0 0 0 0 1.00 15018 
1 56 17481 0.76 13360 1.00 17491 2.0 0 0 0 0 0 1.00 17491 
1 64 10099 0.83 8395 1.00 10109 2.0 0 0 0 0 0 1.00 10109 
2 •1 10046 0.83 16768 1.00 20112 5.0 0 0 0 9343 128 0.53 10639 
2 F' 11280 0.82 18414 1.00 22580 4.0 0 0 0 10562 144 0.53 11873 
2 32 10022 0.83 16726 1.00 20064 5.0 0 0 0 9321 128 0.53 10614 
2 40 12519 0.80 20053 1.00 25058 5.0 0 0 0 11783 160 0.52 13114 
2 48 15009 0.78 23390 1.00 30038 5.0 0 0 0 14241 192 0.52 15604 
2 56 17482 0.76 26716 1.00 34984 5.0 0 0 0 16688 224 0.52 18071 
2 64  0.83 16790 1.00 20220 5.0 0 0 0 9398 128 0.53 10693 
4 16 17780 0.85 60295 1.00 71160 6.2 0 0 0 49708 384 0.30 21063 
4 24 19990 0.83 66192 1.00 80000 7.0 0 0 0 56292 432 0.29 23273 

•' 32 17753 0.85 60200 1,00 71052 6.5 0 0 0 49632 384 0.30 21033 
4 •'4 22202 0.81 72100 1.00 88848 6.5 0 0 0 62881 480 0.29 25484 
4 48 26629 0.79 83906 1.00 106556 7.5 0 0 0 76056 576 0.28 29921 
4 56 31043 0.77 95700 1.00 124212 6.2 0 0 0 89212 672 0.28 34325 
4 64 17803 0.85 60270 1.00 71252 7.0 0 0 0 49774 384 0.30 21091 
8 16 19399 0.78 120437 0.92 142119 8.0 0 0 0 115818 896 0.16 25394 
8 24 19991 0.83 132384 1.00 160016 8.5 0 0 0 131373 1008 0.17 27628 
8 32 17754 0.85 120400 1.00 142120 8.2 0 0 0 115831 896 0.18 25386 
8 40 22203 0.81 144200 1.00 177712 8.2 0 0 0 146746 1120 0.17 29839 
8 48 26630 0.79 167810 1.00 213120 8.8 0 0 0 177493 1344 0.16 34275 
8 56 31044 0.77 191400 1.00 248440 8.1 0 0 0 208185 1568 0.16 38680 
8 64 17804 0.85 	1  120542 1.00 142520 8.5 0 0 0 116168 896 0.18 25449 

Table 13.29: Execution statistics for matrix multiply on 1-8 processors with increasing interleaving level (2-way combining, 
queue size 4, wait-buffer size 64, equal module clock factors). 
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prcrs I prcs]_ciks }_putil insts nutil I rnreqs I miat rqcon I wbfull I aqcon ldcom I f&acom I mutil maccs 

16 16 40090 0.71 454848 0.83 531440 10.0 0 0 0 464601 1920 0.10 64899 
16 24 37408 0.83 499678 1.00 598688 10.1 0 0 0 527495 2070 0.12 69108 
16 32 33210 .0.86 454816 1.00 531536 10.1 0 0 0 464686 1920 0.12 64915 
16 40 41566 0.82 544032 1.00 665232 10,3 0 0 0 589550 2400 0.11 73267 
16 48 49870 0.79 632624 1.00 798112 10.1 0 0 0 713651 2880 0.10 81566 
16 56 58119 0.77 720686 1.00 930080 10.1 0 0 0 837154 3090 0.10 89821 
16 64 33212 0.86 454752 1.00 531568 10.1 0 0 0 464705 1920 0.12 64926 
32 16 42961 0.66 904192 0.77 1054810 12.1 0 0 0 952379 3968 0.07 98435 
32 24 37409 0.83 999360 1.00 1197470 12.0 0 0 0 1090260 4278 0.09 102902 
32 32 33211 0.86 909632 1.00 1063140 12.1 0 0 0 960429 3968 0.09 98708 
32 40 41567 0.82 1088060 1.00 1330530 12.2 0 0 0 1218480 4960 0.08 107060 
32 48 49871 0.79 1265250 1.00 1596290 12.0 0 0 0 1474950 5952 0.07 115359 
32 56 58120 0.77 1441340 1.00 1860190 12.1 0 0 0 1730160 6386 0.07 123613 
32 64 33213 0.86 909504 1.00 1063200 12.1 0 0 0 960479 3968 0.09 98720 
64 16 91108 0.60 3512320 0.70 4075520 14.0 0 0 0 3741680 8064 0.06 325759 
64 24 72185 0.84 3875640 1.00 4620610 14.0 0 0 0 4277570 8694 0.07 334282 
64 32 63973 0.86 3525310 1.00 4095100 14.0 0 0 0 3760900 8064 0.08 326076 
64 iö 80316 0.82 4222510 1.00 5140990 14.2 0 0 0 4788560 9954 0.07 342418 
64 48 96340 0.80 4905970 1.00 6166590 14.3 0 0 0 5797500 10584 0.06 358446 
64 56 112387 0.78 5590200 1.00 7193540 14.1 0 0 0 6808130 10836 0.05 374504 
64 64 64005 0.86 3525760 1.00 4097020 14.0 0 0 0 3762800 8064 0.08 326098 

