
Design and simulation of an MIMD shared
memory multiprocessor with interleaved

instruction streams

Thomas R. Stiemerling

Ph.D.

University of Edinburgh

II$1!J1

Abstract

The design of the Eppi MIMD shared memory multiprocessor is described,
and its performance evaluated by simulation. The Eppi has a dancehall archi-
tecture with p instruction interleaved RISC processors connected to p shared
memories by a packet switched, combining, indirect binary n-cube multistage
network composed of P2 1092 p 2 x 2 crossbar switches. There is no processor cache
or local memory, and no paged virtual memory. Memory addresses are low or-
der interleaved across the memories. The fetch-and-add instruction is used for
inter-process synchronisation, and the switches support the combining of load
and fetch-and-add memory requests. Simulation results of a single Eppi pro-
cessor with varying interleaving level and instruction mix are presented, and of
an isolated network with varying queue size and network load. A distributed
time-driven, instruction level simulator of the Eppi design has been implemented
in Occam, and runs on a transputer based, distributed memory multiprocessor.
Three parallel benchmark programs: matrix multiply, bitonic merge sort and
Moore shortest path, have been written in the processor assembly language, and
are used as workloads in the simulations. The programs use the fetch-and-add
instruction to implement process control primitives. A number of simulation
experiments have been carried out using the Eppi simulator which investigate
the effect on performance of increasing the system size (speed-up), varying the
switch queue and wait-buffer size, increasing the combining level, increasing the
interleaving level, and varying the network and memory speed relative to the
processor. These experiments are repeated for each benchmark program, and de-
tailed execution statistics are presented for each simulation. A dynamic execution
profile for each benchmark program is also presented.

Dedicated to Trish and Benjamin, and in memory of my grandfather Apa.

Eli

Acknowledgements

I would like to thank my supervisors Nigel Topham and Roland Ibbett for getting

me started and helping me along, and Peter Osmon for enabling me to finish.

Many people have provided moral and technical support during the past few

years, so thanks also to: Tim Lees, Pawel Paczkowski and Richard Eyre-Todd for

putting up with me in the office; Mikeee Norman, Greg Wilson, Lyndon Clarke,

Steve Booth and Mike Brown for help with the ECS; Angus Duggan for PostScript

and Latex hackery; and Steve Renals for being my buddy and flatmate. The final

thanks go to STC Research Ltd. and Dad for their financial support.

Declaration

I declare that this thesis was written by myself, and that the work described

herein is my own.

111

Quotations

"A general purpose multiprocessor should be scalable, i.e., show higher perfor-

mance when more hardware resources are added to the machine. Architects of

such multiprocessors must address the loss in processor efficiency due to two

fundamental issues: long memory latencies and waits due to synchronisation

events." [1]

"It seems that enough research has already been done in evaluating intercon-

nection networks in isolation. We strongly feel that more work is needed at the

system level that includes the interconnection network as a major component." [2]

"An extant microprocessor was chosen as the PME processor. We feel that this

was an appropriate design decision in that we were able to concentrate on other

design issues instead of designing yet another microprocessor." [3]

"Fully-fledged, cycle-by-cycle simulation of the multiprocessor is very tedious,

especially if the goal of the analysis is to understand the performance of the mul-

tiprocessor for very large configurations and very large problem sizes." [4]

"Precise estimates of the interaction between components of such a system can

only be obtained by simulation at or below the memory reference level, requir-

ing excessive computing resources. Results of detailed simulation will depend

strongly on the specific algorithm being simulated, providing results that are not

easily generalised." [5]

Contents

1 Introduction 	 1

	

1.1 	Original work3

	

1.2 	Chapter overview4

2 	Background 7

2.1 	Instruction interleaving 7

2.1.1 	Single instruction stream pipelines 8

2.1.2 	Multiple instruction stream pipelines 9

2.1.3 	Performance of instruction interleaved pipelines 11

2.1.4 	Example instruction interleaved processor designs 11

2.2 	Packet-switched multistage networks 14

2.2.1 	Network topology 14

2.2.2 	Packet routing 16

2.2.3 	Routing conflicts 17

2.2.4 	Hot-spot contention 17

2.2.5 	Combining 19

2.3 	Synchronisation with fetch-and-add 20

2.3.1 	Semaphores 20

2.3.2 	Barrier synchronisation 22

2.3.3 	Test-modify-retest functions 23

2.3.4 	Parallel queue algorithm 24

2.4 	Performance evaluation of multiprocessors 26

lv

CONTENTS
	

V

2.4.1 Analytical models 26

2.4.2 Simulation models 27

2.4.3 Parallel simulation 29

2.5 	Example shared memory multiprocessors 30

2.5.1 Heterogeneous element processor (HEP) 30

2.5.2 Circulating context multiprocessor (CCMP) 31

2.5.3 Columbia homogeneous parallel processor (CHoPP) 	. . 31

2.5.4 BBN Monarch 32

2.5.5 NYU Ultracomputer 33

2.5.6 IBM Research parallel processor prototype (RP3) 33

2.6 	Comments 34

3 	Eppi multiprocessor design 35

3.1 	The processor 35

3.1.1 	Process context 38

3.1.2 	Merging queues 41

3.1.3 	Memory interface 41

3.1.4 	Instruction execution 42

3.1.5 	Instruction format 44

3.1.6 	Instruction set 44

3.1.7 	Single processor simulation 47

3.2 	The network 54

3.2.1 	Ports 56

3.2.2 	Packet format 56

3.2.3 	Routing 57

3.2.4 	Combining 57

3.2.5 	Decombining 	 58

3.2.6 	Isolated network simulation 60

3.3 	The memory 64

3.3.1 	Operation 65

CONTENTS
	 vi

3.4 	Comments66

4 	Eppi simulator 67

4.1 Occam and transputers 67

4.2 Simulation engine 69

4.3 Simulator structure 71

4.3.1 	Domain topology 71

4.3.2 	Module distribution 72

4.3.3 	Communications harness 73

4.4 The user-interface 75

4.4.1 	System reset and initialisation 76

4.4.2 	Loading a program 77

4.4.3 	Program execution 77

4.4.4 	Displaying state and statistics 78

4.5 The modules 79

4.5.1 	Clocking 81

4.5.2 	Interrupts 82

4.5.3 	Clock factor 83

4.6 Simulator performance 83

4.7 Comments 85

5 Benchmark programs 86

5.1 	Choice of algorithms 87

5.2 	Process control 88

5.3 	Matrix multiply 89

5.3.1 	Parallel algorithm 90

5.3.2 	Implementation 90

5.4 	Bitonic merge sort 91

5.4.1 	Parallel algorithm 93

5.4.2 	Implementation 94

	

CONTENTS
	 vii

	

5.5 	Moore shortest path97

	

5.5.1 	Parallel algorithm98

	

5.5.2 	Implementation99

	

5.6 	Comments102

6 	Performance evaluation 103

6.1 Program speed-up 104

6.1.1 	Simulation details 104

6.1.2 	Description of results 104

6.1.3 	Summary 107

6.2 Queue and wait-buffer size 107

6.2.1 	Simulation details 107

6.2.2 	Description of results 112

6.2.3 	Summary 113

6.3 Combining level 113

6.3.1 	Simulation details 114

6.3.2 	Description of results 114

6.3.3 	Summary 117

6.4 Interleaving level 117

6.4.1 	Simulation details 118

6.4.2 	Description of results 118

6.4.3 	Summary 121

6.5 Relative module speed 121

6.5.1 	Simulation details 122

6.5.2 	Description of results 122

6.5.3 	Summary 124

6.6 Program execution profiles 125

6.6.1 	Simulation details 125

6.6.2 	Description of matrix multiply profile 129

6.6.3 	Description of bitonic merge sort profile 130

CONTENTS
	 vii'

6.6.4 Description of Moore shortest path profile134

6.7 	Comments 138

7 	Conclusion 139

7.1 	Summary of results 1 40

7.1.1 	Instruction interleaving 140

7.1.2 	Combining and fetch-and-add 142

7.1.3 	Time-driven simulation 144

7.2 	Future work 144

7.2.1 	Immediate improvements 145

7.2.2 	Further research 146

A Assembly code 162

A.1 	mmult.asm 1 63

A.2 	bitonic.asm 1 64

A.3 	moore.asm 167

B Detailed execution statistics 	 171

Chapter 1

Introduction

An MIMD shared memory multiprocessor consists of a number of processors con-

nected by a network to a number of memories. Each processor can access all

the memories, and executes one or more independent processes. The processes

communicate and synchronise using variables in the shared memory. Such mul-

tiprocessors are attractive for a• number of reasons: similar programming and

operating system techniques to those found in multiprogrammed uniprocessors

can be used, the homogeneity of the processors allows load balancing to be easily

achieved using self-scheduling [6], the low inter-process communication cost allows

the execution of fine-grain processes, and message-passing interprocess commu-

nication can be implemented on top of the shared memory. To be scalable, i.e.,

to maintain performance with increasing size, shared memory systems must be

able to overcome the increasing cost of memory access and inter-process commu-

nication as the system size increases. The interconnection requirements of small

shared memory systems, with a maximum of 16 processors say, can be satisfied

by the combination of a fast shared bus and "snoopy" -caching [7]. For larger

systems it is necessary to use a higher performance, more scalable network such

as a multistage network [8].

This thesis describes the design and simulation of an MIMD shared mem-

1

CHAPTER 1. INTRODUCTION 	 2

ory multiprocessor system which is named the Edinburgh parallel processor One

(Eppi). The Eppi multiprocessor has a conventional "dancehaIl' architecture

with processors on one side of a multistage network connected to an equal num-

ber of memories on the other side. The processors have a reduced instruction

set (RISC) architecture, and support the concurrent execution of multiple pro-

cesses (the terms "process", "context" and "instruction stream" are used rather

inter-changeably in this thesis) by replicating register files and other resources in

each processor. An atomic fetch-and-add instruction is provided for inter-process

synchronisation. The network is packet switched, and consists of 2 x 2 switches

connected in an indirect binary n-cube topology. The switches support the com-

bining of load and fetch-and-add memory requests directed at the same memory

location. There is no processor cache, local memory, or paged virtual memory,

and all memory requests traverse the network to one of the shared memories.

The Eppi design exists on paper and as a simulation program only, and is

used as a didactic tool for investigating the components of the design and their

interaction in the whole system. No implementation of the design is intended.

The main features of the design are the interleaving of processes on each processor,

the combining of memory requests in the multistage network, and the use of the

fetch-and-add instruction as the synchronisation primitive. These features have

been separately included into other MIMD shared memory multiprocessor designs

(Section 2.5), but they have not previously been included together in the same

system.

The performance of the Eppi design is evaluated by detailed simulation of

the complete design at the instruction level. The availability of a powerful com-

puting resource, the Edinburgh Concurrent Supercomputer (ECS), allows the

simulation of large Eppi configurations (up to 256 processors) within reasonable

time scales. The ECS is a distributed memory multiprocessor constructed from

transputers, and the Eppi simulator is written in Occam to execute in parallel

on the ECS. The simulated Eppi processors execute instructions from programs

CHAPTER 1. INTRODUCTION 	 3

that are loaded into the simulated memories. The programs are written in the

Eppi assembly language and assembled into Eppi machine code. Benchmark

programs are used to provide workloads for the simulation experiments, these are

assembly language implementations of three well known parallel algorithms: ma-

trix multiply, bitonic merge sort and Moore shortest path. The matrix multiply

program multiplies two integer matrices, the bitonic merge sort program sorts

a sequence of integers, and the Moore shortest path program finds the shortest

path from a source node to every other node in a weighted directed graph. All

process control and synchronisation in the programs is implemented using the

fetch-and-add instruction.

The simulation experiments are performed by executing the benchmark pro-

grams with various values of the Eppi system parameters. The simulator records

the program execution time and the system execution statistics, and any changes

in these can then be related to changes in the system parameters. The simulation

experiments described here investigate the effect on performance of: increasing

the system size while keeping the program size constant (relative speed-up), vary-

ing the switch queue and wait-buffer size, increasing the combining level, increas-

ing the interleaving level, and varying the network and memory speed relative to

the processor. A dynamic execution profile of each benchmark program is also

presented which shows how the execution statistics vary during the execution of

the program.

1.1 Original work

The following original work has been carried out as part of the research leading

to this thesis:

• The context-flow processor design of Topham (Section 2.1.4) was extended

to a 32-bit instruction set including the fetch-and-add instruction.

CHAPTER 1. INTRODUCTION
	

4

• Simulations of a single Eppi processor were carried out to find the perfor-

mance bounds of the processor, executing synthetic instruction mixes, with

increasing interleaving level and memory latency.

• Simulations of the isolated Eppi network were carried out to find the per-

formance bounds of the network, using randomised addresses, with varying

switch queue sizes, network loads and hot-spot percentages.

A parallel simulator of the complete Eppi design was implemented in Oc-

cam on a transputer based distributed memory multiprocessor, allowing the

simulation of a 256 processor Eppi system on 128 transputers.

• An assembler of the Eppi instruction set was written to produce machine

code executable by the simulator.

• Three benchmark programs were written in Eppi assembly code to imple-

ment parallel matrix multiply, bitonic merge sort and Moore shortest path

algorithms. Existing fetch-and-add based process control and synchronisa-

tion mechanisms were used in the programs.

• Simulations of the complete Eppi design executing the benchmark pro-

grams were carried out to observe the effect of various system parameters

on performance, and to collect dynamic execution traces of the programs.

1.2 Chapter overview

The chapters in the thesis are ordered so that the Eppi design, the Eppi simula-

tor, and the benchmark programs are described before the main results, gathered

from the simulations of the complete Eppi design, are presented.

Chapter 2 describes the relevant background and previous research. First,

instruction interleaved processor design is introduced, and examples of previous

CHAPTER 1. INTRODUCTION 	 5

single processor instruction interleaved designs are described. Second, multi-

stage networks are introduced, and aspects of their design including topology

and combining are described. Third, synchronisation using fetch-and-add is in-

troduced, and example algorithms for implementing semaphores, barriers, and

parallel queues are described. Fourth, performance evaluation of multiprocessor

systems is reviewed, and parallel time-driven simulation methodology is intro-

duced. Finally, a number of example MIMD shared memory systems are de-

scribed.

Chapter 3 describes the Eppi design in three sections on the processor,

network switch and memory. The processor section includes a detailed descrip-

tion of the structure and function of the processor pipeline, a description of the

instruction set, and simulation results showing performance characteristics of a

single processor. The network section includes a description of the network switch

functions, such as routing and combining, and simulation results of an isolated

network with randomised addressing.

Chapter 4 describes the Eppi simulator. First, the Occam language and

the transputer are reviewed briefly. Second, the Edinburgh Concurrent Super-

computer is introduced, and the structure of its transputer domains described.

Third, the operation and function of the simulator is described, including how

the simulation is parallelised and how the parallel modules communicate. Fourth,

the user-interface and commands available are described. Fifth, the clocking of

the modules is described. Finally, performance results of the simulator itself are

presented.

Chapter 5 describes the three benchmark programs. First, the choice of

algorithms is discussed. Second, the process control mechanisms are described.

Each program is then described in turn, showing how it was implemented in the

assembly language of the Eppi processor.

Chapter 6 describes and presents results from the simulation experiments

which investigate the effect on system performance of system size, queue and

CHAPTER 1. INTRODUCTION

wait-buffer size, combining level, interleaving level and relative processor speed.

A dynamic execution profile for each program is also presented.

Chapter 7 summarises the research and results described in the thesis. Im-

provements to the design and simulator, and further research topics, are sug-

gested.

Appendix A contains Eppi assembly code listings for the benchmark pro-

grams which are described in Chapter 5.

Appendix B contains the detailed execution statistics from the simulation

experiments which are described in Chapter 6.

Chapter 2

Background

This chapter provides the relevant background information for the chapters which

follow. The first section introduces instruction interleaving, and gives examples

of processor designs that implement instruction interleaving. The second section

introduces packet-switched multistage interconnection networks, and discusses

the topology, routing of packets, and contention in such networks. The third

section introduces synchronisation using the fetch-and-add instruction, and de-

scribes some synchronisation algorithms implemented with fetch-and-add. The

fourth section discusses performance evaluation of multiprocessor designs, and

describes parallel time-driven simulation. The final section briefly describes some

example MIMD shared memory multiprocessor designs.

2.1 Instruction interleaving

Pipelining increases processor throughput, defined as the number of instructions

executed in unit time, by reducing the machine cycle time and allowing concurrent

execution of a number of instructions. Generally processor pipelining is divided

into two levels: instruction pipelining, and function or arithmetic pipelining [9,

10, 111. Instruction pipelining divides the normal instruction execution sequence

7

CHAPTER 2. BACKGROUND 	 8

into a number of stages, typically: instruction fetch, instruction decode, operand

fetch, instruction execution, and result store. Current microprocessors are usually

pipelined at this level. To achieve maximum performance particular function

blocks, such as a floating point arithmetic unit, are further pipelined. Function

pipelining is found in vector supercomputers for example.

2.1.1 Single instruction stream pipelines

In a conventional instruction pipeline, which is executing a single instruction

stream, each stage of the pipeline contains an instruction from that stream (or

is empty). To utilise the pipeline efficiently there must be a sufficiently long se-

quence of instructions to fill the pipeline. Due to discontinuities in the instruction

stream only pipelines with a small number of stages can be utilised efficiently.

Three possible causes of discontinuities are: branch dependence, data dependence

and memory latency.

When a branch instruction occurs and the branch is taken, assuming that

instructions are not prefetched from the branch address, then instructions in the

pipeline after the branch have to be flushed from the pipeline and new instructions

fetched from the branch address. To reduce the loss of performance caused by

branch dependence a number of methods such as branch prediction, branch target

buffers and delayed branching are used [9, 12, 13, 111.

Sequential instructions in an instruction stream are likely to have data de-

pendencies between them. These can lead to reduced utilisation because reading

of operands may have to be delayed to satisfy the dependency. Such data de-

pendence conflicts occur particularly in processors with a long pipeline, or with

multiple pipelines of differing lengths in which the order of instruction comple-

tion must be maintained. To ensure that the dependencies are satisfied methods

such as register scoreboarding, internal forwarding and compiler data dependence

analysis are used [9, 11, 141.
Pipeline throughput is limited by memory latency, as the pipeline can only

CHAPTER 2. BACKGROUND 	 9

execute as fast as the instructions are supplied. In a single processor system the

memory latency is usually equal to the memory access time. In multiprocessor

systems memory requests generally have to traverse an interconnection network,

so the memory latency is higher due to network delay and contention. Methods of

reducing memory latency include the use of caches, local memory, separate data

and instruction busses (Harvard architecture), and decoupling memory access

from instruction execution [15, 161.

One way of side-stepping these dependency and latency problems, and in-

creasing the utilisation of the pipeline, is to implement a multiple instruction

stream pipeline.

2.1.2 Multiple instruction stream pipelines

In an instruction interleaved pipeline instructions from more than one instruction

stream are executed concurrently. If only one instruction from each instruction

stream is allowed to be executed at any one time, then each stage of the pipeline

contains an instruction from a different instruction stream (or is empty). Effec-

tively the pipeline switches context to a different instruction stream every cycle.

Instruction interleaving is also variously known as: micro-multiprogramming [17],

virtual-processing [18], context-flow [19], circulating-contexts [20], state multi-

plexing [21], and multi-threading [1].

The main aim of instruction interleaving is greater pipeline utilisation. If each

instruction stream is restricted to executing a single instruction at a time, then

the dependency problems described above do not occur. Because each stage of the

pipeline contains an instruction from a different instruction stream, there are no

branch dependencies and thus no branch penalty. Also, because each instruction

in an instruction stream is completed before the next one is issued, there are

no data dependencies. So two possible causes of discontinuities in the pipeline

have been removed, and as long as sufficient instruction streams are provided

the pipeline can operate at maximum throughput. The multiple functional units

CHAPTER 2. BACKGROUND 	 10

may also be better utilised if the instruction streams execute different instruction

types.

Although instruction interleaving does nothing to reduce memory latency,

it does allow the pipeline to tolerate higher memory latency. This is because

memory access and execution can be overlapped, since while some instruction

streams wait for memory accesses to complete others can be executed. Memory

access and instruction execution are thus de-coupled. If the memory system is

also pipelined, for instance in shared memory multiprocessor systems that have

pipelined multistage networks, then this effectively extends the length of the

execution pipeline and more instruction streams must be executed to achieve

maximum pipeline utilisation.

To implement instruction interleaving starting with a. conventional single in-

struction stream processor requires the addition of extra hardware (registers and

other function blocks) to the pipeline. Each instruction stream requires extra

state information, such as a process number in addition to the usual registers and

flags, and all the state information must be replicated for each instruction stream.

Extra logic is required to control the multiple instruction streams, but conversely

none of the logic to handle branch and data dependency is required. To maintain

a high pipeline utilisation the processor must support a sufficient number of in-

structions streams to fill the pipeline, and the operating system and applications

programs must be sufficiently parallel to keep all the instruction streams busy.

Data-flow systems [22] have similarities to instruction interleaved systems,

and also use the arguments for greater processor utilisation given above [23, 1]. A

process (instruction stream) in a data-flow machine is typically a single instruc-

tion, and processes, are not associated with any one processor. An advantage

of data-flow systems over the instruction interleaved systems described here is

that they also provide implicit synchronisation between processes. The hardware

implementation and programming of data-flow systems is not straightforward

though [24].

CHAPTER 2. BACKGROUND 	 11

2.1.3 Performance of instruction interleaved pipelines

Assuming a simple linear pipeline with P stages executing p instruction streams

(p :!~ P), then (ignoring start-up time):

pipeline throughput = p/P instructions per cycle

instruction stream throughput = 11P instructions per cycle

The pipeline throughput is the number of instructions executed per cycle, and

the instruction stream throughput is the number of instructions executed per

stream per cycle. The maximum pipeline throughput is achieved when p = P.

If the number of streams is greater than the number of stages (p> P), then the

throughput per stream will be reduced as there will be contention for the pipeline.

The performance of the HEP processor (Section 2.5.1), which supports multi-

pie instruction streams, has been characterised using the r (maximum through-

put) and n112 (half-performance vector length) parameters that have previously

been applied only to vector and array processors [25]. The half-performance

vector length in an instruction interleaved system is the number of instruction

streams required to achieve half the maximum throughput. Topham [26] also

describes a simple analytical model of a context-flow processor. These models

provide 'similar results to the actual performance results of a single HEP pro-

cessor [27], which show that pipeline throughput increases linearly as more in-

struction streams are added, up to the maximum defined by the pipeline length.

Generally, the effective pipeline length is greater than the actual pipeline length

because of memory access latency.

A number of single processor designs which support instruction interleaving

are summarised below.

2.1.4 Example instruction interleaved processor designs

In the shared resource processor design [18], up to 32 concurrently executing

instruction streams share 7 pipelined functional units and a memory interface.

CHAPTER 2. BACKGROUND 	 12

Each instruction stream has its own instruction decoder, register set and instruc-

tion and data caches. Contention for the functional units is minimised by allo-

cating time-slices during which each instruction decoder can issue an instruction.

The instruction set includes a spawn instruction for starting a new instruction

stream and fetch-and-add instructions for synchronisation. Simulations of the

design indicate that a high processor throughput and functional unit utilisation

can be achieved.

The P or multiple stream registerless shared resource processor design [28],

consists of fetch, decode and execute pipeline stages combined with special as-

sociative queues which buffer and merge instruction streams. Each instruction

stream state consists of a program counter, instruction register and status bits.

Instructions are memory to memory and there are no explicitly addressable reg-

isters. There are five memory ports which can all make concurrent requests, so

multiport memory is required. The design provides high utilisation of individual

processor components, decouples processor throughput from memory access time,

and the additional hardware cost per instruction stream scales well.

The virtual multiprocessor design [29], is a pipelined processor support-

ing multiple instruction streams. Various pipeline layouts and control strate-

gies were compared for this design. A straight through pipeline gives the best

cost/ performance ratio for varying degrees of multiprocessing. A single chip im-

plementation of the virtual multiprocessor was also considered [30]. The use of a

central register file was compared to incorporating the registers into the pipeline

stages. The latter allows the use of dynamic logic and minimises interconnections,

but the cost of the processor will depend heavily on the size of the register set,

since it is replicated in each pipeline stage. Instruction traces were used to find

an optimum register set size for a central register file, and adding registers was

shown to be substantially less effective in improving performance than increasing

the level of multiprocessing.

The cyclic pipeline computer design [31], is a pipelined processor support-

CHAPTER 2. BACKGROUND 	 13

ing multiple instruction streams which is to be implemented in Josephson-junction

technology. Because Josephson-junction gates are self-latching there is no need

for latches between pipeline stages, and this allows the pipeline to be clocked

using only a single-phase clock. The memory is also to be implemented using

Josephson-junction devices, and has a four stage pipeline. A silicon version of

the processor (FLATS-2) is being implemented.

The VMP or virtual multiprocessor design [32], is based on the 1BM370 CPU

and uses multiprogramming at the instruction level. Each virtual CPU (instruc-

tion stream) has a separate register set, but shares all other processor resources.

The optimum number of virtual CPU's in the design is dependent on the average

instruction completion time.

The Context-flow processor design [19, 26, 331, is a VLSI pipelined RISC pro-

cessor supporting multiple instruction streams. A proposed implementation [34]

is based around an off-the-shelf pipelined floating-point ALU, with a multiport

register file, three merging queues, and some custom VLSI implementing the con-

trol unit. Up to 64 concurrently executing instruction streams can be spawned

on demand. The original context-flow proposal also included a message-passing

interprocess communication mechanism in which processes communicate through

special channels in memory. The Eppi processor described in Chapter 3 is based

on the context-flow processor design. -

Because instruction interleaved processors can execute efficiently even with

high memory latencies they are obvious candidates for multiprocessor systems.

Two shared memory multiprocessor designs that support instruction interleav-

ing, the REP and CCMP, are described in Section 2.5. There are other multi-

processor designs which although not strictly instruction interleaved do support

fast context-switching of processes within the processor [35, 36]. There are also

a number of hybrid multiprocessor designs which combine features of message-

passing and data-flow systems [37, 38, 391, and have similarities to instruction

interleaved systems.

CHAPTER 2. BACKGROUND
	

14

This concludes the background section on instruction interleaving; the next

section introduces multistage networks.

2.2 Packet-switched multistage networks

A multistage network consists of a number of stages of small crossbar switches in

which the outputs of one stage are connected to the inputs of the next stage ac-

cording to some permutation. There are many flavours of multistage network [8],

and only rectangular, two-sided, uni-directional, packet-switched, blocking net-

works are considered here. Such a network with n inputs and k x k switches

has 109k n stages with. n/k switches in each stage, the same number of outputs

as inputs (rectangular), the outputs are on the opposite side of the network to

the inputs (two-sided), messages are transmitted across the network in packets

using store-and-forward routing (packet-switched), and there is only one path be-

tween each input and each output in the network (blocking). The indirect binary

n-cube [40} and the omega [41] networks, shown in Figure 2.1, are examples of

this type of network. A number MIMD shared memory multiprocessor systems

use this kind of multistage network to connect the processors to the memories,

for example the RP3, ITEP, CHoPP and Monarch (see Section 2.5), and also the

Eppi design described in the next chapter.

To restrict the discussion further only relevant aspects of multistage network

design and performance are discussed here. In particular, VLSI implementa-

tion [42, 431, and fault-tolerance/error-correction [44, 451 are not reviewed.

2.2.1 Network topology

There are many different classifications of multistage networks. Some of these

describe classes of networks such as SW-banyan [46], delta [47] and cube [44];

and some describe a particular network topology such as the indirect binary n-

cube, omega, baseline [48] and flip [49]. A number of these network topologies

CHAPTER 2. BACKGROUND
	

15

aQ 	a 	a

Omega

-1

Indirect binary n-cube

Figure 2.1: Omega and indirect binary n-cube multistage network topologies

have been shown to be isomorphic [48].

The topology of a multistage network can be defined by the degree of the

switches in the network, and how the switches are connected. These connections

can be conveniently described using permutation functions [14], some of which

are defined below. The argument to each function is the binary representation of

a network port input number x.

x = {b,b_1,. . .,bk+l ,bk ,bk _l ,... 7 b 2 ,b1 }

The identity permutation is i, where:

i(x) = x

The shuffle permutation 0k is defined as the cyclic left shift of the k least signif-

icant bits of x.

0k(X) = {b,.. .,bk+l,bk_l,.. .,bl,bk}

The inverse shuffle permutation a is defined as the cyclic right shift of the k

least significant bits of x.

—1
or k (x) = {b,.. .,b l ,bk ,.. .,b2 }

CHAPTER 2. BACKGROUND 	 16

The butterfly permutation /3k exchanges the first and k 1 bits of x.

13k(x) = {b bl,bk_l,. . . ,b}

As shown in Figure 2.1, the stages of the omega network are connected by re-

peated shuffle permutations (where k = log n), and a final identity permutation.

The stages of the indirect binary n-cube are connected by butterfly permutations

(where k varies with the stage), and a final inverse perfect shuffle.

In a shared memory multiprocessor system with a dancehall configuration,

two of the multistage networks described above are required: one (the request

network) to route the request packets from the processors to the memories, and

one (the acknowledge network) to route the acknowledge packets back from the

memories to the processors.

2.2.2 Packet routing

Packet switching allows packets to be pipelined through the network, and the

network cycle time is only limited by the time it takes to transmit a packet from

one stage to the next (routing and wire delay). A packet typically consists of

a number of fields including: a type field, a source address field, a destination

address field and a data field. In a memory request packet the type field defines

the type of memory access, the source address field contains the number of the

requesting processor, and the destination field contains a memory number and

an offset within that memory. In a memory acknowledge packet the destination

field contains the processor number to which the acknowledge packet should be

routed back.

Routing is controlled at each switch by a number of bits from the destination

address [50]. If the network has k x k switches, then 1092k bits are required in

each switch to specify where the packet is routed. Therefore 1092k x logk n bits

are required to route a packet through an n input network. To maintain the same

CHAPTER 2. BACKGROUND 	 17

numerical ordering of inputs and outputs, the routing bits must be interpreted

from the most significant end of the destination address in an omega network,

and from the least significant end in an indirect binary n-cube network. After

the packet has been routed in the switch, the destination address can simply be

shifted 109 2 k places to discard the used bits. The return address can be included

in the request packet before it is transmitted, or more conveniently, it can be

generated as the packet moves through the network [51].

2.2.3 Routing conflicts

If two packets in a switch are addressed to the same output, then some conflict

resolution strategy is required. Possible options are to block, re-route or discard

one of the conflicting packets. Blocking is discussed below. Re-routing was pro-

posed for the Burroughs FMP network [52, 53], and implemented in the HEP

network. The choice of which packet proceeds depends on the priority algorithm

used, for example: random, round-robin, or adaptive priority [54].

Packets that have been blocked must be queued in the switch until they can be

routed onwards. Incorporating queues in a switch improves network performance

because it allows packets from a preceding switch to progress even when a packet

in the current switch is blocked. The queues can be positioned either at the

inputs or outputs of the switch, or incorporated into the crossbar [55]. The

network throughput increases as the queue size is increased, but the network

latency increases as well, and therefore small queues of length 4 to 8 packets are

optimal [56, 571.

2.2.4 Hot-spot contention

Apart from the existence of routing conflicts, network performance can be further

reduced by contention for the memories which occurs when a number of memory

requests are addressed to the same memory bank. So that sequential memory

CHAPTER 2. BACKGROUND 	 18

requests are not directed at the same memory, logical memory addresses can be

interleaved or hashed to produce the physical address. The RP3 and Monarch

designs both use hashing, which has the effect of randomising the memory access

pattern. This method does not reduce contention when the memory requests are

addressed to the same location however.

Memory locations which have a statistically significant higher percentage of

requests directed at them than other locations are termed hot-spots. As the num-

ber of requests addressed to the hot memory location increase eventually a point

is reached where more packets arrive than the memory can service per cycle, and

the requests are queued. Ultimately an effect called tree saturation [58] occurs,

in which the switch queues from the hot memory back to the network inputs are

all full. Then, not only the traffic directed at the hot-spot is blocked, but all

other traffic which must pass through those switches. A hot-spot can arise from

access to shared variables [58, 59, 60], or from block transfers [61]. Simulations

show that network performance degrades soon after a hot-spot becomes active,

and that the effects of the hot-spot remain for some time after it is no longer

active [62].

A number of ways to reduce hot-spot contention have been proposed. A

method of combining memory requests to the same location is described in the

following section. Other methods include moving the location of the hot-spot

between memories [63]. Such a roving memory location (RML) is implemented

as a special packet which moves from memory to memory, satisfying any requests

for the hot-spot which have been queued in the memory. Instead of implement-

ing hardware combining, accesses to shared variables could be implemented in

software [64]. Each shared variable is then replaced by a tree of variables which

are evenly distributed among the memories. A different network architecture

could also be used, for instance the circuit-switched multistage network of the

BBN Butterfly [65, 66]. This network is non-blocking, and therefore no situation

analogous to tree saturation occurs, although there is still contention for access

CHAPTER 2. BACKGROUND 	 19

to the network.

2.2.5 Combining

The Ultracomputer, RP3, Monarch and CHoPP multiprocessor designs all include

some form of combining. Only a brief description of the combining mechanism is

given here as the details depend on the particular switch design [67, 68, 69, 701.

Also the combining mechanism used in the Eppi design is similar to that used in

the Ultracomputer and RP3, and is described in detail in Chapter 3.

Combining [71, 72] occurs in the network switches. If two request packets

addressed to the same memory location meet in a switch they can be combined.

The combining operation involves updating the packets' data fields, depending

on the memory request type, and then one of the packets is forwarded and the

other packet is stored in the switch. When the returning acknowledge packet

passes back through the switch from memory, the stored packet is decombined.

Again, the specific decombining operation depends on the request type.

A request packet may be combined more than once on its way to memory.

The number of times a packet can combine in each switch is given by the com-

bining level [73], and depends on the switch implementation. With a combining

level k, or k-way combining, a packet can combine k - 1 times in each switch.

For example with 2-way combining, also called pairwise combining, a packet

can only combine once per switch. An initial performance analysis of pairwise

combining [58] showed that combining improves network performance, and that

tree-saturation can be prevented. Subsequent research [73, 74] suggests that, for

large networks and heavy loads, pairwise combining is not enough to reduce tree

saturation effectively, and 3-way combining must be used.

Combining is particularly effective when used in conjunction with the fetch-

and-add operation described in the following section, and was originally pro-

posed in the Ultracomputer design to allow simultaneous fetch-and-add memory

accesses to be carried out efficiently [51].

CHAPTER 2. BACKGROUND 	 20

2.3 Synchronisation with fetch-and-add

In a shared memory multiprocessor interprocess communication and synchroni-

sation occurs using shared variable's. Synchronisation primitives, such as mutual

exclusion and condition synchronisation [75], are implemented using atomic read-

modify-write operations such as fetch-and-add or test-and-set.

The fetch-and-add instruction has been used in single processor machines

such as the 1BM370, and in shared memory multiprocessor designs such as the

Ultracomputer, RP3, Monarch and CHoPP. The instruction f&a(v , x) adds the

given value x to the variable v, and returns the variables previous value. Fetch-

and-add has efficiency advantages over the simpler test-and-set instruction, for

example it can be used directly to update a shared variable, so removing the

need for locking. A number of synchronisation and other algorithms using fetch-

and-add have been developed in conjunction with the Ultracomputer and RP3

designs [76, 77]. Versions of some of these algorithms implementing semaphores,

barrier synchronisation, test-modify-retest functions, and a parallel queue are

described below. These algorithms are used subsequently in the Eppi benchmark

programs described in Chapter 5.

2.3.1 Semaphores

Implementations of the p0 and v0 semaphore operations [75], are shown in

Figure 2.2 using a pseudo-C syntax. The function f&a(s ,x) behaves as defined

above. The address of the semaphore is passed in argument s.

The p0 function first waits for the semaphore's value to be greater than

zero. The semaphore is then decremented using f&a, and if the returned value is

greater than zero the function returns. Otherwise the semaphore is incremented

using f&a, and the function loops back to the beginning. This implementation of

the p0 function is blocking, since the process calling the function will busy-wait

until the function succeeds. The v 0 function increments the semaphore using

CHAPTER 2. BACKGROUND
	

21

mt p(s)
mt *s;{

mt t;

while(1){
whi1e(*s<0);
if((t=f&a(s,-1))>0)

return(t);
else

f&a(s,1) ;}}

mt v(s)
mt *s;{

return(f&a(s, 1)); }

Figure 2.2: P and V semaphore functions

Ma, and returns.

The test of the semaphore's value at the start of the p0 function, before the

first f&a, is necessary to avoid the possibility of livelock. Assume a p 0 function

without this initial test. If a large number of processes all executed p0 on a

semaphore in parallel, then the semaphore would have a large negative value

after the f&a. If another process executed vU at the same time, the semaphore

would still have a negative value. Therefore all the processes executing p 0 would

be locked out, perhaps indefinitely.

The main application of these semaphore functions is to implement mutual

exclusion, for instance to lock a shared variable during an update. If the shared

variable has an associated semaphore s, which is initialised to 1, then a process

calls p(s) to lock and v(s) to release the variable. If the update is simply

an addition, then it may be possible to use f&a directly on the shared variable

without explicitly using a lock.

CHAPTER 2. BACKGROUND
	

22

void join(count,maximum)
mt *count ,maximum;{

f&a(count, 1);
while(* count <maximum) ; }

Figure 2.3: A join function

void barrier (count,maximum)
mt *count ,maximuiu;{

mt t;

t=(*count<maximum);
if(f&a(count, 1)==(2*maximuin-1)) *countO;
while((*count<maximum) !=t) ;}

Figure 2.4: A barrier function

2.3.2 Barrier synchronisation

A barrier synchronisation is used to ensure all parallel parts of a computation

have completed before the next is - scheduled [75, 781. If the barrier is used only

once then a simple join (which is counterpart to a fork) can be used, such as the

function shown in Figure 2.3. The count variable is initialised to zero. Processes

calling j oinO increment the count, and are blocked until the count equals the

maximum.

If the barrier is to be re-used, for instance if it separates iterations of a loop,

then care must be taken that there is no possibility of processes from different

iterations overtaking each other and thus causing deadlock. The barrier algorithm

shown in Figure 2.4 is a re-usable implementation [79], allowing the same counting

variable to be used in subsequent barriers. The count variable is initialised to

zero. As processes call barrier() they are blocked until the count equals the

maximum, and then maximum processes are allowed to pass. When the processes

reach the barrier again in the next iteration, they are blocked until the count

equals 2*maximum-1. Then maximum processes are again allowed to pass, and the

CHAPTER 2. BACKGROUND
	

23

mt tir(semaphore, increment ,maximum)
jut * semaphore, increment ,maximuxn; {

mt t;

while(1){
while(*semaphore>=maximum);
if((t=f&a(semaphore, increment))<maximum)

return(t);
else

f&a(semphore,-increment); }}

Figure 2.5: Test-increment-retest function

jut tdr (semaphore,decrement)
jut *semaphore,decrement ; {

jut t;

while (1) {
while(*semaphore<=0);
if ((t=f&a(semaphore ,-decrement)) >0)

return(t);
else

f&a(semaphore ,decrement) ;

Figure 2.6: Test-decrement-retest function

count is reset.

2.3.3 Test-modify-retest functions

The test-increment-retest (TIR) and test-decrement-retest (TD R) functions are

used frequently in fetch-and-add based algorithms [76, 71]. Blocking implemen-

tations of these functions are described here, and are used in the parallel queue

algorithm described below.

The tir() function shown in Figure 2.5 has three arguments: the semaphore,

the value of the increment, and the maximum the semaphore can reach. The

function first tests the value of the semaphore to prevent livelock (as explained

CHAPTER 2. BACKGROUND 	 24

above), and then increments the semaphore. If the returned value is below the

maximum then the function succeeds. TIR can be used to spawn a number of

processes, giving each one a unique index number (the value returned by the

function). This index number can then be used for accessing parts of a shared

data structure such as an array.

The tdr() function shown in Figure 2.6 has two arguments: the semaphore

and a decrement. Tithe value of the semaphore is greater than zero, the semaphore

is decremented and the function returns, otherwise it is blocked. TDRis similar

to the p0 function defined above, except that the decrement is passed as an

argument.

2.3.4 Parallel queue algorithm

Blocking implementations of parallel insert and delete functions for a parallel

FIFO queue [76] are presented here. The queue is implemented using a circular

buffer, and consists of a header and an array of entries as defined below:

struct{
mt insert, delete, entry;} entrystruct

struct{
mt size, upper, lower, insert, delete; /* header */
struct entrystruct entries I]; } queuestruct

The queue header contains five fields: the queue size, an upper bound, a lower

bound, an insert pointer and a delete pointer. The upper bound contains the

number of items in the queue plus the number of active insertions. The lower

bound contains the number of items in the queue minus the number of active dele-

tions. The insert pointer points to the tail of the queue. The delete pointer points

to the head of the queue. Each queue entry has three fields: an insert semaphore,

a delete semaphore and a data value. The insert semaphore indicates whether the

data field is empty and available for insertion. The delete semaphore indicates

whether the data field is full and available for deletion. These semaphores are

CHAPTER 2. BACKGROUND
	

25

void insert(queue ,value)
struct queuestruct *queue;
mt value;{

mt t;

tir((queue->upper) , 1, (queue->size));
tf&a((queue->insert) ,1)%(queue->size);
p(queue->entries It] ->insert);
queue->entries Et] ->entryvalue;
v (queue->entries It] ->delete);
f&a((queue->lower) ,1) ;}

Figure 2.7: Insert function

void delete(queue,value)
struct queuestruct *queue;
mt *value;{

mt t;

tdr((queue->lower) ,1);
tf&a((queue->delete) , 1)'/.(queue->size);
p(queue->entries[t] ->delete);
*value=queue->entries It] ->entry;
v(queue->entries It] -> insert);
f&a((queue->upper) ,-1) ;}

Figure 2.8: Delete function

necessary to ensure correct synchronisation when there is a concurrent insertion

and deletion of the same entry, or when there are two concurrent insertions of

the same entry.

