

University of Bath

PHD

Time warp and its applications on a distributed system

Dinh, Nuong Quang

Award date:
1990

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. May. 2019

T im e Warp and Its A pplications
on

a D istributed System

submitted by

Nuong Quang Dinh

for the degree of Ph.D

of the

University of Bath

1990

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on the condition that anyone who con

sults it is understood to recognise that its copyright rests with its author and that

no quotation from the thesis and no information derived from it may be published

without the prior written consent of the author.

This thesis may be made available for consultation within the University Li

brary and may be photocopied or lent to other libraries for the purposes of con

sultation.

Signature of Author

Nuong Quang Dinh

UMI Number: U029886

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U029886
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

UNIVERSITY OF BATH
LIBRARY

2S J - 8 m ?391

M) . ~

Sum m ary

An important consideration in the design of parallel processing is the syn

chronization between parallel processes. Process synchronization in most of the

present parallel systems is implemented in a form of block-resume. As a conse

quence, a process at a synchronization point must wait for other process to catch

up before it can continue with the next execution step. A problem is processes of

the parallel algorithm tend to run at various speed, some parts executing rapidly,

while other parts are much slower; in many cases the slow segments dominate

overall performance and reduce the total speed-up of the system.

The Time Warp mechanism is a radical synchronization mechanism in which

processes are executed in a speculative mode go-ahead and if necessary roll-back,

rather than block-resume. The name Time Warp derives from the fact that the

executions of different processes in the system need not agree all the time, and

they can, in some periods go forward and in another period go backward in time.

Such anomalous execution modes can lead to errors, which are caused by the

premature computations at a faster process. In a Time Warp system such the

errors are handled by discarding the current process state and restoring the process

to the prior state assumed to be correct, and redoing the side effects caused by

the process. Time Warp was introduced for distributed discrete event simulation.

Since then the mechanism has been a topic of research for many research workers.

The question arises as to the applications in which Time Warp can offer the best

result.

In this thesis, the Time Warp mechanism will be introduced, the implemen

tation of the mechanism will be described in detail, and finally the feasibility of

using the mechanism in a more general application domains will be investigated.

A cknow ledgem ents

I would like to thank my supervisor Prof. John Fitch for his support and

guidance during the course of this research and to Dr. Julian Padget for his help

during my first year at the University of Bath. My family and friends gave me

continuous encouragement and understanding. I am very grateful to them. I

dedicate this work to my parents, who taught me so many precious lessons in life.

To them I own eternal gratitude.

C ontents

1 Introduction 1

1.1 Time Warp M echanism .. 2

1.1.1 An Introduction.. 2

1.1.2 Time Warp Resum e... 5

1.2 Multiprocessor System s.. 5

1.2.1 Definitions.. 6

1.2.2 Relation of Time and Event in Distributed Systems 7

1.2.3 Synchronization and C om m unication..................................... 10

1.2.4 Perform ance.. 13

1.2.5 Load B alanc ing .. 14

2 T im e Warp Im plem entation 15

2.1 The Time Warp E n v iro n m en t... 15

2.1.1 The M odel... 15

2.1.2 Implementation L a n g u ag e .. 16

2.2 Time Warp Mechanism K ernel.. 18

2.2.1 Time Warp M e ssa g e .. 18

2.2.2 Time Warp Object D e sc rip tio n ... 19

2.2.3 Message M anagem ent.. 22

2.2.4 Timewarp Object Scheduling .. 27

2.2.5 Roll-back and Cancellation.. 28

iv

2.2.6 GVT Calculation and Global Control P ro c e sse s 30

2.3 The Environment Network Com m unication....................................... 34

2.3.1 Establishment of Connection... 36

2.3.2 Message Transmission ... 37

2.3.3 Performance O bservation.. 39

2.4 Application Program In terface.. 41

2.4.1 Object Oriented System - A Simple M o d el........................... 41

2.4.2 User In te r fa c e s .. 43

3 Finding Suitable A pplications 48

3.1 The Concept and Definitions.. 48

3.1.1 Definitions.. 48

3.1.2 The Concept ... 51

3.2 An Empirical Analysis on Conditions for a Suitable Application . 52

3.3 A pplications... 55

3.3.1 Timewarp A pplications... 55

3.3.2 Other Applications - A Case S tu d y .. 56

4 T im e Warp and D istributed Sim ulation 65

4.1 Discrete Event S im u la tio n ... 65

4.2 Distributed Discrete Event S im u la tio n .. 66

4.3 Time Warp Distributed Simulation S y stem 68

4.3.1 The Concept ... 68

4.3.2 A Case Study - A Service Station Simulation Model . . . 69

4.4 The Game of L ife ... 71

4.4.1 The Game of Life - A Distributed Simulation Model . . . 73

4.4.2 Performances 75

4.4.3 C onclusions.. 77

5 A T im e Warp Production System 79

v

5.1 0PS5 - An In tro d u c tio n ... 79

5.1.1 Working M em o ry ... 79

5.1.2 Production Memory ... 80

5.1.3 In te rp re ter.. 81

5.2 Production Level Parallelism .. 84

5.2.1 A Parallel OPS5 M odel... 85

5.3 The Time Warp OPS5 Im plem entation... 87

5.3.1 The M odel.. 87

5.3.2 M o tiv a tio n s ... 90

5.3.3 Operations and Control A lgorithm s... 91

5.4 Results from the Experim ent... 101

5.5 C onclusions.. 104

6 A Tim e Warp D atabase System 106

6.1 Distributed Database System - An In tro d u c tio n 106

6.1.1 Synchronization in Distributed Database S y s te m s 107

6.1.2 Timestamp Ordering Database Systems.................................. I l l

6.2 A Time Warp Distributed Database S y s te m 113

6.2.1 Modularity and Composition of the TW D D S........................ 113

6.2.2 Clocks and Timestamp Ordering in T W D D S 115

6.2.3 Transaction Operation in the T W D D S 118

6.2.4 Replicated databases in the T W D D S 120

6.2.5 An Example to Illustrate Advantages of the TWDDS . . . 121

6.2.6 M o tiv a tio n s ... 125

6.2.7 C onclusions... 128

6.3 Timewarp - An Optimistic Concurrency Control File Service . . . 130

6.3.1 The Optimistic Concurrency Control in The Amoeba File

Service... 130

6.3.2 Optimistic Concurrency Control - The Use of Time Warp 132

vi

7 C onclusions 136

7.1 Summary ... 136

7.2 Areas for Further R esearch... 145

7.3 Concluding R e m a rk s ... 148

A - The T W -O PS5 C ode 158

A .l List A .l - Interpreter Modification C o d e ... 158

A.2 List A.2 - The TW-OPS5 Interface to the Time Warp System . . 163

vii

List o f F igures

2-1 Time Warp Environment - The Com position......................... 17

2-2 An Example of Data Structure of a Time Warp O b je c t 21

2-3 Interprocessor Communication Cost... 39

3-1 An Example of Process Synchronization in Time W a r p 51

3-2 The TSP - Maxtrix Reduction... 61

3-3 State Space Tree of the Solved 5 Cities T S P 62

4-1 Game of Life - Transformation of Patterns... 73

4-2 Game of Life - Speedup by Distributed Computation...................... 77

5-1 0PS5 Interpreter Working Mode ... 83

5-2 Block and Resume Parallel 0PS5 M o d e l .. 86

5-3 Process Interactions for the TW -0PS5 Parallel Interpreter 89

6-1 An Example of Interference in Database S y s te m 109

6-2 Optimistic Concurrency Control in the Amoeba File Service System. 133

C hapter 1

Introduction

Time Warp was specially designed for exploiting the concurrency in a distributed

discrete event simulation system, and has been proven to be suitable for such

application domains. However, how well it performs in a specific simulation ap

plication is still a subject of much on-going research. There has also been much

discussion about how Time Warp can cope in some other distributed applications.

In this thesis, these questions will be investigated by applying the mechanism to

a more general application domain. The thesis work is based not only upon a

general theoretical framework, but also with some experiments. The work of this

thesis has concentrated on two areas: a) to arrive at a better understanding of the

Time Warp mechanism via the construction and implementation of a Time Warp

environment; and b) to research the question of how well or bad the mechanism

can affect various application domains with a presentation of specific application

domains for parallel exploitation in the environment. The thesis starts with an

introduction to the Time Warp mechanism and general issues of distributed sys

tems in Chapter 1. The implementation of an actual Time Warp environment is

presented in Chapter 2. Chapter 3 describes a preliminary analysis for finding a

suitable application for Time Warp. The Time Warp distributed discrete event

1

simulation is discussed in Chapter 4 and a model of a parallel production system

in the Time Warp environment is presented in Chapter 5. Chapter 6 discusses

the opportunity of using the Time Warp mechanism as an optimal synchroniza

tion mechanism in control of transactions in a distributed database system and

distributed file serve, and finally Chapter 7 considers areas for further research

and conclusions.

1.1 T im e W arp M ech an ism

1.1.1 A n Introduction

The Time Warp mechanism, which has been described by Jefferson and Sowizral

[JS82], is a radical approach to the synchronization of different processes which

was used initially for distributed simulation. A Time Warp application can be

described in term of a set of concurrent processes, each process has its own logical

clock and proceeds at its own rate and communicates with others in the system by

an asynchronous message passing mechanism. In a Time Warp system, processes

are executed in a speculative mode, rather than blocking and resuming. Time

Warp permits each process to run ahead (goahead computation) as though it

were not constrained by the execution of its neighbours. In this scheme when an

error occurs, that is when a process receives a message which should have been

processed earlier, it stops and backtracks. The errors are handled by discarding

the current process state and restoring the process to the prior state assumed to

be correct, and antimessages 1 are sent to undo the activity of other processes

which have been misled by its previous actions. This requires the state of the

1Time Warp creates a message and antimessage pair for each sent message. The antimessage
is inserted into its saved output message queue, while the message is transmitted to the intended
receiver’s input message queue. The presence of the message and its antimessage in a queue will
cause them immediately to annihilate one another.

2

process and the history of actions (messages sent and received) to be saved at

different points (recovery points) during the computation, so that if needed, it

can recover the proper past state.

Logical T im e in T im e W arp

Time Warp provides two temporal time coordinates called Local Virtual Time

(LVT) and Global Virtual Time (GVT) [Jef85]. Time Warp processes are managed

individually. Each process has its own clock called the LVT, and activities of a

process depend on the values of this clock and the context in which the process

operates. LVT is involved in the control of the ordering of the events in the process

and process scheduling. GVT is a property of an instantaneous global snapshot of

the system at real time R , and is defined [Jef85] as the minimum of all LVT in the

system and of the timestamps of all messages that have been sent but not get been

processed. LVT and GVT play a very important role in the Time Warp control

mechanism which can described as local control and global control respectively.

The local control is concerned with making sure that events are executed and

messages are received in the correct order. The global control is concerned with

global issues such as memory management, termination detection, input/output

and error handling.

T h e R o llback O p e ra tio n

A rollback or re-synchronization is a process needed to repair the damage caused

by the premature computing. In general, a rollback procedure proceeds through

the following steps: first Time Warp restores the state and the logical clock of

the rollback process to the most recent state earlier than the timestamp of the

straggler2, then the side effects caused by messages which were sent earlier than

2 A message arrives with a past VRT

3

the arrive time of the straggler are to be cancelled. The restored LVT determines

which of the messages in the input queue must be re-processed and which of the

antimessage in the output queue must be released.

There are two ways of releasing antimessages in the cancellation phase. One

is called aggressive cancellation, in which antimessages for all messages are sent

during the premature computation period and which are released as soon as the

object is rolled back. The advantage of this method is that when messages are

wrong the object reports them as being wrong as soon as it can, thereby preventing

the creating of other incorrect messages, and hence rollback. The disadvantage

is that the object may re-transmit the same message that it cancelled; in this

case, sending an antimessage, which may cause a rollback at the receiving object,

is unnecessary and thereby slows the performance of the object. An alternative

method is called lazy cancellation. In a lazy scheme, the rollback object delays

the cancellation until the send time of the output message has been reached again

after rollback before deciding whether to cancel it; at that time, the antimessage

is released only if the message that was sent before does not match the newly

created message.

Deadlock and Termination

An important constraint in many distributed systems is that we must prevent

deadlock situations. Deadlock occurs when one or more processes in a program

are blocked forever because of requirements that cannot be satisfied. Another

fundamental problem in distributed programming is that of ensuring that a system

knows when it has terminated. By its nature, deadlock in a Time Warp system

is impossible, because there is no blocking, - a Time Warp process does not

wait for any process to satisfy any condition, but reacts on any invocation event.

Hence, if programming is correct, every process should be executed according to

its timestamp at a finite time. A program bug in a Time Warp program may

only lead to a wrong result, but not a deadlock situation as it may happen in a

block-resume system. Termination in a Time Warp system is much more easily

detected, a process is terminated whenever its input message queue is empty and

an application is terminated when every process has been terminated.

1.1.2 T im e W arp R esum e

Time Warp mechanism is best understood in the context of a distributed system,

where processes want to continue with their computation but have to wait for

confirmation messages from other processes. These messages may sometimes not

affect their destination processes at all. The questions are a) should we let a process

wait ? and b)how long should the process wait ? [Thi87]. If it is possible to assume

that the process has received all the relevant messages or that no message will

arrive in future, then the process can continue with its current line of computation.

But if the relevant messages arrive later then the computation would have to run

differently. Time Warp lets a program select a computation path along with the

messages received so far. But, if it later receives a message that should have been

processed earlier, it discards the current processing and rolls back to the state

before the conflict, undoing the side effects and then continues processing along a

revised path.

1.2 M u ltip ro cesso r S ystem s

Traditionally, computers and computing based on the Von Neumann model have

only one Computing Processor Unit (CPU). In such systems, all user jobs are sub

mitted to a single CPU, and they share the CPU according to some CPU schedul

ing policy. The increasing demands on processing power, increased availability and

resource sharing lead to the development of new parallel configurations. This re

suits in a class of computer organization which includes multi-processor/computer

systems. This type of computer systems is classified as MIMD 3 system in com

puting literature. This section introduces in general definitions to MIMD systems

and notations of parallel processing. The objective is to present a general knowl

edge to the subjects so they can be further discussed or referred as the subjects

arise in the thesis.

1.2.1 D efinitions

A basic multiprocessor system contains two or more processors. These processors

may either share or not share access to common sets of memory modules, I/O

channels, and peripheral devices; they may also have their own local memory

and private devices. In a multiprocessor system, processing of a given task is

not limited to one processor, but may be distributed over several processors. In

general, with regard to the memory arrangement within a multiprocessor system,

two major types of architecture are distinguished [HB85]: loosely coupled and

tightly coupled systems.

A loosely coupled multiprocessor system, also called a distributed system is a

multicomputer configuration that does not share any memory. The system can

be dispersed over a wide geographical area and can be viewed as a collection of

computer machines. These are connected with each other by a network media

through which messages may be transmitted and remote resources accessed.

A tightly coupled multiprocessor system, in general, is a system with several

CPU-memory combinations connected by a bus to shared memory. A part or

all of the system memory is common to all processors. The major benefit of a

shared memory system in comparison with a non-shared memory system is that

3MIMD is an abbreviation for Multiple Instruction, Multiple Data. It refers to a machine
architecture system in which each processor operates independently on its own local instruction
stream and data.

6

processes can use shared memory to communicate. They reference the same global

variables or use pointers that refer to the same locations. Thus, large amount of

data copying between processes in the communication can be avoided.

A system configuration can also include both loosely coupled and tightly cou

pled processors. In this case, some parts of the system are tightly connected and

other parts are loosely connected. This type of multiprocessor system is also called

a distributed system.

Distributed computer systems are becoming of increasing interest because of

the availability of mini- and microcomputers in research and in the university com

munity, industrial and commercial establishments. This has prompted the linking

of independent processors to form distributed systems. Distributed systems are

characterized with extensibility and resource sharing [LeL81]; a distributed sys

tem can be easily made more powerful by increasing the number of processors and

extending the communication network and the system provides the users with a

rich collection of resources that are usually unavailable or highly contended for

in stand-alone systems. Distributed computer systems, however, are restricted by

the lack of shared memory between processors. Communication between proces

sors must be done through a communication media which has proven to be too

slow in many current distributed systems (network connected systems).

1.2.2 R elation o f T im e and Event in D istributed System s

A computing algorithm can be characterized as the execution of a sequence of

events. The order of the sequence is by definition the order in which the events

take place in the system according to the program that the processes are running.

In a sequential (synchronous) algorithm, ordering of events is strictly imposed,

that is the relation between earlier and later events is always defined; whereas

in a parallel (asynchronous) algorithm the relationship earlier-later is not strictly

7

defined, events in a parallel algorithm can, in fact, in a specific period of time, be

activated in any order.

The ordering of events in a one coordinate time system is easy to manage and

control. In such a system, the time for the occurrence of an event can be driven

by a common physical clock. It is usual to say that something happened at time

Tt, called timestamp T, 4. T{ occurs after our clock read Tt_i and before it read

Ti+i- Let T(E) be the time event E occurs according to a valid clock. If even

E may be responsible for causing event F or if event E is said to happen before

event F, it is required that T(E) < T(F) - the time at which E occurs is less

than the time at which F occurs.

Management and controlling of events is more complicated when considering

events in distributed systems whereby executions and timestamps of events are

influenced by the different geographical locations and transmission delays. As an

example [Ben84], consider three processes P , Q , and R each located at a different

machine. P sends a message to Q. P then sends a message to P , which itself

sends a message to Q as a result. The problem is how do we now guarantee that

the messages received by Q are in the correct order ?

Solutions to this problem of synchronization in a distributed computing sys

tem are often divided into centralized and distributed schemes. Solving with a

centralized synchronization is characterized by having a controlling device which

acts as a global synchronizer. This type of global control can obviously be a bot

tleneck in execution if too many processes consult it at once or if it takes too long

to consult, it can be extremely inefficient in the context of a distributed environ

ment [Bor84]. A distributed synchronization scheme has the potential advantage

of greater reliability and better performance [Ben84].

4Timestamp is a unique number which is assigned to an event and is often generated by a
physical/logical clock.