Table B.30: Execution statistics for matrix multiply on 16-64 processors with increasing interleaving level (2-way combining, 
queue size 4, wait-buffer size 64, equal module clock factors). 
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prcrs 
] 

prcsj ciks 
] 

putil I 	insts nutil mreqs I miat rqcon wbfull J aqcon ldcom f&acom mutil maccs 

1 16 129047 0.84 107827 1.00 129058 2.0 0 0 0 0 0 1.00 129058 
1 24 148318 0.82 122217 1.00 148328 2.0 0 0 0 0 0 1.00 148328 
1 32 140885 0.83 116693 1.00 140895 2.0 0 0 0 0 0 1.00 140895 
1 40-  174433 0.81 141736 1.00 174443 2.0 0 0 0 0 0 1.00 174443 
1 48 207989 0.80 166792 1.00 207999 2.0 0 0 0 0 0 1.00 207999 
1 56 241386 0.79 191746 1.00 241396 2.0 0 0 0 0 0 1.00 241396 
1 64 165036 0.82 134789 1.00 165046 2.0 0 0 0 0 0 1.00 165046 
2 16 167311 0.83 278586 1.00 333528 5.5 695 0 0 48534 6003 0.83 278989 
2 24 191833 0.82 314851 1.00 382086 6.5 1600 0 0 61728 9033 0.81 311322 
2 32 182302 0.83 300899 1.00 363308 6.5 1316 0 0 62379 8895 0.80 292031 
2 40 225735 0.81 364811 0.99 448924 7.0 2566 0 0 81246 14181 0.78 353494 
2 48 269541 0.80 429294 0.99 535283 6.5 3819 0 0 100912 22098 0.76 412271 
2 56 312046 0.79 493051 0.99 620630 6.5 3482 0 0 119456 30480 0.75 470692 
2 64 213352 0.81 347031 1.00 424869 6.5 1855 0 0 81915 14629 0.77 328323 
4 16 224094 0.78 698142 0.93 835885 8.0 2037 0 184 209482 22941 0.67 603456 
4 24 242964 0.80 781347 0.97 947336 12.2 52748 0 234642 312268 45908 0.61 589148 
4 32 235127 0.80 751712 0.96 907373 14.2 101729 0 322567 356031 45037 0.54 506294 
4 40 290122 0.78 905296 0.96 1113150 12.5 130121 0 356788 421265 75291 0.53 616579 
4 48 345798 0.77 1060940 0.96 1321610 14.8 164733 0 429334 511736 114909 0.50 694959 
4 56 399079 0.76 1215090 0.96 1527840 15.2 192898 0 498118 606753 153845 0.48 767230 
4 64 274863 0.79 864770 0.96 1058220 13.0 136129 0 393276 456425 73928 0.48 527851 
8 16 301313 0.71 1713640 0.85 2052490 9.4 2425 0 369 739171 70671 0.52 1242630 
8 ij 299613 0,79 1899560 0.96 2301560 15.8 80442 0 455536 918389 129649 0.52 1253490 
8 32 302135 0.77 1852310 0.93 2237540 19.8 541383 0 1145020 1031340 136384 0.44 1069790 
8 40 375373 0.73 2189950 0.90 2689930 18.4 945186 0 1398300 1247910 225501 0.41 1216490 
8 48 443481 0.72 2545410 0.89 3165110 25.8 1168660 0 1624010 1512430 327256 0.37 1325390 
8 56 508063 0.71 2901930 0.90 3640710 21.6 1335460 0 1846360 1792200 430179 0.35 1418300 
8 64 361326 0.74 	1 2131780 0.90 2610370 21.0 1008420 0 1514360 1377750 219286 0.35 1013300 