The insert() function appends the given data value to the tail of the queue.

The tiro) function is first called on the upper bound, and blocks until there is

room in the queue for insertion. Then the insert pointer is incremented, and the

offset of the entry in the queue calculated. Next p0 is called on the entry's insert

semaphore. When this succeeds the data value is written, vO is called on the

delete semaphore, and the lower bound is incremented.

CHAPTER 2. BACKGROUND
	

Coll

The delete() function removes the entry at the head of the queue. First

the tdr() function is called on the lower bound, which blocks until an item is

available to delete. Then the delete pointer in incremented, and the offset of the

entry in the queue calculated. Next p0 is called on the entry's delete semaphore.

When this succeeds the data value is read, vO is called on the insert semaphore,

and the upper bound is decremented.

The queue can be used as a parallel data structure or to schedule processes

for example. For process scheduling each queue entry can point to a process

control block, and processes are removed from the queue when a processor be-

comes free (self-scheduling). Only individual processes can be scheduled this

way, which is not efficient for scheduling a large number of identical processes.

To do this efficiently a multi-queue algorithm can be used, in which each queue

entry also contains a multiplicity count [76]. Unfortunately the parallelism of

the multi-queue has to be restricted, compared to the above algorithm, to ensure

correctness.

2.4 Performance evaluation of multiprocessors

To evaluate the performance of multiprocessor designs the same techniques used

for uniprocessor designs are applied [SO], but can be complicated by the size, par-

allelism and synchronisation inherent in the design to be evaluated. Performance

evaluation methodologies are divided into analytical and simulation based tech-

niques. The application of parallelism to increase simulation speed has required

the development of new simulation algorithms.

2.4.1 Analytical models

Analytical models try to capture the behaviour of a system in a set of equations,

and are frequently based on a stochastic analysis of the system's changes of state

(for instance using queueing network theory) [SO, 81]. Because such models are

CHAPTER 2. BACKGROUND 	 27

quite general they have a wide applicability, and may be used to evaluate similar

systems without much change. Assuming closed-form equations can be derived

for the model, then it can be solved efficiently and will not require excessive

computing resources, although many iterations may be needed before the model

settles down and produces reliable results. The size of parallel systems complicate

the solution of queueing network models due to the combinatorial explosion in

the number of possible states, and the correct modelling of synchronisation is

difficult because of the loose-coupling assumed in some of the models. Because

of their formulation, analytical models can generally only provide information

about the average steady-state behaviour, or performance bounds, of the system

being modelled. To validate an analytical model also usually requires comparing

the model to a more detailed simulation of the same system.

Various stochastic models including queueing networks have been used to

model multiprocessor network performance [47, 57, 21. These models assume

that memory addresses are uniformly distributed and that all addresses are inde-

pendent, and provide results forrbest-case network throughout and delay under

these conditions. To evaluate the effect of a memory hot-spot the models have

been extended to account for a fraction of the memory requests, the hot-spot

percentage, being directed at the hot-memory [58, 73, 74]. Stochastic Petri nets

have been used to model bus-based multiprocessor systems [81]. The RP3 project

developed a spreadsheet program which used queueing analysis to show network

performance for various configurations [5].

2.4.2 Simulation models

Simulation models try to capture the behaviour of a system in the code of the

simulator program. A simulation model is more specific to the system being

evaluated, and is also more computationally intensive than an analytical model.

There is no restriction on what can be modelled, allowing dynamic effects to be

investigated, and simulation models can also be used for functional verification

CHAPTER 2. BACKGROUND
	

28

as well as performance evaluation.

Simulation models are generally divided into instruction, register-transfer and

gate level models. As the model becomes more detailed the amount of structural

information in the model increases. General simulator systems allow the modelled

design to be specified using a hardware description language, which may be a high

level description such as ISP [82] and VHDL [83], or in terms of function blocks

and registers, or logic gates, depending on the level of the simulation. Custom

simulators are usually implemented using a high-level language in the form of

a behavioural description. Specific language features may guide the choice of

language, for example using Occam to explicitly describe the parallelism in a

system [84, 851.

The input to instruction level simulators consists of either synthetic test data,

which may be stochastically generated, or actual program code, or traces of in-

structions or memory accesses taken from existing machines. The latter is tra-

ditionally referred to as trace-driven simulation. To use a trace-driven simulator

the appropriate traces must first be available, which may not be the case if the

system to be simulated uses novel instructions for example. A number of sys-

tems to produce multiprocessor traces have been developed [80, 4, 86, 87]. An

example is PSIMUL which is a simulation tool developed in conjunction with the

RP3 project [87]. PSIMUL simulates the execution of a shared memory machine

using instruction traces collected from the execution of parallel applications on

a uniprocessor. The memory reference traces generated by PSIMUL have been

used to analyse memory reference behaviour [88], to drive multiprocessor and

network simulations [89], and to analyse multiprocessor cache performance [90].

A number of projects involving the design of a multiprocessor system have

developed simulators for performance evaluation. For example the NYU Ultra-

computer was first simulated using the Washcloth simulator [91] which ran on

a CDC6600. Rather than simulating a processor, the CDC processor itself was

used, and programs could be compiled from a high level language and executed

CHAPTER 2. BACKGROUND 	 29

directly. Special instructions were added to implement fetch-and-add. A number

of different machine models were simulated, including the paracomputer model,

and a model with a multistage network. An extension to the simulator included

tag-bits in each memory word, to compare the efficiency of tag-bits to fetch-and-

add synchronisation.

2.4.3 Parallel simulation

To increase simulation speed, and allow larger systems to be simulated, parallel

simulators have been developed to run on multiprocessor machines. Peacock et

al [92] have defined a taxonomy of distributed simulation (which could also be

applied to shared memory simulation), in which simulators are divided depending

on how simulation time is treated. In an event-driven simulation the simulated

system changes state at varying, unpredictable simulation time intervals, whereas

in a time-driven simulation the state changes occur at constant time intervals.

The simulation is further defined as being tight if each component of the simula-

tion has exactly the same value of simulation time at any instant, or loose if the

components may have differing values.

In an event-driven simulation the simulated system changes state in response

to events. Because these events can arrive out of order they must first be ordered

into the correct sequence. There has been much research on algorithms for im-

proving the efficiency of distributed event-driven simulators [92, 93, 94, 95, 96].

The generality of event-driven simulation systems allows them to be used in

simulating a variety of different systems. Parallel logic gate simulators have

been implemented using distributed event-driven simulation on transputer net-

works [97, 98].

Algorithms for time-driven simulation have not received an equivalent amount

of attention to those for event-driven simulation. This may be because time-

driven simulation is less general, and has been used mostly for bespoke simu-

lations. A shared memory time-driven simulation has been used to simulate a

CHAPTER 2. BACKGROUND 	 30

multistage interconnection network on a shared memory multiprocessor [99, 100].

After each network cycle the processes simulating the network switches are syn-

chronised using a barrier. In a distributed time-driven simulation the simulator

modules synchronise using message-passing. This allows more parallelism than

a shared memory time-driven simulation using barrier synchronisation, because

connected modules synchronise directly by the exchange of packets. The Eppi

simulator described in Chapter 4 uses a loose distributed time-driven simulation

methodology.

2.5 Example shared memory multiprocessors

A number of MIMD shared memory multiprocessor designs have been referred

to and are now described briefly below. These designs are relevant because they

include either combining multistage networks and/or instruction interleaved pro-

cessors. The descriptions are brief and only include gross architectural features

such as processor and network configuration, and synchronisation mechanisms.

2.5.1 Heterogeneous element processor (HEP)

The HEP [101] is a shared memory MIMD multiprocessor machine consisting of

up to 16 instruction interleaved processors connected to memories by a packet-

switched multistage network. Each processor, shown in Figure 2.9, can support

up to 1024 instruction streams, and contains 8 pipelined functional units, 2048

general-purpose registers, 4096 constant registers and 4 Mbytes of local instruc-

tion memory. The network is constructed from bi-directional three port switches,

and can re-route blocked packets. Each processor also has a direct connection

to one of the memories (called its home memory). Synchronisation is through

full/empty bits in the memory and processor registers, using blocking load and

store instructions.

CHAPTER 2. BACKGROUND
	

31

Network hterface 	 Rome memey

Figure 2.9: Block diagram of HEP processor

2.5.2 Circulating context multiprocessor (C CMP)

The CCMP [20, 102, 63] is an MIMD shared memory multiprocessor design sup-

porting extensive pipelining and multiple instruction streams (processes). The

CCMP design shown in Figure 2.10 is split up into home modules, memory mod-

ules and execution modules which are connected by buffered singlestage cube

networks. The instruction counter and other context of each process is stored in

the process's home module. The execution modules contain an instruction de-

coder and an execution pipeline, and can execute instructions from any process,

allowing automatic dynamic load balancing. Instruction execution starts with a

process fetching an instruction from memory and then the operands specified in

the instruction, then the process is routed to one of the execution modules and

the instruction is executed with the result being stored in memory or a regis-

ter in the process's home module. Synchronisation is based on an atomic swap

operation.

2.5.3 Columbia homogeneous parallel processor (CHoPP)

The CHoPP-1 [36] is an MIMD shared memory multiprocessor machine which

consists of up to 16 processors connected to a "conflict free" memory. The

CHAPTER 2. BACKGROUND
	

32

IN = Cuba network 	H = Hone module 	M = Memory module

E = Execution module

Figure 2.10: Overview of a closely coupled CCMP configuration

CHoPP-1 design is more closely related to the GEM architecture of Cohn [103],

rather than the original CHoPP proposal [104]. The processors have a very long

instruction word (VLIW) architecture, with each instruction being 256 bits long.

Each processor can store the context of up to 64 processes, and a context switch

within the processor takes three cycles. The execution units are not instruction

interleaved however. Synchronisation is achieved using 2-bit memory tags and

special load and store instructions. Processor registers are also tagged, allowing

asynchronous memory accesses. There is also a compare-and-swap instruction

and a fetch-and-add instruction, with fetch-and-adds being combined in the net-

work.

2.5.4 BBN Monarch

The Monarch [105] is an MIMD shared memory multiprocessor design consisting

of up to 65K processors connected to memories by a synchronous hybrid mul-

tistage network. The processors are 64-bit with a RISC architecture, have an

instruction cache, and overlap memory access with instruction execution to mask

memory latency. The network is non-rectangular (more processors than memory

CHAPTER 2. BACKGROUND 	 33

modules), with multiple paths between each source and destination, and uses a

hybrid switching strategy. Memory requests are submitted synchronously by the

processors, allowing efficient implementation of read combining. Memory words

and processor registers have an 8-bit tag, which is used to implement garbage

collection algorithms and interprocess synchronisation.

2.5.5 NYU Ultracomputer

The Ultracomputer [106] is an MIMD shared memory multiprocessor design con-

sisting of up to 4K processors connected to memories by a combining omega mul-

tistage network. The major contribution has been the development of the fetch-

and-add synchronisation primitive and network combining mechanisms. Other

areas of investigation include synchronisation algorithms using fetch-and-add,

operating system issues such as process scheduling and memory management,

and application code development. A number of bus-based prototypes of the Ui-

tracomputer have been constructed using off-the-shelf processors, and are used

for software development, particularly a parallel UNIX' implementation. The

VLSI design of combining switches is also in progress. Much of the design has

been realised in the RP3 described below.

2.5.6 IBM Research parallel processor prototype (RP3)

The RP3 [107] is a shared memory MIMD multiprocessor machine consisting of

up to 512 processor-memory elements (PME's), connected by two multistage net-

works. Each PME, shown in Figure 2.11, contains a 32-bit RISC microprocessor,

a 32 Kbyte cache and 4 Mbytes of memory. Memory stores are executed asyn-

chronously allowing overlap of memory access and execution. Two networks are

provided, one is a high-bandwidth bipolar non-combining banyan network with

128 inputs, and the other a low bandwidth CMOS combining omega network with

'UNIX is a trademark of AT&T Bell Labs.

	

CHAPTER 2. BACKGROUND
	

34

I Memory and 	 Network Proceo,or 	
-i 	

MMU 	
p 	-•i 	Coche 	

I Network 	
SWI.

Interface

P.P.Unit

Memory

LO ControUer

Figure 2.11: Block diagram of RP3 processor-memory element

64 inputs. The latter is used exclusively for transmitting fetch-and-add requests.

The PME memory has a soft division into local and shared memory, and shared

memory addresses are hashed to reduce contention. A number of fetch-and-op

functions are provided for interprocess synchronisation.

2.6 Comments

The areas of processor instruction interleaving, packet-switched combining mul-

tistage networks, and fetch-and-add synchronisation have all been introduced in

this chapter. Existing shared memory multiprocessor designs which include one

or more of these features were briefly described. The Eppi multiprocessor design

described in the next chapter combines all these features in a single design.

Chapter 3

Eppi multiprocessor design

The Eppi MIMD shared memory multiprocessor design consists of p instruc-

tion interleaved RISC processors connected to p memories by a packet-switched

combining indirect binary n-cube multistage network constructed from 2 1092 p

switches. The processors have no local memory or caches, and there is no virtual

memory support. Figure 3.1 shows an 8 processor Eppi system with 12 network

switches and 8 memories.

The following sections describe in detail the design of the Eppi processor,

network switch and memory. The processor section includes a description of the

processor pipeline, the instruction set, and the results from the simulation of a

single processor. The network section includes a description of the combining

mechanism, and the results from the simulation of an isolated network.

3.1 The processor

The Eppi processor supports the concurrent execution of a number of interleaved

instruction streams (or processes), and should be implementable as a single-chip

VLSI pipelined RISC microprocessor (although implementation issues are not

discussed here). This design is an extension of Topham's context-flow processor

35

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 36

Processors 	 Switches 	 Memories

Figure 3.1: Components of an 8 processor Eppi system

(Section 21.4), and has been deliberately kept simple and idealised. Some of

the features required in a real processor implementation, but not necessary for

the simulations, have been left out to simplify the processor design. For example

floating-point support, supervisor mode and exception/interrupt handling. Some

of these issues are discussed in [19, 26]. This section effectively describes the

Eppi processor as it is simulated in the Eppi simulator.

The processor has a general purpose instruction set with a single 32-bit in-

struction format. Instruction decoding is hard-wired, and there is no microcode.

All instructions complete in one instruction cycle, but require a number of clock

cycles. Most instructions have a three address register-to-register format (two

sources, one destination), and load/store instructions are used for memory ac-

cess.

Figure 3.2 shows a block diagram of the processor which consists of an 8

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 37

To switch 	From switch

IFU = Instruction fetch unit

IDU = Instruction decode unit

RRU = Register read unit

BSU = Barrel shift unit

ALTJ = Arithmetic logic unit

CSU = Context store unit

MRQ = Memory request queue

DFU = Data fetch unit

RWQ = Register write queue

RWU = Register write unit

PCU = Program counter unit

RFU = Register file unit

MRU = Memory request unit

MAU = Memory acknowledge unit

Figure 3.2: Block diagram showing pipeline units of Eppi processor

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 38

stage circular execution pipeline, three register files, two merging queues, and a

memory interface. The pipeline stages all have a 1 clock cycle latency and are

clocked continuously and simultaneously by the same clock signal. The number

of processes that are executed concurrently by the processor depends on the

implementation, and on reset all the processes start executing together. In the

processor simulations described in this chapter up to 64 processes are executed

per processor. Each process has only a single instruction in execution at any

one time, and each instruction requires one pass around the execution pipeline

to complete. Each stage of the pipeline contains either an instruction from one

of the executing processes or is empty (contains a null process).

3.1.1 Process context

Each process has a context in the processor (apart from any other context in main

memory associated with the program being executed). This context is shown in

Table 3.1 and consists of: a process identification number (pid), a register set,

some condition flags, and various operands and control signals used in instruction

execution. These are described further below.

Some of the context of a process will move around the pipeline with the process

and is called dynamic context, while the rest will be grouped together and only

accessed at certain stages, and is called static context [33, 108]. Examples of

dynamic context are the pid, condition flags, operands and control signals, which

move with the process from one pipeline stage to the next. The registers are

examples of static context, they are accessed only at certain pipeline stages and

it is more area efficient to group them together. Some of the dynamic context,

such as the operands and control signals, may exist only for a few pipeline stages.

When an instruction is decoded by the instruction decode unit (IDU) a number

of control signals are generated, which move from stage to stage with the process.

This is called data-stationary control [109, 1101 because the control signals move

with the data.

CHAPTER 3. Epp] MULTIPROCESSOR DESIGN 	 39

context size (bits)
] 	

description

r0-r13 32 general purpose registers
PC (r14) 32 program counter
sr (r1,5) 32 statusregister
valid 1 valid process bit
pid 6 process number
carry 1 carry flag
minus 1 minus flag
overflow 1 overflow flag
zero 1 zero flag
instruction 32 instruction code
immediate 32 immediate operand
opbsel 1 operand B select
readienable 1 enable register read port 1
readiaddress 4 read port 1 register address
read2enable 1 enable register read port 2
read2address 4 read port 2 register address
writelenable 1 enable register write port 1
writeiaddress 4 write port 1 register address
write2enable 1 enable register write port 2
write2address 4 write port 2 register address
opa 32 operand A
opb 32 operand B
result 32 result
bsufunc 2 barrel shift control
alufunc 4 arithmetic unit control
dfufunc 2 data fetch unit control
isifetch 1 instruction fetch
status 2 memory access type
daddress 32 destination address
saddress 32 source address
data 32 memorydata

Table 3.1: Process context

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 40

The register set of each process consists of 14 general purpose registers (rO-

r13), which are stored in the register file unit (RFU). The RFU has 2 read-ports

and 2 write-ports, and contains a register set for each process. Register r14 refers

to the program counter (pc), and r15 to the status register (sr). The pc is stored

separately from the other registers in the program counter unit (PCU). The PCU

also has 2 read-ports and 2 write-ports, and contains a pc for each process. The sr

does not explicitly exist since the condition flags that make up the status register

are part of the process's dynamic context. Only the bottom 4 bits of the sr are

used.

A process is identified in a pipeline stage by a valid bit and the pid. The valid

bit indicates whether the pipeline stage contains a real process or a null process.

The pid is an integer process number, and is used to index into the register sets

and to identify returning memory acknowledge packets.

Each process has four condition flags: carry, minus, overflow and zero. Shift

instructions can set carry in the barrel shift unit (BSU). All the flags can be

set by the arithmetic and logic instructions executed in the arithmetic logic unit

(ALU).

The remaining context consists of either control signals or operands, and is

not user accessible. Instruction contains the current instruction, and if it includes

an immediate constant then this is sign extended into the 32-bit Immediate by the

IDU. Opbsel indicates whether opB should be a register value or an immediate,

and readXenable and readXaddress enable register access and specify a register

number respectively. OpA and opB are the two register operands, and result is the

result of the ALU operation. Bsufunc, alufunc and dfufunc define the operation of

the relevant pipeline stages. Ifetch indicates whether the current memory access

is an instruction or data fetch. The status, daddress, saddress and data fields

make up a memory access packet.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 41

3.1.2 Merging queues

The memory request queue (MRQ) and the register write queue (R\VQ) are both

two-input, one-output FIFO queues. They are used to merge and buffer process

contexts going to and returning from memory, so that there is a smooth flow of

contexts around the execution pipeline.

The MRQ merges memory requests from the instruction fetch unit (IFU)

and the data fetch unit (DFU), and passes them on to the memory request unit

(MRU). It is large enough to queue all the processes, and has static storage

elements since memory requests may be queued for a number of cycles due to

network conflicts. At reset the processes are initialised by the MRQ. Each MRQ

entry is set up to contain, for each process, a memory request to fetch the first

instruction from the reset location.

The RWQ merges processes coming from the DFU and the memory acknowl-

edge unit (MAU), and passes them to the register write unit (RWU). Because

processes are clocked out of the RWQ every cycle, dynamic storage elements can

be used, and the queue length need only be p/2 + 1, where p is the number of

executing processes [111].

3.1.3 Memory interface

Memory requests are issued by the MRU, and returning memory acknowledge-

ments are received by the MAU. The format of the memory request packets is

described in Section 3.2.2. Since not all the dynamic context of a process is re-

quired for a memory access some of it is stored in the context store unit (CSU),

while the memory access is in progress. The CSU is a register file with 1 read-port

and 2 write-ports, and contains an entry for each process (what is stored in the

entry is described below). The CSU is written to by the IFU and DFU before

a memory request, and read from by the MAIJ when a memory acknowledge

returns.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 42

The MRU uses two signals, validout and read yin, to control the transfer of

memory request packets with the network. Validout is a boolean output signal and

indicates to the connected network switch that a packet is ready to be transferred.

Readyin is a boolean input signal which indicates that the connected switch is

ready to receive a packet. If there is a memory request waiting in the MRU, and

read yin has been asserted by the network, then the MRU asserts validout and

transfers the packet. The MAU also has equivalent validin and readyout signals,

but can receive an acknowledge packet every cycle, and so its read yout signal is

permanently asserted.

3.1.4 Instruction execution

The new instruction cycle of each process starts at the IFU. The IFU reads

the processes pc from the PCU, increments the pc by 1, and writes the new value

back to the PCU. Concurrently the dynamic, context not required for the memory

access, which at this point consists only of the condition and ifeich flags, is written

to the CSU. The ifetch flag is set' before it is written to the CSU to indicate that

an instruction fetch is in progress. On the following cycle the process is passed on

to the MRQ in the form of a memory request. The status field is set to indicate

a memory load, the new pc value is used as the daddress, the pid forms part of

the saddress, and the data field is zeroed.

The process is then queued in the MRQ, for one cycle minimum, and passed to

the MRU on the following cycle. The MRU then handshakes with the network as

described above and issues a memory request packet. Because of network latency

a number of cycles may elapse before the memory acknowledge packet returns

to the MAU. The MAU then extracts the pid and data from the acknowledge

packet and uses the pid to index into the CSU. The stored context is read from

the the CSU, and since the ifetch bit is set, the process is passed to the IDU on

the following cycle.

The IDU decodes the new instruction and sets all the relevant register enables

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 43

and control functions for the execution units. The process is then passed to the

RRU which uses the pid, readladdress and readaddress values to index into the

RFU and read the given operands. Opa is read from read-port 1, and opb from

read-port 2. In the following cycle the BSU executes the shift function indicated

by the bsufunc field on opa. If the opbsd flag is set then the immediate value is used

as the shift value rather than opb. The process is then passed to the ALU which

executes the function indicated by the alufunc field, opbsel again determining the

source of one of the operands. After the result has been calculated the flags are

updated, and the process is passed to the DFU on the next cycle.

If dfufunc indicates that a memory access should occur, then the DFU clears

isifetch, and some of the process context is written to the CSU. In this case the

context written includes isifetch, the register write-port signals, the flags, and the

result. The status field of the memory request is set to indicate either load, store

or fetch-and-add. The daddress field takes the value of result. The data field is

zeroed for a load, set to the value of opb for a store, or is set to either immediate

or opb (depending on opbsel) for a fetch-and-add. The memory request is then

passed to the MRQ and progresses as described above. When the acknowledge

returns to the MAU the stored context is read from the CSU, and the process

is passed to the RWQ (since isifetch is cleared) along with the returning data

value. If dfufunc indicates that no memory access should occur then the process

is passed directly from the DFU to the RWQ on the following cycle.

The RWQ receives the process from either the DFU or the MAU, and the

process is queued for a minimum of one cycle. The process is then passed to

the RWU which uses pid, write 1 port and write2port to index into the RFU. The

value of result is written to write-port 1, and data or opb to write-port 2. This

completes the instruction cycle, and the process is passed to the IFU once again.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 44

func 	I 	mode 	dest 	srcel 	i 	srcc2

Figure 3.3: Instruction format

3.1.5 Instruction format

The Eppi instructions have a single 32-bit format similar to the RISC I [112]. The

instruction has six fields as shown in Figure 3.3. The func (function) field specifies

the general instruction type, for example: branch, compare or arithmetic. The

mode field specifies the particular instruction type, for example: branch always or

branch greater-than. The dest (destination) field specifies the destination register

address to which the result of the instruction is written. The srcel (source 1) field

specifies a source register address. The i (immediate) bit specifies whether the

srce2 (source 2) field contains either a 15-bit signed immediate constant (i = 1),

or a source register address in the lower 4 bits (i = 0).

The 4-bit register addresses in dest, srcel and srcc92 specify one of r0-r15. If

PC (r14) is used then the PCU is accessed rather then the RFU. If Sr (r15) is used

then the flags are accessed.

3.1.6 Instruction set

The assembly language mnemonics of the Eppi instruction set are shown in Ta-

ble 3.2, where rd,st is a 4-bit destination register address, rrc,l and r3rce2 are 4-bit

source register addresses, and i15 is a 15-bit signed constant. The "quick" form of

the instructions indicate that srce2 is a constant rather than a register address.

The instruction set was chosen to cover the usual range of instructions and no

attempt was made to optimise the number of instructions (for instance not can

be implemented by exor-ing with 1 [112], and ble can be implemented by using

bgt with the operands swapped [19]).

The branch instructions conditionally change the value of the pc by an imme-

diate offset. The branch condition is evaluated in the IDU using the flags. If the

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 45

instruction description

add rdes t, rsrce l, rsrce2 add
addq rdesg, r,rce l , add quick
sub rdest, rsrce l, rsrce2 subtract
subq rd 3 , Tsrce l, 	15 subtract quick
mul Tdes t, rsrcel, rsrce2 multiply
mulq rdest, r3 1, i 15 multiply quick
div rdest I ' srcel , r3rce2 divide
divq rdest, rsr 1, i 15 divide quick
rem 7'dest, Tsr 1, rsrce2 remainder
remq rdest, rsr 1, i 15 remainder quick
and 7'dest, rsr 1, r3€2 logical and
or 	rsrcel, rsrce2 logical or
exor rdest, r31 , rsrce2 logical exclusive-or
not Tdest, r3 1 logical not
rol rdest, rsrcel, Tsrcc2 rotate left
rolq r11, rsr 1, i5 rotate left quick
ror rdest, rsrcel, Tsrce2 rotate right
rorq rd 3 , rsrcel, i 5 rotate right quick
cmp rsrcel, rsrce2 compare
cmpq rsrcel, 2 15 compare quick
bra i 15 branch always
bcs 2 15 branch carry set
bvs i15 branch overflow set
beq i15 branch equal
bne 2* 15 branch not equal
bit i 15 branch less than
ble Z15 branch less than or equal
bgt i 15 branch greater than
bge i 15 branch greater than or equal
ido rdest, rsrcel, i 15 load offset
sto rdest, rsrcel, 2* 1 store offset
idi rdest, rsrcel, Z'15 load increment
sti rdest 	rsrcei store increment
ldq rdest, i 15 load quick
stq Tdesj, 	15 store quick
f&a Tdest, rsrcel, rsrce2 fetch-and-add
f&aq rdest, rsrcel, i 15 fetch-and-add quick
noop no operation

Table 3.2: Eppi assembly code mnemonics

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 46

branch condition is true then the IDU sets alufunc to add, and the immediate

offset is added to the pc. The result is then written back to the PCU and the new

instruction is fetched at the start of the next instruction cycle. If the condition

is false then alufunc is set to pass and the pc is not written back. The immediate

offset must be adjusted to account for the pc increment by the IFU.

Branch on condition instructions should be preceded by a compare instruction.

The cmp and cmpq are implemented as a subtraction (r srcei - rsrce2), the result

of which is discarded. The ALU sets the flags accordingly and they are used by

the subsequent branch instruction.

The shift instructions are executed by the BSU, with a shift magnitude be-

tween 0 and 32 bits (the bottom 5 bits of the shift operand). The value in Tjrce l is

rotated by the value of r 3r 2, and stored in rd 8 . The last bit rotated is available

in the carry flag after the rotate.

The arithmetic and logic instructions are executed by the ALU. Only integer

arithmetic is supported, and the ALU can perform both multiply, divide and

remainder operations in a single cycle. This unrealistic assumption was made to

simplify the design and in an implementation the ALU would itself be pipelined.

For non-commutative operations such as subtract, divide and remainder rsrcel is

assumed to be the left-hand operand (for example rsrcel 7'srce2, rsrcel/rsrce2) cic).

The carry, minus and zero flags are set by all ALU operations, while the overflow

flag is set only for addition and subtraction.

The load and store instructions have three addressing modes, each of which

is implemented as a separate instruction. For a load the address register is rsrce l,

and for a store it is rd 3 . The offset is always a 15-bit immediate constant. The

offset addressing mode allows the memory address supplied from a register to

be modified by an immediate offset, and the address register is not changed.

The increment addressing mode allows the memory address to be modified by

an immediate offset, and the address register is updated with the new value

(pre-increment). The quick addressing mode allows an immediate constant to be

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 47

loaded into a register or to be stored in a memory word.

The fetch-and-add instruction atomically adds a given value (which can be an

immediate constant or from r srce2) to a memory word addressed to by TSrcej, and

returns the previous value of the memory word to rcJest .

The benchmark programs described in Chapter 5 are coded in the Eppi assem-

bly language mnemonics just described, and the assembly code for these programs

is shown in Appendix A.

3.1.7 Single processor simulation

The number of processes required to achieve maximum pipeline utilisation in an

instruction-interleaved processor depends on the pipeline length and the memory

latency. To obtain steady-state performance bounds a single processor simulator

was written using Pascal on a Sun workstation.

The simulated processor has the same pipeline configuration as the Eppi pro-

cessor described above, but can only execute three "meta-instructions" called:

icycle, acycle and dcycle. These specify that an instruction fetch, an arithmetic

operation, or a memory access are to be executed. No actual operations are car-

ried out, the meta-instructions simply determine the path of a process through

the processor. Various instruction mixes can be synthesised using the meta-

instructions. The simulator allows the meta-instruction sequence, the interleaving

level (number of executing processes), the number of memory pipeline stages and

the memory cycle time to be varied. The total memory latency is given by the

number of memory pipeline stages times the memory cycle time. The simulator

collects a number of execution statistics including: the processor pipeline utilisa-

tion, the memory interface utilisation, the processor instruction time which is the

number of cycles per instruction per processor, and the process instruction time

which is the number of cycles per instruction per process. These are displayed

after the simulator has been clocked for a given number of cycles.

Three synthetic workloads (meta-instruction sequences) called best, average

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 48

and worst are used in the simulations:

best = icycle, acycle.

average = icycle, acycle, icycle, dcycle.

worst = icycle, dcycle.

In the best case workload there is 1 memory access per instruction, in the average

case 1.5, and in the worst case 2. As the simulator is clocked each of the processes

repeatedly executes the given meta-instruction sequence (each process has its own

meta-instruction counter). The number of instructions executed is equal to the

number of icycles executed. In each simulation below the simulator was clocked

until a total of 10000 instructions had been executed.

Varying the workload

The simulation results in Figures 3.4 to 3.7 show how the performance changes

for the three workloads with the interleaving level increasing from 1 to 64 pro-

cesses (in single process increments). The number of memory pipeline stages and

memory cycle time were both 1 (therefore memory latency is 1 cycle).

For each workload the pipeline utilisation (Figure 3.4) increases as more pro-

cesses are added, and then levels off at between 9 and 12 processes as the pipeline

becomes full (or saturated). The maximum pipeline utilisation drops from 100%

in the best case workload to 50% in the worst case. This is because returning

memory requests are passed from the MAU to the IDU or the RWQ, and the

pipeline utilisation is measured in the IDU. So whenever a data fetch returns

the IDU remains idle and some utilisation is lost. The memory utilisation (Fig-

ure 3.5) increases to 100% as more processes are added, for all three workloads.

The worst case workload reaches maximum utilisation faster than the best case

workload. The processor instruction time (Figure 3.6) decreases as more processes

are added, and then levels off at the saturation point. The best case workload ex-

ecutes at about 1 cycle per instruction. The process instruction time (Figure 3.7)

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN
	

49

	

1
	

1

	

0.8 	 0.8

a
0

4., a
.! 0.6
4

0.4
2

a
0
4J

A 0.6

0

E 0.4
a

0.2
worst

average
best
key workload

	

0 	16 	32 	48 	64

interleaving level

Figure 3.4: Pipeline utilisation with
various workloads.

	

16I 	 I

S.
0

12

0.2

0 •

	

0 	16 	32 	48 	64

interleaving level

Figure 3.5: Memory utilisation with
various workloads.

	

150i 	1 I

a a

1 100
a 50
a
a

0 .-
0 	16 	32 	48 	64

interleaving level

Figure 3.6: Processor instruction
time with various workloads

0 	16 	32 	48 	64

interleaving level

Figure 3.7: Process instruction time
with various workloads

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 50

remains level until near the saturation point, and then increases linearly as more

processes are added. Above the saturation point the processes start to compete

for resources and spend more time queued in the MRQ and RWQ.

The workload of a real program would vary dynamically between the best

case and the worst case shown. So for a system with unit memory latency the

performance would be bounded by these results.

Varying the number of memory pipeline stages

The simulation results in Figures 3.8 to 3.11 show, using the average workload,

how the performance changes with an increasing number of memory pipeline

stages and interleaving level. The number of memory stages used are: 1, 2,

4 7 8, and 16. The memory cycle time is 1 throughout, and so the memory

latency is equal to the number of memory stages. This models the case in which

the processor is connected to a pipelined network (such as a packet-switched

multistage network), and the network cycle time equals the processor cycle time.

For all memory pipeline lengths the pipeline utilisation (Figure 3.8) increases

as more processes are added, and then levels off at the maximum utilisation pos-

sible with this workload. As the number of memory pipeline stages is increased,

more processes are needed to reach the saturation point (with 16 stages, 24 pro-

cesses are needed to reach the maximum utilisation). The memory utilisation

(Figure 3.9) increases to the maximum as more processes are added, but again

more processes are required to reach the saturation point with greater numbers

of stages. The processor instruction time (Figure 3.10) decreases as processes

are added, and levels off at the saturation point. More processes are necessary to

achieve the minimum instruction time as the number of stages increases. The pro-

cess instruction time (Figure 3.11) remains level as processes are added, and then

starts to increase near the saturation point. All the instruction times converge

after the saturation point.

Increasing the number of memory pipeline stages increases the memory la-

CHAPTER .3. Eppi MULTIPROCESSOR DESIGN
	

51

	

1
	

1 	
/ ; •11

	

0.8
	

0.8 	

uIIIj

0

. 0.6
43

I-
0 Cn on

0.4

P.

I I I
III,

1 '
I /

II !

C
0
4

.40.6

p

0
0.4

8

0.2
	

B
4 -----
2

5tra
U

0 	16 	32 	48 	64

interleaving level

Figure 3.8: Pipeline utilisation with
increasing memory pipeline stages.

401 	1 	 1 	 I

0
W
a,

30

0.2

0

	

0 	16 	32 	48 	64

interleaving level

Figure 3.9: Memory utilisation with
increasing memory pipeline stages.

	

1001 	I 	 I

a,
a,
c 80

p.
I.

a

20
1

a,
C

0.

10

AM

0.
I.

a
0 60
0

.9 40
I-

a
a,

.20

0
0 	16 	32 	48 	64

interleaving level

Figure 3.10: Cycles per instruction
per processor with increasing mem-
ory pipeline stages.

0
0 	16 	32 	48 	64

interleaving level

Figure 3.11: Cycles per instruction
per process with increasing memory
pipeline stages.

CHAPTER 3. EppI MULTIPROCESSOR DESIGN 	 52

tency, but still allows pipelined memory access. The general effect is to move

the saturation point to a larger number of processes. Even with a large number

of stages the maximum utilisation can still be achieved using correspondingly

greater numbers of processes.

Varying the memory cycle time

The simulation results in Figures 3.12 to 3.15 show, using the average workload,

how the performance changes with increasing memory cycle time and interleaving

level. The memory cycle times used are: 1, 2, 4 and 8 cycles. The number of

memory pipeline stages is 1 throughout, and so the memory latency is equal to

the memory cycle time. This models the case in which the processor is connected

to a local memory which has a larger cycle time than the processor.

The pipeline utilisation (Figure 3.12) increases up to the saturation point,

and then levels off. As the memory cycle time is increased, and memory accesses

take longer, the maximum pipeline utilisation possible is reduced. The memory

utilisation (Figure 3.13) quickly reaches the maximum as the interleaving level is

increased. With longer memory cycle times the memory utilisation is increased

as processes spend relatively more time in the memory. The processor instruction

time (Figure 3.14) almost doubles with each doubling in memory cycle time, and

few processes are required to reach the saturation point. The process instruction

time (Figure 3.15) increases as processes are added, with the highest memory

cycle time resulting in the highest rate of increase.

Increasing the number of processes cannot compensate for large memory cycle

times in the same way as for the memory pipeline stages, since memory access

cannot be pipelined. The memory becomes a bottleneck on the performance of

the processor.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN
	

53

1
	

1
key 	cycles

2
4

0.8 - ---- 8 	 0.8

C
0
a
Cd
.5 0.6
a

0.4

0.2

0
0 	16 	32 	48 	64

interleaving level

Figure 3.12: 	Pipeline utilisation
with increasing memory cycle time.

C
0

V

a

0

8 0.4
8

0.2

0 •
0 	16 	32 	48 	64

interleaving level

Figure 3.13: Memory utilisation
with increasing memory cycle time.

800

cc
ca

600

a
C
0

400
a

I-

a
200

30

0

20
a
C
0

10

0
0 	16 	32 	48 	64

interleaving level

Figure 3.14: Cycles per instruction
per processor with increasing mem-
ory cycle time.

0
0 	16 	32 	48 	64

interleaving level

Figure 3.15: Cycles per instruction
per process with increasing memory
cycle time.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 54

Summary

The simulation results show that the maximum processor utilisation possible is

dependent on the workload and the memory cycle time. As the average number

of memory accesses per instruction and the memory cycle time increase, the

maximum utilisation possible is reduced. As the number of memory pipeline

stages is increased, the interleaving 1eve1 must also be increased to reach the

maximum utilisation. These results are in agreement with similar studies [27,

26 7 25] (Section 2.1.3). Lees [108] has performed simulations of a context-flow

processor design with pipelined floating point units, in which the maximum queue

lengths of the various merging queues in the design are measured.

This concludes the description of the Eppi processor; the following section

describes the network used to connect the processors and memories together.

3.2 The network

The Eppi network is constructed from 2 x 2 combining switches connected in an

indirect binary n-cube topology (Section 2.2.1 and Figure 3.1). The network is

divided into a request half which routes request packets from the processors to the

memories, and an acknowledge half which routes acknowledge packets from the

memories to the processors. The request and acknowledge halves are physically

merged to facilitate combining, so in a p input network there are 2 1092 p switches.

The internal block structure of the switch is shown in Figure 3.16. The switch

is also divided into a request and acknowledge halves. The request half consists of

two input ports, two input latches, two ,request queues and two output ports. The

request queues each have two inputs, and can accept two packets and output one

packet in each cycle. If the queue is empty then the packet goes to the head of the

queue, but is not output until the next cycle. Matching packets can be combined

in the request queue. The acknowledge half consists two input ports, two input

latches, two acknowledge queues and two output ports. The acknowledge queues

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 55

from
Processors

to
Processors

to
,mories

from
,mories

L = latch

Figure 3.16: Internal structure of network switch

each have four inputs and can accept four packets (or more with higher combining

levels), and output one packet each cycle. Each packet spends at least one cycle

in the queue. The request and acknowledge halves of the switch, are connected

by the two wait-buffers. The wait-buffers are associative memories which are

used to store one of a pair of combined packets, until the other one returns from

memory and can be decombined. Each wait-buffer is written to by one of the

request queues, and read by one of the acknowledge input latches. It is assumed

that each request queue contains an adder unit used in combining fetch-and-add

requests, and that each acknowledge input latch also contains an adder unit used

in decombining fetch-and-add acknowledges (these adders are not shown in the

diagram).

The switches are synchronously clocked from the same signal. In each clock

cycle a switch can input a packet to each input port, and output a packet from -

each output port. A 'packet can be input and routed in one clock cycle, and

output on the next clock cycle, although it may also be queued in the switch for

a number of cycles.

CHAPTER 3. EppI MULTIPROCESSOR DESIGN 	 56

2 	6 	 32 	 32 	 32

type I pid I saddress I daddress 	data

Figure 3.17: Request and acknowledge packet format

3.2.1 Ports

Each port of the switch consists of a pair of handshake signals and the packet

transfer wires. The transfer of packets between the switches is controlled by

ready and valid signals (the processor has the same memory interface described

in Section 3.1.3).

An input port has a read yout output signal and a validin input signal. Readyout

is asserted if the input latch is empty and the port can receive a new packet. If

the connected switch has a packet to send then it will assert validin and the

packet will be transferred.

An output port has a read yin input signal and a validout output signal. If the

read yin signal is asserted by the connected switch and there is a packet in the

output queue, then the validout signal is asserted and the packet is output. The

whole packet is transferred in the same cycle.