8

A D istributed Im plem entation

Lamport [Lam79] has introduced a distributed synchronization mechanism for a

distributed system which is based on a convention by which autonomous processes

can solitarily decide which action to perform next. Lamport defines a logical clock

for each process 5. A logical clock is just like a function which assigns a number

(a logical time) to an event in that process. This number is thought of as the

time at which the event occurred. Hence, if an event A could have in any way

influenced another event B , then A will be assigned an earlier logical time than

B . Implementation [Lam79] of system logical clocks can be interpreted with

the following steps: a) each process increments its local clock between any two

successive events; b) the sending message is timestamped with the current local

clock of the sending process; c) upon receipt of a message a process advances

its local clock up to the timestamp value of the incoming message if its value is

greater than its current clock value.

Unfortunately, a system of the logical clocks does not guarantee a correct

ordering of events which access the same resource or when the order in which

events occurred at a process affects the computation path at the other processes.

Lamport has extended his logical clock algorithm with a control algorithm which

requires the knowledge of the active participation of all the processes [Lam79].

Hence a process can execute a command at timestamp T when it has learned of

all commands requested by all other processes with timestamps less than or equal

to T.

5A process is a sequential program in a state of execution. Actions in a process are called
events; events in this context are changes in state of some steps of the process, for example the
arrival or sending of a message, or the execution of primitive operations of that process.

9

1.2.3 Synchronization and Com m unication

In running a concurrent 6 program, the time taken by one stage of any of its

processes is unpredictable. The reasons for this are many. For instance, the

multiprocessor may consist of processors with different speeds. A processor, while

carrying out a stage of a process may, from time to time, be interrupted by the

operating system. The time of the process may depend on the instances of its

input. Thus one can never be sure that an input needed by one process will be

produced in time by another process. In order to make progress and to ensure

that the parallel algorithm works correctly, the cooperating activities of a common

effort, must in general be able to communicate, synchronize, and exchange useful

data with each other. It is usually difficult to separate synchronization from

communication. Communication is the exchange of information between processes

but, when processes communicate, synchronization is often necessary [AS83]. This

synchronization is intended to enable cooperation (sequence) and competition

(mutual access) of activities.

Process synchronization can be classified into two schemes [AS83]: a) shared

variables, for example semaphores or monitors; b) message passing. The use

of shared variables in communication and synchronization between processes re

quires a form of global shared memory. In contrast, a loosely-coupled system,

where there is no shared memory, has communication and synchronization often

implemented in the form of message passing. Two types of message passing can be

identified; synchronous message passing (blocking primitives) and asynchronous

message passing (non-blocking primitives) [AS83, TR85]. They differ in whether

or not the sender of the message should halt its computation until the message is

received or returned.

6A concurrent program specifies two or more sequential programs that may be executed
simultaneously as parallel processes. In this thesis we use concurrent and parallel as synonymous
terms.

10

Synchronous M essage Passing

In synchronous message passing a process, attempting to send a message, waits

until the receiving process is ready to receive it and a process, attempting to

receive a message, waits until one is sent. After this connection is established,

information is copied from the sender to the receiver. The sender is then forced to

wait while the receiver process performs the requested service. Upon completion

of the serve the results, if there any, are returned to the sender, which is then free

to resume the execution. The advantage of synchronous message passing is that

it provides a simple way to synchronize the communication between processes.

However, it has several drawbacks such as; a) the scheme provides no parallelism

and, although processes can be allocated on different machines, only one process

runs at a time - when the client runs, the server waits for a request, and when

the server runs, the client waits for a reply; b) the waiting for a request/reply

can lead to deadlock situation; c) some processes may be blocked from continuing

their run until certain stages of other processes are completed - the processes that

have to synchronize at a given point wait for the slowest among them thus, if the

difference between the speeds of various processes is large, the performance of a

synchronized parallel program may be substantially degraded.

A synchronous M essage Passing

In asynchronous message passing, the sending of a message will not result in de

laying the sending process but, instead, it continues its computations immediately.

Asynchronous message passing provides much concurrence. It allows processes to

execute asynchronously without having to suspend computation while awaiting

the results from another process. This is particularly valuable when the process

sending the message is not expecting an answer and is essential for applications

which are strong in local synchronization and weak in global synchronization.

11

However, the mechanism introduces another set of problems [TR85] such as; a)

because of different computing time consumed between processes (some processes

are too far on with their computation when the others are still behind) synchro

nization between processes is much more complicated, there must be a mechanism

for controlling the states and coordinating the execution instances of processes;

b) because the order of event is no long specified programming and debugging in

such an environment becomes a harder task.

Implementation of synchronous message passing is simpler and in general more

efficient than asynchronous message passing. The synchronous message passing

does not usually require buffer allocation for messages. If it does require only a

fixed buffer allocation is needed. The asynchronous message passing does require

messages to be stored. Storing messages can require a sizeable amount of storage

if the speed of the sending and receiving process differs significantly. The fact to

be faced is that no system can offer unlimited storage thus if the storage used

for asynchronous messages is needed and no more storage is available a deadlock

situation may occur[Bor84].

When working with multiprocessor systems, computer users like to classify

their concurrent environment by; a) the type of hardware system their programs

are working on (that is shared memory or non-shared memory systems); b) the

type of process interaction they are using (that is message passing or non-message

passing); or c) the synchronization mode of process interaction (that is synchro

nization or asynchronization). Some used to link the meaning of message passing

with a non-shared memory system and when discussing message passing they used

to differentiate between blocking or non-blocking message passing. Actually all

these differences are a m atter of implementation. A message passing system can

easy be implemented in a shared memory system [AS83]. Synchronous and asyn

chronous message passing facilities are equivalent in that primitives of one model

can be implemented in terms of another. The main purposes of using a parallel

12

program are both better performance and correct result, and so it is considered

that the coordination activities between processes is an important subject. In this

thesis, when synchronous (blocking mode) or asynchronous (non-blocking mode)

is mentioned, the mode of synchronization between processes, not the type of

communication primitives is meant.

1.2.4 Perform ance

An important measure of the performance of a concurrent system is the speedup

factor S associated with a particular application. Let us define T(N) to be the

time elapsed on a concurrent system with N machines and denote the single

machine computer time by r (l) for a given application. The speedup 5 depends

upon N , the number of machines, and is given by:

S (N) = T (l) / T (N)

One may expect that if an application takes a fraction of the time on a single

machine system then it will have a speedup factor S increase with the number of

machines. Actually, the value of 5 is reduced from its ideal value by one or more

of the following reasons; a) the application to run on the concurrent system may

involve more system software overhead (that is management of message or control

of process synchronization); b) the algorithm to run on the concurrent system may

not be as good as that for the sequential computer; c) the application may suffer

a heavy loss in its overall performance by the time spent in its communication;

c) the speedup is generally limited by the speed of the slowest machine because

machines in the concurrent system may not be homogeneous or because some

machines have more work to do than others.

13

1.2.5 Load Balancing

Load balance is an algorithm of distribution with an attention to give each CPU

in the system an approximate equal amounts of work so a maximum performance

can be achieved. In general, load balance methods [TR85] can either be static

or dynamic. Static load balancing algorithms are based on assumed information

or statistic data about making modules such as arrival time, execution cost, and

amount of resources needed etc. for the assignments of the jobs to the processing

hosts. In dynamic load balancing the current system load is considered in deter

mining job placements. Load balancing is still an ongoing research subject. The

results are somewhat academic [TR85] because; a) in a real system assumptions

that were made for a static load balancing are not complete met and b) process

migration in a dynamic load balancing is trivial in theory but close to impossible

or too expensive in practice.

14

C hapter 2

T im e Warp Im plem entation

This chapter describes in some details the design and construction of a Time

Warp environment. The implementation environment, in fact, is just a collection

of routines which handle the remote processor communication and the algorithm

of the Time Warp mechanism itself. The implemented environment can actually

be used as a tool to experiment with asynchronization parallelism using Time

Warp concept.

2.1 T h e T im e W arp E n vironm ent

2.1.1 T he M odel

The purpose of building the Time Warp environment is to evaluate the perfor

mance and to engage in the study of the Time Warp mechanism. Initially the

project considered a parallel environment model which has the following charac

teristics:

• Distributed Memory System.

15

• Large Grain Size Parallelism.

• MIMD in Asynchronous Mode (Asynchronous message passing).

Other choices which were not considered:

• Shared Memory System.

• Small Grain Size Parallelism.

The environment consists of a network of loosely coupled processors called

nodes. Each node is typically an individual processor with its own local set of

data and computational resources to control. There is no form of shared data in

the system and so communication between the processors must be carried out by

copying information from one local memory to another. The exchange of messages

between nodes is asynchronous in that the sender always hands over the message

to the communication subsystem and then continues with its own local task. The

execution environment on which the development system runs at the University of

Bath consists of a number of Sun Workstations, Ethernet [MB76] interconnection.

Time Warp system on each workstation are independent and execution of a Time

Warp system in a machine is understood as the execution of a UNIX process of the

UNIX system. A Time Warp system is composed of three parts: The Time Warp

Mechanism Kernel, The Communication and The Application Program Interface.

Figure 2.1 shows the composition of the Time Warp environment.

2.1.2 Im plem entation Language

Lisp (Common Lisp) is the main language used in the implementation of the

Time Warp environment. Only at the lower level of the basic communication

C is used. The Common Lisp version used in this thesis is the Kyoto Common

Lisp which facilitates a declaration of a C routine called from any Lisp function

16

T he A pplication P rog ram In terface
Object Oriented Lisp Environment

T he T im e W arp M echanis:

K ernel
Object Creation/Scheduling
Message Handling

Rollback Processing
GVT Calculation
Fossil Memory Collection
Warning/Error Message

m T he E nvironm ent

C om m unication
Establish of Connection
Message Transmission

A T im e W arp E N V IR O N M E N T

The Underlying Commu
T C P / IP

lication System

The Network Media

Figure 2-1: Time Warp Environment - The Composition

17

and vice verse. Lisp was chosen as the implementation language primarily for its

flexibility and extensibility. References to structures in Lisp have the fundamental

property that all data and code objects are all the same. A Lisp object may be

constructed, tested, executed and is available without restriction. The flexibility

of Lisp objects makes it possible to implement remote evaluation of Lisp functions.

This has interesting consequences for the communication between processes in the

Time Warp system. The language is also made attractive by the fact that it is a

popular language in research community.

2.2 T im e W arp M ech an ism K ern el

The Time Warp kernel implements the basic algorithms of the Time Warp mech

anism which include message management, rollback, annihilation, memory col

lection and distributed GVT calculation. The layer also provides Time Warp

objects1 with operations for their creation and termination, scheduling of their

events, messages routing, warning and error messages handling. Basically, the

Time Warp mechanism consists of two important descriptions, the Time Warp

message and the Time Warp object description.

2.2.1 T im e Warp M essage

Time Warp messages include control and data portions. The control portion

contains information to specify the status and the destination of the message.

The data portion (message text) can be considered as arbitrary structures of

1In this thesis, unless otherwise specified, the use of words process or object should be under
stood as Time Warp process or Time Warp object with respect to the Time Warp environment.
A Time Warp object is an object in the context of the object oriented system with addition of
Time Warp properties

18

unfixed length of ASCII characters2. Components of a Time Warp message are

described as follows:

V ir tu a l Send T im e (V S T). The timestamp of the sending message.

V ir tu a l R eceive T im e (V R T). The time when the message must be received

at the receiving object.

S en d er-id (SI). Name of the sending object.

R ece iv er-id (R I). Name of the receiving object.

S ign (S). A bit flag indicating the status of the message. A positive flag in

dicates that the message is an ordinary message, a negative flag indicates

the message is an antimessage. Ordinary messages are messages explicitly

created by user programs. Ordinary messages sent by user programs dur

ing the erroneous computations are annihilated by antimessages which are

created only by the Time Warp system during a rollback.

D irec tio n (D). Each message has a direction field which has either a backward

or a forward direction. A message with a backward direction indicates that

the message is returned by the destination object because the input message

queue at the destination object has been overflowed.

M essage te x t. Message information.

2.2.2 T im e W arp O bject D escription

Each Time Warp object in a Time Warp system has itself an object description

which holds all information it needs to control and manages its own tasks. Im

portant components of an object description are described as follows:

2In the Lisp environment, it is typically an S-expression or a Lisp object.

19

Local V ir tu a l T im e (LV T). The object’s logical clock which is the timestamp

of the message currently being processed or of the message processed last

by the object.

C u r re n t S ta te (C S). Variables which represent the state of the object at the

current logical virtual time.

In p u t M essage Q ueue (IM Q). This is a buffer which holds input messages

in order of increasing timestamp - both for processed and unprocessed mes

sages. The IMQ of an object contains all of the messages that have been

received by the object since the last fossil collection, including messages that

have already been processed. The reason for keeping the processed messages

in records is that when a rollback occurs, these messages may be involved

in the re-execution process.

O u tp u t M essage Q ueue (O M Q). This is a buffer which holds output mes

sages in order of increasing sending time - both the sent and the waiting

to be sent messages. The OMQ of an object contains all of the messages

the object has sent since the last fossil collection. Hence, if the object must

undo its computation, all the messages it has sent to other objects, from the

time of roll back until the present, can be found in the output queue so that

proper antimessages can be generated.

S ta te Q ueue (SQ). This is a buffer which holds snapshots of some of the

process’s past states ordered by its Local Virtual Time. This information is

needed to bring the object to a correct state when rolling back. An object

rolls itself back whenever a straggler arrives. The most recent saved state

which is earlier than the straggler’s timestamp is the state to which the

object is rolled back.

Figure 2.2 shows the data structure of a Time Warp object.

20

LVT

CS f

VRT

u -1

- I

Pre MSG TEXT

IMQ First | ' Current! Last

w

-LY.T___________. . .
.Say ed. State.____
.EointeL to.IM-Tlnlry_
Pnin tpr t o O M - F n t r y

OMQ First 1 Currenf Last

First Currenti Last

Figure 2-2: An Example of D ata Structure of a Tim e Warp Object

21

Time Warp objects are managed individually. Each has its own clock and the

activities of an object axe dependent on the values of its LVT clock, states, input

and output queue. The LVT of an object is a counter that is initialized when

the corresponding object starts. If the counter is not sufficiently large so that the

problem of overflow can be ignored, the count down method for the LVT clock

can be applied when the overflow occurs. The LVT may begin at and include the

point zero (or - INF) and reach out to infinity + INF. During the execution of

an event message LVT of the execution object represents the time at which the

event occurs. LVT of an object changes only between event messages and only to

the value in the timestamp of the next event message in the input message queue.

When an object receives a message with a timestamp in its future (that is the

message’s VRT > the current LVT of the object). The arriving message will wait

in the object’s input message queue for a future processing. Messages arriving

in its past (that is the message’s VRT < the current LVT of the object) called

straggler messages. These messages cause the object to roll back to a previous

time earlier than the straggler’s timestamp, redoing the side effects caused by the

premature executions and re-computing.

2.2.3 M essage M anagem ent

The Time Warp system starts with an initial process which sets up the connection

between the Time Warp nodes and initiates some start up configuration. Each

node then executes a main program which continuously collects messages that

arrive at the node, addresses the messages to the objects positioned at the node

and schedules the execution of the messages in the order of their timestamp.

Message passing in the Time Warp environment is used both for communication

and synchronization. Time Warp objects send and receive messages instead of

reading and writing common variables. An object sends a message to another

22

object by placing the message into the IMQ of the destination object. On the

other hand, an object can receive a message by retrieving it from its own IMQ.

When a message arrives at an input message queue it is inserted according to

the order of the message timestamp. An object always gets the message with the

smallest timestamp out when it tries to read a message from its IMQ.

A ntim essages

On each sending out message, a copy of the message with a negative sign in the

message’s sign field3 is kept in the object’s OMQ. The sending of an antimessage

can be regarded as the releasing of such a negative sign message from the OMQ

and transmitting it to the destination where the ordinary message has been sent.

An annihilation of messages occurs when a message and its anti-part (antimessage)

are found in the same message queue.

M essage H andling in a Fix M em ory M odel

Like any physical memory the Time Warp environment memory has only a limited

capacity. The memory capacity of the Time Warp environment can be exceeded

because of the dynamically changing and unpredictable number and size of mes

sages and saved states. A solution to this problem is to return the message to the

sender object if the storage of the receiver object is exhausted. So whenever the

object’s memory is not available for the new coming message, either the message

will be returned to the sender or an unprocessed message will be withdrawn from

the input message queue and sent back to the sender to make place for the recent

message. The selection is based on which message has largest VRT.

It is to be noted that, sending back the message to the sender when an input

3The message’s sign field denotes whether it is a positive (ordinary) message or a negative,
an antimessage.

23

message queue is overflowed, the sending back message will cause the sender to

roll back to the earlier state and therefore delays its sending process.

R eceiving a T im e W arp M essage

The state of an arriving Time Warp message is characterized by its direction which

can be either a forward direction (arriving of an input message) or a backward

direction (arriving of a returned message). On receiving a Time Warp message

the message’s direction is checked and, the following actions may be taken on the

received object.

Forward direction: Arriving of an input message.

1. Search the input message queue for a) the message location4 according

to the VRT of the message, and b) the message’s anti part if it is

present.

2. If the message’s VRT is in the past roll the object back.

3. If the antimessage part is found then remove the anti part from the

queue otherwise insert the message into the queue. In inserting the

message, if there is no free entry left in the queue, find an unprocessed

message which has the largest VST and the largest VRT and return it

to the sender to make place for the incoming message. The returning

message may be the incoming message itself.

Backward direction: Arriving of a returned message.

1. Search the output message queue for a) the message location according

to the VST of the message, and b) the message’s anti part. As an object

4Although messages are stored in a message queue in ascending order of timestamp, the
communication network might not deliver them in that order. Consequently, upon receipt a
message may be inserted into the middle of a message queue.

24

actually creates an antimessage for each sent message, the antimessage

is inserted into its output message queue, while the ordinary message

is transm itted to the intended receiver’s input message queue. Hence,

the anti-part of the returned message must always be found.

2. a) If the returned message’s VST is in the past, roll back the object;

otherwise b) It is possible that the returned messages has a future VST,

because the object has been rolled back before the returned message

arrives. In this case the returned message’s anti part is removed from

the object’s output message queue.