t:r1 

0 

Table B.31: Execution statistics for bitonic on 1-8 processors with increasing interleaving level (2-way combining, queue size 
4, wait-buffer size 64, equal module clock factors). 	 ND 



prcrs I prcs I ciks putil insts nutil mreqs miat] rqcon wbfull aqcon ldcom f&acom I mutil maccs 
16 16 394756 0.65 4106010 0.78 4916810 11.0 2829 0 856 2398070 214375 0.36 2304330 
16 24 360598 0.80 4590520 0.96 5565770 15.4 66334 0 403491 2992360 351275 0.39 2222090 
16 32 362316 0.76 4418500 0.92 5333850 21.5 1171840 0 2398930 2798240 353261 0.38 2182300 
16 40 466422 0.70 5225930 0.86 6414890 22.4 3214930 0 3649730 3436110 598856 0.32 2379850 
16 48 557377 0.68 6047450 0.84 7512610 23.7 4521480 0 4506750 4152930 856967 0.28 2502650 
16 56 630338 0.67 6805350 0.85 8523050 29.5 5282780 0 5059510 4876390 1094680 0.25 2551930 
16 64 460719 0.70 5136050 0.85 6291030 35.4 4105320 0 4280350 3804770 590680 0.26 1895530 
32 16 507634 0.60 9694680 0.71 11606700 12.9 3891 0 1655 7090480 611457 0.24 3904660 
32 24 436147 0.79 10972600 0.95 13317600 14.5 54953 0 146363 8792550 990464 0.25 3534480 
32 32 436893 0.75 10495800 0.91 12675600 21.5 2207780 0 4247270 7559660 910955 0.30 4204890 
32 40 558101 0.69 12287400 0.84 15073600 26.4 7716780 0 7763670 8895610 1484480 0.26 4693420 
32 48 660239 0.66 13922700 0.82 17256400 25.8 12192800 0 10186500 10462300 2021610 0.23 4772300 
32 56 741279 0.65 15415900 0.81 19245800 29.5 150291.00 0 11641400 12066100 2510280 0.20 4669270 
32 64 570212 0.67 12212400 0.82 14965500 26.5 12474000 0 10293800 9881500 1498460 0.20 3585450 
64 16 644810 0.55 22585200 0.66 27034700 14.8 6304 0 4098 19029300 1578160 0.16 6427120 
64 24 538853 0.74 25600500 0.90 31071300 16.5 87404 0 153943 22756800 2532540 0.17 5781810 
64 32 511128 0.75 24537300 0.91 29639100 25.5 3006320 0 6589410 20461900 2255540 0.21 6921470 
64 40 648860 0.68 28325500 0.84 34709400 27.4 15720600 0 14570300 22636900 3480000 0.21 8592260 
64 48 759099 0.65 31682000 0.81 39186800 30.4 27341800 0 20736600 25769200 4596270 0.18 8821090 
64 -  5 836672 0.64 34299100 0.80 42670200 30.7 354432067 240800 28769300 5463600 0.16 8437080 
64 64 685892 0.65 28518800 0.80 34950000 48.1 32604500 0 22819700 24615600 3600530 -6-. 15--76733560 