3.2.2 Packet format

Request and acknowledge packets have the same format. Each packet consists of

five fields as shown in Figure 3.17. The type field defines the memory access type,

the pid field contains the process number of the requesting process, the saddress

field contains the return address, the daddress field contains the destination ad-

dress, and the data field contains a 32-bit datum. The saddress field in a request

packet is initially empty, and the return address is generated as the packet tra-

verses the network (as described below). The daddress field can be subdivided

into a memory number, and an offset within that memory.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 57

3.2.3 Routing

A packet is routed from the input latch to one of the queues depending on the

routing bit, which is the least significant bit of the daddress. If the routing bit is

0 the packet is routed to the upper queue, if it is 1 to the lower queue. Before

the packet is output to the next stage the daddress is shifted one bit to the right,

discarding the current routing bit. These operations are the same for both request

and acknowledge halves of the switch.

The return address is generated on the fly by the request half of the switch.

When a packet is input to a port the saddress is shifted one bit to the left, and

the port number (either 0 or 1) is shifted into the least significant bit. Assume

a network with 8 inputs as shown in Figure 3.1, and that a request packet is

transmitted from processor 5 destined for memory 7 (the bottom 3 bits of the

daddress therefore have the value 111). Initially the saddress contains 000, after

the first stage it contains 001, after the second stage 010, and after the third

stage 101, which is the correct return address. This address is then used as the

daddress in the acknowledge packet, again read from the least significant bit.

3.2.4 Combining

Combining occurs in the request queues. An incoming packet can be combined

with one of the packets already in the request queue if the type and daddress

fields of the two packets are identical. For simplicity combining is restricted to

occurring between load and load packets, and fetch-and-add and fetch-and-add

packets only. More general combining could also be implemented [72].

Figure 3.18 shows the combining of two packets originating from process A

on processor A and process B on processor B, for both the load and fetch-and-

add case. The packet in the request port input latch (from processor B) is first

compared to all packets in the request queue, starting at the head of the queue. If

the wait-buffer is not full, then the matching packet in the queue (from processor

CHAPTER 3. Epp] MULTIPROCESSOR DESIGN 	 58

Load-load combine operation
type 	pid 	saddr 	daddr 	data

load prcsA IpresrA I 	addrXl ni11 load I 	prcsA Ip1rA I 	addrX null

packet in queue packet remains queued

r- tag 	1 	type 	pid 	saddr 	data

load prcsB prcsrB addrX null FPZ prcsrA load prcsB I prcsrB 1 	null

packet in latch packet wait-buffered

F&a-f&a combine operation

Ma 	P' 	prcsrA I addrX dataA - 	 prcsA I picrA I addrX dataB

packet in queue 	 packet remains queued

Ma 	prcsBlprcsrB I addrX dataBi 	I prcsAprcsrA I Ma I prcsB lprcsrB I dataA

packet in latch 	 packet wait-buffered

Figure 3.18: Combining operations

A) can be combined. The pid and saddress of the queued packet are used as a

tag in the wait-buffer to identify the stored packet. The saddress of the incoming

packet is copied to the wait-buffer, and the daddress discarded. The contents of

the data field of the stored packet is dependent on the type of memory request.

For load combining the data field is left empty. For fetch-and-add combining the

data field of the queued packet is copied into that of the stored packet, and the

queued packets data field is updated with the sum of itself and the data field of

the incoming packet. The queued packet can then proceed to the next switch.

The request queues can allow more than 2-way or pairwise combining to occur

(Section 2.2.5). If a queued packet is involved in a combine but is still in the queue

- in a subsequent cycle, then it may combine again. Each combine results in a new

wait-buffer entry. The maximum combining level is 4-way.

3.2.5 Decombining

Decombining occurs in the acknowledge half of the switch. The pid and daddress

field of the returning packet are compared to all the tags in the wait-buffer (an

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 59

Load-load decombine operation
type 	pid saddr daddr 	data

I load I prcsAl null IprcsrAI dataCi 	 load I prcsA I null IPAI dataCi

packet in latch 	 packet queued

I tag —1 	type 	pid saddr 	data

I prcsAlprcsrAI load 	prcsBIprcsrBI null 	 load 	prcsBI null Ip1rBI dataCi
packet in wait-buffer 	 packet queued

F&a-f&a decombine operation

Ma 	prcsAI null IprcsrA f dataC 	 Ma I prcsAI null Ip1rA I dataCi
packet in latch 	 packet queued

I 	IprAI Ma 	prcsBlprcsrBl dataAl - 	I 	I prcsBI null IprB I dat p dataC I
packet in wait-buffer 	 packet queued

Figure 3.19: Decombining operations

associative match). If there is a match then the returning packet was previously

combined with the packet in the wait-buffer.

Figure 3.19 shows the decombining operations for the packets combined in

the previous diagram. For load decombining the returning packet's data field

is copied to the decombined packet's data field, so the loaded value returns to

both processes. For fetch-and-add decombining the returning packet's data field

is added to the decombined packet's data field to generate the correct unique

value. After decombining both packets are routed and queued. If the queue the

decombined packet is to be routed to is full, then decombining is delayed until

the next cycle.

If more than 2-way combining is allowed then all matching packets are decom-

bined and queued in the same cycle (with higher combining levels this becomes

rather idealised). If the acknowledge queues become full then the returning packet

remains in the input latch, and decombining commences in the following cycle.

CHAPTER 3. Epp] MULTIPROCESSOR DESIGN 	 60

3.2.6 Isolated network simulation

The performance of multistage networks has been well researched using both ana-

lytical techniques and simulation [113, 47, 57, 114, 58, 59, 73, 74, 21 (Section 2.2).

For purposes of comparison a simulator of an isolated indirect binary n-cube

multistage network was written using C on a Sun workstation. The simulated

network has the same switch design and topology as the request half of the Eppi

network, except that combining is not implemented. The network is isolated in

that there are no attached processors or memories, and the network loading is

not related to network throughput (defined as an open system in queueing the-

ory terminology). Packets are presented to the network inputs with a random

destination address, unless a hot-spot is specified. The number of new packets

entering the network is dependent on the given network loading. Packets output

from the network are discarded.

The simulator allows the switch queue size and network loading to be varied.

The loading is the percentage of submittable packets that were submitted to

the network, for example if the network can accept 100 new packets in a cycle

then only submitting 50 packets results in a 50% loading. The simulator also

allows a single hot-spot to be specified; this is a memory address to which a

higher percentage of packets are addressed than the other locations. The hot-

spot percentage is the percentage of packets submitted that were addressed to the

hot-spot, above the background traffic. The network performance is measured

in terms of the network throughput and latency. The (normalised) throughput

is the percentage of packets output by the network compared to the maximum

throughput possible. The latency is the average number of cycles a packet takes

to cross the network.

The simulation results below show the effect of queue size and a hot-spot on

network performance, for networks with between 2 and 256 inputs. For each

simulation the simulator was clocked for 10000 cycles to allow a steady state to

be reached.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 61

Varying the queue size

The simulation results in Figures 3.20 and 3.21 show the effect of increasing the

queue size from 1 to 32 packets, with a 100% load. As the queue size is increased

the throughput (Figure 3.20) increases for all network sizes, and approaches the

maximum at a queue size of 32. The latency (Figure 3.21) increases unboundedly

with queue size. This is because more packets can be accepted by the network as

the queue size increases, resulting in longer waiting-times and thus higher latency.

Increased throughput is desirable, but increased latency is not, so a small queue

size of 4-8 packets appears to be optimal.

Varying load

The simulation results in Figures 3.22 and 3.23 show the effect of increasing

the load from 50% to 100%, with a queue size of 4 throughout. As the load is

increased the throughput (Figure 3.22) increases and then levels off, at which

point the network is saturated and cannot accept more packets. The latency

(Figure 3.23) increases with load, since there are more packets in the network

resulting in higher contention.

Varying queue size with hot-spot

The simulation results in Figures 3.24 and 3.25 show the throughput and latency

with varying queue size, but with 1% (above background traffic) of the 100% load

directed at a hot-spot. Compared to Figure 3.20, the throughput (Figure 3.24) has

been significantly reduced by the hot-spot for larger network sizes. For example a

throughput of 95% drops to 30% for a queue size of 32 and 256 inputs. Increasing

the queue size improves throughput only slightly for the larger network sizes. The

latency (Figure 3.25) is also much higher with the hot-spot for all network sizes

compared to Figure 3.21.

100

80

60
U
C

40

20

1

0.8

0.6

0.4

6 -
128 R
64 —•44-
32 —u-

0.2
	

16 —a--
8 —fr--
4 G
2 —0----

inpute 	key

CHAPTER 3. EppI MULTIPROCESSOR DESIGN
	

62

U
1 	2 	4 	8 	16 	32

queue size

Figure 3.20: Network throughput
with increasing queue size and 100%
load.

1

0.8

0.6

0.4

0.2

0 •
1 	2 	4 	8 	16 	32

queue size

Figure 3.21: Network latency with
increasing queue size and 100% load.

25

20

15

10

5

	

0• 	- 	 1 	 I

	

50 	60 	70 	80 	90 100 	 0
50 	60 	70 	80 	90 100

load% 	
load%

Figure 3.22: Network throughput 	
Figure 3.23: Network latency with

with increasing load and queue size 	
increasing load and queue size 4.

4.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN
	

63

1

0.8

0.6

0.4

0.2

0 •
1 	2 	4 	8 	16 	32

queue size

Figure 3.24: Network throughput
with increasing queue size, 1% hot-
spot and 100% load.

0.8

0.6

0.4

150

100

50

0

	

1 	2 	4 	8 	16 	32

queue size

Figure 3.25: Network latency with
increasing queue size, 1% hot-spot
and 100% load.

	

40 I 	1 	 1 	 I

30

20
S

0.2

0
0 	0.2 	0.4 	0.6 	0.8 	1

hotspot %

Figure 3.26: Network throughput
with increasing hot-spot, queue size
4 and 100% load.

10

0
0 	0.2 	0.4 	0.6 	0.8 	1

hotspot %

Figure 3.27: Network latency with
increasing hot-spot, queue size 4 and
100% load.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 64

Varying hot-spot percentage

The simulation results in Figures 3.26 and 3.27 show the effect of varying hot-spot

percentages on throughput and latency with a 100% load and queue size 4. As

the hot-spot percentage is increased from 0 to 1%, the throughput (Figure 3.26)

decreases for networks larger than 16 inputs. The latency (Figure 3.27) only

increases significantly for networks with more than 64 inputs. It is evident that

even a very small hot-spot can cause a large reduction in network performance.

Summary

These results show similar characteristics to other network simulations, although

the exact figures for throughput and latency depend on the switch design used.

The actual performance of the network when used in the Eppi design will depend

on the load resulting from the interleaving level, and the hot-spot percentage

resulting from the memory access pattern.

This concludes the description of the Eppi network; the following section

describes the operation of the Eppi memory.

3.3 The memory

The Eppi processors are connected to an equal number of shared memories.

Logical memory addresses are low-order interleaved across the memories, so that

consecutive physical addresses are in consecutive memory modules. In a p pro-

cessor system, the lower 1092p bits of the daddress are used to route the request

packet to one of the memories. Then the remaining 32 - log2 p bits are used as

an offset in that memory.

Each memory module has an input port, an array of memory, a memory

controller and an output port as shown in Figure 3.28. The usual ready and

valid signals are used to control the transfer of packets between the memory and

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 65

readyout
validin

packetin

readyin
validout

paeketout

IL = Input latch 	OL = Output latch

Figure 3.28: Block diagram of functional units in a memory module

the network. The memory controller performs the memory access, which can be

either a load, store, or fetch-and-add. In the latter case a read-memory-write

cycle is necessary, and the memory controller also has an integer adder which is

used in calculating the result of the fetch-and-add. All memory accesses including

fetch-and-add take one cycle.

3.3.1 Operation

At the start of a cycle, if the input latch is empty, the memory module asserts

the read yout output signal on its input port. If the connected network switch has

a packet, then the validin input signal will in turn be asserted by the switch, and

the packet transferred. Concurrently, if there is a packet in the memories output

latch, and the read yin input signal has been asserted, then the output port's

validout signal is asserted and the packet is transferred to the network. If the

packet in the output latch has been successfully transferred, then the packet in

the input latch starts its memory access, and the result is written into the output

latch. If the output latch is full, because the network switch cannot accept the

packet, then the memory access is deferred until the output latch is empty.

CHAPTER 3. Eppi MULTIPROCESSOR DESIGN 	 66

When the memory module receives a request packet it copies the type and

pid fields into the acknowledge packet, and transfers the saddress field, which

contains the return address, to the daddress field of the acknowledge packet. The

saddress field of the acknowledge packet is unused. If the memory request is a

load the memory word at the offset given by the request packet's daddress field

is copied into the acknowledge packet's data field. If it is a store then the request

packet's data field is copied into the memory location. If it is a fetch-and-add

the value of the memory location is copied to the acknowledge packet's data field,

and the source packet's data field is added to the value in the memory location.

Assuming there is no congestion at the memory output, a request packet is

clocked into the memory on the one cycle, and the acknowledge packet clocked

out on the next. The memory thus has a maximum throughput of one packet per

cycle.

3.4 Comments

This chapter has described the Eppi design and presented simulation results

for a single processor and isolated network. The processor simulation provided

performance bounds for given meta-instruction mixes and memory latencies, and

the network simulation for given queue sizes, loads and hot-spot percentages.

Without previous experience it is difficult to predict what the instruction mix

and memory access pattern of parallel programs executing on the Eppi will be,

since relevant statistics are not available. The frequency of load and f&a memory

accesses to hot-spots is particularly important, since it will affect the network

performance. Such information can only be provided by detailed simulation of

the whole Eppi system, and such a simulator is described in the next chapter.

Chapter 4

Eppi simulator

The Eppi simulator is a distributed time-driven, instruction level simulation of

the Eppl multiprocessor design described in the previous chapter. To increase the

simulation speed and the size of Eppi system that can be simulated, the Eppi

simulator has been implemented in Occam on a transputer based, distributed

memory multiprocessor. The largest Eppi system that has been simulated is

a 256 processor system using 128 transputers. The first section of this chapter

briefly reviews Occam and the transputer. The following sections describe the

machine on which the Eppi simulator runs, how the simulator is parallelised,

the user-interface of the simulator, and how the Eppi components are simulated.

The last section presents some performance results for the simulator.

4.1 Occam and transputers

Occam [115] is a strongly typed language based on CSP [116], and includes con-

structs to explicitly define parallelism and communication between processes. An

Occam process can be anything from a single arithmetic statement to a large pro-

cedure, and processes communicate by passing messages through named channels.

Only two processes may communicate through a channel, in one direction, using

67

CHAPTER 4. Eppi SIMULATOR 	 68

blocking input and output message-passing commands.

Statements or procedures to be executed in parallel are included in the body

of the PAR construct. Equivalently, statements to be sequentially executed must

appear in the corresponding SEQ construct. A non-deterministic element is in-

troduced by the ALT construct, the body of which contains a number of guarded

input commands. When a communication occurs on one of the input channel

guards, the statements subordinate to the input are executed. Each of the con-

structs may also be used in a replicated form. In the case of a replicated PAR the

given number of copies of the body of the construct are executed in parallel.

In the transputer implementation of Occam [117] the level of parallelism must

be statically defined at compile-time, and therefore the replication count in a

replicated PAR must be constant. The placement of processes onto transputers

is also static, and the top-level configuration part of the program specifies which

processes are to be placed on which transputers using the PLACED PAR construct.

Which Occam channels are to be associated with which transputer links is also

defined at this level.

The transputer [118] is a single-chip microprocessor intended for parallel pro-

cessing and embedded real-time applications. The highest performance T800

transputer contains 4 Kbytes of local on-chip RAM, a 64-bit floating point unit, a

32-bit microcoded processor, an external memory interface, and four 20 Mbits/sec

serial communication links. The transputer design is optimised for executing Oc-

cam, and provides instructions and hardware support for Occam process commu-

nication and management. The Occam input and output instructions, and the

PAR and ALT constructs compile almost directly into equivalent transputer assem-

bly code instructions. The processor maintains a queue of executable processes,

and context-switches the current process when it executes a communication op-

eration or its time-slice has expired. The register set of each process is small so

that context-switching is efficient.

The Occam channels are implemented using memory locations, but they can

CHAPTER 4. Eppi SIMULATOR 	 69

also be mapped onto the transputer links. A number of transputers can be con-

nected together using the links to form a distributed memory multiprocessor.

Current transputers provide no hardware support for general, global communica-

tion between processes in such a multiprocessor. A process running on a trans-

puter can only communicate directly with other processes on the same transputer,

or with the links. Programs which require global routing of messages must use

some sort of communications harness to route messages between processes on

different transputers.

4.2 Simulation engine

The Eppi simulator runs on a large Meiko Computing Surface called the Edin-

burgh Concurrent Supercomputer (ECS) [119, 120]. This is an MIMD distributed

memory multiprocessor constructed from transputers. The current ECS config-

uration, of which an overview is shown in Figure 4.1, contains over 400 T800

transputers with 4 Mbytes of external memory each. The ECS is a multi-user

system, and provides a version of UNIX and a distributed file system, and can be

programmed using Occam, and C or Fortran with added message-passing proce-

dures.

The transputers in the ECS are divided up into about 20 single-user domains,

each of which contains a fixed number of transputers. Each domain consists of

a host transputer and a number of user transputers. The host transputer runs

the system software and provides an interface to the i/o devices, while the user

transputers are available for user programs. The domains range in size from 1

user transputer, through 5, 17, 32, 65, and 132 user transputers. Some of the

domains also have an attached graphics board and colour monitor.

The user transputers in a domain can be connected in almost any topology

using the transputer links. The Meiko hardware provides a number of link switch-

ing chips to which all the transputer links are connected. These switching chips

CHAPTER 4. Eppi SIMULATOR
	

70

Spine

Domain

hTT

T 	T 	Tj

1

T 	T

HIot 	;ut -

T = User Vansputer

I 1

Domain

Graphics domain

I 	 -
Colour monitor

Figure 4.1: Overview of the domain organisation of the ECS.

can be electronically configured before a program is loaded, so that the user

transputers are connected in the correct topology. This topology is static, and

is not changed during a program run. The minimum connectivity necessary is a

path through all the user transputers used, so that the program can be booted

onto the transputers. All of the transputers in a domain are additionally con-

nected by a memory mapped 8-bit bus called the supervisor bus. This bus has a

low bandwidth and is used mainly for system purposes, such as configuring the

switch chips. It can also be used for sending debugging messages from the user

transputers in a domain to the user's terminal, via the domain's host transputer.

Disk

VDU

For most programs one of the user transputers is designated the master trans-

CHAPTER 4. Eppi SIMULATOR 	 71

puter, and runs the control and user-interface part of the program. The master

transputer is connected to the host transputer by one of its links (the host-link),

so it can interface to the i/o devices. The other user transputers run the compu-

tation part of the program, and are referred to as slave transputers. In a typical

task-farm application for example, the master sends work to be done to the slaves,

which then return the result and wait for new work.

4.3 Simulator structure

The Eppi simulator is written entirely in Occam, and can be divided into three

parts: the user-interface, the simulation modules and the communications har-

ness. The processor, network switch and memory of the Eppi system described

in the previous chapter are each simulated by an Occam procedure (or module).

The simulator is parallelised by replicating and distributing the modules across a

transputer domain, and the modules communicate by message-passing; the mes-

sage packets being routed around the domain by the communications harness.

4.3.1 Domain topology

To execute the Eppi simulator, the transputers in the chosen domain are first

configured in a de Bruijn graph or d-shuffle topology [121] using the transputer

links. This graph has a logarithmic inter-node distance with fixed node degree,

and has better performance for generalised communication than other topologies,

such as a torus for example [122, 1231. The topology of an 8 slave domain is shown

in Figure 4.2, in which the slave transputers are numbered 0-7. The de Bruijn

graph has been slightly augmented to provide two end-around connections, one of

which connects the master transputer. The host transputer, to which the master

is connected, is not shown.

CHAPTER 4. Eppi SIMULATOR
	

72

Figure 4.2: Topology and module distribution of an 8 processor Eppi system on
an 8 transputer domain.

4.3.2 Module distribution

For the simulation of a p processor Eppi system a domain of maximum p slaves

can be used. To balance the load of each slave the simulation modules are evenly

distributed across the domain. If the slaves are numbered from 1 to p, then

processor i is placed on slave i, switch j is placed on slave j mod p, and memory k

on slave k. Table 4.1 shows how many modules there are per slave for increasing

Eppi system sizes, using the largest domain possible in each case. Where the

number of switches does not divide evenly over the number of slaves, half the

slaves have one more switch than the other half (these latter slave transputers

actually contain a dummy switch instead of a real switch, which swallows any

packets it receives). In Figure 4.2 an 8 processor Eppi system (refer to Figure 3.1)

is shown distributed across an 8 slave domain. The user-interface runs on the

master transputer (and is shown as U). The processor (P0-P7), switch (N0-N11)

and memory (M0-M7) modules run on the slave transputers.

Due to the static parallelism of Occam a separate version of the simulator

must be compiled for each different system and domain size. The simulator has

CHAPTER 4. Eppi SIMULATOR
	

73

Processors I Nodes I Memories Total I modules I Slaves Modules I per slave
1 0 1 2 1 2
2 1 2 5 2 2.5
4 4 4 12 4 3
8 12 8 28 8 3.5
16 32 16 64 16 4
32 80 32 144 32 4.5
64 192 64 320 64 5
128 448 128 704 128 5.5
256 1024 	1 256 	1 1536 128 12

Table 4.1: Number of modules with increasing simulation size

two parameters number of processors and number of slaves which are simply set

to the relevant values before compiling. The size of the memory array in each

memory module is also set before compilation, and is calculated so that the

total amount of memory in the system is 128 Kbytes for any given system size

(this is sufficiently large for all the benchmark programs described in the next

chapter). A number of other simulator parameters can be varied at run time and

are described below. The largest Eppi system that has been simulated is 256

processors using 128 slave transputers. Larger system sizes could be simulated,

but the simulation becomes slow because of the high load on each slave.

4.3.3 Communications harness

A general transputer communications harness called Tiny [124], developed at

Edinburgh University, is used to route packets around the domain. Tiny provides

topology independent routing of variable sized packets between named processes

in a domain. Each transputer in the domain has a number of harness processes

running on it as well as the simulator modules. When the harness is started

up it first explores the domain topology, and builds up routing tables containing

the shortest paths between all the transputers. The processes using the harness

must be given a unique domain-wide integer identifier, which is used to address

CHAPTER 4. Eppi SIMULATOR
	

74

Link 0

TranBputer

Tiny

lAnk 3
	

Link 1

P1 	 P0

Link 2

Figure 4.3: Connection of Tiny harness and user processes within a transputer.

packets. A number of packet read and write functions are provided with Tiny.

They differ in the routing strategy used, which can be either sequential, adaptive

or broadcast. In sequential routing all packets are routed by the same path, and

the order of sending is maintained. In adaptive routing the packet is routed by

the least congested path, and subsequent packets may arrive out of order. In

broadcast routing the packet is broadcast to all other processes. This is done

efficiently since the harness builds a broadcast tree from the source transputer

to all the destination processors. The packet write functions are non-blocking,

and packets arriving at a destination transputer are buffered until the receiving

process reads them.

Each simulator module has a number of Occam channels that make up its

interface. These channels are connected to the harness as shown in Figure 4.3,

for the two modules P0 and P1. The harness receives messages from a module's

output channels and routes them to the given input channel of the destination

module. Each module knows its own logical module number, which is used along

with the output channel number as arguments to a mapping function. This

returns the logical module number of the connected module and the input channel

number, using the permutation functions described in Chapter 2. The destination

CHAPTER 4. Eppi SIMULATOR 	 75

module number is then converted to a Tiny process number, which is used to

address the packet. Currently all packets are 2 words long, and contain the input

channel number and a data word. Longer messages must be sent sequentially

(this is a limitation of the simulator not the harness).

4.4 The user-interface

The user-interface of the Eppi simulator runs on the master transputer, inputs

commands from the user or a batch file, and controls the simulated Eppi system

in the manner of a host computer. Commands are sent to the modules using

control packets, which are output from the user-interface's control-out channel

and routed to the control-in channel of the modules. Acknowledgement packets

from the modules' control-out channels are received on the user-interface's control-

in channel. The user-interface also has an jo-in channel which is used for receiving

asynchronous messages from the modules, and various other channels to connect

it to the user terminal and the filing system via the host transputer. These

connections are shown in Figure 4.4, where the user-interface is shown connected

to a processor, switch and memory module.

The main commands of the user-interface are shown in Table 4.2, and are

described below. There are a number of other commands which are used for

debugging purposes, such as setdebug which instructs specified modules to print

out debugging messages over the supervisor bus, and trace which is used to trace

the path of specified Eppi processes, or to trace access to specified Eppi memory

locations.

The user commands are executed by the user-interface using module control

packets. These are either sent to specific modules or broadcast to all modules,

depending on the command. Some of the commands simply send the correspond-

ing control packet, while others use combinations of control packets in different

ways. The main control packet types are shown in Table 4.3, and are also de-

CHAPTER 4. Epp] SIMULATOR

cm/out = control in and out

in/out = interrupt in and out

pin/out = packet in and out

RA

cm/out 	fin

to terminal,

and file system

control
	 interrupt

control
control

cm/out 	 cm/out
packet

pout 'I V 	 pin 	pout

P0
packet

pin I 	 Ipout 	pin

NO

cm/out 	iout
packet

pin

MO
packet

pout

pin 	pout

pout 	pin

Figure 4.4: Channels connecting the user-interface and three modules.

scribed below.

4.4.1 System reset and initialisation

A number of parameters of the simulated Eppi system can be varied at run-

time. Currently these are: the interleaving level which is the number of processes

executing per processor, the combining level used in the switches, the size of the

queues and wait-buffers in the switches, and the relative clock speed of the three

module types. The default values of the system parameters are changed using

the Setup command.

When the simulator is started up or the Reset command is executed, the

CHAPTER 4. Eppi SIMULATOR
	

77

Command Description

Clock single-step 1 cycle
Display show the internal state
Memory load a program, dump, or poke memory
Nclock clock for n cycles
Reset reset system
Run run in either timed or clocked mode
Setup set default parameters
Toggle auto-display
Quit terminate the simulator

Table 4.2: User commands

modules are reset using the default values of the system parameters, and the

memory is cleared (zeroed). The modules are reset by sending a reset control

packet and the relevant parameters to each module, as described in Section 4.5.

4.4.2 Loading a program

A program is loaded into the memories using the Memory (load) command. The

program is read from a file in ascii-hex format, produced by the Eppi assembler,

and consists of a number of code blocks. Each block contains the starting address

of the block, the size of the code in words, and the machine code itself. The code

usually starts at the reset location (memory address 16), from which the first

instruction is read by the processors after a reset. To load a memory word the

given address is decomposed into a memory number and an offset, and that

memory module is sent a load control packet with the offset and code word.

4.4.3 Program execution

After the program is loaded the simulator modules are clocked to begin execution.

The Clock and Nclock commands are used to clock the modules explicitly for either

a single cycle or for a given number of cycles respectively, and are used mostly in

the development and debugging of programs.

The Run command is used to clock the modules implicitly (and continuously)

CHAPTER 4. Epp] SIMULATOR
	

78

Control packet I Description 	 1
clock clock for specified number of cycles
interrogate return specified state information
load load word into specified memory location
poll return current clock count
reset reset and initialise state
run clock continuously until interrupted
stop interrupt run
quit terminate process

Table 4.3: Module control packets

for an unspecified number of cycles, and has two forms: timed or clocked. The

timed form allows the clocking to be paused every given (real) time interval, for

any internal state or utilisation statistics of the simulated system to be displayed,

after which clocking is resumed. The clocked form allows the clocking to be

paused every given number of clock cycles. The Run command finishes when an

interrupt is received from either the modules or the user, and is used for executing

complete programs since it is generally not possible to predict when the program

will finish. A mechanism is provided which allows the program itself to send an

interrupt to the user-interface indicating that the program has finished. Clocking

and interrupts from a modules viewpoint are described further in Section 4.5.

4.4.4 Displaying state and statistics

The Display command is used to show the internal state or utilisation statistics

of the modules on the user terminal. The internal state of the modules is ac-

cessed by sending an interrogate control packet and parameters which specify the

particular piece of information. The state and statistics available in each module

are described in the next section. The Toggle command is used to enable automatic

execution of the Display command after a clock cycle, or during a run.

The execution of the Eppi system can also be visualised on a colour monitor (if

a graphics domain is used). The display represents each of the modules as a box,

and the colouring of the box is used to indicate some given value of utilisation.

	

CHAPTER 4. Eppi SIMULATOR
	

79

	

• 	MIMD Shared Memory Multiprocessor Simulator

Memories
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15

10 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15
Processors 	 -

I... Ix- 1027
0 10 20 30 40 50 60 70 80 90 100

Figure 4.5: Visualisation of a hot-spot in a 16 processor system

The display can be updated each cycle, allowing the memory access pattern of a

program to be seen, for example. Effects such as tree saturation (Section 2.2.4)

can be observed in this way, as shown in Figure 4.5. This shows a 16 processor

simulation in which an artificial hot-spot has been created at memory module

0. The requests and acknowledge halves of the networkare displayed separately,

and the dark shading of the modules indicates the presence of a packet (the scale

at the bottom is not meaningful in this display mode). The current clock count

is shown in the lower right hand corner.

4.5 The modules

The three module types simulate the Eppi processor, switch and memory. The

Occam code for each module is serial, apart from packet input-output, which

reduces the number of wasted cycles due to frequent context-switching on the

CHAPTER 4. EppI SIMULATOR 	 80

transputers. The body of each module consists of two parts: a control part which

executes the commands from the user-interface, and a simulation part which

simulates the corresponding Eppi component.

The modules communicate with the user-interface using the control-in/out

channel pair as shown in Figure 4.4, and execute a continuous loop waiting on

the control-in channel for a control packet from the user-interface. When a control

packet is received the command is executed, and possibly some result packets are

sent back to the user-interface. Each module also has a number of ports for

inter-module communication, equivalent to those described in Section 3.2.1. An

input port has channels called ready-out, valid-in and packet-in, and an output-

port has channels called ready-in, valid-out and packet-out. The ready-in/out

and valid-in/out channels (which are not shown Figure 4.4) transmit and receive

single word packets containing a boolean value, and the packet-in/out channels

transmit and receive four-word memory access packets (although each word is

transmitted sequentially).

Each module has a number of parameters which are initialised on reset, and

some state and utilisation statistics which can be accessed by the user-interface.

On reset the processor module is sent the interleaving level and the processor clock

factor. The state of the processor that can be accessed includes: the contents

of the pipeline stages, the contents of the register file, and the context of each

process. The statistics recorded include: the number of instructions executed, the

number of memory requests issued and the average latency of memory requests.

The switch module is sent four parameters on reset: the combining level, the

queue size, the wait-buffer size and the switch clock factor. The request and

acknowledge queues are both set to the same size. The accessible state is: the

contents of all the latches, queues and wait-buffers in the switch. The statistics

recorded include: the number of packets received and transmitted, the number,

type and level of packets combined, and the number of request, acknowledge and

wait-buffer conflicts.

CHAPTER 4. Eppi SIMULATOR

The memory module is sent only the memory clock factor on reset, the memory

size having been defined at compile-time. The accessible state is the contents of

the latches and the memory locations. The only statistic recorded is the number

of memory accesses.

The parts of the module code which simulate the Eppi components were de-

veloped before the rest of the simulator. To ensure that they worked correctly

simple tests were performed, such as verifying the correct execution of all the

instructions in the processor. When a complete system was assembled the execu-

tion of simple test programs was analysed, and at a later stage also the execution

of the benchmark programs described in the next chapter.

4.5.1 Clocking

When a clock control packet with an argument is received the simulator part

of the module is invoked to execute the given number of cycles, after which an

acknowledgement is returned to the user-interface. The modules are not clocked

by repeatedly broadcasting single clock packets, which would be inefficient as

shown in the performance section below. With a run control packet, the modules

start clocking themselves as above, but only finish when a stop control packet

with an argument is received. The control-in channel is therefore polled every

cycle to see if a packet has arrived.

During clocking the modules are synchronised by the exchange of packets

between ports, and therefore clock at the maximum rate possible. Because of the

loosely-coupled synchronisation between the modules, each module can be one

cycle out of step with a connected module (the simulation is loose time-driven).

In a p processor simulation it is possible for a processor to be up to (log p)+l cycles

out of step with a memory (the module that is furthest from the processors), and

vice versa. The modules therefore need to be synchronised after a run, so that

they have all reached the same clock cycle. To do this the user-interface first

sends a poll control packet to all the modules (this does not interrupt the run),

CHAPTER 4. Eppi SIMULATOR 	 82

which then return their local clock count to the user-interface. The maximum

value returned is added to the maximum separation in cycles possible (as defined

above), and sent to the modules as an argument to the stop control packet. The

modules then stop when they reach this combined clock count, and return an

acknowledgement to the user-interface. The poll control packet is also used to see

how many cycles have been executed during a run.

4.5.2 Interrupts

A run may be paused periodically using the poll/stop mechanism, or may be

stopped by user keyboard input. The program being executed by the simulator

also has the capability to stop the run, by sending an interrupt to the user-

interface. The first sixteen logical memory addresses (#00 to #OF) of the Eppi

memory space are designated as special memory mapped i/o locations. By writ-

ing to the designated interrupt location (#03), the program causes the memory

module to which that address is mapped to send an interrupt packet to the

user-interface, through its jo-out channel. When the user-interface receives an

interrupt packet during a run it stops the run as described above, otherwise the

user is simply alerted that an interrupt has been received.

Interrupts are used to stop clocking after a program has finished. Generally it

is the last executing process to complete its work that invokes the interrupt. The

current clock period of the memory module is sent with the interrupt packet, and

this value is used as the completion time of the program. Because the modules

are clocked for a further number of cycles to synchronise them, the statistics

displayed after the run are not exactly the same as those at the moment the

program finished.

CHAPTER 4. Eppi SIMULATOR
	

EM

4.5.3 Clock factor

Usually the modules are set to clock at the same rate, but using the module

clock factor parameter they can be given differing clock rates. The module clock

factor dictates how many external clock cycles equal one internal clock cycle. For

instance if the switches and memories are to clock twice as fast as the processors,

then this is achieved by making the processors half as fast as the other modules by

setting the processor clock factor to two. The processors will then only execute an

internal cycle every two external clock cycles. The connected modules still expect

to receive ready and valid signals (packets) every cycle, therefore a dummy clock

routine is executed which outputs valid false and ready false to the connected

modules.

4.6 Simulator performance

Generally a p transputer domain is used when simulating a p processor Eppi

system up to 128 processors, although it is possible to use a smaller domain. With

a small domain size the number of modules executing on each slave is larger, but

as the domain size is increased the average distance between the slaves increases,

resulting in higher message transmission times. This section presents results for

the relative speed-up of the simulator with increasing domain size, and looks at

the simulator as a parallel application in its own right.

Table 4.4 shows the cycle time, relative speed-up and efficiency of simulating

a 64 processor system with increasing domain sizes of 4 to 64 slaves. Due to

a limitation of the harness the simulation could not be carried out for 1 and 2

slaves. The cycle time is the time in seconds to execute one clock cycle, and

is averaged over the execution of 1000 cycles. The speed-up is calculated rela-

tive to the 4-slave cycle time, and the efficiency is the ratio of actual speed-up

to the linear speed-up (shown in brackets). During clocking the processes are

simply executing no-operation instructions. A comparison of the cycle times of

CHAPTER 4. EppI SIMULATOR 	 84

Slaves I Cycle time(s) I Speedup (ideal) J _Efficiency

4 0.31 1.0 (1) 1.0
8 0.17 1.8 (2) 0.89

16 0.09 3.3 (4) 0.81
32 0.05 5.9 (8) 0.74
64 0.03 10.1 (16) 0.63

Table 4.4: Performance of simulator, simulating a 64 processor system, with
increasing domain size

the benchmark programs under similar conditions did not show any significant

difference to executing no-operation instructions, although the memory access

pattern of the program can affect the simulation speed as discussed below. Using

64 slaves the simulator can execute about 33 simulated cycles per second, which

is about 106 times slower than one might expect a hardware implementation to

perform. As the domain size increases, the efficiency progressively falls to 63%

for 64 slaves, which indicates that the simulator becomes communication bound

using the larger domain sizes.

As mentioned above the modules are not clocked by repeatedly broadcast-

ing a clock control packet for each clock cycle. The overhead introduced by the

repeated broadcasts and acknowledgements would certainly slow the simulator

down considerably. To compare the speed of broadcasting repeated clock control

packets with no argument (i.e., clock for one cycle only) to using a single clock

control packet with an argument, a 64 processor system was clocked for 1000

cycles on a 64 slave domain using both methods. The repeated broadcast results

in an average clocking time of 0.0987 seconds per cycle, while the more efficient

method results in a clocking time of 0.0304 seconds per cycle. The repeated broad-

cast method corresponds to the barrier synchronisation between each clock cycle

used in a shared memory time-driven simulation of a multistage network [100].

In the Eppi simulator the modules are synchronised by the exchange of packets

between ports, and can therefore clock at the maximum rate possible. Global

synchronisation of the modules is only required when the system state is to be

CHAPTER 4. Eppi SIMULATOR
	

85

accessed.

Because the pattern of packet traffic in the domain is dependent on the pro-

gram being executed by the simulator, the performance can vary with different

programs. For example if the program exhibits hot-spot behaviour, in which a

large number of memory requests are directed at one memory location, then the

number of packets routed to the memory module containing that memory loca-

tion increases. A hot-spot in the program can therefore not only increase the

execution time of the program (measured in clock cycles), but also the execution

speed of the simulator (measured in cycles per second). A similar observation

was reported in the shared memory simulation cited above.

4.7 Comments

A more recent version of the Tiny communications harness [1241 can monitor the

transputer link utilisation, allowing potential bottlenecks to be discovered. As

the speed-up results show, the simulator is communication bound and its per-

formance could be improved by reducing the number and size of packets trans-

mitted between the modules, and by optimising the placement of the modules,

which would reduce the average distance each packet has to travel. Due to time

constraints these improvements were not attempted, and work was concentrated

on evaluating the performance of the Eppi design executing three assembly code

benchmark programs which are described in the following chapter.

Chapter 5

Benchmark programs

Because the Eppi simulator models the Eppi design at the instruction level it

can be used to execute realistic parallel programs. This allows the development

and evaluation of parallel algorithms for this kind of shared memory architec-

ture. In the simulation experiments described in the next chapter three parallel

benchmark programs are used as system loads, under the assumption that they

generate memory access patterns similar to those of real parallel applications.

Since no high-level language compiler for the Eppi instruction set was available

all programming of the Eppi has been done using the Eppi assembly code defined

in Section 3.1.6.

This chapter describes the algorithms and implementation of the three bench-

mark programs. The first section explains the choice of algorithm, the next section

describes the process control mechanisms used in the programs, and the following

sections describe the algorithm and implementation of each of the programs. The

assembly code of each program is shown in Appendix A.

CHAPTER 5. BENCHMARK PROGRAMS
	

II

5.1 Choice of algorithms

The three algorithms used for the benchmark programs are: parallel matrix mul-

tiply, bitonic merge sort and Moore shortest path. These algorithms were chosen

because they were readily available in the literature [125, 126, 127], and they

satisfied the constraints for execution on the Eppi simulator. Most of these con-

straints were of a practical nature, for example:

• the algorithms should be short and easy to code in assembly language.

• they should exhibit plenty of obvious parallelism, enough to keep all the

processes busy.

• they should have reasonable time and space complexity, so that the pro-

grams do not take too long to run and do not need too much data space.

On the other hand they should be long enough to be interesting.

they should not require floating point arithmetic, as the simulated Eppi

processors only support integer arithmetic.

• they should not require dynamic process creation or memory allocation,

since there is no operating system to provide these functions.

The implementations of the algorithms each exhibit a different mode of exe-

cution, and use different parallel constructs and data structures as described in

the next section. Therefore each program should present a qualitatively differ-

ent load to the system when executed. These algorithms have been frequently

used in the evaluation of other multiprocessor designs, for example a variant of

the Moore algorithm used here has been implemented on the HEP [128], and a

paracomputer simulator [76]. The term "benchmark" is used loosely here though,

since no direct comparisons with other machines are made here.

CHAPTER 5. BENCHMARK PROGRAMS

5.2 Process control

The benchmark programs use a single-program-multiple-data (SPMD) execution

model [129], in which all the processes execute the same shared code, but are each

given a different set of data to work on. All the processes are spawned at the

beginning of the program, and continue to execute until the program is finished.

Each process performs a repeated cycle of fetching some work, executing that

work, returning the results, and then fetching more work. When all the work has

been completed the processes terminate, and the program is finished. The SPMD

model is simple to implement in a shared memory multiprocessor, and the algo-

rithms used here fit the model well. Process control in the benchmark programs

consists of spawning, synchronising and terminating processes. Since there is no

Eppi operating system all process control must be coded into the programs, and

the fetch-and-add synchronisation algorithms described in Section 2.3 form the

basis of process control for the benchmark programs as described below.

Spawning involves assigning work to a process. In the matrix multiply and

bitonic merge sort programs the test-modify-retest functions (Section 2.3.3) are

used to initially give each process a unique integer identifier which the process

uses to index into the data arrays. The Moore shortest path program uses a

parallel queue (Section 2.3.4) as a central data structure, and processes fetch

work from this queue. Since all the processes are self-scheduled [6], the load on

each processor is automatically balanced.