Sending a T im e W arp M essage

Upon receiving a Time Warp message an object may change the state of itself

and may send a message to another object. The effect of sending a Time Warp

message is to put the message marked with its intended recipient into the receiver’s

input message queue. Time Warp objects save a copy of every sent message in

their output message queue. However, because each object can only have a limit

number entries at their output message queue, an object, with no free entry, which

is left in its output message queue must either remove the copy of a future output

message5 or roll itself back. Removing of a future output message will not result

in an error in the program logic because the message will be reproduced at a later

time (if it is true that the message should be sent). Rolling back the object, when

its output message queue is overflowed, delays the processing of the object for the

memory collection process.

When handling the sending out of a Time Warp message the following actions

are taken respect to the sending object:

5 A future output message is a message with a VST larger than the V ST of the current output
message

25

1. The sending object makes a copy of the output message with the sign flag

set to a negative - the antimessage.

2. Search for the existing of the same output message (if the object is operated

in the lazy cancellation mode) in the output message queue. If the same

output message is found then the message is already sent and so no action

needs to be taken.

3. If there is no free entry left in the object output message queue and if there

exists a future output message then remove the future output message to

make place for the new output message. Otherwise roll the object back.

4. If the output queue is not full then insert the antimessage into the queue

and send the ordinary message to the destination object.

Im plem entation Im provem ent

When a message is inserted into a queue its computation cost plays an important

factor in the total cost of the system message management. Message queues are

implemented as a queue chaining a list of message frames. Pointers are employed

to control and to manipulate the position of the message frames. Finding the

place where the message should be inserted can be done by sequentially travelling

through the queue with help of the pointer to the message entry. If the queue size

is small then this search time is not significant. A large queue size, however, will

increase the searching time and use large amount of the environment memory. A

small queue size offers a faster searching time but may seriously suffer from the

cost of the returning of messages when the input message queue is overflowed.

One solution is to combine the small queue size with the increasing of the fossil

memory collection rate. This solution, again, may suffer from the expense of the

frequent GVT calculation. Another solution has been chosen in this thesis, that

is, to keep a count of the free entries of the message queue. When the count is

26

reduced to a certain number N (where N is smaller than a percentage of the total

entry in the queue), a wake-up message is sent to the GVT calculation process so

a fossil memory collection can take place in the very near future.

It is important to note that the sending of the wake-up message to the control

processor is asynchronous, this means the sending node continues with its execu

tion tasks until it receives a message for initiation of a fossil memory collection.

If the input message queue is overflowed before a fossil memory collection has

taken place then the environment still applies the returning message strategy as

described above.

2.2.4 Tim ewarp O bject Scheduling

The nature of synchronization in the Time Warp system is captured by encoding

times as part of each message transmitted between Time Warp objects. Process

ing of a Time Warp object is described by a set of event. Each event has an

associated time of occurrence (timestamp), which indicates the order in which the

events must occur in the system. Because timestamps are the basis upon which

the system determines when consistency has been violated, management of Time

Warp object in the Time Warp system is very much dependent on their logical

timestamps. A Time Warp object is an unit consisting of a set of operations

which can only be activated by messages. Messages are processed one at a time.

An unprocessed message which has the smallest VRT will be executed first when

the object is to be selected as an active object. Time Warp objects in the same

processor can be scheduled for execution by one of the two following modes:

Round-robin scheduling mode. Each object is selected to run a number of times

provided that the input message queue of that object is not empty.

27

Smallest VRT First Serve (SVFS) scheduling mode. The object priority is spec

ified by VRT of the first message from the input message queue. The object

which has the smallest VRT of the first message, from its input message

queue, will get highest priority and is given preference for execution.

The current system provides only non-preemptive scheduling. This means

that the new ready-to-run object waits until the object currently running on

the processor terminates its execution before it gains access to the processor.

However, during the execution of an object it may send a message to another

object which may cause a rollback at the destination object. In this case, if the

destination object is located in the same processor, the system gives the priority

to the rollback operation.

2.2.5 Roll-back and C ancellation

A rollback is an action taken in response to the arrival of a straggler at an object.

The rollback procedure proceeds through the following steps:

Restoration. The system restores the object’s state and the LVT to their values

which have been saved at the time earlier than the timestamp of the strag

gler. The restored LVT determines which of the messages in the input queue

must be re-serviced and which of the antimessage in the output queue must

be released.

Cancellation. The side effects caused by the premature sending out of messages

must be cancelled. An object can be chosen to operate in either aggressive

or lazy cancellation manner. With aggressive cancellation, the antimessages

for all premature sending out messages are released as soon as the object is

rolled back. With lazy cancellation, the rollback object waits until the send

time of the output message has been reached again after rollback, before

28

deciding whether to cancel it. At that time, the antimessage is released

only if the message which was sent before does not match the newly created

message.

Coast Forward. If the object’s states are saved on each message execution then

the coast forward phase can be omitted. On the other hand if the object has

saved only some of its states the restoration phase has generally overshooted

a little. Hence, it is necessary to re-compute some of the past computation

steps in order to bring the object back to a correct state.

Im plem entation Im provem ent

Time Warp objects, by their nature, take a checkpoint from time to time to save

their image. Saving of images on each object execution cycle allows a fast handling

in rolling back process. The main disadvantage of the method is the large amount

of memory required and the time needed to do it. A long interval between two

checkpoints saves memory and computation time. A penalty, however, must be

paid because when the object must do a rollback, the object must spend more

time in the Coast Forward phase to bring the object to the correct state. There

is a possible improvement in using an optimal checkpoint scheme. For example,

with a knowledge about the rollback history of an executing object, the save-state

interval of the executing object can be varied in such a way that a less frequent

rollback object type executes a long save-state interval, whereas a short save-state

interval is needed for the other object type. At the beginning of the computation

we might well presume no prior knowledge of the rollback frequency of an object.

We gain some insight into this behaviour by inspection of the rollback account of

the object after each execution cycle. This leads us to a checkpoint scheme for

the object.

29

A ssum ption : I f the executing object has not been rolled back during the last

few execution cycles, it is possible that the object will not be rolled back at future

cycles.

Given with the assumption, the following rule is applied:

An object takes a checkpoint (save states) after a period K of execution

cycles, K > 1. The K factor is initialized with an initial number,

then it is adjusted (increased/decreased) with a rate according to the

rollback rate of the object during its execution life.

2.2.6 G V T C alculation and G lobal C ontrol P rocesses

T h e G V T C o m p u ta tio n

A node among nodes in the system is chosen to be the control node. The tasks of

the control node are to bring up the system to a ready execution stage and from

time to time to carry out the GVT calculation. GVT [Jef85] is a property of an

instantaneous global snapshot of the system at real time R . It is the minimum of

all LVT in the system and of the timestamps of all messages that have been sent

but not yet been processed. The interval time between the GVT computations

can be controlled by a timer. GVT computations impose system overheads by

communicating to every objects. A long interval between computations causes

more waiting time for the global control process and so causes bad system perfor

mance. A short interval instead causes greater system overheads. In this thesis,

in addition to the use of the timer, a GVT computing process can be invoked

by a wake-up message. At the time, when an object wants to precede an out

put command and before the actual execution of the command can take place or

when its local memory is exhausted, it sends a message to initiate (wake-up) the

GVT computation process. The GVT computing algorithm is patterned on the

30

handshake-commit protocol and is described as follows:

A) At the control node:

1. Broadcast a starting GVT computation system message6 to every node in

the system.

2. Each node is then be checked about the number of remote messages.

3. Send messages to every node in the system to inform each the number of

remote messages which should be received at the node and asking them

to report their lowest logical timestamp. The lowest logical timestamp at a

node is calculated by inspecting a) every object’s input message queue in the

node and b) the communication message buffer which contains the received

messages that have not been handled. VRT of the message with the lowest

VRT will be chosen as the lowest logical timestamp of the node.

4. Set the GVT to the lowest logical timestamp among those lowest times

tamps. Send the new GVT value to every node in the system and then

inform them with a finishing GVT message.

B) Upon receiving a starting GVT message, an ordinary node acts as follows:

1. It informs the control node of the total number of the sending out remote

processor messages and the message’s destination sent by this node since

the last GVT computation.

2. It waits to be informed of the number of the total remote processor messages

which should be received at the node. If the given number is not equal to

6Messages arriving at an object can be either a Time Warp message or a system message.
Every message contains a field indicating that the message belongs to a certain class. Messages
that are not sent by a Time Warp object are system messages. For example, messages sent by
the GVT calculation process are typical system messages. System messages always have the
highest priority to be executed.

31

the actual messages that have been received then the node will constantly

inspect the network to collect messages which have arrived late. Other

wise, when all messages to the node have been received, the lowest logical

timestamp is calculated and is sent to the control node.

3. It waits for the new value of the GVT. When the node receives a new GVT

value from the control node it finishes up the phase with the fossil memory

collection process.

G lobal Control Processes

The global control processes are concerned with global issues such as memory

management, termination detection, error handling, and I/O commitment. Mem

ory management is a process of re-organizing the system memory. Termination

detection is a process which identifies when the application processes reach the

finishing point. Error handling is a process to control the error status of the

processes in the system.

Error Handling'. Time Warp mechanism, by its concept, lets some part of the

application be executed in a concurrent and asynchronous fashion. Thus at a time

during the processing, for example at Tx, accessing of an unbound variable may

happen. Such an error does not cause interruption to the current processing nor

is it reported until the GVT has passed the Tx and the error is still persistent. In

another words, whenever an error is occurred, the error status of the object is set

and this status is saved into the state queue. The system lets the current object

continue with its execution. At each new GVT value, and before an entry in the

state queues is removed, the error status of the removed state entry is checked. If

it is set, the error then will be reported to the user.

Output Processes: Output processing is a command message to an output

device such as those printing to a device or affecting some form of display. It is

32

one of many critical processing problems in a concurrent environment. In general,

these actions should not be carried out, before the system is sure that it will not

lead to any conflict. Time Warp system does a global check before these actions

can be committed. That is a command message to an output device must wait

until GVT reaches or exceeds its clock. It is to be noted that in waiting for the

condition to be answered at a critical object, the CPU resource may not always

be wasted because it can be used for the unprocessed messages at another object.

Fossil Memory Collection: The importance of the GVT is that no rollback can

occur to a time earlier than the GVT, since no message can be stamped with time

lower than its sender’s LVT. Therefore any memory used in saving messages and

states can be collected. A Time Warp node, when it receives a new GVT value,

will scan its saved queues. The entries found with a timestamp value less than

the GVT value are removed from the queues.

Termination: Another importance of the GVT is that it is used to detect

the termination state of an execution application. As stated, the GVT is the

minimum value of all the LVTs in the system. LVT of an object is set to infinity

if the object’s input message queue is empty. Hence, an application’s processing

is known to be finished when the GVT reaches the infinity value, that is when all

LVTs reach infinity.

Im plem entation Acknowledgem ent

The described implementation above gives only the basic presentation of the Time

Warp implementation process. Some explanation parts about the Time Warp

mechanism itself have been omitted. The reader seeking more details should con

sult the original Time Warp papers [JS82, Jef85]. In addition, the implemented

Time Warp kernel was influenced by the CPAS Time Warp kernel - the Concurrent

Processing for Advanced Simulation [PF87, Fit88]. The CPAS Time Warp project

33

was written in PSL (Portable Standard LISP), the system supported interface to

graphic display, object oriented, new methods for synchronizing inter-object ac

cess to shared attributes [GM89], and a compact mode to transfer Lisp objects

between processors [BMF89]. The implemented Time Warp kernel in this thesis

can be considered as a simple model which differs from the CPAS kernel in a) im

plementation language (Common LISP) b) system management algorithms which

have been applied in message handling and state saving and c) the way a GVT

calculation process can be invoked.

2.3 T h e E n viron m en t N etw o rk C om m u n ica tion

The Time Warp environment network communication layer supports the lowest

level communication between nodes and between Time Warp objects. It contains

routines to handle the establishment of connection between Time Warp environ

ments and data transmission. This layer is implemented independent from the

Time Warp mechanism. It is actually dependent and belongs to the environment

of the system where the Time Warp environment is operated.

The Time Warp environment communication layer is supported by the under

lying 4.3 B S D 7 interprocess communication. The 4.3 BSD, a version of UNIX

provides a flexible concept for interprocess communication - the so-called sockets.

A socket is a reference point for communication, which can be read or written

by processes when it is connected. Each socket has a protocol8 associated with

it, which may be a datagram socket (UDP User Datagram Protocol) or a stream

socket (TCP - Transmission Control Protocol). Datagram sockets are charac

terized by connectionless and unreliable communication. There is no guarantee

7SUN microsystem (BSD 4.3) UNIX-Interface Overview Manual Networking on the SUN
Workstation.

8Communication protocols are rules and conventions used by the components of distributed
system s and networks to exchange information and synchronize with each other.

34

that messages sent between processes will arrive in the same order in which they

are sent, or that they will not duplicate, or that they will arrive at all. Stream

socket provides reliability such as guaranteed delivery of messages and removal of

duplication.

The Time Warp environment network communication layer is developed us

ing the socket stream protocol. Interprocess communication (IPC) using stream

sockets supports a non-blocking communication mode. Messages are buffered and

sending and receiving processes are not blocked. When a send is executed the

message is copied to the network sending buffer of the sending process and the

process is then allowed to proceed. When that message arrives at the receiver it

will be buffered at the network receiving buffer of the receiving process and, when

that is ready, the receiving process is informed by a signal. The IPC provides a

network library routine select which can be called by a sending/receiving process

to check if the network sending buffer is ready to accept the sending message or if

there are any messages on the network receiving buffer. The disadvantage of using

the stream socket protocol is that only a limited number of sockets can be con

nected and, to provide a reliable and sequenced communication, the protocol may

involve more communication and processing activity in the operating system level.

The protocol is chosen because it is simple and easy to implement. An alternative

is a datagram socket. In this protocol a degree of control is possible within the

implementation. Hence, it may involve less processing activity and may result in

a small cost in communication. An advanced datagram socket implementation for

a distributed Lisp environment using a compact mode to transfer a Lisp object is

presented by Burdorf, Marti and Fitch [BMF89]. The problem with the datagram

socket is tha t when interrupt or signal can not be used or is difficult to handle,

polling is the only way to inspect the arriving of the data transmission. Message

transmission at the lowest level in that situation is blocked. This is because the

sending process can not be released until the receive process is ready to inspect

35

the communication buffer for accepting the message and sending back an acknowl

edgment. As UDP is not a reliable communication system this acknowledgment

is needed in order to ensure that the message and the appropriated correct data

has been received [BMF89].

2.3.1 E stablishm ent o f C onnection

One node from the system is chosen to be the master node. This has the job of

setting up the initial communication links between nodes. Setting up a socket

connection between remote processes in the system is done by calling the connect

system call at one process and an appropriate system call accept at the other one.

The accept and the connect system calls work in a handshake manner. That is

when an accept system call is initiated on a socket by a process, the process will

not return until the connection has been established between them. The setting up

communication links between nodes in the system involves in the following steps:

a) Slave nodes are given at the start information sbout the name of the master

node and a unique port number through which connection will be established.

They then enter a loop waiting for connection with the master node by initiating

the accept system call, b) The master node is advised of the list of those nodes

which will take part in the computation process. With each node from the list

the connect system call is initiated to create a connection between the slave and

the master. After this has been done then all that remains is for the slave nodes

to know each other. The master node sends messages to request each slave node

to establish a connection between it and others. This results in a node-socket-id

table at each node. The table is used by the message manager as a reference

address table for sockets, since from now any data is being transm itted by calling

send or recv system call through the established sockets.

36

2.3.2 M essage Transm ission

Messages arriving at a destination can be detected either by an interrupt signal

from the underlying communication network or by polling. In an interrupt-driven

system, when a message is delivered to its destination process, the system inter

rupts the execution of the process and initiates execution of an interrupt handler

process which stores the message for subsequent retrieval. On completion of the

interrupt handler process, the original process resumes execution. An alternative

to an interrupt-driven system is a polled communication system. Polling involves

the inspecting of the communication hardware, typically a flag bit, to see if in

formation has arrived or departed. Polling is characterized by a process actively

and repeatedly checking for the occurrence of an event that originates outside the

process. Polling is generally easy to maintain, but not always desirable because it

wastes system resources, e.g., it burns CPU cycles or it may generate unnecessary

traffic on the network connecting the processors. The current Time Warp envi

ronment uses the polling approach in both sending and receiving messages. The

following text describes an example of the working mode of the data transmission

in the implemented environment.

For each establishment socket a data buffer is reserved for holding sending

data and receiving data onto the socket. At the Time Warp kernel level the basic

procedure for sending data is net-send-byte which is to write a single byte to a data

buffer. The content of a data buffer can be sent by net-send-buffer a procedure

which copies the buffer into the underlying communication buffer. Before the data

is actually written into the communication buffer by using the send system call

the select system call is initiated to check if the underlying communication system

is ready for data transmission. Then the rest of the transmission process is done

by the underlying communication system.

In a similar fashion, net-read-byte is used to take a byte from a data buffer.

37

Data message is received by the net-read-buffer function which reads the content of

the communication buffer by calling the recv system call. In polling, each machine

initiates a message polling process which checks whether a message is ready to

be read from any of its connected channels. The check can be done before or

after an execution cycle. An execution cycle in the Time Warp environment is the

process of selecting of an object to run and the execution message of the selected

object. If no message is ready, the machine continues to its next execution cycle

and then polls again. Whenever a message is available, the message is then read

and handled by the message management which has a special strategy in inserting

the message into destination object’s IMQ.

Pointers are used to manipulate the data buffers. When a byte is written into

a sending buffer the byte is stored into the buffer and the write-pointer of the

buffer is increased to point to the next free location. If the buffer overflows, data

is written into the communication data buffer for transmission, the write-pointer

is reset to the start of the buffer and new data can be sent to the data buffer.

When a byte is read from a receiving buffer the read-pointer is increased to point

to the next byte location. If the receiving buffer is empty the communication data

buffer will be checked to see if any more data is available. The data is then copied

into the receiving buffer otherwise, the caller can choose either to wait or wait

with time-out for data arrival.

It is to be noted that each transmission message has a control portion which

contains addresses of both the sending and receiving socket ID so that the receivers

may use them to address reply messages. Each message is included with a start

and a stop message byte so at the higher level (the Time Warp kernel level) the

message can be checked for the completion.

38

!
milliseconds. 0

2
1
0

X
i

>
>£....X.... , ‘ xx*..X...X...X....X... •)*.... X.....X

c)205 0 1C)0 2()0 5()0 60

Number of characters per message.