Table B.32: Execution statistics for bitonic on 16-64 processors with increasing interleaving level (2-way combining, queue 
size 4, wait-buffer size 64, equal module clock factors). 
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prcrs I prcs I 	ciks putil I insts nutil mreqs 	]_miat  rqcon I wbfull I aqcon I ldcom f&acom I mutil maccs 
1 16 29603 0.75 22226 1.00 29614 2.0 0 0 0 0 0 1.00 29614 
1 24 41450 0.75 31075 1.00 41460 2.0 0 0 0 0 0 1.00 41460 
1 32 48432 0.75 36259 1.00 48442 2.0 0 0 0 0 0 1.00 48442 
1 40 61221 0.75 45771 1.00 61231 2.0 0 0 0 0 0 1.00 61231 
1 48 73094 0.75 54584 1.00 73104 2.0 0 0 0 0 0 1.00 73104 
1 56 85541 0.75 63814 1.00 85551 2.0 0 0 0 0 0 1.00 85551 
1 64 96750 0.75 72136 1.00 96760 2.0 0 0 0 0 0 1.00 96760 
2 16 75009 0.72 108779 0.96 144660 6.0 4779 0 0 10509 2789 0.88 131361 
2 24 90740 0.72 131456 0.96 175099 6.5 6401 0 0 14661 4518 0.86 155917 
2 32 109227 0.73 158770 0.97 211673 6.5 6801 0 0 20198 6621 0.85 184852 
2 40 129011 0.73 187429 0.97 250417 6.0 7625 0 0 26962 9174 0.83 214280 
2 48 151083 0.73 220283 0.97 294436 7.0 7750 0 0 36654 13250 0.81 244531 
2 56 170259 0.73 248155 0.98 332434 6.5 8104 0 0 41402 15314 0.81 275716 
2 64 195343 0.73 284944 0.98 382095 6.5 8611 0 0 48946 18325 0.81 314822 
4 16 72297 0.67 193134 0.89 257019 7.5 8036 0 140 29517 7492 0.76 220003 
4 24 85655 0.71 242157 0.94 322902 13.0 28959 0 27183 57293 17848 0.72 247749 
4 32 95508 0.71 269629 0.94 360140 17.0 34141 0 35535 67934 22328 0.71 269866 
4 40 112709 0.71 318429 0.94 425890 14.2 41107 0 53829 91892 32375 0.67 301608 
4 48 133804 0.70 376337 0.94 503848 15.5 53300 0 76312 117318 43264 0.64 343257 
4 56 150804 0.71 426346 0.95 571429 17.5 55226 0 88662 140504 53100 0.63 377812 
4 64 174838 0.71 493928 0.95 661921 19.0 67682 0 116982 173592 66709 0.60 421604 
8 16 89266 0.61 435286 0.81 579484 9.6 7904 0 383 93765 20981 0.65 464720 
8 24 97136 0.70 541309 0.93 722109 14.9 66238 0 62719 168441 46160 0.65 507487 
8 32 112670 0.69 619228 0.92 827876 23.1 148247 0 153259 221960 68659 0.60 537229 
8 40 138360 0.68 755070 0.91 1011180 27.0 217347 0 230553 300230 101036 0.55 609875 
8 48 168405 0.68 915066 0.91 1227520 22.8 288299 0 326720 394962 141217 0.51 691310 
8 56 190620 0.68 1031630 0.91 1385550 28.0 342846 0 387370 457137 167511 0.50 760867 
8 64 218623 0.68 1181080 0.91 1586820 22.0 411834 0 472046 556351 206695 0.47 823743 

RM 

tZ 

0 

Table B.33: Execution statistics for Moore on 1-8 processors with increasing interleaving level (2-way combining, queue size 
Nj 4, wait-buffer size 64, equal module clock factors). 	 CD 



prcrs prcs I As putil I insts nutil mreqs miat rqcon wbfull aqcon ldcom 
[ 

f&acom mutil maccs 
16 ii 119837 0.56 1076880 0.75 1436100 11.0 8352 0 981 369646 91277 0.51 975139 
16 24 116661 0.69 1281050 0.92 1712860 17.3 91755 0 93501 574724 153128 0.53 984974 
16 •• 130769 0.67 1401520 0.90 1875780 21.7 443037 0 472566 682118 197591 0.48 996014 
16 40 156270 0.65 1634830 0.88 2192780 27.8 790838 0 718419 839149 258895 0.44 1094690 
16 48 191522 0.65 1982440 0.87 2661660 27.9 1115670 0 983375 1106700 365135 0.39 1189760 
16 56 