Apart from the implicit synchronisation which occurs during process spawn-

ing and termination, explicit synchronisation used to control access to shared

variables occurs only in the Moore shortest path program. The blocking p0 and

v() semaphore functions (Section 2.3.1) are used to lock entries in an array of

shared variables which are updated in parallel.

Termination in all three programs is detected using a termination count which

counts how much work has been completed. When a process finishes its portion

of work it increments the termination count, and then loops to the start of the

CHAPTER 5. BENCHMARK PROGRAMS 	 89

program to see if there is more work to be allocated. This will be the case in

programs where the program parallelism (the amount of work to be done) is

greater than the machine parallelism (the number of processes executing). When

the termination count has reached the given maximum value then all the work

has been completed, and the program is finished. All the processes then loop

forever doing nothing. The end of the program is identified by the last process

sending an interrupt to the user-interface (Section 4.5.2). In the pseudo-code

descriptions of the programs below, the function done C) is assumed to send the

interrupt.

Because the Eppi system provides many executing processes, context-switching

of processes in the usual operating system sense is assumed to be unnecessary

and is not used. This greatly simplifies the amount of process control necessary.

In the assembly code implementations of the benchmark programs the process

context size is kept very small, and all private variables are stored in registers.

All function calls are also expanded in-line by hand, so that no manipulation of

stacks or swapping of register sets is necessary. These optimisations have been

made to minimise the execution time of the benchmark programs.

To test the correctness of the benchmark programs the results of executing

the programs on the Eppi simulator, with various data sets, were compared with

the results of executing serial versions of the same algorithms written in C and

executing on a workstation.

5.3 Matrix multiply

The matrix multiply program calculates the product of an 1 x m integer matrix

A with an rn x n matrix B to get an 1 x n result matrix C. Each entry of the

result matrix is given by:

ce,, = 	
1' a1,kbk, where 1 = 0, 1 - 1 and j = 0, n - 1.

CHAPTER 5. BENCHMARK PROGRAMS
	

all

mt i,j,k;

mt a[1] Cm] ,b[in) [n] ,c[i] En];

forall(i=O; i<1; j++)
fora11(j0;j<n;j++){

C [i] [j]O;
for(k0 ;k<m;k++)

c[i] [j]=c[i] [j]+a[i] [k]*b[k] [j] }

Figure 5.1: Matrix multiply algorithm

5.3.1 Parallel algorithm

The parallel matrix multiply algorithm is shown in pseudo-C form in Figure 5.1.

The forall () statement is a parallel equivalent of the normal for() statement

and spawns the given number of processes, assigning each process a unique value

of the index. In this algorithm each entry of the result array c C] C] is evaluated in

parallel. There are three loops, the outer two loops are parallelised and spawn 1 x n

processes, and each process executes the inner loop sequentially summing the in

products. It would be possible to parallelise the inner loop as well, but this would

require an indivisible array update or some form of mutual exclusion. It would

be possible to use fetch-and-add to do the summing directly [79], but this is not a

general solution (there is no arithmetic error detection in the combining hardware

of the network switches). The matrix multiply algorithm has a parallelism of 1 x n,

and time complexity ®(m) (assuming constant spawning time).

5.3.2 Implementation

The matrix multiply program is implemented as shown in Figure 5.2, using normal

C syntax, and is intended to be equivalent to the actual assembly code shown

in Appendix A. On reset each of the processes begins executing the function

mmult 0. The variables declared above the function are globally accessible, and

the variables declared inside the function are private to the process. The constants

CHAPTER 5. BENCHMARK PROGRAMS 	 91

1, n and in contain the size of the arrays, the spawning count p and termination

count d are initialised as shown, and the data arrays a [] [] and b [] [I are assumed

to be initialised with the data.

The body of the function is an infinite while() loop. Within the loop the

process first calls tdrO, the blocking test-decrement-retest function defined in

Section 2.3.3, to get a unique identifier ip from which it calculates the array

indices i and j. The process then executes in iterations of the sequential for()

loop, multiplying entries from arrays a [] L] and b 1] 1] and summing the result in

temporary variable t. The result of the summation is then written to the result

array entry c Li] Ii], and the termination count d is decremented using the fetch-

and-add function f&aQ. If the result is zero the done() function is called to send

an interrupt indicating the end of the program. The process then loops back to

the beginning, and if the parallelism of the result array is larger than the number

of active processes then the process is given a new entry to evaluate, otherwise

the process blocks forever in function tdrO. This concludes the description of

the matrix multiply program.

5.4 Bitonic merge sort

The bitonic merge sort is a parallel sorting algorithm based on the recursive

application of the bitonic merge [130]. The sequence of numbers

A={a1 ,a2,...,a}

is bitonic if either:

1. there exists an integer i, where 1 < i < n, such that:

a i <a2 <...<a ~:a +i > ... >a

2. the sequence A can be cyclically shifted to satisfy the above condition.

CHAPTER 5. BENCHMARK PROGRAMS
	

92

mt p1*n-1, d1*n-1;
mt a Ell [m], b[m][n], c[1][n];

void mmultQ{
mt ip, i, j, k, t;

while(1){
lptdr(&p,-1);
ilp/n;
jlp%n;
t0;
for(k0 ;k<m;k++)

tt+a[iJ [k]*b[k] Li];
cli] [j]t;
if(f&a(&d , -1)0)

done() ;}}

Figure 5.2: Matrix multiply program

A bitonic sequence of length n can be sorted in I09 2 (n) stages using a bitonic

merge. An example of sorting a bitonic sequence of 8 integers in 3 stages is

shown in Figure 5.3. Each stage of the bitonic merge consists of a shuffle permu-

tation (Section 2.2.1), followed by a compare-exchange operation. In this case the

compare-exchange sorts each pair of numbers into increasing order (as indicated

by the> in each box), so the final sequence is sorted in increasing order from top

to bottom.

To sort an unordered sequence of integers A of length n (assuming n is even),

the list A is first divided into R unsorted bitonic subsequences of length 2:

A = {{a 1 ,a2 },. .

Each of these subsequences is labelled

A= {s1,...,s_1,s}

1

3

5

7

8

6

4

2

1

2

3

4

5

6

7

8

CHAPTER 5. BENCHMARK PROGRAMS
	

93

Figure 5.3: Example bitonic merge of a bitonic sequence of 8 integers

The subsequences Sodd(i) are then sorted into ascending order and the subse-

quences Seven (j) into descending order, using bitonic merge. The result is 11 bitonic

subsequences of length 4. By repeatedly applying bitonic merge to larger and

larger subsequences the whole sequence A is eventually sorted. To sort a Se-

quence of length n requires 1092 n iterations of bitonic merge.

5.4.1 Parallel algorithm

A parallel algorithm for bitonic merge sort is shown in Figure 5.4. The n integers

to be sorted are stored in array a[] (again assume n is even). The first sequential

for() loop executes 1092n iterations, each of which is a bitonic merge. The

second sequential for() loop executes the i stages of the bitonic merge. Since

the length of each subsequence to be merged is 2t, then 1092 2(—= i) stages of

merge are required to sort the subsequence.

In each stage of the merge n parallel processes are spawned by the first

forallO, and execute a shuffle permutation. The function shuffle() takes

an index to the array (k), it shuffles the index (the shuffle being dependent on

the iteration of the merge), and moves the entry from its original index to the

new index. Note that since the shuffle() functions are spawned in parallel

CHAPTER 5. BENCHMARK PROGRAMS
	

94

mt 1, j, k;
mt a[n];

for(i.=1 ; i<log2(n) ; j++)
for(j=1 ;j<i;j++){

fora11(k=1 ;k<=n;k++)
shuffle(a,k, i);

fora11(k1 ;k<n;k+=2)
compare_exchange(a,k,i) ;}

Figure 5.4: Bitonic merge sort algorithm

there may be conflicts for the array entries, therefore some form of conflict reso-

lution is assumed. The second forall 0 then spawns 11 processes which execute

a compare-exchange operation. The compare-exchange 0 function is given an

index to the array (k), and compares and perhaps exchanges entry a[k] and

a[k+1]. The direction of the exchange (greater than or less than) is dependent

on the iteration of the sort.

To sort a sequence of ii = 2k numbers a total of Rk + 1) stages of bitonic

merge are needed, and the algorithm has a time complexity of e (log 2 n) (assum-

ing constant spawning time) [125]. A parallel quicksort algorithm for a shared

memory multiprocessor with a combining network [131] also has a time complex-

ity of 0(log2 n). Because the number of processes in each stage is not constant

the parallel quicksort algorithm would not perform as well as the bitonic merge

sort when executed on the Eppi system.

5.4.2 Implementation

The bitonic program shown in Figure 5.5 implements the algorithm described

above, except that in each stage of the merge only 11 processes are spawned.

Each process must therefore shuffle two array entries sequentially, and then do a

compare-exchange. This arrangement appears more efficient than first spawning

n shuffles and then 2 compare-exchanges, during which the other processes must

CHAPTER 5. BENCHMARK PROGRAMS 	 95

mt i0, j=O, k0, d0;
mt a[n], b[n];

void bitonicQ{
mt 1k, id, P' q, s;
mt *from, *to, *t;

froma;
to=b;
vhile(1){

lk=tir(&k, 1 ,n/2);
p=ips(lk*2,i);
qips((lk*2)+1,i);
s(lk/(1<<i))%2;
if(((s0)&&(from[p]>fromiq]))I I((sl)&&(fromlp]<from[q]))){

to [lk*2] =from[q];
to[(lk*2)+1]from[p] ;}

else{
to[lk*2]from[p];
to[(lk*2)+1]from[q] ;}

ldf&a(&d, 1);
if((ld+1)=(n/2)){

if (i >i) {
j0;

if(i1og2(n))
done() ;}

else{
tfrom;
froin=to;
tot;
f&a(&d,-(n/2));
f&a(&k,-(n/2)) ;}}}}

Figure 5.5: Bitonic merge sort program

CHAPTER 5. BENCHMARK PROGRAMS 	 96

idle (assuming there are n processes active). Also the problem of contention for

the array entries during the shuffle is solved by having two arrays a[] and b[].

Initially the integers to be sorted are assumed to be in array a [], and array b C]

is empty. The global variable i is the iteration count, j is the stage count, and k

and d are the spawning and termination counters respectively. All these variables

are initialised to zero.

On reset each process starts executing function bitonicO. The local vari-

ables of this function, which are private to each process, are mainly local count

values and indices, with the exception of from, to and t which are pointers to

the base of an array. At the start of the function from is set to point at array

a[], and to at array b[].

The body of the while() loop starts with a call to tiro, a blocking test-

increment-retest function (Section 2.3.3), which returns an index 1k. Using this

index and the inverse (perfect) shuffle function ipsO, two indices p and q are

generated. These indices then index into the array from C] (which is actually array

a[] at this point). The correct direction for the subsequent compare-exchange

is evaluated in the sign variable s, using the current iteration count i. In the

if 0 statement the entries of array from C] indexed by p and q are compared,

and moved into the entries of array to C] (which is actually array b 0 at this

point) indexed by 1k*2 and lk*2+1. If the sign s=O and from[p] is greater than

from[q], then from[p] is moved into to[lk*2+1] and from[q] into to[lk*2].

The same occurs if s=1 and from[p] is less than from[q]. Otherwise from[p] is

moved into to[lk*2] and from[q] into totlk*2+11. Having two arrays means

that no locking has to be performed, and the pointers to the arrays simply have to

be exchanged at the end of the stage. After -the compare-exchange the termination

count d is incremented. If all the processes in that stage have finished, then the

stage count j is incremented by the last process to finish. If all the stages in the

iteration have been executed this process resets the stage count and increments

the iteration count i. If all the iterations have been executed the process then

CHAPTER 5. BENCHMARK PROGRAMS 	 97

calls done 0, indicating the end of the program. If the current iteration has

not been completed then the array pointers from and to are swapped, and the

spawning and termination counters are reset to zero. All the processes then loop

back to the start and try to get another index.

The test of the termination count d effectively forms a barrier, since the

spawning count k is only reset when all the processes have passed through the

barrier. A re-usable barrier of the sort described in Section 2.3.2 is not necessary

here, since processes can only re-enter the loop once all the other processes have

exited. This concludes the description of the bitonic merge sort program.

5.5 Moore shortest path

The Moore shortest path algorithm [132] solves the single-source shortest path

problem, that is: to find the shortest paths from a single source node to all other

nodes in a weighted directed graph. The serial algorithm is shown in Figure 5.6.

The array weight [u] [v] contains a weight for all pairs of nodes u, v. If u and

v are connected then weight [u] [v] is a positive integer greater than 0. For nodes

that are not connected weight [u] [v] =0, and also weight [u] [u] =0. The array

distance contains the distance from the source node s to all other nodes, where

initially distance [s1 =0 and the distance to all other nodes is oo. The nodes to

be searched are stored in a FIFO queue. The function enqueue() appends the

given node to the tail of the queue, and the function dequeue 0 removes a. node

from the head of the queue. The function queue_empty 0 returns non-zero if the

queue is empty, and the function in_queue() returns non-zero if the given node

is already in the queue.

The algorithm first enqueues the source node s. Then the while 0 loop is

repeatedly executed until the queue is empty. In the body of the loop a node

is dequeued (initially this will be the source node), and the for() then loops

though all the nodes. If node u is connected to node v, then newdistance is set

CHAPTER 5. BENCHMARK PROGRAMS
	

98

jut s, newdistance, u, v;
mt distance [n], weight [n][n];
struct fifoq queue;

enqueue(s);
while (queue_emptyQ){

dequeue(u);
for(u0;u<n;u++)

if (weight [u] Ev] >0) {
newdistance=distance Eu] +weight [u] Ev];
if(newdistance<distanceEv]){

distance [v] =newdistance;
if(in...queue(v))

enqueue(v) ;}}}

Figure 5.6: Moore shortest path serial algorithm

equal to distance [u] +weight [u] [v). If newdistance is less than distance [v],

then a shorter path to s from v has been found, and distance Ev] is updated.

If node v is not already in the queue then it is appended, and the next node

connected to u is examined. When there are no further nodes in the queue the

array distance E] will contain the shortest paths between s and all other nodes.

5.5.1 Parallel algorithm

The parallel Moore shortest path algorithm [125] achieves speed-up by allowing

the queued nodes to examined concurrently. A number of processes are spawned

which wait to dequeue a node from the queue, and then proceed as in the serial

algorithm. The parallel algorithm is essentially the same as the serial algorithm,

and is therefore not shown as a separate figure. Because the array distance[]

and the queue are shared data structures some form of mutual exclusion is neces-

sary to ensure correctness, for example semaphores could be used to lock both the

array and the queue during update. Also, before the algorithm terminates one

must make sure that no processes are active as well as that the queue is empty,

CHAPTER 5. BENCHMARK PROGRAMS 	 99

since it is possible that another process is still examining a node even though

there are no queued nodes.

The Moore shortest path algorithm differs from the other two algorithms

described in this chapter in that it is not so explicitly data parallel. In the

matrix multiply and bitonic merge algorithms the number of processes executing

is constant, but for the Moore algorithm the amount of parallelism available will

depend in part on the size of the graph and its density, and the contention for the

shared data structures. A comparison of two parallel implementations of single-

source and all-pairs shortest path algorithms on the HEP shows that single-source

shortest path performs more efficiently with sparse graphs [128].

5.5.2 Implementation

The implementation of the parallel Moore algorithm is shown in Figure 5.7.

To reduce the size of the data describing the graph each node has been limited

to having eight outgoing arcs. The weights of each arc are stored in the array

arc C] 11, which for each node has eight entries containing the connected node

and the weight of the arc to that node. The parallel FIFO queue structure used

to queue nodes is similar to the one described in Section 2.3.4, with a number of

changes to make it more efficient. For example, the queue upper and lower bound

counters have been replaced by the variable count, and since the queue size is

made equal to the number of nodes queue overflow is not checked for. Also each

queue entry no longer contains insert and delete semaphores, rather a special

value (-1) is used to indicate that the entry is empty. Because the maximum

number of processes is also equal to the number of nodes, there can be no race

conditions between two processes trying to delete the same queue entry.

A number of global structures and variables are defined at the start of the

program. The structure queue is assumed to be initialised with the source node

s as the first entry (in the assembly code of the Moore program the source node

is always node 0). The variable ps counts the number of active processes, and is

CHAPTER 5. BENCHMARK PROGRAMS
	

100

struct {

mt count, insert, delete;
mt entries[n] ;}queuestruct

struct{
mt node, weight;}arcstruct

struct queuestruct queue;
struct arcstruct arc [n] [8];
mt ps, ws, distance[n], iqsem[n], disem[n];

void mooreQ{
mt u, v, *qn, i, newdistance;

while (1) {

tdr(queue->count, 1);
qn=& (queue. entries [f&a(queue->delete, 1) '/.n]) ;
while((u=*qn)==(-1));

f&a(&iqseinEu] ,-i);
f&a(&ps,1);
for(i=O; i<8; i++){

varc[u] [i] .node;
newdistance=distance Eu] +arc [u] Li] weight;
p(&disexnEv]);
if (newdistance<dj stance Lv]){

distance Lv] =newdistance;
v(&disem[v]);
if (f&a(&iqsem Lv] ,

f&a(&ws, 1);
qn=&(queue.entriesEf&a(queue->insert) ,
while(*qn!(-1));
*qn=v;

f&a(queue->count, 1);
}

else

f&a(&iqsemEv] ,-1) ;}
else

v(&disem[v]) ;}
if(f&a(&ws ,-1)i)

done() ;}}

Figure 5.7: Moore program

CHAPTER 5. BENCHMARK PROGRAMS 	 101

initialised to 0. The variable us is used to detect termination, and is initialised

to 1 (since the source node is already queued at the start of the program). The

array iqsem[] indicates whether a node is in the queue (playing the part of

the in-queue(function). If node u has been queued then iqsem[u]1, or 0

otherwise. The array distance C] contains the distances from the source node,

and is initialised so that distance [s] =0 and all other entries have a very large

value. The array disem[] contains the semaphores used to lock entries in the

distance[] array. If disem[u]1 then distance[u] is locked, and the process

must wait to access the array.

On reset the processes start executing function moore 0. Each process has

a number of private variables including u and v which are node numbers, and

qn which is a pointer to a queue entry. The process first calls tdr0, which

decrements the queue count. If the queue is empty (countO), then tdr() will

block. The queue delete pointer is then incremented, and qn set to point at

the head queue entry. The process then checks that the queue entry has a valid

node in it, reads it into u, and marks the queue entry empty. Since node u

has now been dequeued iqsem [u] is decremented, and the process count ps is

incremented. The process then loops though each of the 8 outgoing arcs from

node u. For each connected node v the process calculates the newdistance,

and then locks distance[v] using the p0 semaphore function (Section 2.3.1).

Assuming that the new path length is shorter than the current path length, the

process updates distance[v] and unlocks the entry using the v() semaphore

function. The node v must then be enqueued, so iqsem[v] is first checked to

make sure it is not already in the queue. If not, the termination count us is

incremented, and qn is set to point to the tail queue entry. The process then

waits until the queue entry is empty. Node v is then written to the queue entry,

and count incremented. If after all the arcs have been examined wsl, then the

program is finished and done() is called.

The process count ps is not used directly in the algorithm, but allows the

CHAPTER 5. BENCHMARK PROGRAMS 	 102

number of active processes to be traced by examining the value of this variable

during execution. The termination count ws is incremented when a new node

is enqueued, and decremented when a process finishes examining a node. Its

value is therefore similar to count, but it is not possible to use count directly to

detect termination because of race conditions which can occur. This concludes

the description of the Moore shortest path program.

5.6 Comments

For the simulation experiments described in the next chapter a number of versions

of each benchmark program were assembled with different data sizes. The data

for the programs is randomly generated. Each assembled program is referred to

by a combination of mnemonic and number: for example mm256, bit4096, and

moo32. The mnemonic refers to the program type, and the number indicates

the parallelism of the program. For matrix multiply and bitonic merge sort the

program parallelism is directly related to the data size: for example the mm256

program has a result array of 256 entries and a parallelism of 256, the bit4096

program has a sequence of 8192 entries to sort and a parallelism of 4096. For the

Moore shortest path program the number refers to the number of nodes in the

graph: for instance the moo32 program has a graph with 32 nodes. This defines

the maximum parallelism possible, but the exact parallelism is data dependent.

Chapter 6

Performance evaluation

This chapter describes the simulation experiments carried out using the Eppi sim-

ulator. The majority of the experiments involve observing the effect of changing

the Eppi system parameters on the performance of the Eppi design, as measured

by the execution time of the programs and other execution statistics collected by

the simulator. The first section investigates the speed-up of the programs exe-

cuting on increasing system sizes. The following sections investigate the effect on

performance of increasing the switch queue and wait-buffer size, combining level,

processor interleaving level, and the module clock factor. Most of the simulation

results are shown as graphs of program execution time (in clock cycles), and the

other execution statistics are shown as tables in Appendix B. The final section

presents dynamic execution profiles for each of the benchmark programs.

For most of the simulations the data size of the program being executed is

chosen to be a saturation load. This means the program parallelism is the same

as the system parallelism, and all processes have some work to do. For example

with a 16 processor system and an interleaving level of 16, giving a total of

256 processes, a 256 entry result array is used for the matrix multiply program

(mm256). In all simulations the given switch queue size applies to both request

and acknowledge queues, and the given wait-buffer size applies to each wait-buffer.

103

CHAPTER 6. PERFORMANCE EVALUATION 	 104

6.1 Program speed-up

The speed-up simulation experiments investigate how the execution time of each

benchmark program (with constant data size) changes as the system size is in-

creased. The speed-up of a program is dependent on both the scalability of the

system on which the program is being executed, and the scalability of the pro-

gram itself. The scalability of the Eppi design is predominantly dependent on

the interconnection network: the memory access latency grows logarithmically

with network size and is further increased by contention. The Eppi processor ar-

chitecture tries to overcome the increased latency by instruction interleaving, and

the switch architecture tries to reduce the contention by combining. The scala-

bility of the program depends on how the program parallelism increases with the

problem size, and the amount of process control overhead..

6.1.1 Simulation details

For the speed-up simulations the mm4096, bit4096 and moo4096 programs were

executed on increasing system sizes of 1 to 256 processors. The default values

of the system parameters were: an interleaving level of 16, 2-way combining, a

queue size of 4 packets, a wait-buffer size of 16 packets, and equal module clock

factors.

The graphs of execution time, speed-up, efficiency and memory latency for

the programs are shown in Figures 6.1 to 6.4. The speed-up and efficiency are

additionally shown numerically in Table 6.1. The detailed simulation results are

shown in Tables B.2 to B.4 of Appendix B.

6.1.2 Description of results

For all three programs the execution time (Figure 6.1) is reduced as system size

increases. Bitonic has the longest execution time, and matrix multiply and Moore

have (coincidentally) similar execution times. The speed-up (Figure 6.2) is calcu-

CHAPTER 6. PERFORMANCE EVALUATION
	

105

2.5e+07

2e+07

0

1.5e+07

Ei

le+07

5ei-06

256

64

0.

16

4

o 	 - JU 	 10

1 	4 	16 	64 	256 	 1 	4 	16 	64 	256

processors 	 processors

Figure 6.1: Execution time for all 	Figure 6.2: Speed-up for all three
three programs with increasing sys- 	programs with increasing system
tern size. 	 size.

201

0.8
15

0.6

.
0 0.4

0

0.2

C

10

5
7i

	

0 • 	 0

	

1 	4 	16 	64 	256 	 1 	4 	16 	64 	256

processors 	 processors

Figure 6.3: Efficiency for all three 	Figure 6.4: Memory latency for all
programs with increasing system 	three programs with increasing sys-
size. 	 tern size.

CHAPTER 6. PERFORMANCE EVALUATION 	 106

program matrix multiply bitonic Moore

processors speed-up efficiency speed-up efficiency speed-up I efficiency

1 1.00 1.00 1.00 1.00 1.00 1.00

2 2.00 1.00 1.94 0.97 1.88 0.94

4 3.99 1.00 3.51 0.88 3.34 0.84

8 7.30 0.91 6.35 0.79 5.93 0.74

16 13.23 0.83 11.64 0.73 10.08 0.63

32 24.55 0.77 21.25 0.66 16.49 0.52

64 44.80 0.70 37.58 0.59 22.39 0.35

128 82.35 0.64 63.40 0.50 26.60 0.21

256 152.23 0.59 100.43 0.39 29.35 0.11

Table 6.1: Speed-up and efficiency of matrix multiply (mm4096), bitonic (bit4096)
and Moore (moo4096) programs with increasing system size.

lated relative to the single processor execution time of each program, the dashed

line on the graph showing the ideal linear speed-up. Matrix multiply has the

best speed-up, and Moore the worst - already reaching the knee of the curve

at 32 processors. How much the programs fall below the ideal speed-up is shown

more clearly by the graph of efficiency (Figure 6.3). The efficiency is derived by

dividing the actual speed-up by the expected linear speed-up, and the resulting

fraction shows how well the system is being utilised with each increase in sys-

tem size. The numerical results in Table 6.1 show that the efficiency for matrix

multiply is 59% compared to 11% for Moore with 256 processors. The memory

latency (Figure 6.4) for matrix multiply is almost at the minimum possible for

each system size (shown by the dashed line), and for the other two programs it

is close to the minimum.

The detailed results (Tables B.2 to B.4) show that the processor utilisation

decreases as the system size increases for all programs, mainly due to the increas-

ing memory latency. With 64 or more processors the memory latency is higher

than the interleaving level. Also, the number of instructions executed to complete

each program should ideally be almost the same as the system size is increased.

This is the case for matrix multiply, but for bitonic and Moore the number of

instructions executed increases monotonically with system size. This indicates

CHAPTER 6. PERFORMANCE EVALUATION 	 107

that the processes are spending more time busy-waiting.

6.1.3 Summary

The speed-up experiments show the matrix multiply program is executing near

the design's limit, since the execution efficiency of the program is similar to the

processor efficiency. The other programs have worse performance caused by con-

tention and lack of program parallelism. Whether increasing the interleaving level

can increase processor utilisation, and improve execution time, is investigated in

Section 6.4.

6.2 Queue and wait-buffer size

The queue and wait-buffer size simulation experiments investigate the effect of

varying the switch queue and wait-buffer size on system performance. Previous

research on non-combining networks [56, 59] and the network simulations in Sec-

tion 3.2.6 show that the network throughput improves as queue size is increased,

but that the network latency also rises. When a hot-spot is present increasing the

queue size is less effective in improving throughput. Previous research on com-

bining networks [73] shows that the number of combinations may be increased

by larger request queues. Also the effectiveness of combining will be reduced if

possible combinations cannot occur because the wait-buffers are full.

6.2.1 Simulation details

For the queue and wait-buffer simulations the saturation load programs were

executed on system sizes of 2 to 128 processors (256 for matrix multiply), with

varying queue size of 2 to 32 packets and varying wait-buffer size of 2 to 32

packets. The default values of the other system parameters were: an interleaving

level of 16, 2-way combining, and equal module clock factors.

The graphs of execution time for the programs are shown in Figures 6.5 to 6.19,

CHAPTER 6. PERFORMANCE EVALUATION

40000

0000

U

20000
0

I
10000

key processors

—8--- 2
—8--- 4 —er-- 8
—8--- 16
—V--- 32
—N— 64
—H-----• 128 _-

p1ssisI

20000

C)

15000
C)

0
- 10000

C,

5000

0

	

2 	4 	8 	16 	32

queue size

Figure 6.5: Execution time of matrix
multiply with varying queue size and
wait-buffer size 2.

	

700001 	 I

	

60000 	 4
/

	

—8- 16 	 I

	

V 32 	 I
04 	64

	

150000 	 128 	 /
256

40000

30000

20000

10000
- I

0
2 	4 	8 	16 	32

queue size

Figure 6.7: Execution time of matrix
multiply with varying queue size and
wait-buffer size 8.

0
2 	4 	8 	16 	32

queue size

Figure 6.6: Execution time of matrix
multiply with varying queue size and
wait-buffer size 4.

300001 	I 	 I
I

25000

20000

C)

15000
0

1 10000

5000

0 	 --
2 	4 	8 	16 	32

queue size

Figure 6.8: Execution time of matrix
multiply with varying queue size and
wait-buffer size 16.

CHAPTER 6. PERFORMANCE EVALUATION
	

109

30000

25000

200000

160000

r key processors

—9-- 2
4

—fr-- S
16

—V--- 32

Go

20000

S
15000

0

1 10000

'120000

I
80000

40000
5000

0

	

2 	4 	8 	16 	32

queue size

Figure 6.9: Execution time of matrix
multiply with varying queue size and
wait-buffer size 32.

	

2000001 	 I

160000

120000

I
80000

40000

	

0 	 -
2 	4 	8 	16 	32

queue size

Figure 6.10: Execution time of
bitonic with varying queue size and
wait-buffer size 2.

	

200000 	 ___________

160000

120000

I
80000

40000

0
2 	4 	8 	16 	32

queue size

Figure 6.11: Execution time of
bitonic with varying queue size and
wait-buffer size 4.

0 •
2 	4 	8 	16 	32

queue size

Figure 6.12: Execution time of
bitonic with varying queue size and
wait-buffer size 8.

CHAPTER 6. PERFORMANCE EVALUATION
	

110

200000

160000

go
C)

120000

000

40000

0
2 	4 	8 	16 	32

queue size

Figure 6.13: Execution time of
bitonic with varying queue size and
wait-buffer size 16.

200000
key processors

—0--- 2
—9--- 4
—'p'--- 8

160000 —4-- 16
—V--- 32

a, 	 —4--- 64
C)

120000

80000

40000

200000

160000

a,
C)

120000

80000

40000

0
2 	4 	8 	16 	32

queue size

Figure 6.14: Execution time of
bitOnic with varying queue size and
wait-buffer size 32.

250000
key processors

—0--- 2
—9--- 4
—i'-- 8 —a--- 16
—V--- 32
—H-- 64
—K— 128

C)

E
4.I

0

- 100000

50000

200000

a,
C)
C.)

150000

0 •
2 	4 	8 	16 	32

queue size

Figure 6.15: Execution time of
Moore with varying queue size and
wait-buffer size 2.

0 -
2- 	4 	8 	16 	32

queue size

Figure 6.16: Execution time of
Moore with varying queue size and
wait-buffer size 4.

CHAPTER 6. PERFORMANCE EVALUATION
	

111

150000

125000

a)

i00000

75000
0

1 50000

25000

0 •
2 	4 	8 	16 	32

queue size

Figure 6.17: Execution time of
Moore with varying queue size and
wait-buffer size 8.

120000

120000

100000

a)

1 80000
S

60000
C
0

1 40000

0
2 	4 	8 	16 	32

queue size

Figure 6.18: Execution time of
Moore with varying queue size and
wait-buffer size 16.

100000

a)

80000

60000
0

40000

20000

0 •
2 	4 	8 	16 	32

queue size

Figure 6.19: Execution time of
Moore with varying queue size and
wait-buffer size 32.

CHAPTER 6. PERFORMANCE EVALUATION 	 112

and are arranged so that each graph shows the execution time of one program

with a constant wait-buffer size and varying queue size. The detailed simulation

results are shown in Tables B.5 to B.25 of Appendix B.

6.2.2 Description of results

The matrix multiply program with a wait-buffer size of less than 16 packets

(Figures 6.5 to 6.7), shows an initial drop in execution time between a queue size

of 2 and 4 packets. On systems larger than 32 processors, there is an increase in

execution time as the queue size increases above 4 packets. With a wait-buffer

size of 16 or more (Figures 6.8 to 6.9), increasing the queue size has little effect

on execution time. Increasing the wait-buffer size decreases the execution time

for each system size, up to a point above which there is no further improvement.

For matrix multiply on the 256 processor system this maximum wait-buffer size

is 16 packets.

The bitonic program (Figures 6.10 to 6.14), shows a similar pattern to matrix

multiply. The initial drop in execution time between queue size 2 and 4 occurs

for all wait-buffer sizes. Above a wait-buffer size of 8 there is little change in

execution time, though a wait-buffer size of 32 is necessary for there to be no

wait-buffer full events with 128 processors (Table B.18).

The results for the Moore program (Figures 6.15 to 6.19), are less consistent

than the other two programs. In some cases a queue size of 8 gives the minimum

execution time, and in others a queue size of 4. Again, increasing queue size with

small wait-buffers increases execution time. Increasing the wait-buffer size above

16 results in little change in execution time.

The detailed results for all the programs (Tables B.5 to B.25), show that as

queue size is increased the number of request and acknowledge queue conflicts

decreases, leading to a decrease in memory latency. The number of combinations

also increases slightly with queue size. With small wait-buffers the number of

queue conflicts is significantly higher, resulting in increased memory latency. If

CHAPTER 6. PERFORMANCE EVALUATION 	 113

the wait-buffer size is sufficiently large then there are fewer or no queue conflicts.

6.2.3 Summary

There is a general drop in execution time as queue size increases from 2 to 4,

and then little further change assuming the wait-buffers are sufficiently large. No

increase in latency with queue size, comparable to that in the isolated network

simulations in Section 3.2.6, occurs. This is because the Eppi network is part

of a closed system, and so the load on the network is related to its throughput

(as there are only a finite number of possible memory requests which can be in

progress at any one time). The maximum wait-buffer size necessary for no wait-

buffer full events to occur increases with system size, and also varies with the

program. Overall a queue size of 4 and a wait-buffer size of 16 is sufficient to give

close to the best performance for all the simulated system sizes and programs.

6.3 Combining level

The combining level experiments investigate the effect of increasing the combining

level (including no combining) on system performance. Previous research [58, 59]

and the network simulations in Section 3.2.6 show that hot-spots degrade the

performance of non-combining multistage networks. This is also the case in the

Eppi system when combining is turned off: the execution times of the programs

become so large with no combining, that only simulations with small numbers

of processors could be completed within the time constraints on access to the

ECS. Previous research [58] shows 2-way combining to be sufficient to improve

performance for networks with up to 64 inputs, but for larger networks and higher

loads 3-way combining must be used [73, 741. From the results of the previous

two sections it appears that the Eppi network does perform acceptably with 2-

way combining, as indicated by the average memory latency being close to the

minimum. Therefore the contention for any hot-spots must be sufficiently low

CHAPTER 6. PERFORMANCE EVALUATION 	 114

or transient for 2-way combining to remain effective. Increasing the combining

level could improve performance though, by allowing more combinations to occur.

With higher combining levels the acknowledge queues must be large enough to

accept the multiple decombinations, and the maximum wait-buffer size necessary

may be reduced even though the number of combinations increases [74].

6.3.1 Simulation details

For the combining level simulations the saturation load programs were executed

on system sizes of 2 to 256 processors, with no combining and 2-way to 4-way

combining. The default values of the other system parameters were: an inter-

leaving level of 16, a queue size of 4 packets, a wait-buffer size of 64 packets and

equal module clock factors.

The graphs of execution time for the programs are shown in Figures 6.20

to 6.22. Additionally the number of combinations occurring for the 3-way and

4-way combining levels are shown in Table 6.2. The detailed simulation results

are shown in Tables B.26 to B.28 in Appendix B.

6.3.2 Description of results

For the matrix multiply program (Figure 6.20), results with no combining were

obtained for up to 32 processors (the last point was omitted from the graph

and falls at 52434 cycles). It can be seen that from 8 processors the execution

time becomes much higher with no combining compared to 2-way combining. As

the combining level is increased above 2-way there no change in execution time.

Most of-the possible combinations are already occurring with 2-way combining,

and there are only very few 3 or 4-way combinations (Table 6.2).

For the bitonic program (Figure 6.21), results with no combining were only

obtained for up to 8 processors (above this the simulation did not finish even

after 96 hours running time). Again the performance with no combining is im-

CHAPTER 6. PERFORMANCE EVALUATION
	

115

40000

-' 30000

20000

key k-way

—0-- 0
E3 1

—h--- 2
—0--- 3

200000

-160000

I
L00000

key k-way

—e— 2 1
—fr-- 3 I
—0---

0
	

0

I
rixsiie

0 .
2 4 8 16 32 64 128 256

processors

Figure 6.20: Execution time for ma-
trix multiply with increasing com-
bining level.

0
24 8 16 32 64 128 256

Processors

Figure 6.21: Execution time for
bitonic with increasing combining
level.

150000

125000

—100000

key k-way

—0-- 0
—0-- 2
—ar--- 3
—4--- 4

75000

1 50000

25000

0
24 8 16 32 64 128 256

processors

Figure 6.22: Execution time for
Moore with increasing combining
level.

CHAPTER 6. PERFORMANCE EVALUATION 	 116

program - matrix multiply bitonic Moore
4- way processors k 3-way 4-way 3-way 	(4-way 3-way

2 30 0 1251 0 1227 0

2 4 0 0 1359 117 1167 177

4 33 0 4003 0 2986 0

4 T 3 1 3993 325 2869 294

8 31 0 9867 0 9419 0

8 T 1 0 9598 747 9312 848

16 3 0 0 23452 0 15884 0

16 4 0 0 22847 1949 15631 1623

32 3 3 0 54808 0 48713 0

32 4 2 1 52732 5108 41621 4968

64 3 0 0 123055 0 97673 0

64 4 0 0 116873 13135 96503 11956

128 3 0 0 271698 0 230059 0

128 4 0 0 255587 31839 220639 27824

256 3 0 0 - - 560267 0

256 4 0 0 - - 567841 77392

Table 6.2: 3 and 4-way combinations for matrix multiply, bitonic and Moore

programs.

mediately worse than with 2-way combining. As the combining level is increased

the execution time does decrease slightly for the larger system sizes. The detailed

results (Table B-27) show that the number of acknowledge queue conflicts is re-

duced, even though the number of multiple decombinations increases with the

combining level. The total number of combinations increases, although in some

cases there is a drop between 3-way and 4-way combining.

For the Moore program (Figure 6.22), results with no combining were obtained

for up to 32 processors (the final point was omitted from the graph and falls at

5038280 cycles). Increasing the combining level above 2-way actually reduces

performance in most cases. The detailed results (Table B.28) show that the

memory latency is reduced as combining level increases, and that the number of

combinations increases.

Further simulations were carried out in which each only one decombine can

occur every cycle (the detailed results are not presented here). This means that

returning packets have to stay in the input latches of the acknowledge ports until

CHAPTER 6. PERFORMANCE EVALUATION 	 117

all matching packets in the wait-buffers are decombined. Increasing the combining

level then results in a large decrease in performance, due to the blockage of the

inputs of the return network by acknowledge packets waiting to decombine. This

leads to request queue conflicts occurring in the switches connected to the hot

memories. The ability to decombine multiple packets is necessary if greater than

2-way combining is to be used.

6.3.3 Summary

With no combining the performance of the network is drastically reduced even

with only 8 processors, as a result of the increased number of request queue con-

flicts and memory accesses. Increasing the combining level above 2-way may im-

prove the performance slightly depending on the program being executed. Over-

all, there is not enough improvement to warrant the extra implementation cost

of increasing the combining level above 2-way.

6.4 Interleaving level

The interleaving level simulation experiments investigate the effect of increasing

the interleaving level (number of processes per processor) on system performance.

The single processor simulations in Section 3.1.7 show that, for a given memory

latency and instruction mix, there is an optimal interleaving level which results

in the maximum processor utilisation and throughput per process. Increasing the

interleaving level above the optimal number reduces the throughput per process

as the processes have to contend for the processor resources. In the Eppi system

the size of the program being executed must be increased if the interleaving level

is increased, otherwise the extra processes will not have any useful work to do and

will simply busy-wait. The optimal program parallelism will also be determined

by the system parallelism, and ideally the best performance should result when

the program and system parallelism are equal.

CHAPTER 6. PERFORMANCE EVALUATION 	 118

6.4.1 Simulation details

For the interleaving level simulations the programs were executed on system sizes

of 1 to 64 processors, with interleaving levels of 16 to 64 processes per processor

(incremented in steps of 8 processes). The program size used was large enough

to saturate the highest interleaving level, and was used for all the simulations

with that system size. For instance with the 64 processor system the mm4096

program was used, which saturates all 4096 processes when the interleaving level

is 64. Larger system sizes than 64 processors were not simulated because 4096

was largest program size assembled, and also due to time constraints. The default

values of the other system parameters were: 2-way combining, a queue size of 4

packets, a wait-buffer size of 64 packets and equal module clock factors.

The execution times of the programs with increasing interleaving level are

shown in Figures 6.23 to 6.25. The detailed simulation results are shown in

Tables B.29 to B.34 of Appendix B.

6.4.2 Description of results

For the matrix multiply program (Figure 6.23), an interleaving level of 32 pro-

cesses per processor results in the minimum execution time for all system sizes.

With less than 16 processors the execution times with interleaving levels of 16,

32 and 64 are similar, but with 16 or more processors an interleaving level of 16

performs less well than an interleaving level of 32. In all cases an interleaving

level of 56 results in the worst performance.

The results from the bitonic program (Figure 6.24) are similar to matrix mul-

tiply. For up to 16 processors the minimum execution time is with an interleaving

level of 16, changing to 32 as the system size increases above 16 processors. An

interleaving level of 64 performs worse than an interleaving level of 16, and the

maximum execution time again occurs with an interleaving level of 56.