Figure 2-3: Interprocessor Communication Cost.

2.3.3 Perform ance O bservation

To get a better view for the time required to transmit messages variations of

communication test programs have been run on a pair of SUN 3/60 connected by

a lOMb/sec Ethernet. This was done to get an average measurement of the time

required of message transmission. In a normal condition9, the tests show the total

transmission time for null RPC10 taken in the range of tens of milliseconds (bottom

bound time) to hundreds of milliseconds (upper bound time). Interprocessor

communication cost is about 4 ms on average per character for a medium size

message but the cost decreases as quite rapidly as the number of characters in the

messages being transmitted is increased.

The cost of interprocessor communication message shown in Figure 2.3 was

measured in terms of the time required for the following activities: a) time for

packing and unpacking message’s content in both sender and receiver, b) inter-

processor transmission time which includes anything that has to be done to get

the message from one processor to another, e.g., writing on the output port, read

9Several other users were using the computers and the network on which the communication
tests were performed.

10A null remote procedure call is a process of sending a message list, which contains a number
of characters, and waiting for returning of the same message list. Evaluation time of the message
is assumed to be small compared with the total cost of the message transmission.

39

ing from the input port, and the actual transmission, and c) time to execute the

request procedure in the server. The time required to transmit a packet of informa

tion from one machine to another may be approximately expressed as: (d * x) + c,

where x is the number of bytes contained in the message, d is the bandwidth of

the communication channel, and c is the overhead11 for sending message. When d

is considerably less than c, overhead for communication is high in comparison to

the communication bandwidth. Given a system with these characteristics, there

may be significant performance advantages in structuring an algorithm so that

information that must be transm itted is sent in large quantities.

The results from the test programs show that the delays and computations

involved in the transmission of a message are far from a satisfactory level. This is

because in a non-shared memory UNIX system, data communication between dif

ferent computers is transferred between the two kernels involved using the network

transport layer. Only the kernel in each computer has direct access to the network

transport layer. Calls to kernel functions from user-level programs are themselves

relatively costly in processing time. In addition, when a process makes a sending

message to a remote process, the message text and its necessary information are

copied into a buffer of the underlying processor communication network. The

same copying work is needed when the message arrives at the receiving process.

A better communication performance can be achieved in systems that are based

on lightweight processes with shared memory. Hence, a sending process may pass

a pointer which points to the message, the receiving process can use the pointer

to access the message.

n The latency overhead is the time to send a zero-length message from one node of a processor
to another. Non zero latency arises from the overhead in initiating and completing the message
transfer.

40

2.4 A p p lica tio n P rogram In terface

The Application Program Interface (API) supports an object oriented program

ming style in the Lisp environment.

2.4.1 O bject O riented System — A Sim ple M odel

Object oriented computing emphasizes in terms of data (objects), type definitions

defining access control and synchronization. An Object can be understood as

a representation component of a modular decomposed system or modular unit

of knowledge and is usually characterized with object specification and method.

Object specification consists of the object’s variables or information which may be

visible or invisible to other objects. Method is the object’s body which contains

the code that is executed when the object is selected to run. Object oriented

systems form the units of abstraction and protection. Each object has a clear

separation between its inside and its outside. This is in the sense that the data

internal to an object can only be accessed from the outside by invoking one of the

methods of the object - the object explicitly states whether and when to execute

the method. In this way an object takes care of the responsibility of keeping

its internal data in a consistent state - providing a protection mechanism. In

addition, object oriented systems provide a means of classifying similar objects

and capturing the common characteristics of those objects which can be related

hierarchically through inheritance. The basic idea is that in defining a new class it

is often very convenient to start with all the variables and methods of an existing

class and to add some more in order to get the desired new class. This inheritance

mechanism constitutes a successful way of incorporating facilities for code sharing

in a programming language. The following text describes some basic components

(type and method) of an object oriented system which was developed by Kessler

[Kes88], and is used in this thesis.

41

A type or class describes the implementation of a set of similar objects which

have the same behaviour and characteristics. A type can be thought of as a

representing of a data value along with the operations to manipulate the data.

An object type is defined with a name, a set of attributes and a set of methods.

The attributes of an object are also known as its fields or variables. The methods

are also known as operators. A type is defined using:

(d e f in e - t y p e typ e -n am e a t t r i b u t e *)

A type may inherit variables and methods from an existing type. The object

created from the subtype has all the attributes and actions of the original type

and in addition they have the ones defined in the subtype. Inheritance is specified

by using :inherit-from as a type option, followed by the name of the parent. For

example:

(d e f in e - t y p e type-nam e (: in h e r i t - f r o m p a r e n t - ty p e) (: v a r . .))

The individual objects described by a type are called its instances. A type

is only a template for an object’s characteristics. An actual object instance is

created by the function (make-instance type-name) which takes the name of the

type and returns an object instance.

A method is a procedure which describes the performing of one of an object’s

operations. A method is defined with the expression:

(d e f in e -m e th o d type-nam e method-name arg u m en t* S -e x p re s s io n *)

The S-expression*is that which makes up the method body. This specifies the

statements to be executed when the method is invoked. Execution of an object’s

method is initiated in a way similar to calling a Lisp function:

(m ethod-nam e o b je c t S -e x p re s s io n *)

42

Implementation of the object oriented system in the implemented Time Warp

environment is based on the work of Kessler [Kes88]. However, there are differ

ences between objects in Kessler system and objects in the implemented Time

Warp environment. The Time Warp object system supports the distribution and

parallel execution of Time Warp objects. It allows two kinds of object definitions:

a) non-timewarp object is an ordinary object in a non-concurrency system; b) Time

Warp object is an ordinary object which is associated with a Time Warp object

description and supported with the Time Warp mechanism working mode. In the

Time Warp system, Time Warp objects which are located at different processors

may process messages concurrently. However each Time Warp object processes

only one message at a time. The processing of a message by a Time Warp object

is considered to be an atomic action in the system.

2.4.2 U ser Interfaces

In general operation invocations across processor boundaries will generally take

longer than local invocations. To write efficient code it may be necessary to

identify groups of objects that interact heavily and then to specify tha t these

groups should reside on the same processor. A programmer can often customize a

distributed object so that it operates with a minimum of communication. Appro

priate choice of object size of an application depends, of course, on the purposes

to which the object will be put and the granularity of information to be manipu

lated. For that reason, the Time Warp system lets the programmer decide what

will be a Time Warp object and where the object will be located. It provides

an explicit procedure for assigning objects to physical processors. Assignment of

Time Warp objects to processors is done during Time W arp object creation and

the assigned objects will remain in their located location during the course of the

system execution. Assigning of a Time Warp object should be done at the control

43

node and is done by calling:

(tw a s s ig n o b je c t o b je c t-n a m e m a c h in e -in d e x)

The machine-index is the index number of the node where the object will be

located, a nil machine-index will let the system locate the object to a node in a

random fashion. When a Time Warp object has been assigned to a node its Time

Warp description is created. The node is then ready for another object assignment

or a message to start the execution. The location address of every Time Warp

object must be known by every node in the system. Thus, on each assignment

the system will send the assigned object location to every node in the system.

Besides those procedures to initiate the communication link process and Time

Warp object assignment, the environment provides a number of communication

procedures to ease off the loading process. Two most useful procedures are de

scribed below:

(RPC remote-node-id message): A remote procedure call. The client process

sends the message to the remote-node-id, the server, requesting the message

to be evaluated and then waits for the evaluation result. When an RPC

is used, the caller process is blocked until the server performs the request

function and transmits a reply message to the client process.

(RCS remote-node-id message): A remote command send. The client process

sends the message to the remote-node-id requesting the evaluation of the

message at the remote, but does not wait for reply.

Furthermore, at the Time Warp application level, one can call for example:

(SendTWMessage VRT dest-obj message-text): This function causes the con

text of the message-text to be sent to the destination object indicated by

44

dest-obj. A message-text has a format as (message-type destination-object

arguments). Message-type is the name of the invoked method, destination-

obj is the name of the invoked object and arguments is the arguments for

the invoked method.

In general, the timestamp value (the VRT) of a Time Warp message is gen

erated in a way that very much depends on the algorithm of the application.

But in order to ensure that timestamps are generated satisfying the times

tamp ordering, VRT and VST of a sending message must be larger than or

equal to the LVT of the sending object. In addition the VRT of a sending

message must be larger than or equal to its VST. On each sending out of a

Time Warp message, the system manager will check if the above conditions

are answered. Otherwise an error message will be displayed.

For each Time Warp object created, its identification and location is known

by every object in the system. Given an object identifier (the dest-obj)

in a sending message, the system manager distinguishes between local and

remote residing objects. From the user’s view, there is no difference of

syntax to send a message to a local or remote object. This communication

transparency allows objects to be allocated either to the same or different

stations without some kind of interference of the user. The programmer

does not need to know the location of an object when invoking it.

(mylvt): Return the current LVT of the object.

(current-msg): Return the context of the current servicing message.

(next-msg-text): Return the context of the message which is located at the top

of the unprocessed message queue.

45

(return-current-msg): Insert the current executing message back into its input

message queue12.

(who-sender msg): Return the object ID who sent the message.

(msg-same-vrt): A user can inspect its input message queue to see if there are any

messages which have the same VRT as the current LVT, the (msg-same-vrt)

will return a list of messages if any.

Chapter Summary

This chapter presents in some detail the configuration and the implementation

algorithms of the implemented Time Warp environment. The implemented Time

Warp environment is an ensemble of independent computers - SUN workstations

and Ethernet connections - each communicates with each other by exchanging

messages through point-to-point communication channels. The implemented en

vironment is composed of three parts: The Time Warp Mechanism kernel, The

Communication, and The Application Program Interface. The Time Warp Mech

anism Kernel is primarily concerned with the issues of expressing the constructs

for the Time Warp algorithm. It was not really an attem pt to develop another

version of Time Warp, but rather the Time Warp kernel with some optimal coding

algorithms. The Environment Network Communication was developed to support

the lowest level of communication between computers and between Time Warp

objects. Communication procedures were built on top of the underlying 4.3 BSD

interprocess communication and are based on the stream socket mode. This is a

non-blocking communication mode and reliable communication. The Application

Program Interface (API) was developed to support the object oriented program

ming style in the Lisp environment. The object oriented system implemented in

the thesis is a copy of the work of Kessler [Kes88]. This is a small object oriented

12This is a form of delaying the object processing.

46

packet and is in the same family as the CLOS (Common Lisp Object Oriented

System). The API also supports the necessary procedures for an application level

program to send messages, inspecting its current objects’ status, and assigning

objects to processors.

When the Time Warp environment has been built a question arises as to the

applications in which Time Warp can offer the best result. In the next chapter,

this question will be addressed. The aim is to discuss the subject generally so

that an application can be chosen for experiment.

47

C hapter 3

Finding Suitable A pplications

In parallel processing Time Warp does seem to offer a new opportunity to increase

performance but it seems rather true for some specific application domains. The

question arises as to which the applications in which Time Warp can offer the

best result. Finding a suitable Time Warp application is not a trivial process. It

needs both an understanding of the Time Warp mechanism and a knowledge of

the problem requiring solution. In this chapter this question will be addressed.

The aim is to discuss the subject generally so that an application can be chosen

for experiment.

3.1 T h e C on cep t and D efin ition s

3.1.1 D efinitions

We consider Time Warp processes as reactive systems, processes are expressed

in terms of their possible actions and interrelationship to other processes in the

environment. Let P i , ..., Pn be a distributed system and, for any t, let C, be one

of the sequences which define Pj. We define a relation — ► on the set of events of

48

C{ as a transitive relation satisfying the following conditions:

1. If Ei and Ej are events in the same process P and if Ej happens after Ei

then E{ — > E{.

2. If E{ is a sending of a message M by a process and if Ej is the receipt of M

by another process, then Ei — > Ej.

3. If Ei — ► Ej and Ej — ► Ek then P, — ► E^.

We shall say that two distinct events Ei and Ej of a distributed computation

are concurrent (or rather causally independent) iff -'(Ei — > Ej) A -'(E j — > Ei).

Another way of viewing the definition is to say that (Ei — ► Ej) means that it

is possible for event Ei to causally affect event Ej). Two events are concurrent if

neither can causally affect the other.

Let us assume events in a distributed system are timestamped with a clock

function C in such a way that if Ei — > Ej then C(Ei) < C(Ej). Timestamp

conflict is defined as a conflict which occurs when an event message Ei with an

earlier timestamp tsi arrives after another transaction Ej (which is stamped with

a timestamp tsj) has been processed, and tsi < tsj.

Let O be a finite set of possible output variables (or output events) of process

Pi at a specific computation stage and i be an input variable of process P2. At a

specific time £1, if Pi — > P2 then iti = ot\ , oti E O. We say a data conflict occurs

if Pi after receiving a timestamp conflict message, rolls back and then produces

an output information which differs from the previous one, on ^ in .

W ith respect to the causality relation, there are two external classes of dis

tributed computations:

1. The entirely sequential computations - synchronous computation mode -

defined by the fact that the causality relation is total order. The exchanged

49

information does not only carry values to the receiving submodel, but also

these values are strictly required for that submodel to continue its execution

in a correct mode.

2. The entirely concurrent computations - asynchronous computation mode.

State information are exchanged between parallel submodels. However, the

submodels are not strictly synchronized so that a submodel does not need

to wait for this information. A submodel merely uses the most recent value

of this state information in its further computations.

In the context of Time Warp a new class of distributed computation is in

troduced the partial sequential computations. In this class, the parts which are

asynchronous in their nature can be executed concurrently, for the parts which

are causally related Time Warp allows the order of the relation to be violated (the

goahead concept). In Time Warp, breaking of a causality relation is permitted

because Time Warp assumes that the break may not result in an incorrect result

in the overall computation (the lazy cancellation concept).

Figure 3.1 demonstrates an example of the optimistic control of processes in

a Time Warp system. Let P i, P2, P3 are distributed processes, and P3 operates

as follows: a) P3 is initiated with A := 1; b) if (msg = then if (a < x < 5)

then set A := 1; else A := 0; c) if (msg = / 2(x)) then set A:=A+1; Send

msg3=f3(A) to P3. The occurrences of events over time are characterized with

a time diagram, in which horizontal lines are time axes of processes, points are

events, and arrows represent messages from the sending process to the receiving

process. With respect to relation — ► it has been assumed that: a) — ► is regarded

as resulting in a unidirectional flow of information from a sender to a receiver; b)

if a particular process receives information from another process, they may not

be received in the same order as in which they were sent; and c) the information

flow among the processes is total, that is all information sent out by a process

50

PI
msg2 = f2(3)

msgl = fl(4)P msg4

P2

msg3 = f3(4)

P3

Figure 3-1: An Example of Process Synchronization in Time Warp

depends on all information previously received by that process.

As shown in Figure 3.1 a timestamp conflict has occurred at P3. That is

because P3 has received m 2 from Pj and has sent m3 to P2 before m i arrives. At

this point P3 rolls back to the state which exists before the arrival of m 2, executes

m 1 and then executes m 2. As P3 must send a message to inform P2 about its

current state (A), it comes to know that the intended sending message is actually

identical to the one which has already been sent1, thus, no action needs to be

taken by P3. P3 is said to have experienced a data conflict free after a timestamp

conflict. The advantage is that processes in a Time Warp system can perform

their computation paths without any unnecessary delay, which is caused by the

check to ensure timestamp conflict free, and the overall result is still correct.

3.1.2 T he Concept

A Time Warp application is a collect of a set of submodels which may compute

its tasks without a strong synchronization control imposed by the system. This

asynchronous computation may create conflicts between submodels. A conflict

1The time Warp system by its nature provides complete information on how a Time Warp
object has been executed (by back tracing the object’s save states).

51

occurs when the relationship among events has been violated - a submodel has

advanced its computation incorrectly due to it not proceeding its input event

messages in the proper order. When a conflict occurs the Time Warp rolls back

part of its computation and undoes the activity at other submodels which have

been misled by its previous actions. After that it resumes normal operation and

the new computation can include the execution of the late event messages in

the proper order. By lazy cancellation, the rolled back object does not hasten in

sending antimessages. If the new generated messages are discovered to be identical

to those sent out previously no antimessages to cancel the old one need to be

sent. The result is that the other object, having calculated with the earlier event

messages, are prospered ahead of where they would be under any block-resume

approach 2.

3.2 A n E m p irica l A n a ly sis on C on d itio n s for a

S u itab le A p p lica tio n

The above concept demonstrates two important preconditions from which an ap

plication can be listed as a candidate for further investigation.

P ara lle liza tio n : It must be possible for the application model to be divided

into many parallel submodels; and

S ynch ro n iza tio n — S ystem C o n s tra in t on P a ra lle l : Although the submod

els can carry out its tasks in parallel, the submodels must be synchronized at

some points during their computation course. At these points, if the synchro

nizations were incorrect, then the computation course of the synchronous

submodels would result in an incorrect result for the overall processing.

2This may suggest that the time and messages spent in recovering from incorrect actions is
sometimes less than the time and messages spent in avoiding these actions completely.

52

When the above two conditions are satisfied, further investigation can be made.

First, let us see which parameters must be taken into account to justify the perfor

mance of an application in a Time Warp system. In general, parameters affecting

the performance of an application in a Time Warp system can be fisted as follow

ing:

S ystem P a ra m e te rs : The computation cost of the system itself which in

cludes cost of the Time Warp algorithm processing, and the real time cost of the

system’s data transmissions. To simplify the initial investigation, the following

assumptions are made for those parameters which belong to the system:

• The computing cost for the Time Warp system to manage an arriving mes

sage is a constant.

• The real time cost to perform rollback is a constant multiple of the wasted

goahead computation time. It is ideal if the multiple value is closer to one.

• The real time cost of an interprocessor message is a constant, and the real

time cost to transmit a message between submodels which are located at

the same processor is a constant.

A p p lica tio n P a ram e te rs : The cost of the application itself which depends

on the nature of the application and how it was constructed; that is programming

strategy, data structure organization, and synchronization conditions. In working

with the context of the Time Warp mechanism the following conditions have to

be considered when an evaluation of a suitable application for the Time Warp

system is to be made.

C o n d itio n 1 : The Ccost, the computation cost between two event messages at

a submodel must be larger than the transmission cost of the messages.

C o n d itio n 2 : The P5m, the frequency for a submodel generating event messages

to synchronize its computation with other submodels in the system must be

53

small.