• 

210443 0.64 2169650 0.87 2916120 31.3 1264710 0 1076180 1226700 411015 0.38 1278340 
16 64 246140 0.64 2518920 0.86 3389490 36.4 1562190 0 1291890 1471950 509754 0.36 1407730 
32 16 139805 0.52 2309820 0.69 3080230 12.8 9228 0 1541 964053 204900 0.43 1911210 
32 -  24 134078 0.67 2863420 0.89 3828640 17.9 120067 0 77347 1544940 358238 0.45 1925380 
32 32 151982 0.65 3159570 0.87 4229700 26.9 1102040 0 1089920 1822790 445940 0.40 1960870 
32 40 201627 0.63 4068710 0.85 5454800 33.7 2471830 0 2049060 2586430 725967 0.33 2142280 
32 T4•  215580 0.62 4257820 0.83 5716470 38.6 3228240 0 2396770 2708510 770942 0.32 2236890 
32 56 241643 0.61 4714130 0.82 6335810 35.6 3943110 0 2757650 3067480 902315 0.31 2365870 
32 64 280510 0.61 5436310 0.81 7314340 42.1 4761230 0 3239940 3632100 1118320 0.29 2563730 
64 16 173839 0.48 5322520 0.64 7107010 14.5 11131 0 3446 2815090 584766 0.33 3707020 
64 -  24 161455 0.64 6583140 0.85 8813260 16.6 162399 0 108073 4227920 971645 0.35 3613530 
64 32 187838 0.64 7678330 0.86 10295000 27.8 2216090 0 1995840 5288950 1309210 0.31 3696690 
64 40 217039 0.61 8461740 0.82 11355300 36.3 5571610 0 3898590 5956160 1526520 0.28 3872400 
64 48 245329 0.59 9316160 0.80 12515200 38.9 8214170 0 5176550 6673770 1787030 0.26 4054120 
64 56 276600 0.58 10267400 0.78 13809700 40.3 10663000 0 6153200 7405810 2047150 0.25 4356530 
64 64 353274 0.57 12987400 0.77 17481400 39.0 14669500 0 7974740 9806050 2928140 0.21 4746880 

Table B.34: Execution statistics for Moore on 16-64 processors with increasing interleaving level (2-way combining, queue 
size 4, wait-buffer size 64, equal module clock factors). 

IN 

tri 

0 



xj 

tin 
C) 
CZ 

0 

prcrs I ratio I ciks putil I insts nutil mreqs J miat rqcon [wbfull aqcon J ldcom f&acom 
] 

mutil I maccs 
2 0.25 6220 0.20 2525 1.00 3110 16.0 0 0 0 1440 32 0.47 1470 
2 0.50 3134 0.40 2537 1.00 3136 9.0 0 0 0 1449 32 0.47 1479 
2 1.00 1587 0.81 2563 1.00 3180 4.0 0 0 0 1470 32 0.47 1500 
2 2.00 1586 0.81 2562 0.50 3174 3.0 0 0 0 1467 32 0.24 1498 
2 4.00 1586 0.81 2562 0.25 3172 2.0 0 0 0 1466 32 0.12 1498 
4 0.25 10064 0.21 8375 1.00 10064 25.5 0 0 0 7015 96 0.71 7099 
4 0.50 5056 0.41 8403 1.00 10120 12.0 0 0 0 7049 96 0.70 7135 
4 1.00 2557 0.83 8483 1.00 10244 7.0 0 0 0 7139 96 0.70 7224 
4 2.00 2556 0.83 8485 0.50 10232 4.0 0 0 0 7132 96 0.35 7223 
4 4.00 2555 0.83 8481 0.25 10224 3.0 0 0 0 7126 96 0.18 7221 
8 0.25 10068 0.21 16747 1.00 20136 31.1 0 0 0 16378 224 0.82 16566 
8 0.50 5058 0.41 16807 1.00 20256 15.5 0 0 0 16475 224 0.82 16666 
8 1.00 2756 0.77 16936 0.92 20453 8.2 0 0 0 16624 224 0.76 16820 
8 2.00 2556 0.83 16969 0.50 20472 5.0 0 0 0 16665 224 0.41 16872 
8 4.00 2555 0.83 16961 0.25 1  20448 3.0 0 0 0 16647 224 0.21 16865 
16 0.25 17752 0.21 60107 1.00 71008 37.9 0 0 0 61994 480 0.88 62374 
16 0.50 8900 0.42 60238 1.00 71248 19.2 0 0 0 62210 480 0.88 62594 
16 1.00 5348 0.71 60591 0.84 71790 10.1 0 0 0 62706 480 0.74 63107 
16 2.00 4503 0.84 60833 0.50 72096 6.0 0 0 0 63017 480 0.44 63448 
16 4.00 

1 
 4502 0.84 	1 60832 0.25 72048 1 	4.0 0 0 0 62972 1 	480 	1 0.22 63426 

Table B.35: Execution statistics for matrix multiply on 2-16 processors with varying network and memory speed ratio 
(interleaving level 16, 2-way combining, queue size 4, wait-buffer size 64). 
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prcrs 
[ 