For the Moore program (Figure 6.25), an interleaving level of 16 initially

CHAPTER 6. PERFORMANCE EVALUATION
	

119

120000
	

le+06

100000

0,

:1 80000

60000
0

40000

key 	proceo&ns
—e— i
—32--- 2

- -.---- 4
—0--- 8

• —9-- 16
—84-- 32

\--- 64

111611141,411,

0,

p600000

400000

20000

0_
16 24 32 40 48 56 64

interleaving level

Figure 6.23: Execution time for ma-
trix multiply with increasing inter-
leaving level.

400000

200000

0
16 24 32 40 48 56 64

interleaving level

Figure 6.24: Execution time for
bitonic with increasing interleaving
level.

700000

600000

300000
0,

C)

a
200000

0

I
100000

0
16 24 32 40 48 56 64

interleaving level

500000

e' 400000

.2300000

200000

100000

0
0 8 16 24 32 40 48 56 64

interleaving level

Figure 6.25: Execution time for 	Figure 6.26: Execution time for ma-

Moore with increasing interleaving 	trix multiply on 16 processors with

level, 	 increasing interleaving level.

CHAPTER 6. PERFORMANCE EVALUATION
	

120

1

0.8

0

Cd
a

.5 0.6
a

I-

0.4
2
p.

0.2

1

0.8

0
a

0.6

Br

a

0.4

0.2

0
0 8 16 24 32 40 48 56 64

interleaving level

Figure 6.27: Processor utilisation
for matrix multiply on 16 processors
with increasing interleaving level.

0 .
0 8 16 24 32 40 48 56 64

interleaving level

Figure 6.28: Network utilisation for
matrix multiply on 16 processors
with increasing interleaving level.

gives the best performance, changing to 24 with 32 or more processors. There

is a monotonic increase in execution time as further processes are added. The

detailed results (Tables B.33 to B.34) show an almost monotonic increase in

memory latency with interleaving level, and a monotonic increase in request and

acknowledge queue conflicts. The number of f&a combinations also increases with

interleaving level.

A further simulation was carried out in which the matrix multiply mm1024

program was executed on a 16 processor system, with the interleaving level being

varied from 1 to 64 processes in steps of one. The default values of the other

system parameters were as above. The execution time, processor and network

utilisation are shown in Figures 6.26 to 6.28.

The minimum execution time (Figure 6.26) occurs at 32 processes, although

the curve has almost leveled off by 16 processes after which there are three

"ramps", with drops in execution time at 22, 32 and 64 processes. The graphs

of processor (Figure 6.27) and network utilisation (Figure 6.28) show a similar

CHAPTER 6. PERFORMANCE EVALUATION 	 121

behaviour to the single processor simulations in Section 3.1.7. The processor util-

isation reaches a maximum at 22 processes, after which there are similar ramps,

and the network utilisation reaches the maximum at 20 processes.

6.4.3 Summary

The best execution times for matrix multiply and bitonic occur with interleaving

levels of 16, 32 or 64 depending on system size, since the program parallelism

is a power of 2 for both these programs. The lowest execution time for these

two programs occurs with an interleaving level of 32, even though each process

has to do twice as much work as with an interleaving level of 64. Increasing the

interleaving level above 32 results in increased contention, which is shown by the

increase in memory latency for bitonic, and cannot be compensated for by adding

more processes. For the Moore program it is clear that the program parallelism

is not large enough to support an increased number of processes. With large

interleaving levels the majority of processes have no work to do and busy-wait,

as shown by the increased number of Ma combinations.

6.5 Relative module speed

The relative module speed simulation experiments investigate how the speed of

the network and memory (or memory subsystem) affects the system performance.

The speed of the memory subsystem is varied from 4 times slower to 4 times

faster than the processors, using the module clock factor system parameter (Sec-

tion 4.5.3). Increasing the speed of the memory subsystem above that of the

processors should reduce the memory latency and decrease the program execu-

tion time.

CHAPTER 6. PERFORMANCE EVALUATION 	 122

6.5.1 Simulation details

For the relative module speed simulations the saturation load programs were exe-

cuted on system sizes from 2 to 256 processors, with varying module clock factors.

To make the processors execute slower than the memory subsystem the proces-

sor module clock factor is increased, and vice versa for the memory subsystem.

The default values of the other system parameters were: an interleaving level 16,

2-way combining, a queue size of 4 packets and a wait-buffer size of 64 packets.

The execution time and resulting speed-up for the programs are shown in

Figures 6.29 to 6.34. The memory subsystem speed ratio shows the relative speed

of the memory subsystem to the processors. The detailed simulation results are

shown in Tables B.35 to B.40 of Appendix B.

6.5.2 Description of results

For all programs and system sizes (Figures 6.29 to 6.31), the execution time de-

creases as the speed of the memory subsystem is increased from 4 times slower

than the processors to equal, but above this significant further decreases in execu-

tion time are seen only with 32 or more processors. The speed-up for each system

size (Figures 6.32 to 6.34), is calculated relative to the execution time with equal

module speed. When the speed ratio is below 1 the speed-up is similar to the

speed ratio, but increases with system size for all programs. Slowing down the

memory subsystem therefore slows down the larger systems comparatively less

(an exception appears to be Moore on 256 processors). When the speed ratio is

above 1 the speed-up is less than the speed ratio, but increases with system size.

Increasing the memory subsystem speed therefore increases the overall speed of

the larger systems comparatively more.

The detailed results (Tables B.35 to B.40) show that the processor utilisation

increases with memory subsystem speed, but reaches the maximum utilisation

at some point depending on the system size. The network utilisation decreases

CHAPTER 6. PERFORMANCE EVALUATION
	

123

100000

90000

80000

co
• 70000

60000

s0000
a
0

- 40000

30000

20000

10000

memory subsystem speed ratio

Figure 6.29: Execution time with
increasing memory subsystem speed
for matrix multiply.

500000

400000

0

L00000
0

a
0

" 200000

100000

700000

600000

500000
U

;w400000
4

a
300000

200000

100000

0
0.25 	0.5 	1 	2 	4

memory subsystem speed ratio

Figure 6.30: Execution time with
increasing memory subsystem speed
for bitonic.

-I

2

0.

0.5

0 .
0.25 	0.5 	1 	2 	4

memory subsystem speed ratio

Figure 6.31: Execution time with
increasing memory subsystem speed
for Moore.

0.25
0.25 	0.5 	1 	2 	4

memory subsystem speed ratio

Figure 6.32: Speed-up with increas-
ing memory subsystem speed for
matrix multiply.

CHAPTER 6. PERFORMANCE EVALUATION
	

124

4
	

4

	

2
	

I

p. 	 p.
p 	 p
41 	 ii

	

0.5
	

[sLI

0.25°
0.25 	0.5 	1 	2

	
4

memory subsystem speed ratio

Figure 6.33: Speed-up with increas-
ing memory subsystem speed for
bitonic.

0.25
0.25 	0.5 	1 	2

	
4

memory subsystem speed ratio

Figure 6.34: Speed-up with increas-
ing memory subsystem speed for
Moore.

steadily, since the load on the network is reduced, converging to 25% utilisation

with a speed ratio of 4 for all system sizes. Comparing the increases in memory

latency with the speed ratio shows that although the changes in memory latency

are lower than the speed ratio, they are greater than the values for speed-up.

Therefore the network performance does increase with speed ratio, above what

the execution times and speed-up suggest. As the speed ratio is increased the

number of combinations decreases, since there is less congestion and fewer chances

to combine, resulting in an increase in the number of memory accesses.

6.5.3 Summary

The results show that increasing the memory subsystem speed above the pro-

cessor speed does not necessarily result in an equal increase in overall system

performance. With smaller systems the memory latency quickly drops to the

minimum as the speed ratio is increased, and the processor throughput becomes

the performance bottleneck, as shown by the processor utilisation. Larger sys-

CHAPTER 6. PERFORMANCE EVALUATION 	 125

tems show better response to increasing the memory subsystem speed, but the

return in performance is not sufficient to justify the cost of increasing the mem-

ory subsystem speed. Reducing the memory subsystem speed below the processor

speed results in an equal performance drop.

6.6 Program execution profiles

The execution profile simulation experiments investigate how the system perfor-

mance varies during the execution of the programs. In the above simulations the

execution statistics were displayed at the end of each simulation. These statistics

represent either the total number of occurrences or the averaged value of some

variable during the simulation, and provide little information about the dynamic

behaviour of the program. By displaying the execution statistics at regular inter-

vals during the program an execution profile (or trace) can be created. In addition

to the usual execution statistics some of the program variables are displayed as

well, in particular the process scheduling and termination counters, which allow

the number of active processes to be derived.

6.6.1 Simulation details

For the execution profile simulations the mm1024, bit1024 and moo1024 pro-

grams were executed on a 64 processor system, and the execution statistics were

displayed every 10 clock cycles during the simulation. The wait-buffer size used

was 8 packets for the mm1024 and bit1024 programs, and 16 for the mool024

program (so that some queue conflicts would occur). The default values of the

other system parameters were: an interleaving level of 16, 2-way combining, a

queue size of 4 packets, and equal module clock factors.

The execution profiles for the programs are shown in Figures 6.35 to 6.63.

The eventual totals of the execution statistics can be found in the relevant parts

of the queue and wait-buffer simulation result Tables in Appendix B.

CHAPTER 6. PERFORMANCE EVALUATION
	

126

1200

1000

800

600

400

200
I-I

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

ciks

Figure 6.35: Execution profile for matrix multiply showing the number of active
processes.

1 	 I 	 I 	 I 	 I 	 I

0.9

0.4
0.3
0.2

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

ciks

Figure 6.36: Execution profile for matrix multiply showing the processor utilisa-
tion.

1

0.8

0.6

0.4

0.2

I'

0
	

2000 	4000 	6000 	8000 	10000 	12000 	14000

ciks

Figure 6.37: Execution profile for matrix multiply showing the network utilisa-
tion.

CHAPTER 6. PERFORMANCE EVALUATION
	

127

40

30

j20

10

U

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

ciks

Figure 6.38: Execution profile for matrix multiply showing the average memory
latency.

	

1000 	I 	 I 	 I

800

600

400

20: I

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

ciks

Figure 6.39: Execution profile for matrix multiply showing the number of request
queue conflicts.

	

300 	I 	 I 	 I

250

200

150

100

50

0
0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

elks

Figure 6.40: Execution profile for matrix multiply showing the number of wait-
buffer full events.

CHAPTER 6. PERFORMANCE EVALUATION
	

128

20

15

0 10

5

1'.
U

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

elks

Figure 6.41: Execution profile for matrix multiply showing the number of ac-
knowledge queue conflicts.

500

400

E 300

200

100

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

elks

Figure 6.42: Execution profile for matrix multiply showing the number of load
combinations.

	

150 	 I 	 I 	 I 	 I 	 I

125

E 100
0
C)

C4.. 	
50

25

	

0 	 I 	 I 	 I 	 I 	 I

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

elks

Figure 6.43: Execution profile for matrix multiply showing the number of f&a
combinations.

CHAPTER 6. PERFORMANCE EVALUATION

300 	 I

250

200

150

100

50 JTTT
0 	2000 	4000 	6000 	8000 	10000 	12000

ciks

129

14000

Figure 6.44: Execution profile for matrix multiply showing the number of memory
accesses.

6.6.2 Description of matrix multiply profile

At the start of the program each process fetches the index of a result array

element at 200 cycles, and the number of active processes (Figure 6.35) increases

to the maximum of 1024 in about 100 cycles. There is a resulting peak in the

number of load and f&a combinations (Figures 6.42 and 6.43), and wait-buffer

full events (Figure 6.40) as the semaphore is accessed. The base addresses of the

two operand arrays are then loaded into registers, resulting in another peak in

the number of load combinations at 400 cycles.

Each process then starts executing the 32 iterations of the product-sum loop.

In each iteration two operand array elements are fetched, multiplied and added to

the sum. The accesses to the operand arrays cause contention because they are all

to different memory locations, and there is no combining. This is shown by the rise

in request queue conflicts (Figure 6.39) and memory latency (Figure 6.38), and

results in a reduction of processor and network utilisation (Figures 6.36 and 6.37)

at 800 and 1200 cycles. The first iteration shows more features than subsequent

iterations, probably because the processes become more "smeared out".

When the iterations are finished the processes write to the result array, shown

by the increase in memory accesses (Figure 6.44) at 12500 cycles. Each process

CHAPTER 6. PERFORMANCE EVALUATION 	 130

then increments the termination counter, resulting in an increase in f&a combina-

tions starting at 13000 cycles. There are about 1000 cycles between the first and

last process to finish. The program finishes at 14031 cycles (when the interrupt

is received by the user-interface).

6.6.3 Description of bitonic merge sort profile

The bit1024 program sorts an array of 2048 integers in 66 merge iterations, but

only the first 3 iterations are shown in each profile since the subsequent 63 iter-

ations are essentially identical. The interrupt indicating the end of the program

is received at 148008 cycles. Only the first iteration is described below, but the

description applies equally to all iterations.

Each process first fetches an index which points to the result array entries,

with the number of active processes (Figure 6.45) reaching the maximum 1024 in

about 100 cycles. Access to the index causes the two peaks in f&a combinations

(Figure 6.53) at 100 and 200 cycles, and a high number of wait-buffer full events.

Just after the start of the iteration at 400 cycles there is a peak in request queue

conflicts (Figure 6.49), resulting in a peak in memory latency (Figure 6.48) and

decreases in processor and network utilisation (Figure 6.46 and 6.47).

The processes then calculate the positions of the two operand array entries by

performing two inverse perfect shuffle operations. These are mainly arithmetic

operations, so the processor and network utilisation is high, and there are many

(instruction) load combinations (Figure 6.52). After the shuffles have been cal-

culated the entries are fetched from the operand array, compared and written to

the result array, with corresponding peaks in memory accesses (Figure 6.54) at

1100 and 1600 cycles.

The processes then finish the iteration by incrementing the termination counter

at 1500 cycles, with about 200 cycles between the first and last process to finish.

During the next 900 cycles before the next iteration starts the last process to

finish the iteration initialises the next iteration, while the other 1023 processes

CHAPTER 6. PERFORMANCE EVALUATION
	

131

1200

1000

800

600

400

200
1
U

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

elks

Figure 6.45: Execution profile for bitonic showing the number of active processes.

	

1 	 I 	 I 	 I 	 I

0.8

0.6

0.2

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

elks

Figure 6.46: Execution profile for bitonic showing the processor utilisation.

0.8

0.6

	

0.4

1 	 I 	 I 	 I 	 I

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

ciks

Figure 6.47: Execution profile for bitonic showing the network utilisation.

	

CHAPTER 6. PERFORMANCE EVALUATION
	

132

30

25

20
Cd
 15 Ei

10

U

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

ciks

Figure 6.48: Execution profile for bitonic showing the average memory latency.

700 	 I 	 I 	 I 	 I

600

500

08400

300

200

100 	
l.

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

ciks

Figure 6.49: Execution profile for bitonic showing the number of request queue

conflicts.

300 	 I 	 I

250

200

150

100

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

ciks

Figure 6.50: Execution profile for bitonic showing the number of wait-buffer full

events.

CHAPTER 6. PERFORMANCE EVALUATION
	

133

20

15

0
.10

Cd

—i

0
0
	

1000 	2000 	3000 	4000 	5000 	6000 	7000

ciks

Figure 6.51: Execution profile for bitonic showing the number of acknowledge
queue conflicts.

500

400

E 300
0

10
 200

100

I'

0
	

1000 	2000 	3000 	4000 	5000 	6000 	7000

dks

Figure 6.52: Execution profile for bitonic showing the number of load combina-
tions.

	

200 	 I 	 I 	 I 	 I

150

	

I 100 	 t 50

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

ciks

Figure 6.53: Execution profile for bitonic showing the number of f&a combina-
tions.

CHAPTER 6. PERFORMANCE EVALUATION
	

134

250

200

C) 150
C)
Cd

E 100

50

0
0 	1000 	2000 	3000 	4000 	5000 	6000 	7000

elks

Figure 6.54: Execution profile for bitonic showing the number of memory accesses.

busy-wait. This results in the large peak in f&a combinations from 1500 cycles,

and increased memory latency.

6.6.4 Description of Moore shortest path profile

The moo1024 program has an irregular profile compared to the other two pro-

grams, and the profile is also much longer (as only a part of the bitonic profile

was shown). It is therefore more difficult to match changes in the profile to what

the processes are executing. There are no wait-buffer full events so this profile is

not included.

Initially there is only one process executing, which then places other nodes to

be examined into the queue. The other processes busy-wait until a node becomes

available on the queue. When a process gets a node it searches all the connected

nodes, updates the distance if there is a shorter path, and queues that node.

The profile of active processes (Figure 6.55) shows a slow increase up to the

maximum 1024 processes in about 20000 cycles. The number of processes then

drops and begins to tail-off at about 40000 cycles, taking another 40000 cycles

to actually finish. The interrupt is received by the user-interface at 85871 cycles.

The process profile shows that the processes spend their time busy-waiting. The

processor and network utilisations (Figures 6.56) and 6.57) show large initial

CHAPTER 6. PERFORMANCE EVALUATION
	

135

1200

1000

800

600

400

200

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

elks

Figure 6.55: Execution profile for Moore showing the number of active processes.

1

0.8

= 0.6

0.4

0.2

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

elks

Figure 6.56: Execution profile for Moore showing the processor utilisation.

1

0.8

0.6

0.4

0.2

0
0
	

10000 20000 30000 40000 50000 60000 70000 80000 90000

elks

Figure 6.57: Execution profile for Moore showing the network utilisation.

CHAPTER 6. PERFORMANCE EVALUATION 	 136

20

15

Cd 10

5

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

ciks

Figure 6.58: Execution profile for Moore showing the average memory latency.

20

15

110

5

0 ,
0 	10000 20000 30000 40000 50000 60000 70000 80000 90000

ciks

Figure 6.59: Execution profile for Moore showing the number of request queue
conflicts.

20

15

0
C)
Cr
Cd

5

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

elks

Figure 6.60: Execution profile for Moore showing the number of acknowledge
queue conflicts.

CHAPTER 6. PERFORMANCE EVALUATION 	 137

700

600

500

400

300

200

100

0
0 	10000 20000 30000 40000 50000 60000 70000 80000 90000

elks

Figure 6.61: Execution profile for Moore showing the number of load combina-
tions.

I' L
0 	10000 20000 30000 40000 50000 60000 70000 80000 90000

elks

Figure 6.62: Execution profile for Moore showing the number of f&a combina-
tions.

400

300

200

100

0:
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

elks

Figure 6.63: Execution profile for Moore showing the number of memory accesses.

CHAPTER 6. PERFORMANCE EVALUATION 	 138

oscillations which then average out as the number. of active processes increases.

Both the request and acknowledge queue conflicts (Figures 6.59 and 6.60) show

an increase as the number of active processes increases. The load combinations

and f&a combinations (Figures 6.61 and 6.62) both show large initial oscillations,

and decrease as more processes become active and there is less busy-waiting. The

number of memory accesses increases (Figure 6.63) as more processes do useful

work.

6.7 Comments

The execution profiles convey information which cannot be gleaned from the

averaged execution statistics, such as the occurance of transient peaks in the

memory latency. Such information can be used to improve the implementation of

programs, for example the bitonic merge sort profile shows that the time between

each iteration is almost as long the iteration itself. During this time most of the

processes are idle and spin on a semaphore. It may be possible to change the

bitonic program so this is avoided, and so improve the execution time.

This concludes the simulation experiments chapter; in the final chapter the

simulation results are summarised, and suggestions for further experiments made.

Chapter 7

Conclusion

In this thesis the Eppi MIMD shared memory multiprocessor design has been

described, and its performance evaluated by simulation. The hounds on processor

utilisation with varying interleaving level and memory latency, and a synthetic

instruction mix, were first investigated using a serial single processor simulator.

Next the bounds on network throughput and latency with varying queue size, net-

work load and hot-spot percentage were investigated using a serial isolated net-

work simulator. After this an instruction level simulation of the complete Eppi

system, capable of executing realistic programs, was implemented in Occam on

a distributed memory multiprocessor using a distributed time-driven simulation

methodology. Parallel versions of the matrix multiply, bitonic merge sort and

Moore shortest path algorithms were implemented in the Eppi assembly code,

using fetch-and-add based process control mechanisms. These benchmark pro-

grams were used as system loads for the simulator. Simulation experiments were

then carried out using the Eppi simulator in which the speed-up and execution

profile of the benchmark programs were investigated, as well as the effect on the

performance of the Eppi system of switch queue and wait-buffer size, combining

level, interleaving level and relative module speed.

The simulation results are summarised below, and then some suggestions for

139

CHAPTER 7. CONCLUSION 	 140

future work are made.

7.1 Summary of results

The prominent features of the Eppi design are that it has instruction interleaved

processors, the processors and memories are connected by a combining multi-

stage network, and the fetch-and-add instruction is used as the synchronisation

primitive. A large amount of numerical data has been collected in the Eppi sim-

ulations, and these results are drawn together here in two sections focusing on

instruction interleaving and combining, and the simulation methodology is also

discussed in a third section.

7.1.1 Instruction interleaving

Instruction interleaving has been implemented in a number of single processor

designs, the HEP multiprocessor machine, and also more recent hybrid message-

passing multiprocessor designs, and is likely to receive further attention in the

future. The main advantage of instruction interleaving is that it gives the pro-

cessor a degree of latency tolerance, since other processes can be executed while

memory accesses take place, increasing the processor utilisation. A subsidiary

advantage, assuming only a single instruction is issued per process at any one

time, is that the processor can be heavily pipelined despite performance limiting

branch and data dependencies (it would be possible to issue multiple instructions

per stream assuming it can be easily checked that no dependencies are violated).

If the parallelism of the program to be executed is not greater than the inter-

leaving level, then there are also no context-switching costs, since the context

of all the processes is stored in the processor. Of course there must be suffi-

cient parallelism in the application programs to be able to use all these processes

effectively.

The single Eppi processor simulation results in Chapter 3 showed that the

CHAPTER 7. CONCLUSION 	 141

processor utilisation increases as more processes are added, up to a maximum

level dependent on the instruction mix and the memory cycle time. With unit

memory latency and an average workload, 9 processes are needed to achieve the

maximum utilisation. When the memory latency is increased by increasing the

number of memory pipeline stages, more processes must be added to maintain the

same utilisation. If more processes are added after the maximum utilisation has

been reached then the throughput of each individual process is correspondingly

reduced.

The complete Eppi system simulations in Chapter 6 showed, in the speed-up

simulations, that the processor utilisation falls as the system size is increased

since the fixed interleaving level of 16 processes is not enough to compensate for

the increasing memory latency. With 256 processors the average memory latency

is between 18 and 20 cycles, with transient peaks reaching values higher than

this. The relative module speed simulations showed that as the network speed is

increased the processor utilisation quickly reaches the maximum, and therefore

fewer processes are necessary to maintain the same utilisation.

The interleaving level and execution profile simulations showed that each

benchmark program has an optimal interleaving level related to the program

parallelism. For all three programs the best performance was achieved with a

system parallelism less than the program parallelism. For the Moore program

this was because the majority of processes were not doing useful work, while for

the matrix multiply and bitonic programs the highest interleaving level (of 64

processes) caused increased contention within the processors and network.

The interleaving level required to utilise the processor pipeline fully is related

to the length of the execution pipeline and the memory latency. In an implemen-

tation of the processor the interleaving level would be fixed, and thus the size of

the system could only be scaled within this fixed limit. Also in small systems the

interleaving level would be higher than required by the memory latency. One pos-

sible solution would be to dynamically vary the interleaving level by scheduling

CHAPTER 7. CONCLUSION 	 142

new processes on demand, as in the HEP processor.

The processor design assumed that integer multiply and divide operations

could be done in a single pipeline stage, which is not realistic. In an implemen-

tation a number of pipeline stages would be required, and the interleaving level

would have to be increased to maintain the processor utilisation. Similarly the

benchmark programs were hand coded and included no subroutines or explicit

context-switching, thus reducing their execution time considerably. The simu-

lation results can be regarded as optimistic because of these assumptions, and

represent the best performance one could expect from an implementation of this

design.

7.1.2 Combining and fetch-and-add

Multistage networks have received considerable attention in the context of shared

memory multiprocessor designs, and have been implemented in the HEP and

RP3 machines. A multistage network can provide similar throughput to a full

crossbar but with higher latency. Memory hot-spots can seriously degrade the

performance of these networks by causing tree-saturation. Combining requests

to the same memory location reduces the number of accesses to the hot memory,

thereby reducing the access time to the hot-spot and improving overall network

throughput. The fetch-and-add instruction and associated algorithms have been

developed by the Ultracomputer project, and with combining can provide efficient

synchronisation.

The isolated Eppi network simulations in Chapter 3 showed that with a uni-

form memory address distribution the network throughput reaches above 90%

as the buffer size is increased to 32 packets, but that the network latency also

increases. A small buffer size of 4 to 8 packets is thus optimal. When a hot-spot

is introduced, which can be as small as 1 in every 200 memory accesses, the net-

work throughput is much reduced and does not improve when the queue size is

increased.

CHAPTER 7. CONCLUSION
	

143

The complete system Eppi simulations in Chapter 6 showed, in the queue

size simulations, that with pairwise combining a queue size of 4 to 8 packets

also provides acceptable performance. The wait-buffer size simulations showed

that if the wait-buffers are not large enough to accept most combinations then

performance is reduced as the queue size is increased, due to the increased memory

latency. As the system size is increased the wait-buffer size must obviously be

increased to cope with the increased number of combinations. A wait-buffer size

of 16 packets or larger is required for the 256 processor system. The combining

level simulations showed that with no combining the network performance is much

reduced. With 16 or more processors none of the programs finished within the

simulation time available. Overall, pairwise combining appears to be sufficient to

maintain performance for the simulated system sizes and benchmark programs,

and increasing the combining level does not produce a worthwhile improvement

in performance.

Because each processor executes a number of processes the number of possible

concurrent requests to the same memory location is higher than in a machine

with single instruction stream processors. Larger wait-buffer sizes are therefore

necessary, and the number of combinations increases with increased interleaving

level. The execution profiles show there is more load combining than fetch-and-

add combining, the majority of which are instruction fetches. Spinning on a lock

with fetch-and-add does cause the average memory latency to increase, although

no tree-saturation occurs.

The switch design assumed that a packet could be combined and clocked

through the switch in a single cycle, which is also not realistic. In an imple-

mentation the switch would be pipelined, which could increase the network la-

tency. Pairwise combining switches with one-input queues have already been

designed and fabricated [67, 68]. The high hardware cost of multistage networks

has prompted investigation of alternative networks [133], but regardless of the

network topology some form of combining will still be necessary.

CHAPTER 7. CONCLUSION
	

144

7.1.3 Time-driven simulation

Simulation of large Eppi systems at the instruction level would not have been

feasible using a conventional workstation due to the memory as well as the CPU

requirements, and so a parallel simulator was used. To the author's knowledge

the Eppi simulator is the largest simulator of its kind, and has provided detailed

and accurate simulation results of larger system sizes than has been previously

achieved. The simulator speed-up figures show that the performance of the simu-

lator becomes communication bound using the larger domain sizes. Simulating a

64 processor system on a 64 transputer domain results in an order of magnitude

speed-up over simulating the same system on a 4 transputer domain.

In a distributed time-driven simulation the simulator modules synchronise us-

ing message-passing.. This allows more parallelism than a shared memory time-

driven simulation using barrier synchronisation, because connected modules syn-

chronise directly by the exchange of packets. The clocking and synchronisation

method described here could be used for other time-driven simulators to be imple-

mented on distributed memory multiprocessors or shared memory multiprocessors

supporting message-passing primitives.

The Occam language allows the parallelism of the Eppi design at the module

level to be easily expressed, and the packet communication of the Eppi intercon-

nection network can be naturally implemented using message-passing. The main

drawback, due to the static nature of Occam and the transputer domains, is the

re-compilation of the simulator necessary for each different domain size.

7.2 Future work

The suggestions for future work are divided into practical improvements which

could be undertaken immediately, and more long term directions for further re-

search.

CHAPTER 7. CONCLUSION
	

145

7.2.1 Immediate improvements

Both the Eppi design and simulator could benefit from improvements. In the case

of the Eppl design to increase it's functionality without changing its structure,

and in the case of the simulator to increase it's functionality and performance.

The Eppi processor should have floating point instructions, which could be

simply added in the same manner as the current integer arithmetic functions.

Some extra flags to deal with floating point exceptions, and instructions for type

conversion would also be required. The combining mechanism in the switch

nodes should be extended so that all different types of memory access can be

combined, not just load and fetch-and-add accesses. Also a more general fetch-

and-4 operation could be added (where q is one of or, mm, max, add, etc [721),

allowing the most efficient instruction for the application to be used.

Further developments to the simulator should include trying to improve its

performance by reducing the number of packets that are sent between the mod-

ules, and also by optimising the placement of the modules (though this may be

a non-trivial problem [1341). The number of statistics that the simulator collects

should be increased to include the number of ready signals sent, the general in-

struction type executed, and the number of memory requests and accesses should

be. broken down into the individual types. The ability to collect memory address

traces efficiently should be added, so these can be used to drive higher perfor-

mance trace-driven simulators. The collection of the wait-buffer full events should

be corrected so it counts all wait-buffer conflicts. The simulator should also allow

the size of the acknowledge queues to be separately set.

The addition of floating-point to the processors would allow a wider range of

benchmark programs to be implemented, and the simulator could also be used to

investigate parallel algorithms for real process scheduling [76, 77] and dynamic

memory allocation [135] for example.

CHAPTER 7. CONCLUSION
	 146

7.2.2 Further research

Areas for further research involve adding to the structure of the Eppi design.

An obvious next step would be to investigate the caching of instructions and/or

data in each processor. Caching would have the effect of reducing network traffic

and latency, and therefore fewer processes would be required per processor. In

the situation where all the processes are executing the same program (as in the

benchmark programs) a high hit rate could be expected from an instruction cache.

An instruction cache would also be the simplest to add as there is no consistency

problem. With data caches some form of cache coherence is necessary [136,

137]. A possible solution would be not to cache fetch-and-add accesses, or to tag

memory words which may not be cached. The RP3 for example allows pages to

be marked non-cacheable, and cache lines can be selectively invalidated [3]. The

easiest cache organisation to include in the design would be a fully-associative

cache with line size 1, which would require no change to the network design. If

the cache units were added between the processor interface and the network then

no change to the processor would be required either.

To investigate paged virtual memory using the Eppi design would require

the addition of a translation look-aside buffer (TLB) to the processors, and some

sort of block transfer page i/o mechanism to a (simulated) mass storage device.

A current problem is maintaining consistency between the TLB's, and various

mechanisms have been proposed [138, 139]. Other topics for research include

operating system issues, for example process scheduling, process protection, and

memory allocation. Some investigations into using fetch-and-add based operating

primitives have already been carried out [76, 77], and an implementation of a

UNIX-like operating system on the RP3 is being undertaken [140].

This concludes the final chapter of the thesis; the appendices following this

chapter contain the assembly code listings of the benchmark programs, and the

detailed simulation results from the complete Eppi system simulations.

Bibliography

Arvind and R. lanucci, Parallel computing in Science and Engineering,

vol. LNCS 295, ch. Two fundamental issues in multiprocessing, pp. 61-88.

Springer-Verlag, 1987.

L. Bhuyan, Q. Yang, and D. Agrawal, "Performance of multiprocessor in-

terconnection networks," IEEE Computer, pp. 25-37, Feb. 1989.

W. Brantley, K. McAuliffe, and J. Weiss, "RP3 Processor-Memory Ele-

ment," in Proceedings of the International Conference on Parallel Process-

ing, pp. 782-797, Aug. 1985.

M. Dubois, F. Briggs, I. Patil, and M. Balakrishnan, "Trace-driven simula-

tions of parallel and distributed algorithms in multiprocessors," in Proceed-

ings of the International Conference on Parallel Processing, pp. 909-916,

Aug. 1986.

A. Norton and G. Pfister, "A methodology for predicting multiprocessor

performance," in Proceedings of the International Conference on Parallel

Processing, pp. 772-781, Aug. 1985.

P. Tang, P.-C. Yew, and C.-Q. Zhu, "Processor self-scheduling in large

multiprocessor systems," in 2nd. SIAM Conference on Parallel Processing

for Scientific Computing, Nov. 1985.

147

BIBLIOGRAPHY
	

148

[7] J. Archibald and J. Baer, "Cache coherance protocols: Evaluation using a

multiprocessor simulation model," ACM Transactions of computer systems,

pp. 273-298, Nov. 1986.

[81 T. Feng, "A Survey of Interconnection Networks," IEEE Computer, vol. 14,

pp. 12-27, Dec. 1981.

[9] C. Ramamoorthy and H. Li, "Pipeline Architecture," ACM Computing Sur-

veys, vol. 9, pp. 61-102, Mar. 1977.

[101 K. Hwang and F. Briggs, Computer architecture and parallel processing.

McGraw-Hill, 1985.

N. Topham, A. Omondi, and R. Ibbett, "On the design and performance

of conventional pipelined architectures," Journal of Supercomputing, no. 1,

pp. 353-393, 1988.

S. McFarling and J. Hennessy, "Reducing the Cost of Branches," in Proceed-

ings of the International Symposium on Computer Architecture, pp. 396-

403, 1986.

D. Lilja, "Reducing the branch penalty in pipelined processors," IEEE

Computer, vol. 21, pp. 47-55, July 1988.

R. Hockney and C. Jesshope, Parallel Computers. Adam Huger, 1981.

J. Goodman, J.-T. Hsieh, K. Liou, A. Plezkun, P. Schechter, and H. Young,

"PIPE: A VLSI Decoupled Architecture," in Proceedings of the Interna-

tional Symposium on Computer Architecture, pp. 20-27, 1985.

R. Lee, P.-C. Yew, and D. Lawrie, "Data prefetching in shared memory

multiprocessors," in Proceedings of the International Conference on Parallel

Processing, pp. 28-31, Aug. 1987.

BIBLIOGRAPHY
	

149

T. Chen, "Parallelism, Pipelining and Computer Efficiency," Computer De-

sign, pp. 69-74, Jan. 1971.

M. Flynn, A. Podvin, and K. Shimizu, "A multiple instruction stream pro-

cessor with shared resources," in Parallel processor system technologies and

applications, pp. 251-286, 1970.

N. Topham, "A Parallel Machine Description," Internal Document, Depart-

ment of Computer Science, University of Edinburgh, 1986.

C. Staley and S. Butner, "A Feasibility Study of the Circulating Context

Multiprocessor (CCMP)," in Proceedings of the International Conference

on Parallel Processing, pp. 455-462, Aug. 1986.

A. Hartmann and J. Ullman, "Model Categories for Theories of Parallel

Systems," Technical Report PP-341-86, MCC, 1986. reprinted in Parallel

Computing by Lipovski and Malek.

Arvind and D. Culler, "Dataflow architectures," Annual Review of Com-

puter Science, vol. 1, pp. 225-253, 1986.

Arvind and R. lanucci, "A Critique of Multiprocessing Von Neumann

Style," in Proceedings of the International Symposium on Computer Ar-

chitecture, pp. 426-436, 1983.

D. Cajski, D. Padua, D. Kuck, and R. Kuhn, "A second opinion on dataflow

machines and languages," IEEE Computer, pp. 58-69, Feb. 1982.

R. Hockney, "Performance of parallel computers," in High speed computa-

tion (J. Kowalik, ed.), pp. 159-175, NATO ASI Series, 1984.

N. Topham, "An Efficient Architecture for Concurrent VLSI Systems," In-

ternal document, Department of Computer Science, University of Edin-

burgh, 1987.

BIBLIOGRAPHY
	

150

H. Jordan, "Performance measurements on HEP - a pipelined MIMD com-

puter," in Proceedings of the International Symposium on Computer Archi-

tecture, pp. 207-218, 1983.

E. Miller, "A Multiple-Stream Registerless Shared-Resource Processor,"

IEEE Transactions on Computers, vol. 23, Pp. 277-285, Mar. 1974.

L. Shar and E. Davidson, "A Multi miniprocessor Implemented through

Pipelining," IEEE Computer, pp. 42-51, Feb. 1974.

W. Kaminsky and E. Davidson, "Developing a Multiple-Instruction-Stream

Single-Chip Processor," IEEE Computer, pp. 66-76, Dec. 1979.

K. Shimizu, E. Goto, and S. Ichikawa, "CPC(Cyclic Pipeline Computer)

- An Architecture Suited for Josephsonand Pipelined-Memory Machines,"

Technical Report 86-19, University of Tokyo, Dept. Information Science,

Nov. 1986.

T. Turton, "A Proposed High-Speed Computer Design," Computer Archi-

tecture News, pp. 7-21, 1979.

N. Topham, A. Omondi, and R. Ibbett, "Context-Flow: An alternative

to conventional pipelined architectures," Journal of Supercomputing, no. 2,

pp. 29-53, 1988.

D. Rogers and N. Topham, -Implementing a practical context flow ma-

chine," Internal document, Department of Computer Science, University of

Edinburgh, 1989.

M. Dubois, "Acache-based multiprocessor with high efficiency," in Proceed-

ings of the International Conference on Parallel Processing, pp. 646-648,

Aug. 1985.

BIBLIOGRAPHY
	

151

T. Mankovich, V. Popescu, and H. Sullivan, "CHoPP principles of op-

eration," in Proceedings 2nd International Conference on Supercomputing

(L. Kartashev, ed.), pp. 2-10, 1987.

R. Buehrer and K. Ekanadham, "Incorporating dataflow ideas into von Neu-

mann processors for parallel execution," IEEE Transactions on Computers,

vol. 36, pp. 1515-1522, Dec. 1987.

J. Solworth, "The microflow architecture," in Proceedings of the Interna-

tional Conference on Parallel Processing, pp. 113-117, 1988.

R. lannucci, "Toward a dataflow/von Neumann hybrid architecture," in

Proceedings of the International Symposium on Computer Architecture,

pp. 131-140, May 1988.

M. Pease, "The indirect binary n-cube microprocessor array," IEEE Trans-

actions on Computers, vol. 26, pp. 548-573, May 1977.

D. Lawrie, "Access and Alignment of Data in Array Processor," IEEE

Transactions on Computers, vol. 24, pp. 1145-1155, Dec. 1975.

M. Franklin, D. Wann, and W. Thomas, "Pin Limitations and Partion-

ing of VLSI Interconnection Networks," IEEE Transactions on Computers,

vol. 31, pp. 1109-1116, Nov. 1982.

M. Franklin and S. Dhar, "Interconnection Networks: Physical Design and

Performance Analysis," Journal of Parallel and Distributed Computing,

vol. 1, no. 3, pp. 352-372, 1986.

H. Siegel and R. McMillen, "The Multistage Cube: A Versatile Intercon-

nection Network," IEEE Computer, vol. 14, pp. 65-76, Dec. 1981.

W. Fuchs, J. Abraham, and H. Kuang-Hua, "Concurrent Error Detection in

VLSI Interconnection Networks," in Proceedings of the International Sym-

posium on Computer Architecture, pp. 309-315, 1983.

BIBLIOGRAPHY
	

152

L. Coke and G. Lipovski, "Banyan Networks for Partitioning Multiproces-

sor Systems," in Proceedings of the International Symposium on Computer

Architecture, pp. 21-28, 1973.

J. Patel, "Performance of Processor-Memory Interconnections for Multi-

processors," IEEE Transactions on Computers, vol. 30, pp. 771-780, Oct.

1981.

C. Wu and T. Feng, "On a Class of Multistage Interconnection Networks,"

IEEE Transactions on Computers, vol. 29, pp. 696-702, Aug. 1980.

K. Batcher, "The Flip network in Staran," in Proceedings of the Interna-

tional Conference on Parallel Processing, pp. 65-71, Aug. 1976.

A. Tripathi and G. Lipovski, "Packet Switching in Banyan Networks,"

in Proceedings of the International Symposium on Computer Architecture,

pp. 160-167, Apr. 1979.

A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and

M. Snir, "The NYU Ultracomputer - Designing an MIMD Shared Mem-

ory Parallel Machine," in Proceedings of the International Symposium on

Computer Architecture, pp. 27-42, Apr. 1982.

S. Lundstrom, "Applications considerations in the system design of highly

concurrent multiprocessors," IEEE Transactions on Computers, vol. 36,

pp. 1292-1309, Nov. 1987.

A. Gottlieb and J. Schwartz, "Networks and Algorithms for Very-Large-

Scale Parallel Computation," IEEE Transactions on Computers, pp. 27-36,

Jan. 1982.

P.-Y. Chen, D. Lawrie, P.-C. Yew, and D. Padua, "Interconnection networks

using shuffles," IEEE Computer, pp. 55-64, Dec. 1981.

BIBLIOGRAPHY
	

153

M. Kumar and J. Jump, "Performance Enhancement in Buffered Delta

Networks using Crossbar Switches and Multiple Links," Journal of Parallel

and Distributed Computing, vol. 1, pp. 81-103, 1984.

D. Dias and J. Jump, "Analysis and Simulation of Buffered Delta Net-

works," IEEE Transactions on Computers, vol. 30, pp. 273-282, 1981.

C. Kruskal and M. Snir, "The Performance of Multistage Interconnec-

tion Networks for Parallel Processors," IEEE Transactions on Computers,

pp. 1091-1098, Dec. 1983.

N. Pfister and V. Norton, "Hot-Spot Contention and Combining in Multi-

stage Interconnection Networks," in Proceedings of the International Con-

ference on Parallel Processing, pp. 790-797, Aug. 1985.

R. Lee, "On hot spot contention," Computer Architecture News, pp. 15-20,

Nov. 1985.