C o n d itio n 3 : The P am, the probability of a straggler event message (timestamp

conflict) to arrive at a submodel must be small.

C o n d itio n 4 : The Pno, the probability for a rollback submodel to generate an

antimessage (data conflict) must be small.

The condition 1 and 2 are consequences of the communication costs in any

MIMD systems. The performance of a distributed computation clearly depends

on the computer systems at the sites and the communication network that in

terconnects them. Consequently, the model must specify the processing speed of

the sites and the communication delays incurred in sending a message from one

site to another. A Time Warp application must be structured in such a way that

its submodels are often weakly interacting and communications costs must not

undermine the benefit from application distribution.

The most important concept of a Time Warp system is that it allows goahead

computation. A Time Warp object, without any global check, executes an event

message with an assumption that the message arrived in the correct order. Strag

gler messages cause the system to re-synchronize its computations. Thus, a small

number of straggler messages in the system indicates a full benefit of the goahead

computations. The condition 3 is initiated for this purpose.

The condition 4 takes into account the fact tha t a rollback submodel may

produce the same output as it done before. That is with lazy cancellation the

rollback submodel delays the cancellation process until its LVT has been reached

again. At that time an antimessage is released only if the message which was sent

before does not match the newly created message. As is well known rollback is

expensive, but a cascade rollback 3 is much more expensive because it may forces

3That is a rollback at an object causes a rollback at another object, and so on.

54

the whole system computation to the block-resume level. In fact, it can be worse in

some cases due to the costs involved in system management and communications.

Thus, the smaller the probability for a rollback object to send antimessages the

better it is for the system. In another words, with respect to the benefit of lazy

cancellation, minimal changes in a Time Warp object’s state is the best utilization

of Time Warp.

In order to gain the best performance possible, an application must be con

structed in such a way that the all conditions 1 to 4 apply. It is to be noted that

in general condition 3 and 4 are related in such a way that a small number of

antimessages sent by rollback objects will result in a small number of straggler

messages in the system.

Though evaluation of an application as described above is limited in that we

consider only some main factors in the assumed system conditions. It does provide

some insight into the effect of implementation and designing of an application on

its performance. In reality, the system parameters play a very important role in

the overall performance of the system.

3.3 A p p lica tion s

3.3.1 T im ew arp A pplications

Three application domains will be presented in this thesis: a Time Warp Discrete

Simulation System, a Time Warp Production System, and a Time Warp Dis

tributed Database System. The Time Warp discrete simulation system and the

Time Warp distributed database system are characterized as partial synchronous

distributed computation systems whereas the Time Warp production system is

characterized as a synchronous distributed computation system. We will also

55

investigate an asynchronous distributed computation system - the Parallel Trav

elling Salesman Problem - in the next section. Though a full detail about im

plementation of the applications and how well each application can be structured

to satisfy the above evaluation specifications can be found in the next chapters,

the following text gives a general view about why discrete event simulation could

become a successful application in Time Warp system.

It is possible to take advantage of concurrency in discrete event simulations.

This is because it is not necessary that all events ordered by simulation time

be executed in order - satisfying the parallelization condition. The exception is

that events which are connected by a causal relation must be executed in order

- satisfying the synchronization condition. Another fact that demonstrates the

advantage of concurrency is that in some simulation models, some simulated sub

models only communicate with themselves, and so these submodels need not wait

for the other submodels to progress their simulation time before executing events

in later simulation time. Since the execution in these submodels is independent,

although only in a specific period, goahead computations may turn into speedups.

It is understood that the work done by a goahead simulation is not always be

useful, but if the system’s power is dedicated to the simulation model, it is clearly

an advantage to take a chance.

3.3.2 Other A pplications - A Case Study

Though parallel algorithms as known are difficult to be adapted into a loosely

coupled network connection system, finding a suitable algorithm for a Time Warp

system has proven to be even more difficult. A successful application for a loosely-

coupled system does not imply that it can run better in a Time Warp system. As

an example, let us study a searching algorithm - the Travelling Salesman Problem

- and its solution in a distributed system.

56

Travelling Salesm an Problem

The Travelling Salesman Problem (TSP) is an example of a problem which can

be very time consuming to solve. In this problem, there are N cities. A salesman

must start at a specified city, visit all the other cities once only, and then returns

to the first city. The objective is to find a route through the cities that minimizes

the total distance travelled. The difficulty is that as the number of cities grows,

the number of possible paths connecting them grows exponentially. In recent years

many efforts have been made to develop an effective algorithm for the TSP. One

well known algorithm which can be named is the branch-and-bound (BB) methods

which are algorithms for solving optimization problems with the objective to find

optimal solutions with less work. The essence utility of the BB methods derives

from the fact that, in general, only a small fraction of the possible solutions

need actually to be considered further. The remaining being eliminated from

consideration by the application of bounds that establish that such solutions can

not be optimal.

Little et a l’s BB M ethod

Little et al’s developed a BB method [LMSK63] which is capable of solving a

sufficiently large TSP. The algorithm works by partitioning the set of searching

tours into smaller and smaller subsets, finding a lower bound on tour cost of each

of the subsets, and using these bounds to guide further partitioning of the tours

until a single tour whose tour cost is less than or equal to the lower bound of all

other subsets is found. Lower bound for a tour subset with given cost matrix is

computed using a matrix reduction operation.

Formally, a TSP can be represented by solving a C (N x N) distance cost

matrix, with each element j being the cost of going from city % to j . The cost

of a tour, t, can be represented by Z(t) = Y C{j in t. The idea behind the matrix

reduction operation as presented in [LMSK63] is that if a constant, h , is subtracted

57

from each element of a row or column of the cost matrix C, the cost of a tour in

the old matrix is corresponded with the cost of the tour under the new matrix less

by h. The relative costs of all tours are unchanged and an optimal tour remains

the same in the new cost matrix. In the reduction operation, a matrix with at

least one zero in each row and one in each column is called a reduced matrix. If

C(t) is the cost of a tour, t , under a given cost matrix, Cl(t) the cost under the

corresponding reduced matrix, and h is the sum of the constants used in making

the reduction, then C(t) = C\(t) + h. Assuming the distance costs are positive

numbers, h constitutes a lower bound cost of the tour, t , under the old matrix.

Partitioning of the tours can be represented by the branching of a state space

tree in which the paths that the TSP program has been examined and the cost

associated with those paths are recorded. Each node in the state space tree

represents a set of possible routes satisfying constraints specified by the path

from the root node to that node. At any point during the execution there exists

a set of nodes that have been generated but not yet examined. A node in the tree

is selected for the searching based on its lower bound value. An examined node

has one directed creator and two directed child nodes. One child node called an

included city pair node (i , j) corresponds to a tour that includes all the tours of

its parent node and this particular city link, and in the other called an excluded

city pair node (i , j) corresponds to those that exclude that city link. A lower

bound value is calculated for each node as it is created. This lower bound value

represents the smallest possible cost of a solution to that node, given the node

constraints. Full details of the algorithm for finding a branching city node (i , j)

and computing of its lower bound values can be seen in [LMSK63]. As an example

the following text shows only some essential computation steps in the algorithm.

A travelling salesman from Lincoln wants to visit Cambridge, London, Nor

wich, and Nottingham. Figure 3.2 shows an example of the matrix reduction

operation and Figure 3.3 shows the state space tree of the solved 5 cities TSP.

58

Distance 4 between cities of the 5 cities TSP is illustrated in the original distance

cost matrix C, Figure 3.2.A, 0 is used to stand for Lincoln, 1 for Nottinghan, 2

for Norwich, 3 for Cambridge, and 4 for London.

Figure 3.2.B shows the reduced matrix C l, h = 254, is the sum of constants

used in making the reduction.

Since i and j must be reached/connected from/to some city, the tours that

exclude (i , j) must includes at least the smallest cost element in row i and the

smallest cost element in column j , after excluding C,j. The sum of these two costs

is referred to as 0(«, j). A city pair is selected to be the branching node is the one

that gives the largest 0(i, j) . By applying the computation to the reduced matrix

C l, (0,1) gives 0(0,1) = 57 -f 0 and therefore is chosen to be the next branching

node.

Now the lower bound of the exclude (0,1) is calculated as the sum of the

reducing constants, h, and the 0(0,1). L B (0,1) = 254 + 57 = 311.

When a city pair (&,/) is to be included, row k and column I are no longer

needed and are deleted. Next, because (&,/) is a part of the tour which starts at

p and ends at m, connecting of m to p is forbidden to avoid generating subtours,

Cm>p is set to infinity. After these modifications, C l can be reduced to give hi , a

new sum of reducing constants. The lower bound of the include (i , j) is the sum of

the h and hi. Figure 3.2.C shows the modified matrix from the matrix in Figure

3.2.B and reduction matrix of the 3.1.C is illustrated in 3.I.D. The lower bound

of the include (0,1) is then L B (0,1) = 254 -f 46 = 300.

As shown in Figure 3.3 node ((0,1)) is the one which has the lowest LB, this

node is then chosen for examination. The examination process will result in nodes

((0 ,1)(4,3)) and ((0 ,1)(4,3)) with LB values 355 and 387. The process continues

with the un-examined node which has the lowest LB until every node is examined.

4Distance is stated in Km. Automobil Association (AA), 1986.

59

It is to be noted that during the searching process only nodes which have a LB

value that is smaller than the LB of a complete tour will be included in the search.

For example, as shown in Figure 3.3, node ((0 ,1)(1,0)(4,3)) has a LB value 457.

This node is no longer to be considered as a potential optimal tour because a

better and complete tour has been found with a total distance of 392.

As result, the Little et al’s BB algorithm gives: Lincoln — > Nottingham — >

London — > Cambridge — > Norwich — > Lincoln, a total distance of 392 km, as

the shortest distance tour which can be found. With the same working problem,

solving by smallest distance - first choose method, - the next city on the tour

is the one with the smallest distance from the departure city - , will result in a

tour: Lincoln — > Nottingham — > Cambridge — > London — > Norwich — >

Lincoln, a total distance of 409 km.

Parallel TSP

Instead of attacking each nodes one at a time as has been done in sequence

algorithm, the parallel TSP is able to do several nodes of the state space tree

at once so that the problem can be completed more quickly. In such a scheme,

a number of processes asynchronously explores the unexamined nodes until a

solution has been found. Each process repeatedly receives an unexamined node,

continues with its searching until a local solution has been found. For example,

instead of proceeding with nodes ((0,1)), then ((0,1)) in sequence, a process can

proceed the ((0,1)) while the others can simultaneously proceed the ((0,1)).

The heavy computation due to the matrix reduction operation at each proceed

node and the parallelism inherent in the algorithm seems in the first place to be

very suitable application in a distributed environment and for the Time Warp.

The problem is that computation at each stage process in the parallel TSP is

too independent. Processes do exchange state information - the lowest bound

of a local complete tour and/or the unexamined nodes - but they do not need

60

X 36 106 93 141

36 |X 123 82 128

106 123 X 62 115

193 82 62 X 60

141 128 115 60 X

42 310

1050
(57)

461
(46)

2
(44)

3
(57)

4
(57)

F. 3.1.A F.3.1.B

0 1 2 3 4

+INF 46

44

42 310

0

+INF1
(46)

2 44

3

4

F. 3.1.C F. 3.1.D

Figure 3-2: The TSP - Maxtrix Reduction

61

(0,1)- (0,1)
311 300

(1,0)
357 311 387355

(4,3)

392355
457 379

(4,2)
392 r

((0,1) (1,4) (4,3) (3,2) (2,0))

399
399

379

(3,4)
392

392

((1,0) (0,2) (2,3) (3,4) (4,1))

Figure 3-3: State Space Tree of the Solved 5 Cities TSP

62

to synchronize their computations. This information is used in every process to

cut off extra unnecessary searches but, in fact, a process can perform its searches

using the best known solution value without waiting for updates. In some cases, a

process may overshoot by expanding some redundant nodes, for example a process

may unnecessary proceed node ((0 ,1)(1,0)(4,3)) which has a lower bound value

of 457 without a knowledge that a lowest bound value of 392 has been found for

a complete tour. But, it is a fact that this overshoot computation does not cause

any incorrect computation in the overall result. Hence, the system constraint on

parallel condition as stated in Section 3.2, has not been satisfied. The TSP is a

typical problem which can perform better in parallel processing, but there is no

more speedups with the using of Time Warp. That is because the parallel TSP

algorithm by its nature allows asynchronous computations, whereas Time Warp

is invented to allow goahead computations in a restriction environment 5.

Sorting of data [FJL+88] or parallel root finding [Sel89] are such applications

with the same property as the travelling salesman problem; that is because the

parallel algorithm is pure parallelism - relations of computation stages of the

algorithm are not strictly sequence. In such an application, a conflict which is

caused by an overshoot execution order at a submodel is simply solved by halting

the current execution of the submodel then starting a new execution with the

recently provided information.

Chapter Sum m ary

It is well known that Time Warp is not a very ideal synchronization mechanism

for every distributed application domain. Therefore the process of finding suitable

applications is a very important subject. This chapter has provided a general

insight into the problem. It also gives a good example of an application (The

5A restriction environment is a computation environment which has the property as described
in Section 3.2, - the system constraint on parallel.

63

TSP) which by its nature algorithm will not be better off by using Time Warp.

In the context of the Time Warp mechanism, an application is said to be a

possible Time Warp application when it has fulfilled the two important conditions,

namely, the possible of parallel execution and the synchronization constraint be

tween parallel tasks of the application. Performance of such an application in the

Time Warp system is then mostly affected by the system configurations and by

the nature and designing structure of the application. Important factors which

must be considered in designing of a Time Warp application are: a) the ratio of

the computation cost in comparison with the transmission cost of messages; b)

the frequency of interacting for synchronization between the parallel submodels;

c) the probability of a straggler event message to arrive at a submodel; and d)

the probability of a rollback submodel to generate an antimessage in its rollback

process.

Distributed discrete event simulation has been proved so far as the most suc

cessful application for a Time Warp system. Since the Time Warp mechanism

has been introduced, the subject has been a topic of research for many research

workers and many positive results have been reported [Ber86, Sam85]. In the next

chapter, the subject will be introduced and some tests will be carried out.

64

C hapter 4

T im e W arp and D istributed

Sim ulation

The purpose of creating a computer simulation is to provide a framework in which

to understand the simulated situations, to collect statistics about these situations

and to test out new ideas about their organization. With computer simulation

there is the added advantage that once the model is developed the important

parameters can be varied and the model rerun at minimal costs.

4.1 D iscre te E ven t S im u lation

In discrete event simulation a simulated system can be structured as a collection

of well defined discrete simulated objects interacting with each other. Actions and

interactions between simulated objects are assumed to occur only at instantaneous

points of time, referred to as events, and these are the only times at which the

system changes states. An event is an action taken by a simulated object and

normally results in the alteration of the contents of data structures or alfects

the simulation path of other simulation objects. Hence, when the actions of two

65

simulated objects must be synchronized to give the appearance of carrying out a

task together, actions have to be synchronized with some notion of time.

The sequence of actions occurred at the simulation objects with respect to

real or simulated time is driven by a physical/logical clock, and is characterized

as event-driven or time-driven. In time-driven simulation the simulation clock runs

in its usual manner. At each tick of the clock all objects are given the opportunity

to take any desired action. Often no actions will take place at a given tick of the

clock. In event-driven system the clock can be moved forward according to the

time at which the next action will take place. In this case, the system is driven

by the next discrete action or event scheduled to occur.

The central data structure of any discrete event simulation system is a queue

of possible events, called an event time queue. The events are placed on the queue

and are ordered according to the time that each event will occur. Each time,

when an event is completed, the next one with the smallest associated future time

is taken from the queue. In general, a simulation model starts with some initial

conditions, and the simulation is run until some defined conditions are satisfied

or until some prescribed time limit is reached or all events have occurred.

4.2 D is tr ib u ted D iscre te E ven t S im u la tion

In order to exploit potential concurrency a simulation model must be structured

in a way that exhibits this potential concurrency. In general, a simulation model

is broken down into a set of logical processes or simulation objects/submodels

each of which can be simulated on separate processors. The name distributed

simulation refers to the situation in a simulation domain whereby many different

events can be processed and constructed simultaneously. The basic approach to

parallelization is to attem pt to execute as many events in parallel as possible;

66

that is, to have each process execute different events at the same time. Since

different events may occur at different real times, it frequently happens that while

one process executes an event another process will, at the same time, execute an

event which takes place later according to its simulation time.

Unfortunately, there are several characteristics of the system which act to

restrict the ability to execute events in parallel. These include both data depen

dencies among the simulation objects and the contention situation when more

than one simulation object updates the event queue at the same time. There are

data dependencies between events, because the occurrence of an event at one time

can alter the nature, and even the existence, of an event at a later time. This

means that the processes executing events in parallel can not proceed in isolation

but must interact. It is necessary therefore to consider the problem of coordinat

ing or synchronizing the activities of the various simulated objects. In general,

the amount of restriction caused by the data dependencies depends on the nature

of the simulation application and how the application is programmed.

A number of different synchronization methods of distributed simulation have

been suggested [Mis86, PWM79, CM79, CM81, JS82]. These methods vary in the

degree of looseness of the synchronization. In a tight synchronization approach,

simulation submodels do not proceed to the next event before ensuring that all

events prior to the time of its next event have been simulated. A submodel

which is simulated on a processor has to wait long enough to know the state

of all submodels from other processors before advancing. Simulation objects in

a tightly synchronization system may not be anticipated. In contrast, a loose

synchronization approach results in a simulation submodel being able to simulate

events within its event list without being concerned about the state of other

submodels. Simulation submodels in such a system have more autonomy in their

operation and, hence, benefit more from the concurrency of the simulation model.

67

4.3 T im e W arp D istr ib u ted S im u lation S y stem

A Time Warp distributed simulation system consists of many distinct objects or

simulation submodels, which are distributed among several processors if resources

are available. Simulation submodels in a Time Warp system operate in asyn

chronous mode and communicate with each other by exchanging event messages.

The basic idea of the Time Warp mechanism is to allow each simulation object to

be simulated without any aggressive control.

4.3.1 The Concept

Instead of maintaining the synchronization between simulation submodels through

a global event queue and the existing global clock, Time Warp synchronization

mechanism permits each submodel to have its own event queue and its own log

ical local clock. The collection of all event queues taken together constitutes a

distributed event queue for the simulation model. Time Warp simulation submod

els execute their event messages in timestamp order and then record their local

simulation times in local clock variables.