ratio I ciks I 	putil I insts nutil I mreqs I miat rqcon I wbfull I aqcon 
[ 

ldcom f&acom 
{ 

inutil 
[ 

maccs 

32 0.25 17756 0.21 120219 1.00 142079 45.5 0 0 0 132024 992 0.93 132757 
32 0.50 9350 0.40 120446 0.95 142558 23.1 0 0 0 132479 992 0.89 133243 
32 1.00 5765 0.65 120320 0.77 142333 12.1 0 0 0 132284 992 0.72 133032 
32 2.00 4664 0.81 121441 0.48 143936 7.0 0 0 0 133832 992 0.45 134726 
32 4.00 4502 0.84 121665 0.25 144128 4.0 0 0 0 134015 992 0.23 134936 
64 0.25 34600 0.20 453498 0.96 530105 53.2 0 0 0 502353 2016 0.91 503730 
64 0.50 19214 0.37 453569 0.86 530112 27.0 0 0 0 502361 2016 0.82 503767 
64 1.00 11820 0.60 453632 0.70 530431 14.0 0 0 0 502675 2016 0.67 504050 
64 2.00 9127 0.78 457216 0.46 535679 8.0 0 0 0 507848 2016 0.44 509549 
64 4.00 8400 0.85 458753 0.25 537728 5.0 0 0 0 509888 2016 0.24 511739 
128 0.25 38724 0.18 906625 0.86 1059970 61.0 0 0 0 1028060 4064 0.83 1030830 
128 0.50 21280 0.33 907009 0.78 1060100 31.0 0 0 0 1028190 4064 0.76 1031110 
128 1.00 12853 0.55 907264 0.64 1060860 16.0 0 0 0 1028950 4064 0.63 1031480 
128 2.00 9565 0.75 913920 0.44 1070460 9.0 0 0 0 1038510 4064 0.43 1041930 
128 4.00 8401 0.85 917505 0.25 1075460 5.0 0 0 0 1043520 4064 0.24 1047230 
256 0.25 82664 0.17 3516930 0.77 4085760 69.0 0 0 0 3989730 8160 0.76 3995310 
256 0.50 45042 0.31 3517950 0.71 4086270 35.0 0 0 0 3990240 8160 0.69 3996090 
256 1.00 26814 0.51 3518460 0.60 4087810 18.0 0 0 0 3991770 8160 0.58 3996340 
256 2.00 19395 0.71 3538950 0.41 4118780 10.0 0 0 0 4022700 8160 0.41 4029060 
256 4.00 16093 0.86 3540740 0.25 4120060 6.0 0 0 0 4024120 8160 0.24 4031410 

Table B.36: Execution statistics for matrix multiply on 32-256 processors with varying network and memory speed ratio 
(interleaving level 16, 2-way combining, queue size 4, wait-buffer size 64). 
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prcrs I ratio I ciks putil insts 	J_nutil  mreqs I  rqcon wbfull aqcon ldcom f&acom mutil maccs 
2 0.25 124640 0.20 50635 1.00 62052 25.0 268 0 0 11765 2208 0.77 48076 
2 0.50 61920 0.41 50404 1.00 61746 11.5 176 0 0 11571 2066 0.78 48106 
2 1.00 30995 0.81 50434 1.00 61790 5.5 130 0 0 11054 1998 0.79 48736 
2 2.00 30678 0.41 50114 0.50 61358 3.0 0 0 0 7357 803 0.43 53198 
2 4.00 30678 0.20 50114 0.25 61356 2.0 0 0 0 7357 803 0.22 53196 
4 0.25 165916 0.20 133021 0.98 162732 50.2 5105 0 39497 58119 10433 0.57 94164 
4 0.50 82568 0.40 133400 0.99 163236 20.5 1012 0 19866 53514 9651 0.61 100065 
4 1.00 43820 0.77 134694 0.94 164952 7.2 647 0 81 50705 8097 0.61 106141 
4 2.00 41159 0.41 134460 0.50 164636 6.0 43 0 29 38037 4733 0.37 121864 
4 4.00 41030 0.20 134088 0.25 164124 3.0 0 0 0 39328 4479 0.18 120314 
8 0.25 214672 0.20 343547 0.98 420303 50.4 2023 0 45625 190701 28617 0.47 200964 
8 0.50 107922 0.40 347999 0.99 426226 20.1 1737 0 1118 200444 28011 0.46 197753 
8 1.00 61712 0.70 347929 0.86 426126 9.4 902 0 110 186123 25547 0.43 214438 
8 2.00 53034 0.41 346417 0.50 1  424093 6.0 22 0 21 163779 18396 0.29 241906 
8 4.00 52873 0.20 345610 0.25 422992 3.9 0 0 0 161221 17724 0.14 244043 
16 0.25 274052 0.20 876150 0.98 1073539 49.1 3363 0 4517 651146 86743 0.31 335610 
16 0.50 142840 0.38 875767 0.94 1073004 22.2 1922 0 1194 644043 85087 0.30 343838 
16 1.00 84555 0.64 871900 0.79 1067851 10.9 1001 0 221 609077 79606 0.28 379134 
16 2.00 67237 0.40 868461 0.49 1063202 6.2 52 0 20 568143 65700 0.20 429331 
16 4.00 66258 0.20 866172 0.25 1060128 5.0 0 0 0 561157 63546 0.10 435419 