T. Lang and L. Kurasaki, "Nonuniform traffic spots (NUTS) in multistage

interconnection networks," in Proceedings of the International Conference

on Parallel Processing, pp. 191-195, Aug. 1988.

L. Wu, "Mixing Traffic in a Buffered Banyan Network," in Proceedings 9th

Data Communications Symposium, pp. 134-139, Sept. 1985.

M. Kumar and G. Pfister, "The Onset of Hot Spot Contention," in Pro-

ceedings of the International Conference on Parallel Processing, pp. 29-34,

C. Staley, Design and analysis of the CCMP: a highly expandable shared

memory parallel computer. PhD thesis, UC San Diego, 1986.

P.-C. Yew, N.-F. Tzeng, and D. Lawrie, "Distributing hot-spot addressing

in large-scale multiprocessors," in Proceedings of the International Confer-

ence on Parallel Processing, pp. 51-58, Aug. 1986.

BIBLIOGRAPHY
	

154

R. Thomas, "Behaviour of the Butterfly Parallel Processor in the presence

of memory hot spots," in Proceedings of the International Conference on

Parallel Processing, pp. 46-50, 1986.

R. Rettberg and R. Thomas, "Contention is no Obstacle to Shared-Memory

Multiprocessing," Communications of the ACM, vol. 29, pp. 1202-1212,

Dec. 1986.

S. Dickey, R. Kenner, and J. Solworth, "A VLSI combining network for

the NYU Ultracomputer," in Proceedings IEEE International Conference

on Computer Design, (Port Chester, NY.), pp. 110-113, Oct. 1985.

S. Dickey, A. Gottlieb, R. Kenner, and Y.-S. Liu, "Designing VLSI network

nodes to reduce memory traffic in a shared memory parallel computer,"

Tech. Rep. Ultracomputer note 125, NYU Ultracomputer project, 1986.

H. Park, Smart switching node in an MIMD architecture. PhD thesis, NY

Polytechnic University, Dec. 1986.

S. Wang, Y. Hsu, and C. Tan, "A high performance VLSI message switch

for multi-processor systems," Tech. Rep. RC 14718, IBM Research division,

1989.

A. Gottlieb, B. Lubachevsky, and L. Rudolph, "Basic techniques for the ef-

ficient coordination of very large numbers of cooperating sequential proces-

sors," ACM Transactions on Programming Languages and Systems, vol. 5,

pp. 164-189, Apr. 1983.

C. Kruskal, L. Rudolph, and M. Snir, "Efficient synchronisation on multi-

processors with shared memory," ACM Transactions on Programming Lan-

guages and Systems, vol. 10, pp. 579-601, Oct. 1988.

BIBLIOGRAPHY
	

155

G. Lee, C. Kruskal, and D. Kuck, "The effectiveness of combining in shared

memory parallel computers in the presence of hot spots," in Proceedings

of the International Conference on Parallel Processing, pp. 35-41, 1986.

G. Lee, "A performance bound of multistage combining networks," IEEE

Transactions on Computers, vol. 38, pp. 1387-1395, Oct. 1989.

G. Andrews and F. Schneider, "Concepts and Notations for Concurrent

Programming," ACM Computing Surveys, vol. 15, pp. 3-41, Mar. 1983.

L. Rudolph, Software structures for ultra parallel computing. PhD thesis,

New York University, NY, 1982.

J. Wilson, Operating system data structures for shared-memory MIMD ma-

chines with fetch-and-add. PhD thesis, New York University, June 1988.

T. Axelrod, "Effects of synchronisation barriers on multiprocessor perfor-

mance," Parallel Computing, no. 3, pp. 129-140, 1986.

G. Almasi and A. Gottlieb, Highly parallel computing. Benjamin Cummings,

1989.

P. Heidelberger and S. Lavenberg, "Computer performance evaluation

methodology," IEEE Transactions on Computers, vol. 33, pp. 1195-1220,

Dec. 1984.

M. Ajmone-Marsan, G. Balbo, and G. Conte, Performance models of mul-

tiprocessor systems. MIT Press, 1986.

A. Pashtan, "A prolog implementation of an instruction-level processor sim-

ulator," Software Practice and Experience, vol. 17, pp. 309-318, May 1987.

D. Coelhol, The VHDL Handbook. Kluwer Academic, 1989.

D. May and C. Keane, "Compiling OCCAM into silicon," Technical

Note 23, Inmos Ltd., Bristol, UK, Feb. 1987.

BIBLIOGRAPHY
	

156

D. Shepherd, "The role of OCCAM in the design of the T800," Technical

Note 47, Inmos Ltd., Bristol, UK, Sept. 1988.

C. Stunkel and W. Fuchs, "TRAPEDS: Producing traces for multicomput-

ers via execution driven simulation," in Proceedings of the International

Conference on Measurement and Modelling of Computer Systems, pp. 70-

78, May 1989.

K. So, F. Darema, D. George, and V. Norton, "PSIMUL - A system for par-

allel simulation of parallel systems," Tech. Rep. RC 11674, IBM Research

Division, 1987.

S. Baylor and B. Rathi, "A study of the memory reference behaviour of

Engineering/ Scientific applications in parallel processors," in Proceedings

of the International Conference on Parallel Processing, vol. 1, pp. 78-82,

Aug. 1989.

M. Kumar and K. So, "Trace driven simulation for studying MIMD paral-

lel computers," in Proceedings of the International Conference on Parallel

Processing, vol. 1, pp. 68-72, Aug. 1989.

F. Darema-Rogers, G. Pfister, and K. So, "Memory access patterns of par-

allel scientific programs," in Proceedings ACM Sigmetrics conference on

measuring and modelling computer systems, pp. 46-58, May 1987.

S. Abraham, A. Gottlieb, and C. Kruskal, "Simulating shared memory

parallel computers," Tech. Rep. Ultracomputer note 70, Ultracomputer re-

search laboratory, Apr. 1984.

J. Peacock, J. Wong, and E. Manning, "Distributed simulation using a

network of processors," Computer Networks, vol. 3, pp. 44-56, 1979.

BIBLIOGRAPHY
	

157

M. Franklin, D. Wann, and K. Wong, 'Parallel machines and algorithms for

discrete event simulation," in Proceedings of the International Conference

on Parallel Processing, pp. 449-458, Aug. 1984.

J. Misra, "Distributed discrete-event simulation," ACM Computing Sur-

veys, vol. 18, PP. 39-65, Mar. 1986.

D. Reed, A. Malony, and B. McCredie, "Parallel discrete event simula-

tion using shared memory," IEEE Transactions on Software Engineering,

vol. 14, pp. 541-553, Apr. 1988.

R. Chamberlain and M. Franklin, "Hierarchical discrete-event simulation

on hypercube architectures," IEEE Micro, pp. 10-20, Aug. 1990.

M. Davoren, "A structural mapping for parallel digital logic simulation," in

Proceedings of the SCS Multiconference on Distributed Simulation, pp. 179-

182, Mar. 1989.

W. Hahn, H. Anger, A. Hagerer, and B. Schuster, "A multi-transputer-

net as a hardware test bed," in Proceedings of the European Simulation

Multiconference, pp. 359-364, June 1990.

Q. Yu, D. Towsley, and P. Heidelberger, "Time-driven parallel simulation of

multistage interconnection networks," in Distributed simulation, pp. 191-

196, 1989.

P. Goli, P. Heidelberger, D. Towsley, and Q. Yu, "Processor assignment

and synchronisation in parallel simulation of multistage interconnection

networks," Tech. Rep. RC 14814, IBM Research Division, 1989.

J. Kowalik, ed., Parallel MIMD Computation: HEP Supercomputer and its

Applications. Cambridge, Mass.: MIT Press, 1985.

BIBLIOGRAPHY
	

158

[102] S. Butner and C. Staley, "A RISC Multiprocessor based on Circulating

Context," in IEEE Phoenix Conference on Computers and Communica-

tions, Mar. 1986.

[1031 L. Cohn, A conceptual approach to general purpose parallel computer archi-

tecture. PhD thesis, Columbia University, NY, 1983.

H. Sullivan, T. Bashkow, and D. Klappholz, "A large scale homogeneous

fully distributed parallel machine," in Proceedings of the International Sym-

posium on Computer Architecture, 1977.

R. Rettberg, W. Crowther, P. Carvey, and R. Tomlinson, "The Monarch

parallel processor hardware design," IEEE Computer, pp. 18-30, Apr. 1990.

A. Gottlieb, Experimental parallel computing architectures, ch. An overview

of the NYU Ultracomputer project, pp. 25-95. North-Holland, 1987.

G. Pfister et al., "The IBM RP3: Introduction and Architecture," in Pro-

ceedings of the International Conference on Parallel Processing, pp. 764-

771, Aug. 1986.

T. Lees, Context flow architecture. PhD thesis, University of Edinburgh,

101.110

P. Kogge, "The Microprogramming of Pipelined Processors," in Proceedings

of the International Symposium on Computer Architecture, pp. 63-69, Mar.

1977.

J. Emer and E. Davidson, "Control Store Organisation for Multiple Stream

Pipelined Processors," in Proceedings of the International Conference on

Parallel Processing, pp. 43-48, Aug. 1978.

T. Lees, "Context streams - A theoretical basis for a generic form of MIMD

pipelining," in Proceedings 2nd IEEE symposium on parallel and distributed

processing, Dec. 1990.

BIBLIOGRAPHY 	 159

D. Patterson and C. Sequin, "A VLSI RISC," IEEE Computer, pp. 8-20,

Sept. 1982.

D. Dias and J. Jump, "Packet Communication in Multistage Shuffle-

Exchange Networks," in Proceedings of the International Conference on

Parallel Processing, pp. 327-328, Aug. 1980.

L. Bhuyan and D. Agrawal, "Design and performance of generalised inter-

connection networks," IEEE Transactions on Computers, vol. 32, pp. 1081-

1090, Dec. 1983.

Inmos, Occam 2 Reference Manual. Prentice Hall, 1988.

C. Hoare, "Communicating Sequential Processes," Communications of the

ACM, vol. 21, PP. 666-677, Aug. 1978.

D. May and R. Shepherd, "The transputer implementation of OCCAM,"

Technical Note 21, Inmos Ltd., Bristol, UK.

Inmos, "IMS T800 Architecture," Tech. Rep. 6, Inmos Ltd., 1986.

K. Bowler, R. Kenway, and D. Wallace, "The Edinburgh Concurrent Su-

percomputer: project and applications," in Proceedings lEE conference on

the design and application of parallel digital processors, Apr. 1988.

A. Hey, "Supercomputing with transputers - past, present and future," in

Proceedings of the International Conference on Supercomputing, June 1990.

N. de Bruijn, "A combinatorial problem," in Proceedings Akaderne van

Wetenschappen, vol. 49, pp. 758-764, 1946.

F. Baude, F. Carre, P. Clere, and G. Vidal-Naquet, "Topologies for large

transputer networks: theoretical aspects and experimental approach," in

Proceedings 10th OUG Technical Meeting, pp. 178-197, Apr. 1989.

BIBLIOGRAPHY 	 160

D. Prior, M. Norman, N. Radcliffe, and L. Clarke, "What price regularity?,"

Concurrency: Practice and Experience, vol. 2, pp. 55-78, Mar. 1990.

L. Clarke and G. Wilson, "Tiny: An efficient routing harness for the INMOS

Transputer," Tech. Rep., Edinburgh Parallel Computing Centre, Feb. 1990.

to be published in Concurrency: Practice and Experience.

M. Quinn, Designing efficient algorithms for parallel computers. McGraw-

Hill, 1987.

A. Gibbons and W. Rytter, Efficient parallel algorithms. Cambridge Uni-

versity Press, 1988.

S. Aki, The design and analysis of parallel algorithms. Prentice-Hall, 1989.

N. Deo, C. Pang, and R. Lord, "Two parallel algorithms for shortest path

problems," in Proceedings of the International Conference on Parallel Pro-

cessing, pp. 244-253, Aug. 1980.

F. Darema, D. George, V. Norton, and G. Pfister, "A single-program-

multiple-data computational model for EPEX/Fortran," Parallel comput-

ing, vol. 7, pp. 11-24, 1988.

K. Batcher, "Sorting Networks and their application," in Proceedings

AFIPS Conference 1968, pp. 307-314, 1968.

P. Heidelberger, A. Norton, and J. Robinson, "Parallel quicksort using

fetch-and-add," IEEE Transactions on Computers, vol. 39, pp. 133-139,

Jan. 1990.

E. Moore, "The shortest path through a maze," in Proceedings of the 1957

International Symposium on the Theory of Switching, vol. 2, pp. 285-292,

1959.

BIBLIOGRAPHY
	

161

S. Abraham and K. Padmanabhan, "Performance of the direct binary

n-cube network for multiprocessors," IEEE Transactions on Computers,

vol. 38, pp. 1000-1011, July 1989.

P. Thanish and M. Norman, "Minimising message path length in multicom-

puters," Tech. Rep. EPCC-TR90-17, Edinburgh Parallel Processing Centre,

1990.

C. Schlatter-Ellis and T. Olson, "Algorithms for parallel memory alloca-

tion," International Journal of Parallel Programming, vol. 17, Aug. 1988.

A. Smith, "Cache Memories," ACM Computing Surveys, vol. 14, pp. 473-

530, Sept. 1982.

L. Bhuyan, B. Liu, and i. Ahmed, "Analysis of MIN based multiprocessors

with private cache memories," in Proceedings of the International Confer-

ence on Parallel Processing, vol. 1, pp. 51-58, Aug. 1989.

P. Teller, R. Kenner, and M. Snir, "TLB consistency on highly-parallel

shared-memory multiprocessors," in Proceedings 21st International confer-

ence on system sciences, pp. 184-193, Jan. 1988.

B. Rosenburg, "Low-synchronisation translation lookaside buffer consis-

tency in large-scale shared-memory multiprocessors," Tech. Rep. RC 14499,

IBM Research division, 1989.

G. Pfister et al., Experimental parallel computing architectures, ch. An intro-

duction to the IBM Research Parallel Processor Prototype (RP3), pp. 123-

140. Elsevier Science Publishers, 1987.

Appendix A

Assembly code

This appendix contains example Eppi assembly code for the three benchmark

programs. Each line in the assembly program has the format:

label 	instruction 	operand(s)

The label is optional, and the instruction is one of the Eppi assembly code in-

structions or an assembler directive. Multiple operands are seperated by commas.

The Eppi assembly code instructions have been described in Section 3.1.6, and

in addition there are a number of assembler directives:

source include assembly code from given file.

org start assembly from given address.

reg define a register name.

equ define a constant name.

dcl assemble a long constant.

res reserve a block of memory and initialise.

* indicates a comment follows.

In the assembly code listings that follow the register names rO, . . . ,r13,pc and

sr have been predefined and are read in from the file registers. asm.

162

APPENDIX A. ASSEMBLY CODE
	

163

A.1 mrnult.asrn

1
	*
2 * Parallel matrix multiply program

3 *
4 * multiplies lxm matrix A with mxn matrix B
5 * to give lxn result matrix C

6
	*
7 * i is the row of result matrix
8 * j is the column
9
	*
10 * All the elements of C are calculated in parallel

11 *
12
	 source 'registers .asin'

13 elem 	equ 15 	 * (1n)-1

14 1 	equ4 	 *1

15 n 	equ4
16 m 	equ4
17
18
	

org 16 	 * reset address

19
20 start idi r1,pc,1
	* load semaphore p address

21
	

dcl p
22
	

f&aq r0,r1,0
	

* semaphore

23
	

cmpq rO,0
24
	

blt start
	

* retry

25
	

f&aq rO,rl,-1
	

* fdec semaphore

26
	

cmpq rO,0
27
	

bge begin
	 • do mmult

28
	

f&aq rO,rl,1
	

• finc semaphore

29
	

bra start
30
	

begin ldq rl,n
	• load n

31
	

div r2,rO,rl
	

• i=p/n

32
	 rem r3,rO,rl
	

* j=p\n

33
	

ldq r4,0
	

* k=0

34
	

ldq r5,0
	

* t=0

35
	

ldq r6,l
	

* load 1

36
	

ldq r7,m
	 * load m

37
	

ldi r8,pc,1
	

* load address a

38
	

dcl a
39
	

ldi r9,pc,1
	

* load address b

40
	

dcl b

164 APPENDIX A. ASSEMBLY CODE

41 idi rlO,pc,1 * load address c
42 dcic
43 loop mul r12,r2,r7 * load a(i*m+k)
44 add r12,r12,r4
45 add r12,r12,r8
46 ido r12,r12,0
47 mul r13,r4,rl * load b(k*n+j)
48 add r13,r13,r3
49 add r13,r13,r9
50 ido r13,r13,0
51 mul r12,r12,r13 * multiply a x b
52 add r5,r5,r12 * t = t + (a x b)
53 addq r4,r4,1 * k = k + 1
54 cmpr4,r7
55 bit loop
56 mui r12,r2,rl * store c(i*n+j)
57 add r12,r12,r3
58 add r12,r12,rlO
59 sto r12,r5,0
60 ldi rO,pc,1 * done semaphore
61 dcld
62 f&aq rl,rO,-1
63 cmpq r1,0 * not last one
64 bne start
65 ldq rO,3 * send interrupt
66 sto rO,rO,0
67 bra start * back to start
68 p dcl elem * scheduling count
69 d dcl elem * termination count
70 a source 'array'
71 b source 'array'
72 c res 0,0

165 APPENDIX A. ASSEMBLY CODE

A.2 bitonic.asm

2 * Parallel Batcher Bitonic Merge Sort Program
3 *

4 * Sorts n numbers using n/2 processes.

5 *

6 source 'registers.asm'
7 nn equ 16 * numbers to sort
8 np equ 8 * number of processes (nn/2)

9 ns equ 4 * number of stages (log2 xiii)
10 *

11 * Start
12 *

13 org 16
14 reset idi rO,pc,1 * data address
15 dcl data
16 bitlO f&aq rl,rO,O * k
17 cmpq rl,np * k>np?
18 bge bitlO
19 f&aq rl,rO,1 * finc k
20 cmpq rl,np * k<np?
21 bit bitli
22 f&aq r1,r0,-1 * fdec k
23 bra bitlO
24 bitil addq r2,rO,2 * i address
25 ido r2,r2,0 * read i
26 mulq r3,rl,2 *

27 addq r4,r3,1 * 2p+1
28 ldq r5,2 * m=(2<<i)-1
29 asi r5,r5,r2
30 subq r5,r5,1
31 not r6,r5 * m
32 and r6,r6,r3 * x/Vm
33 and r7,r3,r5 * x/\m
34 asrq r7,r7,1 * >>1
35 idq r8,1
36 and r8,r3,r8 * x/\1
37 asl r8,r8,r2 * <<s
38 or r9,r7,r8 * \I
39 or r9r9,r6 * \/
40 not r6,r5 * m

166 APPENDIX A. ASSEMBLY CODE

41 and r6,r6,r4 * x/Vm
42 and r7,r4,r5 * x/\m
43 asrq r7,r7,1 * >>1
44 ldq r8,1
45 and r8,r4,r8 * x/\1
46 as]. r8,r8,r2 * <<s
47 or rlO,r7,r8 * \/
48 or rlO,rlO,r6 * \/
49 ido rll,rO,4 * from address
50 add r12,rll,r9 * a address
51 add r13,rll,rlO * b address
52 ido r5,r12,0 * read a
53 ido r6,r13,0 * read b
54 ldq r7,1 * find sign
55 as]. r7,r7,r2
56 div r7,rl,r7
57 remq r7,r7,2
58 ido rll,rO,5 * to address
59 add r12,rll,r3 * a address
60 add r13,rll,r4 * b address
61 cmpq r7,0 * signo ?
62 bne bit12
63 cmp r5,r6 * r5>r6 ?
64 bgt bit14
65 bra bit13
66 bit12 cmp r5,r6 * r5<r6 ?
67 ble bit14
68 bit13 sto r12,r5,0 * write a
69 sto r13,r6,0 * write b
70 bra bit15
71 bitl4 sto r12,r6,0 * write b
72 sto r13,r5,0 * write a
73 bit15 addq rl,rO,1 * d address
74 f&aq rl,rl,1 * finc d
75 addq rl,rl,1 * d+1
76 cmpq rl,np * d=np ?
77 bne bitlO
78 ido rl,rO,2 * read i.
79 ido r2,rO,3 * read j
80 addq r2,r2,1 *
81 cmp r2,rl * j<i ?
82 ble bit16
83 ldq r2,0 * j0

APPENDIX A. ASSEMBLY CODE
	

167

84
85
86
87
88 bitl6
89
90
91
92
93
94
95
96
97
98
99 bitl7
100
101
102 *
103 * Data
104 *
105 data
106
107
108
109
110
111 from
112 to

addq rl,rl,1
	

*].++

cmpq rl,ns
	* i=ns ?

beq bi.t17
sto rO,rl,2
	

• store i
sto rO,r2,3
	

• store j
ido rl,rO,4
	

• read from
ido r2,rO,5
	

• read to
sto rO,rl,5
	

• store from
sto rO,r2,4"
	• store to

ldq r2,0
	

* -np
subq r2,r2,np
addq rl,rO,1
	

• d address
f&a rl,rl,r2
	

• d=0
f&a rl,rO,r2
	

• k=0
bra bitlO
ldq rO,3
	

* done
stq rO,0
bra reset

dclO *k
dclO *d
dclO
dclO *j

dcl from * from
dclto *to
dcl 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

res 16,0

168 APPENDIX A. ASSEMBLY CODE

A.3 moore.asm

1 	*

2 * Parallel Moore Shortest Path
3 *
4 source 'registers.asm'
5 nn equ 64 * no nodes
6 nnml equ 63 * (nnode-1)
7 dd equ 8 * degree
8 es equ 16 * degree*2
9 s equ nn * queue size
10 smi equ nnml * (size-1)
ii empty equ -i * empty
12 *

13 * Code
14 *

15 org 16
16 reset idi r3,pc,1 * d address
17 dcld
18 idi r4,pc,1 * dis address
19 dcl dis
20 idi r5,pc,i * qc address
21 dcl qc
22 idi r6,pc,i * iqs address
23 dcl iqs
24 idi r7,pc,1 * ps address
25 dcl PS
26 waiti f&aq r8,r5,0 * Qc
27 cmpq r8,0 * Qc<0?
28 ble waiti
29 f&aq r8,r5,-1 * fdec Qc
30 cmpq r8,0 * Qc>0?
31 bgt conti
32 faq r8,r5,1 * finc Qc
33 bra waiti
34 conti addq r8,r5,2 * Qd address
35 f&aq r8,r8,1 * finc qd
36 remq r8,r8,s * Qd\Qs
37 addq r9,r5,3 * Q address
38 add r9,r9,r8 * offset
39 wait2 ido rO,r9,0 * get node
40 cmpq rO,empty * rO=exnpty?

APPENDIX A. ASSEMBLY CODE
	

169

41 beq wait2
42 stq r9,einpty * set empty

43 add r9,r6,rO * iqsem offset

44 f&aq r9,r9,-1 * fdec iqsem

45 f&aq r9,r7,1 * finc PS

46 ldq rl,O * i
47 ldq r2,0 * v

48 loop idi r8,pc,1 * weights address

49 dclv
50 mulq r9,rO,es * scale u*es

51 add r8,r8,r9 * base

52 mulq r9,rl,2 * scale i*2

53 add r8,r8,r9 * offset

54 ido r2,r8,0 * node v

55 ido r8,r8,1 * weight

56 add r9,r3,rO * d offset

57 ido r9,r9,0 * distance[u]
58 add r8,r8,r9 * new_distancedistance[u]+weight[u] Iv]
59 add r9,r4r2 * disemu offset

60 wait3 f&aq rlO,r9,0 * P(disem[v])

61 cmpq r10,0 * disemn<0?

62 ble wait3
63 f&aq rlO,r9,-1 * fdec disem

64 cmpq r10,0 * disem>0?

65 bgt cont2
66 f&aq rlO,r9,1 * finc disem

67 bra wait3
68 cont2 add r9,r3,r2 * d offset

69 ldo r9,r9,0 * distance[v]
70 cmp r8,r9 * new_distance<distance[v]?

71 blt write
72 add r9,r4,r2 * disemu offset

73 f&aq rlO,r9,1 * V(disem[v])

74 bra cont3
75 write add r9,r3,r2 * d offset
76 sto r9,r8,0 * store new-distance[v]

77 add r9,r4r2 * disem offset

78 f&aq rlO,r9,1 * V(disem[v])

79 add r9,r6,r2 * iqsem offset
80 f&aq rlO,r9,1 * finc iqsem[v]
81 cmpq r10,0 * iqsem[v]0?
82 beq queue
83 f&aq rlO,r9,-1 * fdec iqsem[v]

APPENDIX A. ASSEMBLY CODE
	

170

84
85 queue
86
87
88
89
90
91
92 wait4
93
94
95
96
97 cont3
98
99
100
101
102
103
104
105
106
107
108 *
109 * Data
110 *
111 Ps
112 vs
113 d
114
115 dis
116 i.qs
117
118 qc
119 qi
120 qd
121
122
123 w

bra cont3
addq r9,r7,1
f&aq rlO,r9,1
addq r8,r5,1
f&aq r8,r8,1
remq r8,r8,s
addq r9,r5,3
add r9,r9,r8
ido rlO,r9,0
cmpq rlO,empty
bne vait4
sto r9,r2,0
f&aq rlO,r5,1
addq rl,rl,1
cmpq rl,dd
bit loop
f&aq r8,r7,-1
addq r8r7,1
f&aq r8,r8,-1
cmpq r8,1
bgt reset
ldq r8,3
stq r8,0
bra reset

res nnnil,0
dcl 1
dcl 1
dci 0
dci 0

• vs address
• finc vs
• Qi address
• finc Qi

• Qi\Qs
• Q address
• offset
• get node
• node=empty?

• put node (v)
• fi.nc Qc
* i=i+1
* i<dd?

• fdec ps
• vs address
• fdec vs
• wsl?

* interrupt

• Qc count
• Qi pointer
• Qd pointer
• buffer space

res sml,empty
source 'weights. asm'

dci 0 	 * process count
dcl 1 	 * termination count
dcl 0 	 * distance
res nnml,inf
res nn,1 	* distance semaphores
dcl 1 	 * inqueue semaphores

Appendix B

Detailed execution statistics

This appendix contains the tables of detailed execution statistics from the simu-

lation experiments described in Chapter 6. The table headings are abbreviated

as shown below in Table B.I. Statistics which were not collected for a particular

simulation are marked with a dash.

[key meaning key meaning

prcrs processors mreqs memory requests
prcs interleaving level miat memory latency
k-way combining level rqcon request queue conflicts
qu queue size wbfull wait-buffer full events
wb wait-buffer size aqcon acknowledge queue conflicts
ciks clock cycles ldcom load combinations
putil processor utilisation f&acom Ma combinations
insts instructions mutil memory utilisation
nutil network utilisation Fmaccs I memory accesses

Table B.1: Description of abbreviated table headings

171

txj

prcrs ciks putil insts
[

nutil 1 mreqs miat I rqcon I wbfull aqcon I ldcom 	I f&acom mutil maccs

1 4081780 0.86 3517180 1.00 4081790 2.0 0 0 0 0 0 1.00 4081790

2 2045150 0.86 3522850 1.00 4090320 5.0 0 0 0 1907930 4102 0.53 2178290
4 1023170 0.86 3524430 1.00 4092700 7.0 0 0 0 2863680 6144 0.30 1222870

8 559190 0.79 3521410 0.91 4088220 8.0 0 0 0 3337040 7168 0.17 744001
16 308610 0.71 3521270 0.83 4088140 10.1 0 0 0 3575320 7680 0.10 505133

32 166241 0.66 3511300 0.77 4073570 12.1 0 0 0 3680380 7936 0.07 385219

64 91108 0.60 3512320 0.70 4075520 14.0 0 0 0 3741680 8064 0.06 325759
128 49569 0.55 3514370 0.64 4079620 16.0 0 0 0 3904420 8128 0.03 167005
256 26814 0.51 3518460 0.60 4087810 18.0 0 119420 0 3991770 8160 0.01 87627

Table B.2: Execution statistics for matrix multiply (mm4096) with increasing system size (interleaving level 16, 2-way
combining, queue size 4, wait-buffer size 16, equal module clock factors).

0

CID

ND

prcrs ciks putil insts J nutil
[

mreqs miat rqcon wbfull I aqcon ldcom f&acom I mutil
[

maccs

1 24233200 0.85 20485100 1.00 24233200 2.0 0 0 0 0 0 1.00 24233200

2 12518300 0.82 20547700 0.97 24316700 6.0 591893 0 0 1108170 110752 0.92 23097800
4 6901930 0.75 20672700 0.89 24483500 8.8 338421 0 4723 2192760 212436 0.80 22078300

8 3817530 0.69 20960300 0.81 24866900 8.8 84346 0 6164 4566940 395166 0.65 19904800
16 2081840 0.64 21299200 0.76 25318900 10.9 18561 0 4443 8851630 734241 0.47 15733000
32 1140610 0.59 21707000 0.71 25863100 12.7 7423 0 14224200 1133960 0.29 10504900
64 644810 0.55 22585200 0.66 27034700 14.8 6304 0

g167515

19029300 1578160 0.16 6427120
128 382218 0.50 24547100 0.61 29652200 16.3 9647 19 23325800 2320130 0.08 4006090
256 241301 0.46 28444900 0.56 34852500 18.1 22767 16019 28448200 3667270 0.04 2736490

Table B.3: Execution statistics for bitonic (bit4096) with increasing system size (interleaving level 16, 2-way combining,
qUeUe SZC 4, wait-buffer size 16, equal module clock factors).

I,

prcrs ciks
[

putil insts nutil mreqs miat rqcon
[

wbfull aqcon I ldcom f&acom
]

mutil maccs

1 3892020 0.75 2937690 1.00 3892030 2.0 0 0 0 0 0 1.00 3892030
2 2070030 0.72 2988150 0.96 3959200 6.0 164330 0 0 146256 3683 0.92 3809260
4 1165230 ö 3086280 0.88 4089890 7.8 155218 0 1437 267092 10144 0.82 3812640

8 656641 0.60 3169910 0.80 4202410 9.6 71459 0 2623 426888 26096 0.71 3749410
16 386187 0.55 3424790 0.74 4544890 11.4 33312 0 2846 736636 72547 0.60 3735680
32 236012 0.51 3876310 0.68 5155250 12.4 17873 0 2706 1324490 193721 0.48 3636980
64 173839 0.48 5322490 0.64 7106960 14.5 11131 0 3446 2815060 584756 0.33 3707020
128 146333 0.44 8319480 0.60 11172200 17.0 7352 27 5998 5968400 1532870 0.20 3670690
256 132597 0.41 13831100 1 	0.55 18669400 19.9 6149 26989 25233 1 11495600 3261970 0.12 3911310

Table B.4: Execution statistics for Moore (moo4096) with increasing system size (interleaving level 16, 2-way combining,
queue size 4, wait-buffer size 16, equal module clock factors).

tZ
t:r1

t:i
tlz

0

Cr

qu wb ciks 	I putil insts I nutil mreqs miat rqcon
[

wbfull aqcon ldcom
[

f&acom mutil maccs

32 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

16 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

8 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

4 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

2 32 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 	1 1684

32 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

16 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

8 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

4 16 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

2 16 1587 1 	0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

32 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

16 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

8 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

2 8 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

32 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

16 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

8 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

4 4 1587 0.81 2573 1.00 3194 4.0 0 0 0 1476 32 0.53 1684

2 4 1587 0.81 2573 1 	1.00 3194 1 	4.0 0 0 0 1476 32 0.53 1684

32 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684

16 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684

8 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684

4 2 1587 0.81 2573 1.00 3194 4.0 0 595 0 1476 32 0.53 1684

2 2 1587 0.81 1 2573 1 	1.00 3194 4.0 0 595 0 1476 32 0.53 1684

Table B.5: Execution statistics for matrix multiply (mm32) on 2 processors with varying queue and wait-buffer size (inter-
leaving level 16, 2-way combining, equal module clock factors).

-.1
c.,1

ciks putil insts nutil mreqs miat J rqcon wbfull aqcon ldcom
[

f&acom mutil maccs

T 32 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

16 32 2557 0.83 - 1.00 - 7.5 0 0 0 7156 96 0.29 -

8 32 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

4 32 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

2 32 2562 0.83 - 1.00 - 7.5 8 0 11 7143 96 0.29 -

32 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

16 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

8 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

4 16 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

16 2562 0.83 - 1.00 - 7.5 8 0 11 7143 96 0.29 -

32 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

16 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

8 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

4 8 2557 0.83 - 1.00 - 7.5 0 0 0 7154 96 0.29 -

2 8 2562 0.83 - 1.00 - 7.5 8 0 11 7143 96 0.29 -

32 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29
16 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29 -

8 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29 -

4 4 2557 0.83 - 1.00 - 7.0 0 512 0 7147 96 0.29 -

2 4 2562 0.83 - 1.00 - 7.5 15 504 11 7134 96 0.30 -

32 2 2786 0.77 - 0.93 - 9.5 0 1317 0 3458 56 0.61 -

16 2 2786 0.77 - 0.93 - 9.5 0 1317 0 3458 56 0.61 -

8 2 2804 0.76 - 0.92 - 8.8 10 1247 0 3256 57 0.63 -

4 2 1 2783 0.77 - 0.93 - 8.2 135 1535 3 3568 57 0.60 -

2 2 1 3140 0.69 - 0.84 - 9.2 2051 1 	1315 1348 2965 1 55 0.60 -

Table B.6: Execution statistics for matrix multiply (mm64) on 4 processors with varying queue and wait-buffer size (inter-
leaving level 16, 2-way combining, equal module clock factors).

0

cr

C.)

qu wb[ciks putil insts nutil
[

mreqs miat rqcon
[

wbfull aqcon ldcom [f&acom mutil maccs

32 32 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
16 32 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
i 32 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
•T •2 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
2 32 2762 0.76 - 0.92 - 8.5 16 0 3 16672 224 0.16 -
32 16 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
16 16 2756 0,77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
8 16 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
4 16 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16
2 16 2762 0.76 - 0.92 - 8.5 16 0 3 16672 224 0.16 -
T 8 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -

16 8 2756 0.77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -
8 8 2756 0.77 - 0,93 - 8.2 0 0 0 16651 224 0.16 -
4 8 2756 0:77 - 0.93 - 8.2 0 0 0 16651 224 0.16 -

8 0:76 - 0.92 - 8.5 16 0 3 16672 224 0.16 -
32 4 3125 0.69 - 0.83 - 10.2 0 1022 0 8933 157 0.47 -
16 4 3108 0.69 - 0.83 - 10.2 23 1042 0 8958 161 0.47 -
8 4 3089 0.69 - 0.84 - 9.8 82 1094 0 9658 169 0.44 -
T 4 3109 0.69 - 0.84 - 10.4 732 1200 25 9935 170 0.43 -

2 4 3409 0.64 - 0.77 - 11.2 5107 1263 2872 8283 144 0.46 -
32 2 3263 0.66 - 0.81 - 13.8 28 2833 0 7439 141 0.51 -
16 2 3242 0.66 - 0.80 - 13.5 193 2954 0 7577 142 0.51 -
8' 2 3233 0.66 - 0.81 - 13.2 659 3205 0 7990 144 0.49 -
4 2 3266 0.66 - 0.80 - 12.0 1710 3428 15 7902 143 0.50 -
2 1 	2 3584 0.61 - 0.74 - 12.5 69TY-1 3245 3762 7145 120 0.48 -

Table B.7: Execution statistics for matrix multiply (mm128) on 8 processors with varying queue and wait-buffer size (inter-
leaving level 16, 2-way combining, equal module clock factors).

tZ

ti

0

Cr)

-

C/D

j7 wb ciks 	
[

putil insts 	nutil mreqs
[

rnlat rqcon wbfull 1 aqcon ldcom f&acom mutil maccs

32 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 -

• 1 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 -

8 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 -

4 32 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 -

2 32 5348 0.71 - 0.84 - 10.1 1 0 0 62768 480 0.10 -

32 16 5348 0.71 - 0.84 - 10.1 0 0 0 62768 480 0.10 -

16 16 5348 0.71 - 0.84 - 10.1 0 0 0 62768 480 0.10 -

8 16 5348 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 -

4 16 5348 1 0.71 - 0.84 - 10.1 0 0 0 62762 480 0.10 -

2 16 5348 0.71 - 0.84 - 10.1 1 0 0 62768 480 0.10 -

32 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 -

16 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 -

8 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 -

T 8 5348 0.71 - 0.84 - 10.1 0 1631 0 62762 480 0.10 -

2 8 5348 0.71 - 0.84 - 10.1 1 1631 0 62768 480 0.10 -

32 4 6163 0.62 - 0.74 - 12.9 1 2726 0 32339 328 0.41 -

16 4 6198 0.62 - 0.74 - 12.6 138 2722 0 32704 331 0.41 -

8 4 6130 0.63 - 0.74 - 12.8 550 2997 0 33711 335 0.40 -

4 4 6198 0.62 - 0.74 - 12.4 5015 3296 111 33781 331 0.39 -

2 4 6882 0.57 - 0.68 - 14.1 25123 3575 12955 30098 303 0.41 -

32 2 6358 0.60 - 0.72 - 20.6 277 8201 0 26962 281 0.45 -

16 2 6384 0.60 - 0.72 - 26.5 888 9198 0 28161 279 0.44 -

1 2 6363 0.60 - 0.72 - 23.1 2834 9897 0 28954 285 0.43 -

4
P2

2 6378 0.60 - 0.72 - 16.9 8281 10478 73 29184 297 0.43 -

2 6994 0.56 - 0.67 - 15.3 1 29444 8874 13864 26625 250 0.43 -

Table B.8: Execution statistics for matrix multiply (mm256) on 16 processors with varying queue and wait-buffer size
(interleaving level 16, 2-way combining, equal module clock factors).