As a Time Warp simulation submodel may compute its tasks without being

concerned about synchronization with other in the system, conflicts between the

communicating submodes may occur. This is when a submodel A has advanced

its simulation time ahead of that of another submodel B , and A receives an event

message from B in A’s simulated past. In order to maintain correct sequencing

of events, within the simulation model, the Time Warp system upon detection

of a conflict rolls back part of its computation and undoes what it has done or

which has been misled by the previous actions. A well description of Time Warp

in simulation application is given in [BT89].

Event messages in a Time Warp distributed simulation system are stamped

68

with a desired Virtual Receiving Time (VRT). This is the time the events should

happen if it were in a sequential event-driven simulation system. Arriving event

messages are inserted in a event message queue in order of increasing their VRT.

When a simulation submodel is scheduled to run the first event message from its

event message queue will be executed.

Local Virtual Time (LVT) is a current local simulation clock of a simulation

submodel. The LVT changes only between events and only to the value of the VRT

of the next message from the event message queue. When an event message arrives

at a simulation submodel, the message VRT is compared with the submodel’s

LVT, and this will result in some appropriated actions. Examples of such actions

are en-queueing the message, de-queueing an associated anti-part message, or

rolling back the submodel. During the execution of an event the LVT represents

the simulation time at which the event occurs; otherwise, it contains the lowest

timestamp of all the unprocessed messages. If there is more than one waiting

simulation submodel in a processor the submodel whose LVT is farthest behind

will be executed first.

Simulation models in most of the published works were carefully selected in

favour of the Time Warp mechanism. But, is it true tha t Time Warp mechanism is

good for any discrete distributed simulation problems ?., let us study an example

of a simple simulation model and observe the behaviour of it in the context of the

Time Warp mechanism.

4.3.2 A Case Study — A Service S tation Sim ulation M odel

A service station which has one wayin for every customer, a number of fuel pumps

where at each pump a customer can chose to have either petrol (leaded or unleaded

petrol) or diesel, and one wayout where the bill is collected. All customers arriving

at the station must wait in the wayin queue in first come first service and first

69

finish first out mode. When one of the fuel pumpers is free, the first customer

at the wayin queue will be called to be serviced, and a serviced customer must

queue (according to his finish time) in the wayout queue to pay his bill. The time

a customer requires to finish his job at a pump depends on how much fuel he

wants.

Let us present the wayin queue, the wayout queue, and each fuel pump as a

simulation submodel and, assuming that resources are available, each submodel

is located to a processor. An important question to consider is: Are there any

speedups that can be achieved i f the simulation model is to be executed in a Time

Warp distributed system ?. In such the simulation model and configuration, the

following unsatisfactory facts are observed:

• Because each submodel is located to a processor and computation at each

submodel is not sufficient large, the benefit gains from the distribution is not

adequate in comparison with the loss in the interprocessor message trans

mission.

• Because every pump, when it is free, must send a message to inform the

wayout queue submodel that the customer is leaving and another message

to ask for the next customer from the wayin queue. Hence, the frequency

of event messages - the Pgm - between a fuel pump submodel to the wayin

submodel and the wayout submodel is too high, an additional cost to the

interprocessor communication costs.

• When a rollback occurs at the wayin submodel, the submodel must have

sent at least one customer to a pump submodel in a wrong order. As a

consequence the rollback submodel must send at least an antimessage to

redo such wrong computation. Thus, the probability for the rollback wayin

submodel to generate an antimessage, - the Pna is equal 1. This indicates

the loss of the benefit by lazy cancellation.

70

An initial conclusion which can be drawn is that the performance of the simula

tion model may not be better in a Time Warp distributed system. This conclusion

may be different when the example simulation model is stated in a different way.

For example, there are two or more wayin/ way out queue submodels, or some fuel

pumps which can only provide leaded petrol, unleaded petrol or diesel. The overall

performance can also be different when the submodels are located to processors

in group mode. In the next section, another simulation model will be presented

- the Game of Life simulation model. In contrast to the above simulation model,

the Time Warp Game of Life simulation model will demonstrate an adequate

performance in using Time Warp mechanism.

4 .4 T h e G am e o f Life

The Game of Life [Gar71] is a simple example of the cellular automata applica

tion domain. Basically, a cellular automation is defined as a collection of objects

distributed in an n-dimensional space called cellular space. Each object can pos

sess, in a given generation, a state which is chosen from a finite set. The state of

an object depends exclusively on the states of the objects in its neighbourhood

in the preceding generation and is evaluated according to a certain set of rules.

The concept of cellular automata is presented in many application domains and

has been used as an interesting tool for the imitation of highly complex global

phenomena with very simple local properties such as the growth of physical struc

tures in biological evolution. In the recent years, some efforts have been made to

exploit the inherent high parallelism of cellular autom ata [SR88, FJL+88, PT89]

in multiprocessor system.

The Game of Life was invented by J. H. Conway and was popularized by

Martin Gardner [Gar71]. The game deals with patterns that change according to

certain rules and is played on a two-dimensional deterministic array board. The

71

board represents a population of dead and live cells. Initially, some of the cells

on the board are marked as live cells the rest as dead cells. The basic ideal is

to change the state (dead or alive) of the cells of the board at each generation

depending on the constraints of its neighbouring cells. Thus each cell is either

alive, dead or spontaneously generated from one generation to the next by some

simple rules which depend on its current state and how many live neighbouring

cells it has. The rule for a cell state being affected by the state of its neighbours

is defined by; each cell has a state whose value at time t + 1 depends on its value

and those of its 8 neighbours at time t. Let cell C the cell which:

1. is currently dead : If C has precisely 3 live neighbouring cells, then it will

itself come alive at the next generation. Otherwise C remains dead.

2. is currently alive : If C has none live neighbour or 1 live neighbour, then it

will die from isolation in the current generation. If C has 2 or 3 live neigh

bours then it will remain alive at the next generation. If C had 4 or more

live neighbours then it dies from overcrowding in the current generation.

Every cell, at each time step (generation), checks the state of the eight sur

rounding cells as well as its own state then computes a new state and informs the

new state to its neighbours. All the changes of states are taken to occur simul

taneously at the beginning of each generation. An example of a game which is

initiated with a few cell patterns and its history after three generation is shown

in Figure 4.1. Generation 0 is the original pattern of live cells. The succeeding

generations proceed according to the rules of birth, existence and death.

Ideally, the cellular space of the game should be infinite, but that is clearly im

practical. In order that every cell can have eight neighbours a common technique

[Dew84, Ber86] is to join the edges of the space array. That is cells on oppo

site edges become neighbours and the last cell in every row or column is a direct

neighbour with the first cell in the same row or column. Thus the two-dimensional

72

Alive cell

Dead cell
r Sc

Sc Sc Sc Sc Sc Sc
Sc Sc Sc Sc Sc Sc

Sc Sc Sc Sc

Generation 1 Generation 2 Generation 3

Figure 4-1: Game of Life - Transformation of Patterns.

gamespace becomes a tourus - although it is finite, it has no boundaries.

The Game of Life was chosen as an initial benchmark test of the implemented

Time Warp environment for several reasons. Firstly, the simulation model is

easy to program, the algorithm is simple and regularly structured and there is

a quick need for a test of the implemented Time Warp. Secondly, the game by

its nature is embedded in the concept of object and parallelism. The state of an

object can only be either dead or alive on each generation. This is an advanced

opportunity to test the favourable concepts of the timewarp’s goahead and lazy

cancellation. Finally, an interesting characteristic and curiosity of the game is its

unpredictability - due to the existence of periodic and moving configurations.

4.4.1 T he Gam e o f Life - A D istributed Sim ulation M odel

Ideally, the simulation model can be simulated in parallel by having, as much as

possible, all processors simulate different cells simultaneously. By the constraint

of communication costs and resources available, such an idea is impossible on

73

stock hardware. In general, the number of cells in the game is much larger than

the number of processors. Here the game space has been divided into subspaces,

each assigned to a processor, and computations continue on each subspace with

neighbouring subspaces communicating with each other.

Im plem entation Structure and Algorithm s

In the implementation simulation model two object types are defined, namely,

gamecell and gamespace objects. Each cell in the array board of the game is

defined as a gamecell object which operates according to the described rules. The

array board is defined as the gamespace object which reflects the pattern of the

simulation model. The simulation model is initiated with the number of gamecell

objects. Each object can be initiated as dead or alive and are located equally to

processors and then be simulated simultaneously. The simulation time advances

are deterministic and are equal to the time between two consecutive generations.

Implementation Scheme 1: Each gamecell computes the state for the next

generation using its state from the previous generation and the messages reflect

ing the state of its neighbours. The gamecell then sends messages containing

the new state to its neighbouring gamecells and to the gamespace object. In

this implementation scheme, the pattern of the communication between objects

is well defined, every gamecell is determining its state in every generation and

communicates with its neighbours and with the gamespace. However, consider

ing the cost of communication, the scheme is not efficient. The gamespace object

would become a bottleneck as it is communicated by every gamecell object in the

simulation model at each generation, and each gamecell has to send 8 messages

to its 8 nearest neighbours on each generation.

Implementation Scheme 2 [Ber86]: Each gamecell object contains two vari

ables, namely, an oldstate and a newstate. An oldstate is the state of the gamecell

74

object from the previous generation and a newstate is the state of the current

generation as it is being constructed. Each gamecell computes the next gener

ation state using its oldstate status and the messages reflecting the state of its

neighbours, the gamecell then sends messages reflecting its newstate to its neigh

bouring cells and to the gamespace object. The following rules are applied in

sending state message: a) only alive gamecell objects must send status messages

to their neighbours and to the gamespace and b) every gamecell object either

dead or alive, however, must send itself a status message on each generation. On

each simulation generation, this implementation scheme sends only a * (l + 8 - l - l)

messages (a is the number of alive gamecells in the current simulation genera

tion). The scheme 1 sends c * (1 + 8) messages (c is the number of gamecells in

the gamespace). In most of generations during the simulation a is, in fact, very

much smaller than c. The implementation scheme 2 is chosen in this thesis based

on its minimum communication cost,

4.4.2 Perform ances

The game with different board sizes and different object assignment strategies has

been simulated. The initial state (dead or alive) of each gamecell in each of trial

models was stated by a random function and assignment of gamecell objects to

processors was based on a group assignment method 1. The following text presents

the results and observations which have been obtained from many trials.

As discussed in Chapter 3, Section 3.2, the most important factors for the

evaluation of the performance of any Time Warp application are the value of the

communication messages, the number of rollbacks and the number of antimes

sages. Results from many trials show that on average 6% of the total messages

1The gam espace is divided equally into N subspaces and each is assigned to a particular
processor. N is the number of processors involved in the game.

75

sent in the simulation caused rollback at the receiving object. A mean value of a

rollback object being sent antimessages is about 28%. This value is driven by the

fact that, when lazy cancellation is used, there is a high probability for a rollback

gamecell reproducing the same state as it had done before. The small percentage

of rollback messages in the number of messages sent is due to the fact that: a) The

sending of a message to a gamecell object which is located in the same processor

will not cause the object to rollback (only messages sent from a remote processor

or antimessages may cause the receiving object to rollback); and b) Not every

rollback object has to send antimessage because a rollback object may produce

the same state message as it sent.

For studying the performance, each game model which had the same con

figuration was also be executed in block-resume mode. The block-resume mode

required each gamecell to receive exactly 8 messages from its neighbours before

the next computation step could take place; the implementation scheme 1 as de

scribed above is a suitable scheme in this case. As observed from many trials,

the simulation model needed more than 14 times the number of communication

messages in a block-resume mode as it needed in a Time Warp model to keep

its synchronization. In addition, the block-resume mode added two forms of over

work to the computation:

1. The work required to verify that every gamecell is ready for the next gen

eration.

2. The idle time that some processors may experiment while waiting for all

processors to complete their tasks. If the difference between the speeds of

various processors is large, the performance of a block-resume model be

comes substantially degraded compared with a Time Warp model.

In Figure 4.2, the speedup is plotted as a function of the number of processors.

The lower lines represent the speedup achieved by the block-resume approach and

76

© Block-resume x Time Warp

Speed-up 2
.... x

• O

0
0 8

Processors

Figure 4-2: Game of Life - Speedup by Distributed Computation,

the upper lines the speedup that has been achieved with the Time Warp.

Finally, the experiment showed that when interprocessor communication over

heads are large then total execution time increases despite the growth of the

number of machines. The number of interprocessor messages increases rapidly as

more processors are added to the system. This is because as the game subspaces

becomes smaller (the boundary of gamecells between subspaces becomes larger)

the more interprocessor messages are needed, and also the more interprocessor

messages there are the more possibility of rollbacks and antimessages.

4.4.3 Conclusions

Interprocessor communication costs are the most important factor which affect

the performance of the distributed simulation model. In order to reduce this

communication overhead one must balance the assignment of execution objects

(gamecells) to processors in a way that each processor is given the same amount

of processing to do per simulation time interval (generation) with a minimum cost

77

of interprocessor communication. The problem is because the communication and

computation pattern of the execution objects in each partition is different from

one generation to another. A more speedup can only be achieved if there is a

possibility of gamecell relocation during the execution time.

In distributed systems, speedup for a Time Warp simulation model is possible

although a large part of processing time is spent on synchronization requirements

and interprocessor communication delays. In general, the performance strongly

depends on both the working problem and the configuration of the system. The

experiment shows a clear advantage of Time Warp (goahead and rollback) over

block-resume approach and provides an insight into the benefit of performance of

distributed simulation systems using the Time Warp mechanism.

Chapter Summary

The purpose of this chapter is to re-confirm the potential benefit of using

Time Warp in distributed discrete event simulation which has been investigated

and reported in many previous papers [Jef85, Ber86, Sam85]. As a conclusion the

chapter has shown that with a careful structuring of a simulation model a good

speedup can be achieved and, in the same system configuration, the Time Warp

promises a better performance than a block-resume approach.

In an attem pt to prove that Time Warp is not only a good synchronization

mechanism for distributed discrete simulations but also for a more general appli

cation domains, a model of a Time Warp parallel production system model will

be presented and tested in the next chapter - Chapter 5. In Chapter 6 a Time

Warp model for transaction control and synchronization in distributed data base

systems will be presented.

78

Chapter 5

A T im e W arp P roduction

System

5.1 O P S5 — A n In trod u ction

0PS5 [For81] is a production system 1 which is a programming language consisting

of three major components: the Working Memory, the Production Memory and

the Interpreter. In this section, definitions and notations of the 0PS5 will be

introduced. A broader discussion of 0PS5 is given in [BFKM85].

5.1.1 W orking M em ory

Working memory of a production system is a data store which serves as a global

database of symbols representing facts. This is used to keep track of the current

status of the current problem and records the relevant history of what has been

xThe term Production System is used to describe several different knowledge-based systems
based on a very general, underlying idea - the notion of condition-action pairs, called production
rules or just productions.

79

done so far. Facts in a working memory are also called working memory elements.

A working memory element is a list which contains a class name and a finite

number of attribute-value pairs and is associated with an integer value referred to

as a time tag. This time tag value indicates when the element was first entered

into the working memory or when it was last modified. The larger the time tag

the more recently the element was entered or modified. The time tag is very much

used by the interpreter machine as a reference number for the conflict resolution

process.

5.1.2 Production M em ory

Production memory of a production system is a set of rules called productions

which constitute the production program. A production rule is a statement cast

in the form IF this condition holds THEN this action can be taken. The IF part

of the production, called the condition part of the left-hand side (LHS), states the

conditions that must be present for the production to be applicable. The THEN

part, called the action part or the right-hand side (RHS), is the appropriate action

or actions to take. A production in the OPS5 is characterized by the form:

(p ru le -n a m e

i f C o n d it io n l . . . C o n d itio n N

th e n A c t io n l; . . . A c tio n N ;)

LHS of a production has condition elements which may contain variables or con

stants and which are partially specified patterns to be evaluated on the current

state of the working memory. LHS of a production is said to be satisfied if all

condition elements match the facts in the working memory, and the production is

said to be instantiated [Gup87]. A production RHS’s actions are simply working

memory write access which can be executed in sequence when its LHS condition

is satisfied and the production is selected for execution.

80

5.1.3 Interpreter

The Interpreter or inference engine is that part of the system which actually runs

the production rules and decides what to do next. This is an underlying mecha

nism that determines the set of satisfied rules in the given contents of the working

memory and controls the execution of the production system program in solving

a problem. OPS5 uses the forward chaining method of inference. The system,

starting from the available information as it comes in, tries to draw conclusions

that are appropriate to the goals.

The control mechanism in the inference engine is referred to as the recognize-

act which is a cycle consisting of Matching, Selection and Execution.

Matching is a process of identifying the rules that are satisfied with the working

memory elements in the working memory. The matched rules are collectively

referred to as the conflict set. A member of the conflict set is often called an

instantiation [Gup87], which contains two parts: the name of the production and

a list of working memory elements that caused the production to be satisfied.

Selection or conflict resolution is a process of selecting the right production to

fire. In practice, in a typical large production system, it is often the case that

the conflict set has more than one member and the system is required to choose

one production from this conflict set. The interpreter machine applies a special

selection strategy to determine which production (instantiation) in the conflict

set will actually be selected to have its corresponding RHS executed. In OPS5

conflict resolution involves ordering the satisfied production based on a score that

is derived from the condition elements of a production and time tag of the working

memory elements matching them. The production with the highest score is then

selected and its actions are executed.

Execution or firing is a process of executing the RHS’s action elements of the

selected production. Executing a selected production may result in a modification

81

of the working memory, Input and Output operations, or any other computation.

This cycle (iteration) is repeated until either there is no member in the conflict

set or an RHS has explicitly halted the system.

Production rules in OPS5 are compiled into an efficient network form called

the Rete network [For82] rather than being interpreted. The Rete algorithm is a

method for comparing a set of patterns to a set of object in order to determine

all possible matches. The algorithm can be described as an enhanced indexing

scheme which avoids iterating over a set of productions by using a tree-structured

network. The algorithm was designed for efficient matching of a production by

taking advantage of two characteristics [Gup87]: a) most parts of the working

memory remains unchanged from one cycle to the next - thus knowledge from

the previous enquiry can be reused; and b) condition elements from different rules

have a large amount of overlap - thus the matching of these can performed only

once. From a global viewpoint, the input to the Rete network consists of changes

to working memory, the changes filter through the network, updating the state

stored within the network. The output of the network consists of changes to the

conflict set. Figure 5.1 illustrates the OPS5 interpreter working mode.