Table B.37: Execution statistics for bitonic on 2-16 processors with varying network and memory speed ratio (interleaving 
level 16, 2-way combining, queue size 4, wait-buffer size 64). 

tZ 
til 

ti 

0 



trj 

IM 
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prcrs I ratio I 	cljcs putil }_insts nutil I mreqs miat j rqcon I wbfull aqcon I ldcom f&acom I mutil maccs 
32 0.25 355428 0.19 2152450 0.93 2638185 53.6 5016 0 3843 1854829 244695 0.19 538578 
32 0.50 191216 0.35 2143840 0.86 2626681 25.8 3188 0 1559 1828017 239112 0.18 559477 
32 1.00 113009 0.59 2136580 0.72 2616964 12.8 2114 0 700 1777015 230150 0.17 609728 
32 2.00 85410 0.39 2127320 0.48 2604564 7.1 146 0 121 1687663 206929 0.13 709908 
32 4.00 81128 0.20 2121030 0.25 2596131 5.7 2 0 0 1683799 201462 1 	0.07 710847 
64 0.25 469816 0.17 5153490 0.84 6314727 62.6 7511 0 5518 4806968 627008 0.12 880591 
64 0.50 252830 0.32 5145240 0.78 6303694 29.4 4855 0 3176 4777439 620498 0.11 905615 
64 1.00 147923 0.54 5123230 0.66 6274294 15.1 3543 0 1515 4703369 605210 0.10 965576 
64 2.00 107407 0.37 5109520 0.46 6255852 8.0 529 0 609 4567589 574525 0.08 1113633 
64 4.00 97435 0.20 5094680 0.25 6235943 6.0 0 0 0 4554623 562446 0.04 1118815 
128 0.25 612328 0.16 12242100 0.77 15005949 66.8 12676 0 11786 11968328 1561420 0.08 1475931 
128 0.50 327666 0.29 12190700 0.71 14937229 32.7 9628 0 8131 11901895 1540470 0.07 1494555 
128 1.00 190129 0.50 12140300 0.61 14869879 16.5 7403 0 4974 11779443 1513820 0.06 1576413 
128 2.00 133568 0.35 12087800 0.43 14799509 9.0 1855 0 2190 11559179 1466070 0.05 1774116 
128 4.00 115287 0.20 12053500 0.25 14753499 6.0 20 0 5 11544054 1 1441460 0.03 1767877 

Table B.38: Execution statistics for bitonic on 32-128 processors with varying network and memory speed ratio (interleaving 
level 16, 2-way combining, queue size 4, wait-buffer size 64). 
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prcrs I ratio 
[ 

ciks putil I 	insts nutil mreqs I miat rqcon 
] 