-.1
00

ciks 	I putil insts nutil mreqs miat rqcon I wbfull aqcon ldcom 	I f&acom
[

mutil
 [

maccs

32 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

16 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

8 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

4 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

2 32 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

32 16 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

16 16 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

8 16 5765 0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

4 16 5765 1 	0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

2 16 5765 1 	0.65 - 0.77 - 12.1 0 0 0 132363 992 0.05 -

32 8 6631 0.58 - 0.69 - 13.8 0 5873 0 91771 748 0.26 -

16 8 6641 0.58 - 0.69 - 13.6 145 5947 0 92268 759 0.25 -

8 8 6605 0.58 - 0.69 - 14.2 636 5850 8 93443 770 0.25 -

4 8 6692 0.58 - 0.69 - 13.7 9599 4961 139 89402 747 0.26 -

2 8 7348 0.53 - 0.64 - 17.0 48118 4916 21136 80567 691 0.29 -

32 4 6810 0.57 - 0.67 - 18.3 131 7213 0 78196 718 0.31 -

16 4 6795 0.57 - 0.67 - 16.4 617 7360 0 79025 720 0.31 -

8 4 6818 0.56 - 0.67 - 15.5 2797 8152 6 81493 695 0.30 -

4 4 6885 0.56 - 0.67 - 14.9 12710 7583 181 77127 708 0.32 -

2 4 7549 0.52 - 0.63 - 17.1 59760 7375 21261 75026 637 0.31 -

32 2 7363 0.52 - 0.62 - 29.6 2856 1 24560 0 70110 574 0.32 -

16 2 7235 0.53 - 0.63 1 	
- 32.0 6442 26283 0 70998 601 1 	0.32 -

7247 0.53 - 0.64 - 29.1 14659 28558 0 72856 614 0.32 -

4 2 7207 0.54 - 0.64 - 21.4 25691 29234 235 73248 616 0.32 -

2 2 7886 1 	0.51 - 0.61 - 19.4 79382 28886 22279 73112 554 0.32 -

Table B.9: Execution statistics for matrix multiply (mm512) on 32 processors with varying queue and wait-buffer size
(interleaving level 16, 2-way combining, equal module clock factors).

k
tX

rj
C)

0

(r

-4

[qu wb I ciks 	1 putil insts 	I nutil
[

mreqs I miat I rqcon 	
[

wbfull aqcon
[

Idcom f&acom mutil maccs

32 32 	1 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

16 32 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

T 32 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

T •2 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

T 11820 0.60 	1 - 0.70 	1 - 14.0 0 	1 0 0 502721 2016 0.03 -

32 16 11820 0.60 	1 - 0.70 - 14.0 0 0 0 502721 1 2016 0.03 -

ii iT 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

8 16 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

4 16 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

16 11820 0.60 - 0.70 - 14.0 0 0 0 502721 2016 0.03 -

32 T 13970 0.52 - 0.61 - 15.7 1434 12481 0 346318 1528 0.22 -

16 T 13845 0.52 - 0.62 - 15.6 3595 13740 1 348102 1562 0.22 -

1- 1- 13756 0.53 - 0.62 - 15.6 7310 10622 55 351886 1556 0.22 -

4 8 14031 0.52 - 0.61 - 15.6 55700 7845 903 341305 1516 0.23 -

2 8 14954 0.49 - 0.58 - 19.9 190323 9378 68999 341967 1434 0.23 -

32 4 14825 0.49 - 0.58 - 24.2 11169 23939 0 328670 1364 0.23 -

Ti 4 14502 0.50 - 0.59 - 24.6 18048 26318 0 333109 1412 0.23 -

8 4 14296 0.51 - 0.60 - 22.5 32751 27410 235 336169 1405 0.23 -

4 4 14095 0.52 - 0.61 - 18.6 61797 23190 720 334012 1430 0.24 -

2 4 15122 0.49 - 0.58 - 21.6 217582 25321 68167 338765 1318 0.23 -

32 2 16822 0.44 - 0.52 - 35.3 40441 136797 0 308852 1018 0.23 -

16 2 16637 0.45 - 0.53 - 41.2 87485 144377 0 317192 1048 0.23 -

8 2 15726 0.47 - 0.56 - 35.9 127619 151706 161 323533 1124 0.23 -

T 2 15118 0.49 - 0.58 - 29.7 159489 156500 1896 327801 1217 0.24 -

16426 0.46 - 0.55 - 23.9 361583 1 166779 70310 340680 1086 0.23 1 -

Table B.10: Execution :statistics for matrix multiply (mm1024) on 64 processors with varying queue and wait-buffer size
(interleaving level 16, 2-way combining, equal module clock factors).

ti

I
00

tZI

CZ

11-

qu I wb elks putil insts nutil mreqs
[

miat J rqcon wbfull 	J aqcon ldcom 	J f&acom mutil maccs
32 32 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
16 32•• 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
1 32 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
4 32 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -

W 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
32 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
ii 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
T 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
• F 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
2 16 12853 0.55 - 0.64 - 16.0 0 0 0 1029010 4064 0.02 -
32 8 15646 0.47 - 0.56 - 19.6 6902 28398 0 815166 3285 0.15 -
16 i 15271 0.48 - 0.56 - 19.1 13092 29336 0 810440 3366 0.15 -

T 8 15161 0.48 - 0.57 - 17.9 29329 24357 165 810993 3409 0.15 -
T 8 15257 0.48 - 0.56 - 18.0 117534 12013 2067 796322 3372 0.15 -
i 8 16472 0.45 - 0.54 - 21.8 449101 21642 123916 806928 3030 0.15 -
32 T 24077 0.33 - 0.40 - 29.5 232919 103556 0 825701 2367 0.14 -
16 4 20184 0.38 - 0.45 - 41.7 266527 128170 0 801553 2767 0.14 -
i T 16084 0.46 - 0.54 - 26.6 106798 107569 144 790171 3119 0.15 -

T 15581 0.47 - 0.55 - 25.9 161920 100109 2401 788835 3196 0.16 -
T 16856 0.44 - 0.53 - 24.5 572088 111377 128644 805782 2925 0.15 -

32 2 34303 0.25 - 0.30 - 78.5 867180 389406 0 778009 1726 0.13 -
16 2 36203 0.25 - 0.31 - 86.2 1594850 523223 0 884299 1870 0.12 -

27670 0.30 - 0.37 - 70.8 1647390 568176 862 841812 2042 0.13 -
•T 2 24580 0.34 - 0.41 - 49.0 1713910 654296 2413 888817 2421 0.13 -
T 2 20012 0.39 - 0.47 - 35.4 1431000 576956 130680 824515 2307 1 	0.14 -

Table B.11: Execution statistics for matrix multiply (mm2048) on 128 processors with varying queue and wait-buffer size
(interleaving level 16, 2-way combining, equal module clock factors).

ciks 	putil 	insts 	nutil 	mreqs 	miat 	rqcon 	wbfull 	aqcon 1 ldcom I f&acom I mutil
[

maccs]

32 32 30989 0.81 50487 1.00 61860 6.0 0 0 0 11094 2029 0.79 48735

16
8

•T
2

- 2
32
32
32

30989
30983
30995
32207

0.81
0.81
0.81
0.78

50487
50480
50445
50292

1.00
1.00
1.00
0.96

61860
61851
61804
61602

1

6.0
5.5
6.0
5.0

0
4
130
2832

0
0
0
0

0
0
0
0

11094
11257
11057
10548

2029
2035
1999
1713

0.79
0.78
0.79
0.77

48735
48556
48745
49340

•16
T11
16

30989
30989

0.81
0.81

50487
50487

1.00
1.00

61860
61860

6.0
6.0

0
0

0
0

0
0

11094
11094

2029
2029

0.79
0.79

48735
48735

8
T

16
16

30983
30995

0.81
0.81

50480
50445

1.00
1.00

61851
61804

5.5
6.0

4
130

0
0

0
0

11257
11057 1

2035
1999

0.78
0.79

48556
48745

•1 - 32207 0.78 50292 0.96 	1 61602 5.0 2832 0 	1 0 10548 1713 0.77 49340

32 8 30989 0.81 50487 1.00 	1 61860 6.0 0 0 	1 0 11094 2029 0.79 48735

16 8 30989 1 	0.81 50487 1.00 1 61860 6.0 0 0 0 11094 2029 0.79 48735

8 8 30983 0.81 50480 1.00 61851 5.5 4 0 0 1 	11257 2035 0.78 48556

1 1- 30995 0.81 50445 1.00 61804 6.0 130 0 0 11057 1999 0.79 48745

32207 0.78 50292 0.96 61602 5.0 2832 0 0 10548 1713 0.77 49340

32 •4T 30989 0.81 50487 1.00 61860 6.0 0 26 0 11094 2029 0.79 48735

16 4 30989 0.81 50487 1.00 61860 6.0 0 26 0 11094 2029 0.79 48735

8 4 30984 0.81 50482 1.00 61853 6.5 1 45 0 11525 2034 0.78 48291

4 4 30995 0.81 50445 1.00 61804 1 	6.0 130 21 0 11057 1999 0.79 48745

T 32207 0.78 50292 0.96 61602 5.0 2832 0 0 10548 1713 0.77 49340

32 2 31035 0.81 50444 1.00 61804 5.5 0 4796 0 10625 2004 0.79 49172

16 2 31035 0.81 50444 1.00 61804 5.5 0 4796 0 10625 2004 0.79 49172

31107 0.81 50594 1.00 62002 6.5 4 4866 0 10836 1959 0.79 49204

-4- 2 31026 0.81 50357 0.99 1 61686 1 	5.5 274 5103 0 11311 1932 0.78 48440

32540 0.78 50482 0.95 61847 5.0 3253 3574 0 10379. 1669 0.76 49797

Table B.12: Execution statistics for bitonic (bit32) on 2 processors with varying queue and wait-buffer size (interleaving level
16, 2-way combining, equal module clock factors).

0

(r
-

00

macj

	

0.60 	106140

	

0.60 	106140

	

0.60 	106086

	

0.61 	106154

	

0.55 	105237

	

0.60 	106140

	

0.60 	106140

	

0.60 	106086

	

0.61 	106154

	

0.55 	105237

	

0.60 	106140
0.60 	106140
0.60 	106086
0.61 	106154
0.55 	105237
0.61 	106673

0.61 	106673
0.61 	106517
0.61 	106591
0.55 	105130
0.61 	110253
0.61 	110253
0.61 	109732
0.61 	109392
0.56 	110459

nd wait-buffer size (interleaving level

ti

z

00
CAD

ciks 	putil insts 	nutil mreqs miat I rqcon wbfull aqcon ldcom f&acom

32 32 43856 0.77 134967 0.94 165317 8.0 	0 	0 	0 	51011 8158

16 32 43856 0.77 	134967 0.94 165317 8.0 	0 	0 	0 	51011 8158

8 	32 43864 0.77 134990 0.94 165344 7.8 	17 	0 	0 	51065 8185

	

32 43820 0.77 134712 0.94 164972 7.2 	647 	0 	81 	50712 8098

2 	32 48226 0.70 134883 0.86 165204 8.2 	23845 0 	29053 50588 9371

32 16 43856 0.77 	134967 0.94 	165317 8.0 	0 	0 	0 	51011 8158

T 	16 43856 0.77 134967 0.94 165317 8.0 	0 	0 	0 	51011 8158

8 	16 43864 0.77 	134990 0.94 165344 7.8 	17 	0 	0 	51065 8185

-

11

	

T 16 43820 0.77 134712 0.94 164972 7.2 	6470 	81 	50712 8098

	

16 48226 0.70 134883 0.86 165204 8.2 	23845 0 	29053 50588 9371

	

32 8 	43856 0.77 	134967 0.94 	165317 8.0 	0 	0 	0 	51011 8158

	

16 8 	43856 0.77 	134967 0.94 	165317 8.0 	0 	0 	0 	51011 8158

	

8 	43864 0.(7 	134990 0.94 165344 7.8 	17 	0 	0 	51065 8185

4 	8 	43820 0.77 134712 0.94 164972 7.2 	647 	0 	81 	50712 8098

2 	8 	48226 0.70 134883 0.86 165204 8.2 	23845 1 	29053 50588 9371

	

32 4 	43890 0.77 134905 0.94 165230 7.8 	0 	3588 	0 	50382 8166

	

1J6 4 	43890 0.77 134905 0.94 165230 7.8 	0 	3588 	0 	50382 8166

0.94 	165418 7.5 	13

	

4 	43944 0.77 135045 	
3577 	0 	50723 8170

	

4 	43858 0.77 	134673 0.94 164922 7.5 	690 	3212 	59 	50217 8107

	

IT 4 	48116 0.70 134581 0.86 164800 10.2 24269 5466 	
27771 50481 9180

	

2 	44888 0.75 134118 0.91 	164185 9.2 	0 	20450 0 	46598 7322

	

116 2 	44888 0.75 134118 0.91 	164185 9.2 	0 	20450 0 	46598 7322

2 	44729 0.75 133682 0.91 	163604 9.0 	63 	20506 0 	4663 	26 8 72

2 	44882 0.75 134147 0.91 164216 8.5 	4722 	21188 103 	47448 7367

2 	49240 0.69 	134968 0.84 165317 8.2 	
30378 25445 23666 46892 7958

Table B.13: Execution statistics for bitonic (bit64) on 4 processors with varying queue a

16, 2-way combining, equal module clock factors).

iJ
[Jwb ciks putil I insts nutil mreqs 	I miat

[
rqcon I wbfull

[
aqcon ldcom f&acom mutil maccs

32 32 61709 0.70 348020 0.86 426244 9.2 0 0 0 186180 25664 0.43 214386

16 32 61709 0.70 348020 0.86 426244 9.2 0 0 0 186180 25664 0.43 214386
8 32 61682 0.70 347938 0.86 426145 9.5 4 0 0 186061 25611 0.43 214458
4 32 61712 0.70 347957 0.86 426160 9.1 902 0 110 186139 25549 0.43 214453
2 32 67276 0.64 344204 0.78 421172 11.0 53686 0 80958 175925 29197 0.40 216032
32 - 16 61709 0.70 348020 0.86 426244 9.2 0 0 0 186180 25664 0.43 214386
16 16 61709 0.70 348020 0.86 426244 9.2 0 0 0 186180 25664 0.43 214386
8 16 61682 0.70 347938 0.86 426145 9.5 4 0 0 186061 25611 0.43 214458
4 16 61712 0.70 347957 0.86 426160 9.1 902 0 110 186139 25549 0.43 214453
2 16 67276 0.64 344204 0.78 421172 11.0 53686 0 80958 175925 29197 0.40 216032
T 8 61709 0.70 348020 0.86 426244 9.2 0 5 0 186180 25664 0.43 214386

16 8 61709 0.70 348020 0.86 426244 9.2 0 5 0 186180 25664 0.43 214386
8 8 61682 0.70 347938 1 0.86 426145 9.5 4 4 0 186061 25611 0.43 214458
4 8 61712 0.70 347957 0.86 426160 9.1 902 2 110 186139 25549 0.43 214453
2 8 66947 0.64 343574 0.78 420323 11.5 52478 389 78643 175602 28987 0.40 215711
32 4 61974 0.70 348523 0.86 426922 9.2 0 11782 0 184406 25548 0.44 216952
16 4 61974 0.70 348523 0.86 426922 9.2 0 11782 0 184406 25548 0.44 216952
8 4 61920 0.70 348316 0.86 426646 9.2 29 12323 0 185175 25510 0.44 215942
4 4 61973 0.70 348416 0.86 426783 9.2 1034 12383 124 184169 25492 0.44 217104

T 68012 0.63 343574 0.77 420322 12.6 74148 29886 80647 173057 28317 0.40 218924
32 2 65014 0.67 348528 0.82 426924 10.8 0 72010 0 159113 23373 0.47 244418
16 2 65050 0.67 348597 0.82 427019 11.0 228 71889 0 159440 23390 0.47 244168
8 2 64859 0.67 347892 0.82 426088 10.9 2437 76219 0 163740 23186 0.46 239137
4 2 64465 0.67 346953 0.82 424833 10.8 16752 81970 231 169566 23217 0.45 232024
2 2 73434 0.60 350591 0.73 429672 13.4 149720 93374 78553 161873 25778 0.41 242001

Table B.14: Execution statistics for bitonic (bit128) on 8 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

tZ

1-3

Co

IN
40
NZ

qu wb] As putil I 	insts nutil mreqs miat rqcon I wbfull aqcon I ldcom f&acom I mutit Fmaccs

32 32 84513 0.64 871593 0.79 1067440 10.9 0 0 0 608364 79420 0.28 379628
16 32 84513 0.64 871593 0.79 1067440 10.9 0 0 0 608364 79420 0.28 379628
8 32 84508 0.64 871590 0.79 1067420 10.9 70 0 0 608021 79390 0.28 379973
4 32 84555 0.64 871946 0.79 1067920 10.8 1001 0 221 609116 79613 0.28 379153
2 32 90384 0.59 855461 0.72 1045920 13.8 111789 0 164514 564462 83025 0.28

1
 398405

32 16 84513 0.64 871581 0.79 1067430 10.9 0 0 0 608357 79419 0.28 379624
16 16 84513 0.64 871581 0.79 1067430 10.9 0 0 0 608357 79419 0.28 379624
8 16 84508 0.64 871590 0.79 1067420 10.9 70 0 0 608021 79390 0.28 379973
4 16 84555 0.64 871946 0.79 1067920 10.8 1001 '0 221 609116 79613 0.28 379153
2 16 90384 0.59 855461 0.72 1045920 13.8 111789 0 164514 564462 83025 0.28 398405
32 8 84508 0.64 871427 0.79 1067210 11.2 0 2317 0 608141 79306 0.28 379726
16 T 84508 0.64 871427 0.79 1067210 11.2 0 2317 0 608141 79306 0.28 379726
8 8 84643 0.64 873022 0.79 1069340 10.8 67 2276 0 608569 79805 0.28 380937
4 8 84493 0.64 871564 0.79 1067400 11.0 1025 2279 250 609453 79445 0.28 378458
2 8 90642 0.59 855956 0.72 1046570 15.0 114980 7771 168784 564385 83077 0.28 399065
32 T 86177 0.64 877887 0.78 1075830 11.2 0 47048 0 585465 79895 0.30 410432
11 1 86142 0.64 877307 0.78 1075060 10.9 243 47907 0 586133 79775 0.30 409121
8 4 85897 0.64 875714 0.78 1072930 11.0 2178 50262 0 590130 79483 0.29 403283
4 4 85417 0.64 873436 0.78 1069880 11.2 6876 51547 384 594890 79114 0.29 395835

T 91697 0.58 858124 0.72 1049480 15.2 194368 95342 161828 560529 81130 0.28 407771
32 T 95245 0.58 890088 0.72 1092100 13.4 4326 253160 0 480138 76392 0.35 535514
16 2 95389 0.58 886631 0.71 1087490 13.6 24491 273748 0 499974 75851 0.34 511614
8 2 94465 0.58 881539 0.71 1080700 12.8 69725 293755 80 514072 75099 0.33 491476

92236 1 	0.59 876839 0.73 1074440 12.9 1 120237 329379 1278 537987 75203 0.31 461198
104004 1 	0.53 889536 0.66 1091370 15.2 1 544476 336037 177553 518081 80571 0.30 492674

Table B.15: Execution statistics for bitonic (bit256) on 16 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

00

qu wb elks putil insts 	J _nutil mreqs miat rqcon wbfull aqcon I ldcom f&acom mutil maccs
32 32 112975 0.59 2136350 0.72 2616680 12.6 0 0 0 1775430 230069 0.17 611111
16 32 112946 0.59 2135670 0.72 2615770 12.7 16 0 0 1775830 229889 0.17 609981
8 32 112979 0.59 2135740 0.72 2615870 12.6 342 0 0 1774800 229886 0.17 611114
4 32 113009 0.59 2136630 0.72 2617040 12.8 2114 0 700 1777060 230163 0.17 609740
2 32 119080 0.55 2100080 0.67 2568320 15.5 201968 0 305167 1675110 226807 0.17 666329
32 16 112975 0.59 2136370 0.72 2616710 12.6 0 0 0 1775450 230074 0.17 611115
16 rr 112946 0.59 2135670 0.72 2615770 12.7 16 0 0 1775830 229889 0.17 609981
8 16 112979 0.59 2135740 0.72 2615870 12.6 342 0 0 1774800 229886 0.17 611114
4 16 113009 0.59 2136630 0.72 2617040 12.8 2114 0 700 1777060 230163 0.17 609740
2 16 119080 0.55 2100080 0.67 2568320 15.5 201968 0 305167 1675110 226807 0.17 666329
32 8 112985 0.59 2135850 0.72 2616020 12.7 0 10264 0 1773610 229872 0.17 612471
16 8 112985 0.59 2135850 0.72 2616020 12.7 0 10264 0 1773610 229872 0.17 612471

112986 0.59 2136090 0.72 2616340 12.8 74 10352 0 1773690 229951 0.17 612631
T 113013 0.59 2136710 0.72 2617170 12.6 1786 10561 627 1775490 230118 0.17 611499

119119 0.55 2097920 0.67 2565480 13.9 219237 35736 305059 1674070 226753 0.17 664593
32 4 118596 0.57 2182220 0.71 2677850 12.9 535 176828 0 1672520 239756 0.20 765503
16 T 118113 0.58 2173790 0.71 2666590 12.9 9530 188040 0 1685280 237608 0.20 743632
T T 116739 0.58 2158800 0.71 2646610 12.8 28401 211272 61 1711150 234011 0.19 701380
4 4 115141 0.58 2145270 0.71 2628580 12,7 50713 242280 934 1734930 230946 0.18 662625

T 122229 0.54 2109860 0.66 2581370 16.4 530725 330092 312190 1651170 224936 0.18 705171
32 2 155735 0.41 2047160 0.50 2497720 22.2 272383 570528 0 1138120 151968 0.24 1207350
16 2 161057 0.42 2171650 0.52 2663770 22.8 673700 749111 90 1282270 190035 0.23 1191180
T 2 145628 0.46 2156040 0.57 2642920 21.0 817864 925140 370 1381950 202318 0.23 1058450
4 2 132042 0.51 2152750 0.62 2638610 20.0 712721 1181180 5424 1516560 217578 0.21 904324

2 147846 0.48 2254330 0.59 2773990 17.0 1937820 1147460 355671 1521510 245202 1 	0.21 1007160

Table B.16: Execution statistics for bitonic (bit512) on 32 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

tZ

110
110

i[ciks putil lusts
[

nutil 1 mreqs 	I miat rqcon wbfull aqcon 	I ldcorn I f&acom mutil maccs

32 32 148015 0.54 5125190 0.66 6276870 15.1 0 0 0 4703450 605670 0.10 967616
16 32 148015 0.54 5125190 0.66 6276870 15.1 32 0 0 4703450 605670 0.10 967616

1- 32 147977 0.54 5123520 0.66 6274680 14.4 565 0 0 4704130 605205 0.10 965212
4 32 147923 0.54 5123340 0.66 6274410 15.2 3543 0 1515 4703460 605234 0.10 965588
2 32 154369 0.51 5080670 0.63 6217560 17.7 388798 0 514201 4572030 595892 0.11 1049490
32 16 148015 0.54 5125190 0.66 6276870 15.1 0 0 0 4703450 605670 0.10 967616
16 16 148015 0.54 5125190 0.66 6276870 15.1 32 0 0 4703450 605670 0.10 967616
8 16 147977 0.54 5123490 0.66 6274630 14.4 565 0 0 4704100 605199 0.10 965208
4 16 147923 0.54 5123340 0.66 6274410 15.2 3543 0 1515 4703460 605234 0.10 965588
2 16 154283 0.51 5080780 0.63 6217690 17.8 391262 12 511221 4572400 595926 0.11 1049220
32 8 148296 0.54 5130030 0.66 6283340 14.6 0 42465 0 4699980 606914 0.10 976308
16 8 148296 0.54 5130030 0.66 6283340 14.6 0 42465 0 4699980 606914 0.10 976308
8 8 148147 0.54 5127650 0.66 6280150 14.5 136 41955 0 4697960 606250 0.10 975803
T 8 148008 0.54 5124970 0.66 6276580 14.8 3417 43886 1656 4699250 605596 0.10 971603
i 154623 0.51 5089010 0.63 6228580 17.6 421264 112555 514823 4571750 597748 0.11 1058960

32 4 169118 0.45 4924470 0.56 6009160 22.8 212642 644263 0 3881220 504115 0.15 1623340
16 4 165014 0.47 5014220 0.58 6129000 22.3 321746 831315 0 4145070 543282 0.14 1440290

1 T 160011 0.50 5070880 0.61 6204640 22.0 351896 1110040 9 4358330 571632 0.12 1274420
T 156210 0.51 5088800 0.62 6228450 20.0 398434 1 1353240 3739 4484610 583343 0.12 1160310
T 160866 0.49 5075980 0.60 6211330 19.9 1459240 1 1465050 556309 4445930 582471 0.11 1182760

Table B.17: Execution statistics for bitonic (bitl024) on 64 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

IG
0-01

Co

qu]wbj ciks putil insts nutil mreqs miat rqcon wbfull aqcon I ldcom f&acom mutil maccs

T 32 190268 0.50 12149200 0.61 14881700 16.2 0 0 0 11786600 1516480 0.06 1578400
16 32 190268 0.50 12149200 0.61 14881700 16.2 64 0 0 11786600 1516480 0.06 1578400

1 '3 190063 0,50 12137900 0.61 14866600 16.2 1142 0 0 11777200 1512990 0.06 1576230
4 32 190129 0.50 12140400 0.61 14870000 16.5 7403 0 4974 11779500 1513840 0.06 1576420
2 32 197137 0.48 12166200 0.59 14904400 18.8 835472 0 793847 11693700 1520100 0.07 1690370
32 '1 190085 0.50 12138500 0.61 14867400 16.4 0 93 0 11777500 1513110 0.06 1576520
16 16 190085 0.50 12138500 0.61 14867400 16.4 64 93 0 11777500 1513110 0.06 1576520

16 190356 0.50 12153300 0.61 14887200 16.3 1158 67 0 11791100 1517850 0.06 1577940
'I 16 190302 0.50 12151200 0.61 14884500 16.2 7369 63 4929 11788700 1517180 0.06 1578300
2 16 196520 0.48 12150700 0.59 14883700 20.2 835491 398 772797 11688900 1515650 0.07 1678990
'2 8' 192471 0.50 12210200 0.61 14963100 16.5 132 294027 0 11763000 1532960 0.07 1666920
"Ti 192447 0.50 12209700 0.61 14962300 16.5 1998 296032 0 11765000 1532840 0.07 1664280

T 192161 0.50 12198600 0.61 14947500 16.5 11216 304735 1 11766000 1529730 0.07 1651550
" 4 8' 191310 0.50 12170300 0.61 14909900 16.5 40159 317584 5085 11771400 1521770 0.07 1616460

1 197685 0.48 12142600 0.59 14873000 20.1 1023260 462703 823988 11651600 1512130 0.07 1709010

Table B.18: Execution statistics for bitonic (bit2048) on 128 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

ti

rj

1-3

qu wb ciks 	I putil insts 	I nutil mreqs mlat rqcon
[

wbfull aqcon ldcom f&acom mutil maccs

2 32 28464 0,66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858
1 32 24837 0.73 36130 0.97 48289 5.5 1208 0 0 5611 2054 0.82 40621
8 32 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069

16 32 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069
T 32 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069

2 16 28464 0.66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858
4 16 24837 0.73 36130 0.97 48289 5.5 1208 0 0 5611 2054 0.82 40621
8 16 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069
16 16 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069
r -16-- 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069

28464 0.66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858
•T T 24837 0.73 36130 0.97 48289 5.5 1208 0 0 5611 2054 0.82 40621
8 8 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069
B 8 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069
32 8 25781 0.74 38087 0.99 50910 5.5 0 0 0 6423 2415 0.82 42069

T 28464 0.66 37818 0.89 50572 5.0 6376 0 0 4925 1788 0.77 43858
1 •T 24837 0.73 36130 0.97 48289 5.5 1208 27 0 5611 2054 0.82 40621

8 4 25758 0.74 38051 0.99 50860 6.0 0 77 0 6441 2384 0.82 42031
16 4 25758 0.74 38051 0.99 50860 6.0 0 77 0 6441 2384 0.82 42031

IT 1 25758 0.74 38051 0.99 50860 6.0 0 77 0 6441 2384 0.82 42031
2 2 28374 0.66 37448 0.88 50050 4.5 6718 2065 0 4683 1703 0.77 43661
T 2 25408 0.73 36909 0.97 49320 5.5 1290 3584 0 5720 2137 0.82 41461
8 2 25104 0.74 36924 0.98 49332 6.5 5 3672 0 5720 2155 0.83 41454
16 2 25276 0.74 37209 0.98 49716 5.0 0 3801 0 6034 2170 0.82 41509

IT 2 25276 0.74 37209 0.98 1 49716 ty0 7 . 0 3801 0 6034 2170 0.82 41509

Table B.19: Execution statistics for Moore (moo32) on 2 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

00
c.o

ciks putil insts nutil
{

mreqs miat rqcon wbfull aqcon ldcom I f&acom mutil maccs
2 32 30437 0.59 72437 0.80 97211 8.5 27409 0 18275 22023 9409 0.54 65772
1 32 26933 0.68 73546 0.92 98716 7.8 1035 0 85 22509 9181 0.62 67019
T 32 26067 0.68 71182 0.92 95516 7.5 1 0 0 21521 8615 0.63 65373

16 32 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383
32 32 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383
2 16 30437 0.59 72437 0.80 97211 8.5 27409 0 18275 22023 9409 0.54 65772

•T 16 26933 0.68 73546 0.92 98716 7.8 1035 0 85 22509 9181 0.62 67019
8 16 26067 0.68 71182 0.92 95516 7.5 1 0 0 21521 8615 0.63 65373
16 16 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383
r 16 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383

T 29577 0.60 71019 0.81 95280 10.0 25395 14 16897 22575 9327 0.54 63371
4 8 26933 0.68 73546 0.92 98716 7.8 1035 0 85 22509 9181 0.62 67019
8 8 26067 0.68 71182 0.92 95516 7.5 1 0 0 21521 8615 0.63 65373
iT •' 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383
32 8 26186 0.68 71550 0.92 96012 8.2 0 0 0 21869 8752 0.62 65383
2 4 30943 0.59 72958 0.79 97973 9.5 29125 4186 18598 22046 9442 0.54 66475
T '4 26322 0.68 71448 0.91 95870 8.5 1408 3071 78 21130 8644 0.63 66087
8 4 26539 0.68 72389 0.91 97155 7.8 1 3135 0 21700 8924 0.63 66523
16 T 26793 0.68 73067 0.91 98060 8.5 0 2921 0 21958 9034 0.63 67061
32 T 26793 0.68 73067 0.91 98060 8.5 0 2921 0 21958 9034 0,63 67061
2 2 31941 0.58 73674 0.77 98867 9.2 33456 15817 14798 20468 8670 0.55 69722

' 4 ' 2 27903 0.65 72749 0.87 97634 8.8 5291 13614 193 20181 8359 0.62 69084
8 2 27511 0.65 71432 0.87 95885 9.8 54 12478 0 19038 7846 0.63 68988

"16 '2" 28293 1 	0165 73471 1 	0.87 98631 9.5 5 13154 0 19547 8253 0.63 70821
32 T 28461 1 	0.65 73824 1 	0.87 99099 9.0 0 13165 0 19696 8300 0.62 71092

Table B.20: Execution statistics for Moore (moo64) on 4 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

tZ

z
cI-

tri
I q u wb ciks putil lusts iiutil 	

[
xnreqs 	1 mlat rqcon 	I wbfull aqcon ldcom 	

[
f&aconi unutil maccs 1

2 32 62073 0.55 270870 0.73 363033 13.2 123988 0 80633 90523 34999 0.48 237492

4 32 53569 0.62 265923 0.83 356167 9.2 3071 0 200 92503 30667 0.54 232979

8 32 57016 0.62 282254 0.83 378682 9.5 5 0 0 96992 33574 0.54 248098

16 32 57300 0.02 283900 0.83 380954 9.0 0 0 0 97005 33760 0.55 250166

32 32 57360 0.62 283900 0.83 380954 1 9.0 0 0 0 97005 33766 0.55 250166

2 16 62073 0.55 270870 0.73 363033 13.2 123988 0 80633 90523 34999 0.48 237492

4 16 53569 0.62 265923 0.83 356167 9.2 3071 0 200 92503 30667 0.54 232979

• 8 16 57016 0.62 282254 0.83 378682 9.5 5 0 0 96992 33574 0.54 248098

-1 -• 16 57360 0.62 283900 0.83 380954 9.0 0 0 0 97005 33766 0.55 250166

32 16 57360 0.62 283900 1 	0.83 380954 9.0 0 0 0 97005 33766 0.55 250166

2 8 62801 0.54 272877 0.73 365935 12.1 126493 252 81601 89272 35380 0.48 241265

4 8 58417 0.62 289199 0.83 387951 9.5 3040 34 307 101371 34931 0.54 251630

8 •1 56664 0.62 280408 0.83 376131 9.2 4 26 0 95375 32791 0.55 247949

16 8 56030 0.62 277262 0.83 371886 1 	9.4 0 29 0 93900 32262 0.55 245706

32 8 56030 0.62 277256 0.83 371878 9.4 0 29 0 93898 32261 0.55 245703

59270 0.53 253627 0.72 339528 12.5 136072 21150 75177 79607 30400 0.48 229504

4 4 57601 0.62 283830 0.83 380555 9.1 3754 10385 301 95529 32876 0.55 252128

8 4 53410 1 	0.62 263143 0.83 352785 9.9 7 9745 0 86678 29302 0.55 236787

16 1 	4 57413 0.62 283317 0.83 380014 9.8 0 10997 0 96865 33460 0.54 249671

32 4 57413 0.62 283317 0.83 380014 9.8 0 10997 0 96865 33460 0.54 249671

2 2 65057 0.51 266666 0.69 357557 13.1 192131 55741 77283 77832 30368 0.48 249335

4 2 57485 0.59 271678 0.79 364361 12.4 18410 48888 1768 83773 28997 0.55 251565

8 2 59510 0.58 278376 0.78 373326 10.4 4385 48101 0 84067 29178 0.55 260057

16 2 60309 0.57 272967 0.76 366103 15.6 401 41417 0 78036 26815 0.54 261222

32 2 55891 0.56 252407 0.76 338349 15.8 12 34338 1 	0 68514 22773 0.55 1 247029

Table B.21: Execution statistics for Moore (moo128), on 8 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

t:r

tTI

tri
C)
CZ

qu I wb I ciks f putil
}
_insts I nutil I mreqs miat j rqcon I wbfull

[
aqcon 	J _ldcom I f&acom I mutil maccs

2 32 59011 0.51 480728 0.68 644700 15.7 192397 0 137513 217884 77494 0.37 349283
4 32 53860 0.57 491834 0.76 659350 11.0 2338 0 446 237257 74662 0.40 347395
8 32 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391
16 32 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391
32 32 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391
2 16 59011 0.51 480728 0.68 644700 15.7 192397 0 137513 217884 77494 0.37 349283
4 16 53860 0.57 491834 0.76 659350 11.0 2338 0 446 237257 74662 0.40 347395

16 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391
16 16 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391
32 16 53966 0.57 492823 0.77 660939 11.1 0 0 0 238188 75321 0.40 347391
2 8 58726 0.50 473521 0.68 635060 15.2 192173 4770 143579 211832 76546 0.37 346644
4 8 54151 0.57 494228 0.76 662750 10.5 2319 2299 428 240556 76162 0.40 345998
8 8 54847 0.57 500658 0.76 671171 10.9 0 2339 0 243786 77164 0.40 350188
16 8 54847 0.57 500658 0.76 671171 10.9 0 2339 0 243786 77164 0.40 350188
32 8 54847 0.57 500658 0.76 671171 10.9 0 2339 0 243786 77164 0.40 350188

T 59738 0.49 469639 0.66 629788 15.3 265906 61336 146682 205861 74030 0.37 349853
4 4 54731 0.56 493277 0.76 661485 10.9 7627 31016 529 231844 73707 0.41 355894
8 4 54340 0.56 488004 0.75 654156 11.1 2485 30346 0 227573 72089 0.41 354455
16 4 55091 0.56 489717 0.75 656933 11.3 1083 30670 0 222955 71523 0.41 362416
32 4 54661 0.56 485557 0.74 651456 11.1 38 31760 0 224674 72579 0.40 354166
2 2 63086 0.46 461804 0.61 618851 13.1 451694 146155 133410 183223 64045 0.37 371528
4 2 56996 0.51 468507 0.69 628146 14.5 93540 141877 10078 197064 62832 0.40 368195
8 2 59399 0.49 467738 0.66 627116 15.5 67079 125435 4305 188093 59488 0.40 379487
16 2 59169 0448 450126 0.64 603372 16.4 33006 111963 10 175141 54346 0.39 373839
32 2 60170 0.47 448564 0.62 600996 16.2 14101 106804 0 170983 51798 0.39 378164

Table B.22: Execution statistics for Moore (moo256) on 16 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

t1

tri

tri

tri

CZ

E.

qu I wb ciks j putil insts nutil mreqs J_miat rqcon wbfull aqcon Idcom f&acom mutil maccs
32 74852 0.47 1134620 0.64 1524340 16.3 384268 0 279692 634103 206978 0.29 683190

•1 32 72971 0.52 1214420 0.70 1633260 12.8 3119 0 999 717047 222978 0.30 693163
8 32 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427

•16 32 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427
T 32 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427

2 16 74852 0.47 1134620 0.64 1524340 16.3 384268 0 279692 634103 206978 0.29 683190
T 16 72971 0.52 1214420 0.70 1633260 12.8 3119 0 999 717047 222978 0.30 693163
- 8 16 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0,30 689427
16 16 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427
32 16 71317 0.52 1188260 0.70 1596960 12.5 0 0 0 693881 213586 0.30 689427
2 8 75303 0.47 1129910 0.63 1517540 15.5 395460 28819 292169 632093 207327 0.28 678046
4 8 75495 0.52 1256240 0.70 1687560 12.6 3388 11185 973 749277 231965 0.29 706252
8 8 68535 0.52 1134990 0.70 1525340 12.6 11 11584 0 654124 199761 0.31 671376
16 8 70059 0.52 1161500 0.70 1560690 12.8 0 11521 0 671726 205422 0.30 683469
32 8 70059 0.52 1161500 0.70 1560690 12.8 0 11521 0 671726 205422 0.30 683469
2 4 76490 0.45 1101440 0.60 1479600 18.6 691120 198770 303897 593261 194615 0.28 691648

4 71250 0.51 1158030 0.68 1555650 12.6 58887 129993 1059 658093 201190 0.31 696300
4 75305 0.50 1203930 0.67 1617210 12.8 53846 137596 39 689015 213357 0.30 714761

16 4 74413 0.49 1161260 0.65 1559450 12.7 31696 127852 0 643070 197820 0.30 718488
32 ,T' 72361 0.47 1083490 0.63 1454540 12.9 21009 111148 0 572513 173251 0.31 708703
2 2 83285 0.40 1071600 0.54 1438890 17.6 1483060 452931 240989 521859 171834 0.28 745088
4 2 82663 0.42 1100230 0.56 1477130 21.6 838787 476388 3876 544218 169915 0.29 762840
8 2 84794 0.39 1049660 0.52 1408750 24.5 694967 393467 30 487585 149831 0.28 771143
16 2 96918 0.36 1111600 0.48 1491460 22.1 485645 1 383928 0 503945 153690 0.27 833622
T 2 94289 0.34 1017330 0.45 1364330 25.4 238744 307264 0 443691 128798 0.26 791575

Table B.23: Execution statistics for Moore (moo512) on 32 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

xj

ciks putil I insts nutil mreqs miat I rqcon wbfull I aqcon ldcom f&acom mutil maccs
2 32 89818 0.44 2526290 0.59 3398860 18.1 709488 0 509895 1701210 527115 0.20 1170410
4 32 85871 0.48 2647010 0.65 3564140 14.5 3462 0 1750 1820800 552823 0.22 1190380
8 32 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610
16 32 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610
32 32 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610
2 16 89527 0.44 2522180 0.59 3392780 17.4 684221 167 515479 1701310 527453 0.20 1163850
4 16 85871 0.48 2647010 0.65 3564140 14.5 3462 0 1750 1820800 552823 0.22 1190380
8 16 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610
16 16 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610
32 16 87458 0.48 2696290 0.65 3629760 14.4 0 0 0 1863280 566741 0.21 1199610

•1 92630 0.43 2559870 0.58 3444800 17.6 823450 135973 558367 1709390 534214 0.20 1201060
4 8 82789 0.48 2527030 0.64 3401860 14.5 7209 47428 1891 1708880 514763 0.22 1178090
8 8 86790 0.48 2648410 0.64 3565140 14.4 2329 53837 0 1812090 549003 0.22 1203920
16 8 87215 0.48 2661700 0.64 3582850 14.5 866 54407 0 1831940 557858 0.21 1192920
32 8 87005 0.48 2651000 0.64 3568730 14.3 91 54999 0 1816570 553797 0.22 1198210

4 97507 0.41 2535870 0.55 3409380 19.9 2052980 776939 559498 1643710 508115 0.20 1257390
T 4 97327 0.41 2559780 0.55 3442890 21.1 1143730 748310 19368 1663310 504227 0.20 1275160
T 4 93115 0.40 2407620 0.54 3236210 19.1 621173 590632 1313 1525340 456503 0.21 1254160
16 4 101393 0.35 2279680 0.47 3063500 23.9 671709 447523 94 1364630 402573 0.20 1295920
32 1 105719 0.31 2107790 0.42 2829350 27.4 416521 299363 0 1193050 339162 0.19 1296620

104407 0.33 2225520 0.45 2984490 26.9 5392280 1175620 380432 1280900 387345 0.20 1315970
103881 0.32 2132390 0.43 2859860 34.1 4227680 f 1000810 8899 1167200 343331 0.20 1348950

1 T 107629 0.29 1999740 0.39 2679440 53.9 3736050 1 818706 809 1037030 293384 0.20 1348510
16 2 114521 0.25 1840090 0.34 2463130 84.5 2597280 581678 76 874668 229608 0.19 1358170

153470 0.20 2001820 0.27 2677680 1 222.3 23878801 594548 2 948838 248159 0.15 1479970

Table B.24: Execution statistics for Moore (moo1024) on 64 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

ti

til

[qu wb elks putil insts 	1 nutil mreqs 	1 miat 1 rqcon 	
[

wbfull 	I aqcon ldcom 	I f&acom I mutil maccs

2 32 114994 0.41 6051040 0.55 8142330 19.4 1326780 0 980364 4580680 1326770 0.15 2234640

T •2 110503 0.44 6275280 0.60 8452590 17.8 4513 0 6553 4799090 1391410 0.16 2261830

T 32 111031 0.44 6315720 0.60 8506390 17.9 1 0 0 4842010 1404450 0.16 2259700

16 32 111031 0.44 6315720 0.60 8506390 17.9 0 0 0 4842010 1404450 0.16 2259700

32 32 111031 0.44 6315720 0.60 8506390 17.9 0 0 0 4842010 1404450 0.16 2259700

2 16 106109 0.41 5561660 0.55 7487320 19.2 1338100 6712 906008 4124410 1174010 0.16 2188650

4 16 110427 0.44 6268990 0.60 8446080 17.8 4462 83 6507 4792760 1391230 0.16 2261820

•1 111284 0.45 6358430 0.60 8562770 17.0 2 44 2 4900610 1421790 0.16 2240110

16 16 111029 0.44 6306490 0.60 8500720 17.5 0 13 0 4824600 1406910 0.16 2268950

32 16 111029 0.44 6306430 0.60 8500650 17.6 0 13 0 4824550 1406880 0.16 2268950

2 8 116548 0.40 5959000 0.54 8014750 20.4 1909810 593687 1066630 4465120 1 1289380 0.15 2259980

4 8 112544 0.42 6087830 0.57 8199160 18.6 294321 486225 25538 4589860 1318840 0.16 2290180

8 8 113043 0.44 6295180 0.59 8480210 17.5 67090 280161 935 4781750 1395340 0.16 2302850

16 T 125796 0.43 6933050 0.58 9339280 18.3 47301 332707 121 5361650 1601750 0.15 2375610

32 T 112867 0.43 6144090 0.57 8267640 18.1 19635 276411 0 4637060 1338050 0.16 2292270

1 T 114618 0.36 5258380 0.48 7073890 27.8 6616200 2013820 898585 3717900 1050210 0.16 2305370

•1 •T 133924 0.33 5694420 0.45 7653230 34.3 7185500 2152700 33851 4041430 1149860 0.14 2461380

1- T 128314 0.29 4735750 0.39 6353450 50.4 6930060 1215600 5133 3119330 830787 0.15 2402460

16 T 151043 0.23 4386460 0.30 5871560 92.4 6693810 750026 1021 2700480 667703 0.13 2502170

32 T 223868 0.18 5109510 0.24 6828600 113.5 6715250 611899 918 f 2958640 703103 0.11 3165570

Table B.25: Execution statistics for Moore (moo2048) on 128 processors with varying queue and wait-buffer size (interleaving
level 16, 2-way combining, equal module clock factors).