Production system computations are different in style from computations per

formed with programs written in other languages such as Pascal or C. One of the

main differences is that the production system uses of data-sensitive unordered

rules rather than sequenced instructions as the basic unit of computation. There

is no explicit transfer of control between rules, as there is in procedural or func

tional programs, and rules are not executed sequentially. The consequence is that,

as production systems have become bigger and more complex, it is harder to fol

low the flow of control in problem solving [BF81]. Production systems have often

been used in AI programs because they are easy to develop. However, the most

significant disadvantage inherent in many production systems is the slow speed of

82

Production LHS Compiler

Changes to the Working Memory tokensMATCH

Rete Network

Changes to the Conflict Set

CONFLICT RESOLUTION

EXECUTION

Working Memory Modifications

Best CSE

. Conflict Set

Working Memory

Figure 5-1: OPS5 Interpreter Working Mode

83

program execution [Gup87]. As production systems have become bigger and more

complex the system can take hours in the execution. This is one of the reasons

why more expert systems have not been put into practical use.

5.2 P ro d u ctio n L evel P ara lle lism

In OPS5 various sources of parallelism available can be named such as parallelism

in Matching, parallelism in Conflict-Resolution and parallelism in Acting phase

[Gup87]. The method used in this thesis is based on the extraction of concurrency

of matching processes. This kind of parallelism source is called production level

parallelism in production system terminology [Gup87]. Parallelism at production

level is a process of compiling production rules into many small Rete networks

which can be searched in individual and parallel.

Facts in the LHS of a production rule in the 0PS5 are compiled into the Rete

network where each fact is presented as a node of the network[For82]. Matching

in OPS5 is a process of looking through the Rete network for satisfied rules.

In the Rete network scheme, although rules with the same fact in their LHS

will share a common node, eventually, in practice, more rules in a production

system may still result in a large Rete network. Hence, more time in searching

is still needed as it may involve instantiating many variables. Since production

system interpreters typically spend 90 % of their time in matching phase [Gup87,

Ofl87] and productions are independent of each other there is an obvious possible

use of parallelism performing matching for a production system. In addition

production rules are independent since productions communicate only by means

of the context data structure of the working memory and do not receive or pass

information directly to other rules. This property is attractive in a distributed

system particularly when a production has to be relocated for optimizing load

balancing.

84

5.2.1 A Parallel O PS5 M odel

A production program can be separated into two parts. The first consists of all

of the statements that declare the different kinds of working memory elements.

The second part consists of all of the statements that describe the production

memory. To use production level parallelism productions in a production program

are divided into several partitions and the match for each of the partitions is

performed in parallel.

A parallel 0PS5 model can be presented as a system consisting of a control

processing element (CPE) and a set of processing elements (PEs) each containing

its own processor and memory. At the beginning of a run every unit is loaded

with a copy of the working memory. The CPE is loaded with the production

memory whereas each PE will have a subset of the production memory. In such a

model it is possible for each individual PE to perform local act-match-resolution

based on its local production memory while the CPE does only the global conflict

resolution and performs the actions of the selected production’s RHS. The CPE is

responsible for the control of the overall interpretation and, in general, may include

activities such as: user interface activities, communication link setup, requesting

of local match on each PE, performing of system conflict resolution, firing the

selected production, and sending updating working memory information to PEs.

A PE performs activities such as updating of working memory, performing a local

match and sending its result (the local satisfied production) to the CPE.

Such a similar model configuration has been proposed by Oflazer [Ofl87]. How

ever, in the work of Oflazer, synchronization between the CPE and PEs was based

on using a Block-Resume approach. In such a scheme, the CPE must wait for

all PEs to finish their local match before the system conflict resolution can take

place on each recognize-act cycle. In this thesis such a parallel OPS5 will be called

a BR-OPS5 model (Block and Resume Parallel OPS5). The main disadvantage

85

CPE
Conflict Resolution reques

Wait P 11....PE3

Conflict Resolution

Execution of the selected production

WM changes broadcast

Match PEI
Match PE2
Match PE3

Delete CSE
PEI Update local CS
PE2 Update local CS
PE3 Update local CS

PEl Update local WM
PE2 Update local WM
PE3 Update local WM

Figure 5-2: Block and Resume Parallel OPS5 Model

of the Block-Resume scheme, especially in a distributed system where there is

always more than one user needing accessing to a machine at any time, is that

the processing time required for matching by each PE is unpredictable. Thus,

a significant loss in the speed results from waiting for the slowest PE to finish

its computation and signal back for synchronization. Figure 5.2 illustrates the

process interactions for a block-resume parallel interpreter.

86

5.3 T h e T im e W arp O P S 5 Im p lem en ta tio n

Time Warp 0PS5 (TW -0PS5) is a system in which an 0PS5 program can be

distributed for parallel computation in Time Warp mode. The 0PS5 system in

the TW -0PS5 is a modified version of the original uniprocessor 0PS5 (Carnegie

Mellon Univ.). Only about 20 code lines were modified or added into the original

uniprocessor OPS5. See Appendix A, List A .l, for the modification code. The

consequence is that any OPS5 production programs can run in the TW-OPS5

system without any further modification.

5.3.1 The M odel

In describing the working mode of the TW-OPS5 model, some initials are used,

translation of these initials is shown in the Table 5.1.

Initial Translation

TW-OPS5

BR-OPS5

CPE

PE

CFRCPE

ACTCPE

LHRI

GHRI

WMM

The Time Warp Parallel OPS5

The Block and Resume Parallel OPS5

The Control Processing Element

The Processing Element

Conflict Resolution at the Control Process Element

Action at the Control Process Element

Local Highest Rated Instantiation

Global Highest Rated Instantiation

Working Memory Modification

Table 5.1 Initials Translation.

87

The TW -0PS5 model consists of a CPE and many PEs. They all have the same

working memory but each PE owns only a part of the system production memory.

Each PE and CPE is an asynchronization Time Warp object supported by every

function as in a uniprocessor OPS5, which can offer; compilation of productions,

matching, conflict resolution, and operations affecting the working memory. These

functions are invoked by sending to the objects the appropriate messages. The

CPE contains two Time Warp objects: one is called CFRCPE (Conflict Resolu

tion at the Control Process Element), the other is called ACTCPE (Action at the

Control Process Element). On each iteration, each PE will perform the act-match-

resolution phase and then send its LHRI (Local Highest Rated Instantiation) to

the CFRCPE. At any PE a local match results in either a nil-instantiation (no

satisfied production found) or a set of satisfied productions (local conflict set). A

local conflict resolution selects from the local conflict set the best satisfied pro

duction which is called the Local Highest Rated Instantiation. Conflict resolution

at the CFRCPE produces a GHRI which is the satisfied production selected from

the LHRIs which have been received so far. This GHRI drives the ACTCPE into

the firing phase; that is, executing RHS actions of the satisfied production. The

firing may modify the working memory, such modifications are recorded, and be

constructed into a message called WMM (Working Memory Modification). This

message is then sent to all PEs to keep their working memory up to date. It is

important to note that the CPE does not involve in matching, it is the job of the

PEs. Figure 5.3 shows the configuration of the TW-OPS5 interpreter.

The main difference between the Time Warp implementation model (TW-

OPS5) and the Block-Resume model (BR-OPS5) in [Ofl87] is that the CPE in a

Block-Resume model must wait for all PEs to report their LHRI before the global

conflict resolution and subsequent firing. Whereas the CPE in a Time Warp

model does not wait. In the Time Warp model a global conflict resolution can be

proceed whenever a LHRI from any PE is available at the CPE and then firing

88

LHRIs

C PE PEs

M W M

! s_u”b- ! ! w m !
i j

! Su^ - ! ! w m !
l _ E M _ J L__

! Sû - ! ! w m !
I-EM . I __

WM

PM

A C TC PE

C FR C PE

G H RI

Figure 5-3: Process Interactions for the TW-OPS5 Parallel Interpreter

89

can take place immediately. This is called goahead computation. Such goahead

computations allow the fast PEs to continue with their next execution iteration.

But, because they are uncertain execution tasks, they may prove to be wrong.

When such wrong goahead computations are discovered, a roll back process is

initiated.

5.3.2 M otivations

Implementation of the TW-OPS5 is driven by the following motivations:

1. Local act-match-resolution done at a PE may result in a state of a nil-

instantiation or a LHRI. This LHRI may not always become or reflect a

GHRI for the system. In fact, at each iteration only one PE among PEs

results in an instantiation which becomes eventually the GHRI. Thus keep

the CPE waiting for all PEs is not always an ideal.

2. In the Time Warp model, with the goahead scheme, the CFRCPE does

not need to check or wait for every PE in the system to finish their local

act-match-resolution. Instead it goes ahead with resolution-act on receiving

any instantiation messages. Going ahead with the conflict resolution at the

CFRCPE produces only a temporary instantiation. There is some degree of

uncertainty in assuming that this temporary instantiation is the GHRI for

the system, but, if the assumption was right, then the time used in going

ahead is beneficial to the system.

3. In a Block-Resume model, the CPE must ensure tha t every PE has finished

its local act-match-resolution before the resolution-act phase can take place.

In such a scheme, at the end of each act-match-resolution iteration, each

PE must inform the CPE of its result whether or not it has found any

instantiation. Whilst in the timewarp model only those PEs which find an

90

instantiation during their local match need to communicate with the CPE.

The Block-Resume model in comparison with the Time Warp model, apart

from the drawback caused by waiting for all the PEs, the number of inter

process communications in a Block-Resume model is significant many more

than in the Time Warp model.

It is to be noted that because each PE in the system performs the act-match-

resolution in the context of their own production memory an LHRI at an PE will

only reflect a local-instantiation which is satisfied at that PE. It is not necessary

that the LHRI should become the GHRI for the system. At each iteration, local-

instantiations from all PEs constitute the conflict set for the CPE and a GHRI

is a result of conflict resolution at the CPE. Thus, until the CPE knows that no

LHRI message, which belongs to the same or previous iteration may arrive in the

future, the GHRI at the current iteration is reflected only a presumption selected

production.

5.3.3 O perations and C ontrol A lgorithm s

T im estam p of M essages

The TW-OPS5 uses message passing to coordinate its computation. Each message

is stamped with a timestamp which indicates the order of the message in the

system. Setting timestamps for messages in the TW-OPS5 is very simple and

straight forward. The following rules are applied for setting a timestamp of a

message:

1. VRT of a LH RI message, which is sent by a PE, is the current LVT of the

PE increasing by one.

91

2. VRT of a GHRI message, which is sent by the CFRCPE, is the current LVT

of the CFRCPE increasing by one.

3. On each iteration VRT of WMM messages, which are sent by the ACTCPE,

have the same VRT and is the current LVT of the ACTCPE increasing by

one.

4. VST of any sending out message is always equal to the current LVT of the

sending object.

In this timestamp scheme, LVTs at the Time Warp objects (CFRCPE, ACTCPE,

and PEs) reflect the same property as the cycle count number does in a sequence

0PS5. The cycle count number in a sequence 0PS5 increases by one on each

act-match-resolution cycle whereas the cycle count number in the TW -0PS5 is

indicated by the LVTs and is increased by three on each cycle.

Ordering of Input M essages

Messages arriving at a Time Warp object are inserted in the input queue message

of the object in the order of the message’s VRT. When a message arrives its VRT

is either a) larger than the LVT of the receiving object or b) equal or smaller than

the LVT of the receiving object. In the first case, the message will be inserted into

the object’s input message queue in order of its VRT and then waits for service.

In the second case, the message is identified as a straggle message and it will force

the object to rollback.

At a particular time an object may receive messages which have the same

VRT value. In this case the Time Warp applies a special strategy to handle such

messages. Experiments show that the message that arrives in the first place is used

to be a premature message and the last message is used to be a correct message

(at that time). The Time Warp system chooses to place the last message at the

92

top of the unserved input message queue. Hence the last message has the highest

priority to be the next to be executed. By doing this the premature message has

more chance to be cancelled by an antimessage before it is being executed.

Control at the CPE

After an initiation process which distributes to every PE in the system, each with

a subset of the production memory and an initiated working memory, the CPE

then enters its control phase which is referred to as the resolution-act cycle. The

CPE consists of two Time Warp objects, the CFRCPE and the ACTCPE, each

has a specific number of operations which are described as following.

Actions at the CFRCPE:

On each resolution-act cycle the CFRCPE waits for LHRI message from the

PEs. On servicing of an LHRI, depending on the VRT of the message, the CFR

CPE may act as follows:

1. Future message: VRT of the arriving LHRI message(s) 2 is larger than the

current LVT of the CFRCPE. The CFRCPE collects all these instantiation

messages at once, updates the conflict set, and then performs a global con

flict resolution. The GHRI, which results from the conflict resolution, is

then be sent to the ACTCPE.

2. Past message: VRT of the arriving LHRI message is equal to or less than

the current LVT of the CFRCPE. A past message indicates the belonging

of the message to the previous iteration. When such a message arrives,

the CFRCPE rolls back, updates a new conflict set, and then performs a

conflict resolution with the given constraints of the new conflict set. If

2One or more LHRI messages which have the same VRT may arrive at the same iteration.
These messages are considered as LHRI messages that belong to the same iteration.

93

the new conflict resolution produces the same LHRI as it did before, no

action should be taken; otherwise the new LHRI is sent to the ACTCPE,

subsequently, with an antimessage to cancel the old LHRI.

Actions at the ACTCPE:

Performing of a conflict resolution at the CFRCPE results in a GHRI (the

production rule, which is to be executed), which is then sent to the ACTCPE. On

servicing of a GHRI, depending on the VRT of the message, the ACTCPE may

act as following:

1. Future message: The ACTCPE executes the RHS actions of the firing pro

duction. Notation of the working memory modifications is then sent to all

PEs for working memory updating.

2. Past message: The ACTCPE rolls back, restores the working memory to a

correct state, executes the RHS actions associated with the newly selected

production and finally notation of the working memory modifications is then

sent to all PEs for working memory updating.

A PE may hold a set of productions which happen to be selected as fired

productions in a number of subsequent iterations. We will call such a PE an

optimal PE. The order of sending WMM messages from the ACTCPE to PEs

can affect the overall performance of the system. Sending WMM messages to

the destination PEs in an order according to the sequence of the PEs list (a list

contains the name of all PEs in the system) such as first to the P E i then P E 2

... P E n has proven not to be ideal because this many cause an unnecessary delay

of computation at the optimal PE. That is because if the optimal PE is placed

at the end of the sequence PEs list the WMM message will then not be sent to

the optimal PE before all WMM messages are sent to all the PEi (PE{ is the

94

PE placed before the optimal PE in the sequence PEs list). This problem can be

solved by choice to send WMM message to the optimal PE in the first place, by

doing this the optimal PE can perform the next act-match-resolution iteration in

parallel with ACTCPE sending out WMM messages to the rest PEs.

C o n tro l a t P E

Upon arrival of an WMM message actions for working memory updating are

executed then conflict resolution is performed. If an LHRI is found it then sent

to the CFRCPE. If no LHRI is found the PE enters a wait loop for message

arrival. Actions included in an WMM message may command the PE to remove

the highest rated instantiation - the one belonging to the previous iteration -

from the conflict set. This is a feature of OPS5 conflict resolution to prevent

firing productions that do not modify the working memory from firing multiple

times.

Appendix A, List A.2, shows the program code of the CPE and PE.

C ancella tion

Both lazy and aggressive cancellation methods are used in the TW-OPS5 system.

In lazy cancellation scheme the system delays the rollback object to send antimes

sages to cancel the side-effects caused by its premature executions until there is

evidence of an incorrect output. The method plays a very important role in the

overall performance of the system - especially when a rollback object produces the

same output messages which have been sent. For example, a straggle LHRI mes

sage drives the CFRCPE rolling back and initiates a new conflict-resolution; but

then the rollback at CFRCPE may not always lead to a rollback at the ACTCPE

because the result of the redoing the conflict-resolution at the CFRCPE may pro

duce the same instantiation as it had in the previous one. There is some small

95

drawback by using lazy cancellation. A rollback object delays the sending of an

antimessage to a relevant object. This object may without any caution execute

some incorrect message and then may send an incorrect message to another ob

ject. Then when the antimessage is sent, rollback at the destination object may

also lead to a rollback at another object too. That situation is identified as a

linked rollback (cascade rollback) and is a very expensive process, especially when

the cost of communication is high.

In conclusion not every object may have full benefit from the lazy cancellation.

An object operates better in lazy cancellation mode when there is a high degree

of probability that it will produce the same output messages in its re-execution

phase. The CFRCPE as described above is a typical object which benefits greatly

from using lazy cancellation. Let n be the number of PEs in the system, m

the number of instantiation messages sent to the CFRCPE at the end of each

iteration, 1 < = m < = n. The probability of the CFRCPE producing the same

output message in the re-execution phase ranges from 1/2 to 1/m; actually in

most cycles the m value is much smaller than the n. The situation is different for

the ACTCPE and the PEs. Straggler messages arriving at such objects cause the

objects to rolls back. The rollback objects in most cases will not produce the same

output messages. Hence, it is better to let the ACTCPE and the PEs operate in

aggressive cancellation mode.

It is to be noted that, in the implemented system, cancellation of a message

happens in first sent first cancelled manner. That is, the message stamped with

the lowest timestamp will be sent out first for cancellation. This strategy optimizes

the computing cost because the received object needs only one rollback when the

first cancellation message arrives - the rest will be inhibited with their anti-part

messages.

96

Save and R estore O bject’s States

The rollback process involves the restoring of the state of the working memory of

the rollback object to the prior state assumed to be correct. Saving and restoring

the working memory can be done by two methods:

1. Save (make a copy of) the current context of the whole working memory

from time to time or whenever the working memory is changing state, so

that, it can be restored when needed. This method is simple but expensive

in relation to consumption time and storage.

2. From time to time record only the actions which modify the working memory

into a save list. Restoring the working memory is done by redoing these

actions in reverse way. The redone process scans in reverse order the save

list and each entry on the list. An appropriate action is then taken to bring

back the context of the working memory. For example, redoing a removal

or insertion of a working element is simply done by insertion or removal

respectively of the same working element.