wbfull aqcon ldcom f&acom I mutil maccs 
2 0.25 101332 0.18 37120 0.98 49605 25.0 1061 0 0 7001 2601 0.79 40001 
2 0.50 49838 0.37 36431 0.98 48683 10.5 1157 0 0 6023 2223 0.81 40436 
2 1.00 24837 0.73 36118 0.97 48275 6.0 1208 0 0 5609 2052 0.82 40612 
2 2.00 25494 0.37 38167 0.50 50992 3.0 0 0 0 2253 653 0.47 48084 
2 4.00 25494 0.19 38165 0.25 50988 2.0 0 0 0 2253 652 0.24 48083 
4 0.25 98356 0.18 70212 0.96 94225 49.0 5415 0 14505 26243 11132 0.58 56843 
4 0.50 50240 0.36 72628 0.97 97499 20.5 2531 0 8398 25666 10753 0.61 61071 
4 1.00 26933 0.68 73531 0.92 98693 7.2 1035 0 85 22503 9178 0.62 67004 
4 2.00 24681 0.37 73562 0.50 98728 5.5 3 0 0 16217 5506 0.39 77002 
4 4.00 24719 0.19 73679 0.25 98880 3.0 0 0 0 16128 5182 0.20 77566 
8 0.25 189644 0.18 267692 0.95 358934 55.6 13384 0 23165 103658 35310 0.58 219949 
8 0.50 98696 0.35 275922 0.94 370008 20.8 8966 0 2064 105139 34911 0.58 229940 
8 1.00 53569 0.62 265898 0.83 356132 9.4 3071 0 200 92491 30659 0.54 232964 
8 2.00 48153 0.37 286653 0.50 384276 6.0 39 0 0 81915 26253 0.36 276095 
8 4.00 47731 0.19 284771 0.25 381856 4.2 0 0 0 79268 24854 0.18 277729 
16 0.25 177484 0.17 487128 0.92 653100 55.1 10262 0 7032 258064 78798 0.45 316199 
16 0.50 93968 0.33 493022 0.88 661035 23.1 7044 0 1612 255473 79347 0.43 326177 
16 1.00 53860 0.57 491802 0.77 659313 11.1 2338 0 446 237235 74658 0.40 347384 
16 2.00 42308 0.36 493972 0.49 662385 6.2 69 0 1 206290 63435 0.29 392638 
16 4.00 41492 0.19 494960 0.25 663888 4.9 0 0 0 212062 63933 0.15 387877 

Table B.39: Execution statistics for Moore on 2-16 processors with varying network and memory speed ratio (interleaving 
level 16, 2-way combining, queue size 4, wait-buffer size 64). 
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prcrs ratio ciks putil insts 
[ 

nutil mreqs miat rqcon wbfull aqcon I ldcom f&acom mutil maccs 

32 0.25 235304 0.16 1204100 0.86 1617640 54.0 10842 0 5552 760958 228385 0.33 628217 

32 0.50 122494 0.30 1169400 0.80 1571599 26.1 7369 0 2925 711576 214894 0.33 645057 
32 1.00 72971 0.52 1214390 0.70 1633217 12.8 3119 0 999 717016 222967 0.30 693155 

32 2.00 53012 0.35 1191970 0.47 1602236 7.1 153 0 101 639044 198343 0.23 764796 
32 4.00 52510 0.19 1250280 0.25 1680357 5.8 0 0 0 671212 206899 0.12 802220 
64 0.25 291040 0.15 2749490 0.79 3698898 58.4 12450 0 8793 1988878 591095 0.24 1118775 
64 0.50 149470 0.28 2632540 0.74 3542751 29.5 7444 0 4984 1864210 555635 0.23 1122756 
64 1.00 85871 0.48 2647010 0.65 3564134 14.5 3462 0 1750 1820800 552823 0.22 1190375 

64 2.00 63001 0.34 2719920 0.45 3663143 8.0 227 0 195 1780603 553747 0.16 1328719 

64 4.00 56452 0.19 2682770 0.25 3613050 6.0 8 0 0 1720866 533647 0.09 1358465 
128 0.25 407404 0.14 7042480 0.73 9491915 69.1 14676 0 19932 5657355 1667050 0.17 2167227 
128 0.50 194192 0.25 6276920 0.68 8451948 35.0 9623 0 11569 4904876 1399630 0.17 2147160 

128 1.00 110503 0.44 6275220 0.60 8452505 17.8 4513 0 6553 4799040 1391390 0.16 2261824 
128 2.00 72883 0.32 5990330 0.43 8079171 9.0 521 0 553 4313757 1282280 0.13 2482962 

128 4.00 69362 0.19 6582800 0.25 8876026 6.0 82 0 209 4767185 1445580 0.07 2663182 
256 0.25 439980 0.12 13569800 0.65 18307736 81.2 23246 0 66977 11470791 3169020 0.13 3667369 

256 0.50 267678 0.23 15732700 0.62 21211407 38.0 14532 0 52104 13510368 3911520 0.11 3789062 
256 1.00 133299 0.41 13914800 0.55 18781441 20.3 6078 0 23098 11602533 3299950 0.11 3878504 

256 2.00 101439- 1  0.31 1  15922700 0.41 21487377 10.0 787 0 2975 13105543 3919250 0.09 4462158 
256 4.00 86602 1 	0.18 1 16337900 0.25 22054354 6.0 1 	143 0 34 13304195 1 4025260 0.05 4724791 

Table B.40: Execution statistics for bitonic on 32-256 processors with varying network and memory speed ratio (interleaving 
level 16, 2-way combining, queue size 4, wait-buffer size 64). 