MM

tZ

ti
C)

0

01

L±?2_I 	I 	 I 	- I - - -
Table 13.26: Execution statistics for matrix multiply with increasing combining level (interleaving level 16, queue size 4,

wait-buffet size 64, equal module clock factors).

z

tZ

tZ
rj

0 z

k-way

0
2
3
4
0
2
3
4
0
2
3
4
2

1 3
4
2
3
4
2
3
4
2
3
4

ciks
37686
30995
31086
30998
72256
43820
43674
43573
103138
61712
61528
61490
84555
83944
84076
113009
112077
112101
147923
146315
146257
190129
187268
187161

putil [
0.67
0.81
0.81
0.81
0.52
0.77
0.77
0.77
0.47
0.70
0.71
0.71
0.64
0.65
0.65
0.59
0.60
0.60
0.54
0.55
0.55
0.50
0.51
0.51

insts 	[
50133
50434
50580
50504
151124
134694
134755
134641
389894
347929
348626
348468
871900
871221
872509
2136580
2134010
2134580
5123230
5120110
5118740
12140300
12117900
12110900

nutil
0.81
1.00
1.00
1.00
0.65 1
0.94
0.94
0.95
0.58
0.86
0.87
0.87
0.79
0.79
0.79
0.72
0.73
0.73
0.66
0.67
0.67
0.61
0.62
0.62

mreqs
61385
61790
61983
61880
186852
164952
165034
164876
482074
426126
427058
426849
1067851
1066934
1068652
2616964
2613552
2614312
6274294
6270121
6268305
14869879
14839999
14830689

miat

6.5
5.5
6.0
6.0
10.2
7.2
7.0
7.2
15.8
9,4
9.0
9.2
10.9
10.9
10.9
12.8
12.6
12.8
15.1
14.4
14.3
16.5
16.3
16.1

rqcon]
13935
130
161
91
116333
647
544
512
391777
902
645
733
1001
1061
1046
2114
1994
1978
3543
3058
2944
7403
4127
4374

wbfull

0
0
0
0
0
0
0
0
0 	1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

aqcon
0
0
0
0
15
81
66
52
164
110
118
118
221
214
211
700
536
537
1515
1069
1006
4974
2745
2562

ldcom 	[f&acom

0
11054
11312
11914
0
50705
51827
52645
0
186123
188858
189483
609077
615460
617464
1777015
1789333
1790304
4703369
4732399
4731947
11779443
11818147
11811109

0
1998
2028
2032
0
8097
8296
8340
0
25547
26179
25979
79606
79813
80248
230150
230378
230588
605210
606341
605053
1513820
1510860
1508690

mutil
0.81
0.79
0.78
0.77
0.65
0.61
0.60
0.60
0.58
0.43
0.43
0.43
0.28
0.28
0.28
0.17
0.17
0.17
0.10
0.10
0.10
0.06
0.06
0.06

maccs
61380
48736
48641
47931
186836
106141
104904
103885
482029
214438
212005
211372
379134
371626
370906
609728
593773
593358
965576
931256
930271
1576413
1510713
1510676

rprcrs I
2
2
2
2
4
4
4
4
8
8
8
8
16
16
16
32
32
32
64
64
64
128
128
128

Table B.27: Execution statistics for bitonic with increasing combining level (interleaving level 16, queue size 4, wait-buffer

size 64, equal module clock factors).

tin

H
0
z
cI-

H

H

-1

prcrs k-way
[

ciks putil insts nutil mreqs miat rqcon wbfull_[aqcon ldcom f&acom mutil maccs

2 0 31428 0.58 36730 0.78 49093 6.5 13684 0 0 0 0 0.78 49088

2 2 24837 0.73 36118 0.97 48275 6.0 1208 0 0 5609 2052 0.82 40612
2 3 25331 0.73 37018 0.98 49462 6.5 1055 0 0 6185 2233 0.81 41042
2 4 25514 0.73 37383 0.98 49950 5.5 933 0 0 6460 2345 0.81 41143
4 0 36162 0.44 63341 0.59 85035 11.8 71884 0 29 1 	0 0 0.59 85019
4 2 26933 0.68 73531 0.92 98693 7.2 1035 0 85 22503 9178 0.62 67004
4 3 27626 0.69 75929 0.92 101857 7.5 898 0 57 23839 9629 0.62 68383
4 4 26861 0.69 73881 0.92 99124 7.2 905 0 51 23111 9399 0.62 66607
8 0 72323 0.41 238250 0,55 318969 17.0 316626 0 167 0 0 0.55 318920

8 2 53569 0.62 265898 0.83 356132 9.4 3071 0 200 92491 30659 0.54 232964

8 3 57943 0.62 288753 0.84 387135 9.4 2489 0 242 102658 35096 0.54 249367

8 4 57819 0.62 288103 0.84 386432 9.0 2419 0 246 102237 35294 0.54 248887
16 0 72730 0.29 335970 0.39 448804 45.2 1084100 0 552 0 0 0.39 448679
16 2 53860 0.57 491802 0.77 659313 11.1 2338 0 446 237235 74658 0.40 347384
16 3 53568 0.57 492292 0.77 660061 10.8 1817 0 325 240185 75177 0.40 344665
16 4 53888 0.58 495941 0.77 664742 10.9 1897 0 368 244239 76436 0.40 344037
32 0 5038280 0.10 15471200 0.13 20630136 1933.0 261250000 0 2762570 0 0 0.13 20629956
32 2 72971 0.52 1214370 0.70 1633194 12.9 3119 0 999 717002 222965 0.30 693151
32 3 75346 0.53 1274050 0.71 1711549 12.4 2295 0 793 778302 240255 0.29 692931
32 1 	4 69419 0.53 1168680 0.71 1570997 12.6 2219. 0 780 689325 211309 0.30 670301
64 2 85871 0.48 2647010 0.65 3564134 14.5 3462 0 1750 1820800 552823 0.22 1190375

64 3 87577 0.49 2736450 0.66 3681882 14.4 2690 0 1187 1921082 582302 0.21 1178374
64 4 88021 0.49 2745410 0.66 3697301 14.3 2342 0 1201 1926820 589739 0.21 1180615
128 2 110503 0.44 6275220 0.60 8452505 17.8 4513 0 6553 4799040 1391390 0.16 2261824
128 1 	3 110547 0.45 6389540 0.61 8607945 16.8 3225 0 2270 4961044 1447580 0.16 2199075
128 4 111204 0.45 6421320 0.61 8652800 17.0 3469 0 2243 4971042 1447110 0.16 2234399
256 2 133299 0.41 13914800 0.55 18781441 20.3 6078 0 23098 11602533 3299950 0.11 3878504
256 3 132860 0.42 14216000 0.56 19194554 19.2 3769 0 4798 11933883 3407320 0.11 3852884
256 4 148910 0.42 16015300 0.57 21606227 18.2 3894 0 5076 13662894 4002950 0.10 3939929

k

C)

0

cI.
H

H

Table 8.28: Execution statistics for Moore with increasing combining level (interleaving level 16, queue size 4, wait-huller

size 64, equal IIIo(ltIIe clock factors). 	 COD

prcrs] prcs ciks putil I insts nutil mreqs miat
[

rqcon I wbfull aqcon [ldcom f&acom I mutil maccs

1 16 10043 0.83 8385 1.00 10054 2.0 0 0 0 0 0 1.00 10054
1 24 11279 0.82 9209 1.00 11289 2.0 0 0 0 0 0 1.00 11289
1 32 10021 0.83 8364 1.00 10031 2.0 0 0 0 0 0 1.00 10031
1 40 12519 0.80 10028 1.00 12529 2.0 0 0 0 0 0 1.00 12529
1 48 15008 0.78 11695 1.00 15018 2.0 0 0 0 0 0 1.00 15018
1 56 17481 0.76 13360 1.00 17491 2.0 0 0 0 0 0 1.00 17491
1 64 10099 0.83 8395 1.00 10109 2.0 0 0 0 0 0 1.00 10109
2 •1 10046 0.83 16768 1.00 20112 5.0 0 0 0 9343 128 0.53 10639
2 F' 11280 0.82 18414 1.00 22580 4.0 0 0 0 10562 144 0.53 11873
2 32 10022 0.83 16726 1.00 20064 5.0 0 0 0 9321 128 0.53 10614
2 40 12519 0.80 20053 1.00 25058 5.0 0 0 0 11783 160 0.52 13114
2 48 15009 0.78 23390 1.00 30038 5.0 0 0 0 14241 192 0.52 15604
2 56 17482 0.76 26716 1.00 34984 5.0 0 0 0 16688 224 0.52 18071
2 64 0.83 16790 1.00 20220 5.0 0 0 0 9398 128 0.53 10693
4 16 17780 0.85 60295 1.00 71160 6.2 0 0 0 49708 384 0.30 21063
4 24 19990 0.83 66192 1.00 80000 7.0 0 0 0 56292 432 0.29 23273

•' 32 17753 0.85 60200 1,00 71052 6.5 0 0 0 49632 384 0.30 21033
4 •'4 22202 0.81 72100 1.00 88848 6.5 0 0 0 62881 480 0.29 25484
4 48 26629 0.79 83906 1.00 106556 7.5 0 0 0 76056 576 0.28 29921
4 56 31043 0.77 95700 1.00 124212 6.2 0 0 0 89212 672 0.28 34325
4 64 17803 0.85 60270 1.00 71252 7.0 0 0 0 49774 384 0.30 21091
8 16 19399 0.78 120437 0.92 142119 8.0 0 0 0 115818 896 0.16 25394
8 24 19991 0.83 132384 1.00 160016 8.5 0 0 0 131373 1008 0.17 27628
8 32 17754 0.85 120400 1.00 142120 8.2 0 0 0 115831 896 0.18 25386
8 40 22203 0.81 144200 1.00 177712 8.2 0 0 0 146746 1120 0.17 29839
8 48 26630 0.79 167810 1.00 213120 8.8 0 0 0 177493 1344 0.16 34275
8 56 31044 0.77 191400 1.00 248440 8.1 0 0 0 208185 1568 0.16 38680
8 64 17804 0.85 	1 120542 1.00 142520 8.5 0 0 0 116168 896 0.18 25449

Table 13.29: Execution statistics for matrix multiply on 1-8 processors with increasing interleaving level (2-way combining,
queue size 4, wait-buffer size 64, equal module clock factors).

15

t1

CZ

0
z
(I

1-3
cI

(J

prcrs I prcs]_ciks }_putil insts nutil I rnreqs I miat rqcon I wbfull I aqcon ldcom I f&acom I mutil maccs

16 16 40090 0.71 454848 0.83 531440 10.0 0 0 0 464601 1920 0.10 64899
16 24 37408 0.83 499678 1.00 598688 10.1 0 0 0 527495 2070 0.12 69108
16 32 33210 .0.86 454816 1.00 531536 10.1 0 0 0 464686 1920 0.12 64915
16 40 41566 0.82 544032 1.00 665232 10,3 0 0 0 589550 2400 0.11 73267
16 48 49870 0.79 632624 1.00 798112 10.1 0 0 0 713651 2880 0.10 81566
16 56 58119 0.77 720686 1.00 930080 10.1 0 0 0 837154 3090 0.10 89821
16 64 33212 0.86 454752 1.00 531568 10.1 0 0 0 464705 1920 0.12 64926
32 16 42961 0.66 904192 0.77 1054810 12.1 0 0 0 952379 3968 0.07 98435
32 24 37409 0.83 999360 1.00 1197470 12.0 0 0 0 1090260 4278 0.09 102902
32 32 33211 0.86 909632 1.00 1063140 12.1 0 0 0 960429 3968 0.09 98708
32 40 41567 0.82 1088060 1.00 1330530 12.2 0 0 0 1218480 4960 0.08 107060
32 48 49871 0.79 1265250 1.00 1596290 12.0 0 0 0 1474950 5952 0.07 115359
32 56 58120 0.77 1441340 1.00 1860190 12.1 0 0 0 1730160 6386 0.07 123613
32 64 33213 0.86 909504 1.00 1063200 12.1 0 0 0 960479 3968 0.09 98720
64 16 91108 0.60 3512320 0.70 4075520 14.0 0 0 0 3741680 8064 0.06 325759
64 24 72185 0.84 3875640 1.00 4620610 14.0 0 0 0 4277570 8694 0.07 334282
64 32 63973 0.86 3525310 1.00 4095100 14.0 0 0 0 3760900 8064 0.08 326076
64 iö 80316 0.82 4222510 1.00 5140990 14.2 0 0 0 4788560 9954 0.07 342418
64 48 96340 0.80 4905970 1.00 6166590 14.3 0 0 0 5797500 10584 0.06 358446
64 56 112387 0.78 5590200 1.00 7193540 14.1 0 0 0 6808130 10836 0.05 374504
64 64 64005 0.86 3525760 1.00 4097020 14.0 0 0 0 3762800 8064 0.08 326098

Table B.30: Execution statistics for matrix multiply on 16-64 processors with increasing interleaving level (2-way combining,
queue size 4, wait-buffer size 64, equal module clock factors).

'I

tZ

1-3

1-3

prcrs
]

prcsj ciks
]

putil I 	insts nutil mreqs I miat rqcon wbfull J aqcon ldcom f&acom mutil maccs

1 16 129047 0.84 107827 1.00 129058 2.0 0 0 0 0 0 1.00 129058
1 24 148318 0.82 122217 1.00 148328 2.0 0 0 0 0 0 1.00 148328
1 32 140885 0.83 116693 1.00 140895 2.0 0 0 0 0 0 1.00 140895
1 40- 174433 0.81 141736 1.00 174443 2.0 0 0 0 0 0 1.00 174443
1 48 207989 0.80 166792 1.00 207999 2.0 0 0 0 0 0 1.00 207999
1 56 241386 0.79 191746 1.00 241396 2.0 0 0 0 0 0 1.00 241396
1 64 165036 0.82 134789 1.00 165046 2.0 0 0 0 0 0 1.00 165046
2 16 167311 0.83 278586 1.00 333528 5.5 695 0 0 48534 6003 0.83 278989
2 24 191833 0.82 314851 1.00 382086 6.5 1600 0 0 61728 9033 0.81 311322
2 32 182302 0.83 300899 1.00 363308 6.5 1316 0 0 62379 8895 0.80 292031
2 40 225735 0.81 364811 0.99 448924 7.0 2566 0 0 81246 14181 0.78 353494
2 48 269541 0.80 429294 0.99 535283 6.5 3819 0 0 100912 22098 0.76 412271
2 56 312046 0.79 493051 0.99 620630 6.5 3482 0 0 119456 30480 0.75 470692
2 64 213352 0.81 347031 1.00 424869 6.5 1855 0 0 81915 14629 0.77 328323
4 16 224094 0.78 698142 0.93 835885 8.0 2037 0 184 209482 22941 0.67 603456
4 24 242964 0.80 781347 0.97 947336 12.2 52748 0 234642 312268 45908 0.61 589148
4 32 235127 0.80 751712 0.96 907373 14.2 101729 0 322567 356031 45037 0.54 506294
4 40 290122 0.78 905296 0.96 1113150 12.5 130121 0 356788 421265 75291 0.53 616579
4 48 345798 0.77 1060940 0.96 1321610 14.8 164733 0 429334 511736 114909 0.50 694959
4 56 399079 0.76 1215090 0.96 1527840 15.2 192898 0 498118 606753 153845 0.48 767230
4 64 274863 0.79 864770 0.96 1058220 13.0 136129 0 393276 456425 73928 0.48 527851
8 16 301313 0.71 1713640 0.85 2052490 9.4 2425 0 369 739171 70671 0.52 1242630
8 ij 299613 0,79 1899560 0.96 2301560 15.8 80442 0 455536 918389 129649 0.52 1253490
8 32 302135 0.77 1852310 0.93 2237540 19.8 541383 0 1145020 1031340 136384 0.44 1069790
8 40 375373 0.73 2189950 0.90 2689930 18.4 945186 0 1398300 1247910 225501 0.41 1216490
8 48 443481 0.72 2545410 0.89 3165110 25.8 1168660 0 1624010 1512430 327256 0.37 1325390
8 56 508063 0.71 2901930 0.90 3640710 21.6 1335460 0 1846360 1792200 430179 0.35 1418300
8 64 361326 0.74 	1 2131780 0.90 2610370 21.0 1008420 0 1514360 1377750 219286 0.35 1013300

t:r1

0

Table B.31: Execution statistics for bitonic on 1-8 processors with increasing interleaving level (2-way combining, queue size
4, wait-buffer size 64, equal module clock factors). 	 ND

prcrs I prcs I ciks putil insts nutil mreqs miat] rqcon wbfull aqcon ldcom f&acom I mutil maccs
16 16 394756 0.65 4106010 0.78 4916810 11.0 2829 0 856 2398070 214375 0.36 2304330
16 24 360598 0.80 4590520 0.96 5565770 15.4 66334 0 403491 2992360 351275 0.39 2222090
16 32 362316 0.76 4418500 0.92 5333850 21.5 1171840 0 2398930 2798240 353261 0.38 2182300
16 40 466422 0.70 5225930 0.86 6414890 22.4 3214930 0 3649730 3436110 598856 0.32 2379850
16 48 557377 0.68 6047450 0.84 7512610 23.7 4521480 0 4506750 4152930 856967 0.28 2502650
16 56 630338 0.67 6805350 0.85 8523050 29.5 5282780 0 5059510 4876390 1094680 0.25 2551930
16 64 460719 0.70 5136050 0.85 6291030 35.4 4105320 0 4280350 3804770 590680 0.26 1895530
32 16 507634 0.60 9694680 0.71 11606700 12.9 3891 0 1655 7090480 611457 0.24 3904660
32 24 436147 0.79 10972600 0.95 13317600 14.5 54953 0 146363 8792550 990464 0.25 3534480
32 32 436893 0.75 10495800 0.91 12675600 21.5 2207780 0 4247270 7559660 910955 0.30 4204890
32 40 558101 0.69 12287400 0.84 15073600 26.4 7716780 0 7763670 8895610 1484480 0.26 4693420
32 48 660239 0.66 13922700 0.82 17256400 25.8 12192800 0 10186500 10462300 2021610 0.23 4772300
32 56 741279 0.65 15415900 0.81 19245800 29.5 150291.00 0 11641400 12066100 2510280 0.20 4669270
32 64 570212 0.67 12212400 0.82 14965500 26.5 12474000 0 10293800 9881500 1498460 0.20 3585450
64 16 644810 0.55 22585200 0.66 27034700 14.8 6304 0 4098 19029300 1578160 0.16 6427120
64 24 538853 0.74 25600500 0.90 31071300 16.5 87404 0 153943 22756800 2532540 0.17 5781810
64 32 511128 0.75 24537300 0.91 29639100 25.5 3006320 0 6589410 20461900 2255540 0.21 6921470
64 40 648860 0.68 28325500 0.84 34709400 27.4 15720600 0 14570300 22636900 3480000 0.21 8592260
64 48 759099 0.65 31682000 0.81 39186800 30.4 27341800 0 20736600 25769200 4596270 0.18 8821090
64 - 5 836672 0.64 34299100 0.80 42670200 30.7 354432067 240800 28769300 5463600 0.16 8437080
64 64 685892 0.65 28518800 0.80 34950000 48.1 32604500 0 22819700 24615600 3600530 -6-. 15--76733560

Table B.32: Execution statistics for bitonic on 16-64 processors with increasing interleaving level (2-way combining, queue
size 4, wait-buffer size 64, equal module clock factors).

1-0

tZ

H
0

rj

prcrs I prcs I 	ciks putil I insts nutil mreqs]_miat rqcon I wbfull I aqcon I ldcom f&acom I mutil maccs
1 16 29603 0.75 22226 1.00 29614 2.0 0 0 0 0 0 1.00 29614
1 24 41450 0.75 31075 1.00 41460 2.0 0 0 0 0 0 1.00 41460
1 32 48432 0.75 36259 1.00 48442 2.0 0 0 0 0 0 1.00 48442
1 40 61221 0.75 45771 1.00 61231 2.0 0 0 0 0 0 1.00 61231
1 48 73094 0.75 54584 1.00 73104 2.0 0 0 0 0 0 1.00 73104
1 56 85541 0.75 63814 1.00 85551 2.0 0 0 0 0 0 1.00 85551
1 64 96750 0.75 72136 1.00 96760 2.0 0 0 0 0 0 1.00 96760
2 16 75009 0.72 108779 0.96 144660 6.0 4779 0 0 10509 2789 0.88 131361
2 24 90740 0.72 131456 0.96 175099 6.5 6401 0 0 14661 4518 0.86 155917
2 32 109227 0.73 158770 0.97 211673 6.5 6801 0 0 20198 6621 0.85 184852
2 40 129011 0.73 187429 0.97 250417 6.0 7625 0 0 26962 9174 0.83 214280
2 48 151083 0.73 220283 0.97 294436 7.0 7750 0 0 36654 13250 0.81 244531
2 56 170259 0.73 248155 0.98 332434 6.5 8104 0 0 41402 15314 0.81 275716
2 64 195343 0.73 284944 0.98 382095 6.5 8611 0 0 48946 18325 0.81 314822
4 16 72297 0.67 193134 0.89 257019 7.5 8036 0 140 29517 7492 0.76 220003
4 24 85655 0.71 242157 0.94 322902 13.0 28959 0 27183 57293 17848 0.72 247749
4 32 95508 0.71 269629 0.94 360140 17.0 34141 0 35535 67934 22328 0.71 269866
4 40 112709 0.71 318429 0.94 425890 14.2 41107 0 53829 91892 32375 0.67 301608
4 48 133804 0.70 376337 0.94 503848 15.5 53300 0 76312 117318 43264 0.64 343257
4 56 150804 0.71 426346 0.95 571429 17.5 55226 0 88662 140504 53100 0.63 377812
4 64 174838 0.71 493928 0.95 661921 19.0 67682 0 116982 173592 66709 0.60 421604
8 16 89266 0.61 435286 0.81 579484 9.6 7904 0 383 93765 20981 0.65 464720
8 24 97136 0.70 541309 0.93 722109 14.9 66238 0 62719 168441 46160 0.65 507487
8 32 112670 0.69 619228 0.92 827876 23.1 148247 0 153259 221960 68659 0.60 537229
8 40 138360 0.68 755070 0.91 1011180 27.0 217347 0 230553 300230 101036 0.55 609875
8 48 168405 0.68 915066 0.91 1227520 22.8 288299 0 326720 394962 141217 0.51 691310
8 56 190620 0.68 1031630 0.91 1385550 28.0 342846 0 387370 457137 167511 0.50 760867
8 64 218623 0.68 1181080 0.91 1586820 22.0 411834 0 472046 556351 206695 0.47 823743

RM

tZ

0

Table B.33: Execution statistics for Moore on 1-8 processors with increasing interleaving level (2-way combining, queue size
Nj 4, wait-buffer size 64, equal module clock factors). 	 CD

prcrs prcs I As putil I insts nutil mreqs miat rqcon wbfull aqcon ldcom
[

f&acom mutil maccs
16 ii 119837 0.56 1076880 0.75 1436100 11.0 8352 0 981 369646 91277 0.51 975139
16 24 116661 0.69 1281050 0.92 1712860 17.3 91755 0 93501 574724 153128 0.53 984974
16 •• 130769 0.67 1401520 0.90 1875780 21.7 443037 0 472566 682118 197591 0.48 996014
16 40 156270 0.65 1634830 0.88 2192780 27.8 790838 0 718419 839149 258895 0.44 1094690
16 48 191522 0.65 1982440 0.87 2661660 27.9 1115670 0 983375 1106700 365135 0.39 1189760
16 56

•

210443 0.64 2169650 0.87 2916120 31.3 1264710 0 1076180 1226700 411015 0.38 1278340
16 64 246140 0.64 2518920 0.86 3389490 36.4 1562190 0 1291890 1471950 509754 0.36 1407730
32 16 139805 0.52 2309820 0.69 3080230 12.8 9228 0 1541 964053 204900 0.43 1911210
32 - 24 134078 0.67 2863420 0.89 3828640 17.9 120067 0 77347 1544940 358238 0.45 1925380
32 32 151982 0.65 3159570 0.87 4229700 26.9 1102040 0 1089920 1822790 445940 0.40 1960870
32 40 201627 0.63 4068710 0.85 5454800 33.7 2471830 0 2049060 2586430 725967 0.33 2142280
32 T4• 215580 0.62 4257820 0.83 5716470 38.6 3228240 0 2396770 2708510 770942 0.32 2236890
32 56 241643 0.61 4714130 0.82 6335810 35.6 3943110 0 2757650 3067480 902315 0.31 2365870
32 64 280510 0.61 5436310 0.81 7314340 42.1 4761230 0 3239940 3632100 1118320 0.29 2563730
64 16 173839 0.48 5322520 0.64 7107010 14.5 11131 0 3446 2815090 584766 0.33 3707020
64 - 24 161455 0.64 6583140 0.85 8813260 16.6 162399 0 108073 4227920 971645 0.35 3613530
64 32 187838 0.64 7678330 0.86 10295000 27.8 2216090 0 1995840 5288950 1309210 0.31 3696690
64 40 217039 0.61 8461740 0.82 11355300 36.3 5571610 0 3898590 5956160 1526520 0.28 3872400
64 48 245329 0.59 9316160 0.80 12515200 38.9 8214170 0 5176550 6673770 1787030 0.26 4054120
64 56 276600 0.58 10267400 0.78 13809700 40.3 10663000 0 6153200 7405810 2047150 0.25 4356530
64 64 353274 0.57 12987400 0.77 17481400 39.0 14669500 0 7974740 9806050 2928140 0.21 4746880

Table B.34: Execution statistics for Moore on 16-64 processors with increasing interleaving level (2-way combining, queue
size 4, wait-buffer size 64, equal module clock factors).

IN

tri

0

xj

tin
C)
CZ

0

prcrs I ratio I ciks putil I insts nutil mreqs J miat rqcon [wbfull aqcon J ldcom f&acom
]

mutil I maccs
2 0.25 6220 0.20 2525 1.00 3110 16.0 0 0 0 1440 32 0.47 1470
2 0.50 3134 0.40 2537 1.00 3136 9.0 0 0 0 1449 32 0.47 1479
2 1.00 1587 0.81 2563 1.00 3180 4.0 0 0 0 1470 32 0.47 1500
2 2.00 1586 0.81 2562 0.50 3174 3.0 0 0 0 1467 32 0.24 1498
2 4.00 1586 0.81 2562 0.25 3172 2.0 0 0 0 1466 32 0.12 1498
4 0.25 10064 0.21 8375 1.00 10064 25.5 0 0 0 7015 96 0.71 7099
4 0.50 5056 0.41 8403 1.00 10120 12.0 0 0 0 7049 96 0.70 7135
4 1.00 2557 0.83 8483 1.00 10244 7.0 0 0 0 7139 96 0.70 7224
4 2.00 2556 0.83 8485 0.50 10232 4.0 0 0 0 7132 96 0.35 7223
4 4.00 2555 0.83 8481 0.25 10224 3.0 0 0 0 7126 96 0.18 7221
8 0.25 10068 0.21 16747 1.00 20136 31.1 0 0 0 16378 224 0.82 16566
8 0.50 5058 0.41 16807 1.00 20256 15.5 0 0 0 16475 224 0.82 16666
8 1.00 2756 0.77 16936 0.92 20453 8.2 0 0 0 16624 224 0.76 16820
8 2.00 2556 0.83 16969 0.50 20472 5.0 0 0 0 16665 224 0.41 16872
8 4.00 2555 0.83 16961 0.25 1 20448 3.0 0 0 0 16647 224 0.21 16865
16 0.25 17752 0.21 60107 1.00 71008 37.9 0 0 0 61994 480 0.88 62374
16 0.50 8900 0.42 60238 1.00 71248 19.2 0 0 0 62210 480 0.88 62594
16 1.00 5348 0.71 60591 0.84 71790 10.1 0 0 0 62706 480 0.74 63107
16 2.00 4503 0.84 60833 0.50 72096 6.0 0 0 0 63017 480 0.44 63448
16 4.00

1
 4502 0.84 	1 60832 0.25 72048 1 	4.0 0 0 0 62972 1 	480 	1 0.22 63426

Table B.35: Execution statistics for matrix multiply on 2-16 processors with varying network and memory speed ratio
(interleaving level 16, 2-way combining, queue size 4, wait-buffer size 64).

[ó

ND
CD
01

z1

0

JD

S

prcrs
[

ratio I ciks I 	putil I insts nutil I mreqs I miat rqcon I wbfull I aqcon
[

ldcom f&acom
{

inutil
[

maccs

32 0.25 17756 0.21 120219 1.00 142079 45.5 0 0 0 132024 992 0.93 132757
32 0.50 9350 0.40 120446 0.95 142558 23.1 0 0 0 132479 992 0.89 133243
32 1.00 5765 0.65 120320 0.77 142333 12.1 0 0 0 132284 992 0.72 133032
32 2.00 4664 0.81 121441 0.48 143936 7.0 0 0 0 133832 992 0.45 134726
32 4.00 4502 0.84 121665 0.25 144128 4.0 0 0 0 134015 992 0.23 134936
64 0.25 34600 0.20 453498 0.96 530105 53.2 0 0 0 502353 2016 0.91 503730
64 0.50 19214 0.37 453569 0.86 530112 27.0 0 0 0 502361 2016 0.82 503767
64 1.00 11820 0.60 453632 0.70 530431 14.0 0 0 0 502675 2016 0.67 504050
64 2.00 9127 0.78 457216 0.46 535679 8.0 0 0 0 507848 2016 0.44 509549
64 4.00 8400 0.85 458753 0.25 537728 5.0 0 0 0 509888 2016 0.24 511739
128 0.25 38724 0.18 906625 0.86 1059970 61.0 0 0 0 1028060 4064 0.83 1030830
128 0.50 21280 0.33 907009 0.78 1060100 31.0 0 0 0 1028190 4064 0.76 1031110
128 1.00 12853 0.55 907264 0.64 1060860 16.0 0 0 0 1028950 4064 0.63 1031480
128 2.00 9565 0.75 913920 0.44 1070460 9.0 0 0 0 1038510 4064 0.43 1041930
128 4.00 8401 0.85 917505 0.25 1075460 5.0 0 0 0 1043520 4064 0.24 1047230
256 0.25 82664 0.17 3516930 0.77 4085760 69.0 0 0 0 3989730 8160 0.76 3995310
256 0.50 45042 0.31 3517950 0.71 4086270 35.0 0 0 0 3990240 8160 0.69 3996090
256 1.00 26814 0.51 3518460 0.60 4087810 18.0 0 0 0 3991770 8160 0.58 3996340
256 2.00 19395 0.71 3538950 0.41 4118780 10.0 0 0 0 4022700 8160 0.41 4029060
256 4.00 16093 0.86 3540740 0.25 4120060 6.0 0 0 0 4024120 8160 0.24 4031410

Table B.36: Execution statistics for matrix multiply on 32-256 processors with varying network and memory speed ratio
(interleaving level 16, 2-way combining, queue size 4, wait-buffer size 64).

CD
C)

prcrs I ratio I ciks putil insts 	J_nutil mreqs I rqcon wbfull aqcon ldcom f&acom mutil maccs
2 0.25 124640 0.20 50635 1.00 62052 25.0 268 0 0 11765 2208 0.77 48076
2 0.50 61920 0.41 50404 1.00 61746 11.5 176 0 0 11571 2066 0.78 48106
2 1.00 30995 0.81 50434 1.00 61790 5.5 130 0 0 11054 1998 0.79 48736
2 2.00 30678 0.41 50114 0.50 61358 3.0 0 0 0 7357 803 0.43 53198
2 4.00 30678 0.20 50114 0.25 61356 2.0 0 0 0 7357 803 0.22 53196
4 0.25 165916 0.20 133021 0.98 162732 50.2 5105 0 39497 58119 10433 0.57 94164
4 0.50 82568 0.40 133400 0.99 163236 20.5 1012 0 19866 53514 9651 0.61 100065
4 1.00 43820 0.77 134694 0.94 164952 7.2 647 0 81 50705 8097 0.61 106141
4 2.00 41159 0.41 134460 0.50 164636 6.0 43 0 29 38037 4733 0.37 121864
4 4.00 41030 0.20 134088 0.25 164124 3.0 0 0 0 39328 4479 0.18 120314
8 0.25 214672 0.20 343547 0.98 420303 50.4 2023 0 45625 190701 28617 0.47 200964
8 0.50 107922 0.40 347999 0.99 426226 20.1 1737 0 1118 200444 28011 0.46 197753
8 1.00 61712 0.70 347929 0.86 426126 9.4 902 0 110 186123 25547 0.43 214438
8 2.00 53034 0.41 346417 0.50 1 424093 6.0 22 0 21 163779 18396 0.29 241906
8 4.00 52873 0.20 345610 0.25 422992 3.9 0 0 0 161221 17724 0.14 244043
16 0.25 274052 0.20 876150 0.98 1073539 49.1 3363 0 4517 651146 86743 0.31 335610
16 0.50 142840 0.38 875767 0.94 1073004 22.2 1922 0 1194 644043 85087 0.30 343838
16 1.00 84555 0.64 871900 0.79 1067851 10.9 1001 0 221 609077 79606 0.28 379134
16 2.00 67237 0.40 868461 0.49 1063202 6.2 52 0 20 568143 65700 0.20 429331
16 4.00 66258 0.20 866172 0.25 1060128 5.0 0 0 0 561157 63546 0.10 435419

Table B.37: Execution statistics for bitonic on 2-16 processors with varying network and memory speed ratio (interleaving
level 16, 2-way combining, queue size 4, wait-buffer size 64).

tZ
til

ti

0

trj

IM

01,
prcrs I ratio I 	cljcs putil }_insts nutil I mreqs miat j rqcon I wbfull aqcon I ldcom f&acom I mutil maccs
32 0.25 355428 0.19 2152450 0.93 2638185 53.6 5016 0 3843 1854829 244695 0.19 538578
32 0.50 191216 0.35 2143840 0.86 2626681 25.8 3188 0 1559 1828017 239112 0.18 559477
32 1.00 113009 0.59 2136580 0.72 2616964 12.8 2114 0 700 1777015 230150 0.17 609728
32 2.00 85410 0.39 2127320 0.48 2604564 7.1 146 0 121 1687663 206929 0.13 709908
32 4.00 81128 0.20 2121030 0.25 2596131 5.7 2 0 0 1683799 201462 1 	0.07 710847
64 0.25 469816 0.17 5153490 0.84 6314727 62.6 7511 0 5518 4806968 627008 0.12 880591
64 0.50 252830 0.32 5145240 0.78 6303694 29.4 4855 0 3176 4777439 620498 0.11 905615
64 1.00 147923 0.54 5123230 0.66 6274294 15.1 3543 0 1515 4703369 605210 0.10 965576
64 2.00 107407 0.37 5109520 0.46 6255852 8.0 529 0 609 4567589 574525 0.08 1113633
64 4.00 97435 0.20 5094680 0.25 6235943 6.0 0 0 0 4554623 562446 0.04 1118815
128 0.25 612328 0.16 12242100 0.77 15005949 66.8 12676 0 11786 11968328 1561420 0.08 1475931
128 0.50 327666 0.29 12190700 0.71 14937229 32.7 9628 0 8131 11901895 1540470 0.07 1494555
128 1.00 190129 0.50 12140300 0.61 14869879 16.5 7403 0 4974 11779443 1513820 0.06 1576413
128 2.00 133568 0.35 12087800 0.43 14799509 9.0 1855 0 2190 11559179 1466070 0.05 1774116
128 4.00 115287 0.20 12053500 0.25 14753499 6.0 20 0 5 11544054 1 1441460 0.03 1767877

Table B.38: Execution statistics for bitonic on 32-128 processors with varying network and memory speed ratio (interleaving
level 16, 2-way combining, queue size 4, wait-buffer size 64).

0

ZZ

prcrs I ratio
[

ciks putil I 	insts nutil mreqs I miat rqcon
]

wbfull aqcon ldcom f&acom I mutil maccs
2 0.25 101332 0.18 37120 0.98 49605 25.0 1061 0 0 7001 2601 0.79 40001
2 0.50 49838 0.37 36431 0.98 48683 10.5 1157 0 0 6023 2223 0.81 40436
2 1.00 24837 0.73 36118 0.97 48275 6.0 1208 0 0 5609 2052 0.82 40612
2 2.00 25494 0.37 38167 0.50 50992 3.0 0 0 0 2253 653 0.47 48084
2 4.00 25494 0.19 38165 0.25 50988 2.0 0 0 0 2253 652 0.24 48083
4 0.25 98356 0.18 70212 0.96 94225 49.0 5415 0 14505 26243 11132 0.58 56843
4 0.50 50240 0.36 72628 0.97 97499 20.5 2531 0 8398 25666 10753 0.61 61071
4 1.00 26933 0.68 73531 0.92 98693 7.2 1035 0 85 22503 9178 0.62 67004
4 2.00 24681 0.37 73562 0.50 98728 5.5 3 0 0 16217 5506 0.39 77002
4 4.00 24719 0.19 73679 0.25 98880 3.0 0 0 0 16128 5182 0.20 77566
8 0.25 189644 0.18 267692 0.95 358934 55.6 13384 0 23165 103658 35310 0.58 219949
8 0.50 98696 0.35 275922 0.94 370008 20.8 8966 0 2064 105139 34911 0.58 229940
8 1.00 53569 0.62 265898 0.83 356132 9.4 3071 0 200 92491 30659 0.54 232964
8 2.00 48153 0.37 286653 0.50 384276 6.0 39 0 0 81915 26253 0.36 276095
8 4.00 47731 0.19 284771 0.25 381856 4.2 0 0 0 79268 24854 0.18 277729
16 0.25 177484 0.17 487128 0.92 653100 55.1 10262 0 7032 258064 78798 0.45 316199
16 0.50 93968 0.33 493022 0.88 661035 23.1 7044 0 1612 255473 79347 0.43 326177
16 1.00 53860 0.57 491802 0.77 659313 11.1 2338 0 446 237235 74658 0.40 347384
16 2.00 42308 0.36 493972 0.49 662385 6.2 69 0 1 206290 63435 0.29 392638
16 4.00 41492 0.19 494960 0.25 663888 4.9 0 0 0 212062 63933 0.15 387877

Table B.39: Execution statistics for Moore on 2-16 processors with varying network and memory speed ratio (interleaving
level 16, 2-way combining, queue size 4, wait-buffer size 64).

tn

tZ
'I

tn
C)

ND
CD

ttj z
tZ

tzl

rj

0 z
C)

prcrs ratio ciks putil insts
[

nutil mreqs miat rqcon wbfull aqcon I ldcom f&acom mutil maccs

32 0.25 235304 0.16 1204100 0.86 1617640 54.0 10842 0 5552 760958 228385 0.33 628217

32 0.50 122494 0.30 1169400 0.80 1571599 26.1 7369 0 2925 711576 214894 0.33 645057
32 1.00 72971 0.52 1214390 0.70 1633217 12.8 3119 0 999 717016 222967 0.30 693155

32 2.00 53012 0.35 1191970 0.47 1602236 7.1 153 0 101 639044 198343 0.23 764796
32 4.00 52510 0.19 1250280 0.25 1680357 5.8 0 0 0 671212 206899 0.12 802220
64 0.25 291040 0.15 2749490 0.79 3698898 58.4 12450 0 8793 1988878 591095 0.24 1118775
64 0.50 149470 0.28 2632540 0.74 3542751 29.5 7444 0 4984 1864210 555635 0.23 1122756
64 1.00 85871 0.48 2647010 0.65 3564134 14.5 3462 0 1750 1820800 552823 0.22 1190375

64 2.00 63001 0.34 2719920 0.45 3663143 8.0 227 0 195 1780603 553747 0.16 1328719

64 4.00 56452 0.19 2682770 0.25 3613050 6.0 8 0 0 1720866 533647 0.09 1358465
128 0.25 407404 0.14 7042480 0.73 9491915 69.1 14676 0 19932 5657355 1667050 0.17 2167227
128 0.50 194192 0.25 6276920 0.68 8451948 35.0 9623 0 11569 4904876 1399630 0.17 2147160

128 1.00 110503 0.44 6275220 0.60 8452505 17.8 4513 0 6553 4799040 1391390 0.16 2261824
128 2.00 72883 0.32 5990330 0.43 8079171 9.0 521 0 553 4313757 1282280 0.13 2482962

128 4.00 69362 0.19 6582800 0.25 8876026 6.0 82 0 209 4767185 1445580 0.07 2663182
256 0.25 439980 0.12 13569800 0.65 18307736 81.2 23246 0 66977 11470791 3169020 0.13 3667369

256 0.50 267678 0.23 15732700 0.62 21211407 38.0 14532 0 52104 13510368 3911520 0.11 3789062
256 1.00 133299 0.41 13914800 0.55 18781441 20.3 6078 0 23098 11602533 3299950 0.11 3878504

256 2.00 101439- 1 0.31 1 15922700 0.41 21487377 10.0 787 0 2975 13105543 3919250 0.09 4462158
256 4.00 86602 1 	0.18 1 16337900 0.25 22054354 6.0 1 	143 0 34 13304195 1 4025260 0.05 4724791

Table B.40: Execution statistics for bitonic on 32-256 processors with varying network and memory speed ratio (interleaving
level 16, 2-way combining, queue size 4, wait-buffer size 64).