The second method is chosen by the fact that, on average, only a small num

ber of change are made to the working memory per execution. Thus, relatively

little storage is needed compared with the first method. In this scheme, on each

iteration, actions which modify the working memory are structured into a list (a

record) and the list is saved into the object save queue. Restoring is initiated

with the identification of the location of the last saved entry of the queue which

then moves the entry’s direction backwards. Each saved entry actions are redone

by acting in reverse way. For example, an add-to-wm action will be redone by

proceeding a remove-to-wm action. It is to be noted that, to keep the working

memory in a consistent state redoing actions must all be done before any new

message can be received or served.

97

The first method is not suitable for the TW-OPS5 because the state of the

OPS5 system is not only reflected by the context of the system working memory

but also the context of the Rete network. Thus, a pure restoration (coping) of the

working memory is not enough to bring the state of the OPS5 system back to the

correct state. There is a stronger cause for using the second method; because it is

not just storage of working memory but the re-entrant Rete netv/ork is a serious

problem.

R H S A ction R es tric tio n

RHS actions of a production in a TW-OPS5 are classified into two groups of

actions: non-restriction actions and restriction actions. Restriction actions are

I/O primitives such as write, openfile and closefile or I/O related functions such

as accept and acceptline. Goahead and rollback on such actions will confuse the

system. Time Warp will not allow these actions to goahead. Restriction is imposed

on these actions by holding (delay) the firing until the system is sure that the firing

is safe (when VRT of the actions is equal to the GVT); that is, to say no rollback

may occur in future. Non-restriction actions are those that modify the working

memory such as make, modify, and remove, or actions that create new rules for

production memory during program execution such as build, or other actions such

as compute, 6md, etc.. Time Warp systems allow these actions to be executed

at once. This is because, in the case of a premature execution being observed,

redoing of such a action can be carried out.

R e lo ca tio n of P ro d u c tio n R ules

Load balancing describes the distribution of a computation over several processors

where the goal is to keep all processors equally busy so a maximum performance

can be obtained. Partition of the production memory may be restricted to be

98

carried out prior to the start of the system execution or may also be allowed

during the system execution. Initial (static) production placement can be done in

many ways as classified in [Ofl87]:

1. Random selection of productions to processors.

2. Assigning of productions to partitions in a round-robin mode. Productions

which axe close in the production program source file will be placed in dif

ferent partitions - because these productions are mostly intended to affect

each other (an heuristic guess).

3. Assigning of productions to partitions based on the context of the produc

tions. Productions which have the same context, goal or task condition

element are assigned to different processors.

The above partition rules are heuristic. They may give some differences in

performance which vary from one mode to another depending on the working

problem, but can not be classified as a load balancing algorithm. In an effort to

produce a partition algorithm which can be applied for any production system

Oflazer [Ofl87] has proposed an algorithm for approximately solving the partition

problem using information from sample executions. The algorithm requires the

information about the sets of productions that are affected during each working

memory action and the cost associated with each production processed. The

objective of the algorithm is to calculate (in a greedy paradigm) to the best

production assignment in which a minimum executing cost for the production

system can be obtained. The algorithm results in a possible of an addition speedup

factor of 1.10 to 1.25 [Ofl87].

TW-OPS5 differs from the Oflazer BR-OPS5 in the concept of operation and

system configuration. Oflazer’s BR-OPS5 model was implemented on a tightly

coupled system, - the VAX 11/784 - a four processor multiprocessor. Whereas

99

TW -0PS5 was implemented on a loosely coupled system - a network of SUN

workstations. Therefore, partition of productions in the TW-OPS5 does have

some different views. Firstly, the constraints of a loosely coupled system requires

a minimal number of messages between partitions. Secondly, as TW -0PS5 oper

ates in a sophisticated mode 3 partition of a TW -0PS5 requires more than just

an equal work between processors to achieve a maximal performance. Finally, the

complexity of the working mode of a Time Warp application causes many diffi

culties for any static load balancing algorithm. That is, because it is very difficult

or even impossible to have a fix insight of the behaviour of a Time Warp object

- for instance, about the number of rollbacks which may occur in the system, or

when goahead computations can turn into the speedup for the system.

As is well known, the Time Warp system accepts goahead computing and

rollback as its normal operation. However, rollback is a very expensive process. In

the worse case, if the system goes ahead and then rolls back later at every iteration,

then the system performance will actually be worse than the performance in a

Block-Resume scheme. In order to gain the most benefit from goahead computing

one must ensure that rollback does not occur frequently. This thesis suggests

an implementation solution to the production rule relocation during execution

time. The solution is based on the fact that often in some production systems

a particular production or productions may be selected and re-selected to fire

subsequent in a number of iterations. These frequent firing productions should be

grouped into the fastest PE so the system does not suffer by sequential rollbacks.

The implementation rule is very simple, it states:

The system assumes that when the slowest PE produces a straggler

LHRI it will probably produce another straggler LHRI at future it

eration^). The system initiates productions each with an account (a

3See the motivations described in Section 5.3.2 and conditions presented in Chapter 3, Section
3.2, for detail

pre-defined number indicating how many times a LHRI can be late)

and during the execution time the progressing of all productions is

recorded. Whenever a production has run out of its permit account it

will be removed and placed at the fastest P E ’s.

W ith this solution the TW-OPS5 system can have at least a reduction on

the number of communication messages (LHRI messages), a minimal number of

rollbacks, or an approximate work load balancing between PEs.

5 .4 R esu lts from th e E xp erim en t

Two OPS5 production systems have been used in the experiment, these were:

Mahattan Mapper and Weaver. Manhattan Mapper is an expert production sys

tem which can provide travel directions with content similar to human-generated

instructions. The Manhattan Mapper system has 86 production rules. The system

was developed by Stolfo, S., Cheng, J. h Lerner, M. at the Columbia University.

Weaver is an expert production system for doing VLSI layout with 637 production

rules. The system was presented by Joobbani, R. & Siewiorek D. P. [Ofl87].

The experiment system is a system of SUN workstations connected by the

Ethernet. One machine is dedicated to be the CPE and the rest are the PEs.

Since the system was not used stand-alone mode 4 during the experiments there

were always some other users doing things which either shared or dominated the

CPU, peripheral devices, and the network, and because each machine were not in

the same CPU power 5, different results were noted from one run to the next. So

the experimental results are given as an average which were observed from many

trials. On each production system, the tests have been performed on two models,

4On each run, each machine used only about 50 to 70 % of the CPU power.
5The SUN work-stations used in the experiment have not the same type, some are SUN 3/60,

SUN 4/260, or SUN 3/160.

101

namely, the BR-0PS5 model and the TW-OPS5 model. Due to the amount of

message traffic required by each iteration and the cost of communication delays

relative to the amount of computation required no significant speedup has been

gained during the tests. In some trials a factor speedup of 1.3 to 1.5 has been

observed with 2 to 4 processors when the system was in the best mode (not

many other users coupled to the system). But in most of the trials, because

communication cost is too high, performance of a parallel OPS5 is actually worse

than when it run on a uniprocessor OPS5. However many interesting points have

been observed and are being presented in the following text.

In a BR-OPS5 strong synchronization is required to ensure that the working

memory at every PE is updated at the end of each iteration before a conflict

resolution in a PE is started. The BR-OPS5 model requires the CPE to send and

receive 2N messages per iteration, N being the number of PEs used in the system.

In the TW-OPS5 model, during each iteration the CPE receives M messages and

sends only (N — 1) messages, M <= N . That is, because in a TW-OPS5 model

only those PEs which find a local satisfied production during their local match

need to communicate with the CPE. However, in the worst case, when rollback

occurs frequently the number of messages sent may exceed the messages sent

out by a Block-Resume model. In 20 trials for the Mapper the total number of

interprocessor communication messages in the TW-OPS5 model was about 32 %

less than in the Block-Resume model.

The strong synchronization in a BR-OPS5 model can result in loss of processor

power due to fast processors waiting on slower ones. This adds two forms of

overhead to the computation. One is the work required to verify that every PE

is ready for the next iteration. The other is the idle time that some PEs may be

experimenting while waiting for all PEs to complete their tasks. At each cycle time

all the PEs have to wait for the slowest among them. If the difference between

the speeds of various PEs is large the performance of a BR-OPS5 model become

102

substantially degraded compared with a TW-OPS5 model. The experiment shown

about 33 % of the time was spent by the host CPE waiting for all PEs to finish

their iteration computations.

The TW-OPS5 does incur additional computation costs which occur because

each PE continues to iterate until it is told to stop (by straggler messages). A

fast PE may overshoot doing more irrelevant computing. However, two very inter

esting points have been observed during the experiment: Firstly, the Pam, - the

probability a straggler message to arrive on each iteration - is quite small. On

average only 15 straggler messages occurred in 166 iterations of the Mapper. Sec

ondly, as the CFRCPE may receive one or more local satisfied productions only

one among them becomes eventually the satisfied production for the system. A

local satisfied production from a slow PE may drive the CFRCPE to roll back but

an antimessage may not need to be generated because the re-conflict-resolution

at the rollback CFRCPE produces the same system satisfied production as it did

before rollback. On average only 30% of the cases are where the rollback CFRCPE

must send antimessages.

The perimeter effect relates to the ratio of the amount of computation within

a PE to the amount of data that must be transferred between the PE and the

CPE and, between the CPE and other PEs at each iteration (cycle). In solving

a production system problem by subdivision production memory between PEs

the amount of data transferred grows sub-linearly with the subdividing. The

real time interprocessor communication costs increase rapidly compared with the

CPU cost spent in matching which slowly decreases as more PEs are added to the

system. This is because the number of interprocessor communication messages

increases in proportion to the additional processor and as more processors are

added to the system the granularity becomes smaller. In addition, partition of

the production systems result in some losses such as: load unbalance, and loss in

common condition of Rete network due to forced concurrency.

103

5.5 C onclu sions

Although a number of trials have been carried out, at present, only qualitative

results can be given. Parallelization at production level of a production system

is a type of application in which distributed processes tend to exchange messages

frequently. As discussed in Chapter 3 the performance of a Time Warp application

is very much dependent on the rate at which communication messages must be

sent between Time Warp objects. The large number of messages the CPE (WMM

messages) must send on each iteration is the reason that TW-OPS5 does not

give such a performance as Time Warp simulation did. In addition, the high

communication cost on each sent message reduces the speedup which benefits

from a goahead process because a goahead process needs to send more messages

when a rollback occurs.

Chapter Sum m ary

In this chapter, details about the OPS5 production system, its construction,

and the implementation of the TW-OPS5 together with some experiment results

have been presented. Implementation of the TW-OPS5 is based on two concepts:

• Exploiting of parallelism in the OPS5 production system at the production

level. In this scheme productions in a production program are divided into

several partitions and the match for each of the partitions is performed in

parallel.

• Synchronization between partitions in the TW-OPS5 is based on goahead

and lazy cancellation concept. The idea behind that is that the matching

process at each partition may or may not result in a selected production and

among these selected productions there is only one production which can be

executed. Thus, by goahead some partitions can continue with next iteration

without waiting for other partitions to catch up, and by lazy cancellation

104

a fast partition may have a chance to keep its computation path without

being interrupted by a slow partition.

The result from the experimented Time Warp OPS5 is encouraging but is

inconclusive as regards optimal result due to the constraints of the current sys

tem hardware - the internal communication overhead. However, the experiment

demonstrates the benefit with respect to the communication and synchronization

of the Time Warp mechanism when compared with any Block-Resume approach.

105

C hapter 6

A T im e Warp D atabase System

6.1 D istr ib u ted D atab ase S y stem — A n In tro

d u ction

A Distributed database system is, typically, a database which does not have its

information at a single physical location, but rather it is spread across a network

of computers that are geographically dispersed and connected via communication

links 1. The extent to which distribution versus centralization is desirable de

pends on the cost of management, operations, and communications. In general,

distributed database systems provide considerable advantages in terms of man

agement and flexibility, computation capability is increased by the distribution of

operations and having replicated information the system can allow some continued

operation in case of failures.

*A distributed database does not absolutely imply physical distribution, but rather a distri
bution of responsibilities over multiple databases.

106

6.1.1 Synchronization in D istributed D atabase System s

Distributed or multiuser database system are examples of application domains

with many simultaneous transaction processes. A transaction is defined as a

process which is combined with a limited amount of numeric and logical computing

accesses to the state of the database [Wie83]. Transactions in a database system

include: retrieving information, creating new information, deleting or changing

existing information. When a system offers the ability for several transactions to

be actually assessing the database there must exist a mechanism to coordinate

such simultaneous transaction processes, otherwise the system may be left with

incorrect information in the database. A number of synchronization mechanisms

have been proposed, which are imposed to increase the concurrency, to decrease

the average waiting time for accessing the shared data and to keep the data

consistent. An excellent survey of the synchronization technique and concurrency

control in distributed database systems is presented in [BG81].

In distributed database systems most of the synchronization techniques are

based on either two-phase locking or timestamp ordering [BG81]. Two-phase

locking is a locking mechanism which assures mutual exclusion of interfering

transactions; synchronization is obtained by explicitly implementing a locking

or semaphore set on the object of the operations. In two-phase locking, to keep

data resources consistency, a transaction locks the data resources up to a com

mit point. Two-phase locking is a strong synchronization technique; it limits

the possibility of concurrency because objects held by one user are not available

to others and the locking can substantially increase the cost performing of the

transactions and the possibility of deadlock. Timestamp ordering is a technique

whereby transaction execution and resolution of conflicting operations are based

on the timestamp order of the transactions. The timestamp of a transaction is a

time set by a physical/logical clock indicating when the transaction must occur.

107

To ensure the consistent of the databases throughout the system, the right to

access a database object is based on the transaction timestamps. In a traditional

timestamp ordering when a timestamp conflict occurs, that is when a transac

tion Ta with an earlier timestamp tsx arrives after another transaction Tj, which

is stamped with a timestamp ts y has been processed, the system rejects the Ta

transaction.

U pdate Interference

On any storage system in which stored data is updated by multiple transaction

simultaneously there is a potential interference problem. Figure 6.1 illustrates an

inference problem caused by the interaction of two concurrent transactions on a

common resource. Suppose T l, a selling order transaction, reads data-object X ,

the current stock of an item, then writes to X with the number of the items left

in stock after subtracting the X value from the number of the sold items. At the

same time T2, a receiving order transaction, reads X and writes to X the updated

number of the items. If the writing process of X at T2 happens to be done before

the writing process of X at T l , or vice verse, then the final value of X does not

reflect the intended result.

This sort of mischief must be prevented. In a two-phase locking solution actions

at each transaction of the above example can be separated into two phases: a)

during the first phase the transaction acquires all the resources needed for its

execution; b) when all changes are placed into the database the resources held

by the transaction are released. This makes it relatively simple to control the

transactions which update a single record. However, most of the transactions in

distributed database systems are not as simple as the above example. In some

transactions only a single commit point is needed. Others, where there are long

and complex subtransactions, have many commit points nested into a hierarchy.

Each transaction requires permission to perform all of its component operations

108

T l : Sell 100 items.

Start
X = 300

Stop X = 200

T2 : Receive 500 items.

Start
Read X Read X

X = 300
X = 300

X = 300;
X := X - 100;

Write X = 200

Write X = 800

X = 300;
X := X + 500;

Stop

Figure 6-1: An Example of Interference in Database System

109

before any of these operations are carried out can substantially increase the cost

of performing the transactions and the possibility of deadlock.

Deadlock

Deadlock can occur if a number of transactions have each locked their read set

and are waiting for each other to release their locks. In distributed databases,

the risk and the cost of deadlock can be greater because in such a system the

communication times increase the interval that resources may have to be held and

because replicated elements are present more frequently in distributed databases.

Any deadlock prevention or a deadlock detection scheme imposes some restrictions

on users and requires a lot of operation control and a view of the global state of

all transactions in progress.

System R ecovery

A failure during the execution of a transaction requires that the database be

restored to its original state. Backup copies in most database systems are pe

riodically generated so that a series of past versions can be kept. In general, a

backup copy should be generated while the database is quiescent since updates

during copy may cause the copy to be inconsistent. A problem in a distributed

and very large database system is that there may be never be a quiescent period

long enough for making a backup copy.

R eplication C onsistency

To execute a transaction which involves multiple databases those portions of the

transactions which cannot be executed locally will be transformed into subtransac

tions to be transmitted over the communication links for execution at the remote

databases. The problem is that, when an update operation must be performed on

110

one location, thus changing only one of the database copies - one data element

will reflect the update, while another element has not yet been changed - the

databases must be synchronized to keep those data elements identical. A simple

technique for solving this would be to send an update message to the other loca

tion as soon as the transaction has completed. There can still a problem; that is,

when the remote replicated data element has been modified by another transac

tion before the update message arrives. To prevent that conflict, either a locking

mechanism or a voting mechanism must be used. This would result in one of the

two transaction being aborted. In some cases, periodic switching of the updating

objects is possible. That method is used in most database bank systems, where

the integrity verification of the corresponding data between the local data and the

central office data is verified after the daily closing. In a real-time and interactive

distributed database system such delaying may not always be approved.

6.1.2 T im estam p Ordering D atabase System s

Thomas [Tho78] proposed a control algorithm based on timestamp ordering and

majority voting for updating replicated data such that all copies converge to the

same final value. In Thomas’ scheme an update transaction is executed in three

steps: 1) the value of the data-object is fetched into the local workspace; 2)

some local computations are done then 3) the data-object is rewritten with the

final value. Majority voting is a consensus decision to validate a write operation.

Before performing the write operation, the system checks that the value read

by that transaction’s read operation is still valid - the data value read and its

timestamp. The transaction is aborted if the read value has subsequently been

overwritten by any other transactions since the transaction read it; otherwise the

write operation takes place.

Reed [Ree78] in his thesis proposed an algorithm based on the notion of pseu-

111

dotime and version history. The Reed algorithm is classed as a multiversion

timestamp ordering [BG81]. In Reed’s NAMOS system, - the Naming Applied to

Modular Object Synchronization System each database object has a history list

which records the timestamps and values of all executed operations. A transaction

is accomplished with a timestamp which indicates a version of the data-object to

be accessed. Thus a transaction can read a specific data-object version while an

other transaction updates the same data-object but in a different version. When

a conflict occurs, tha t is when a write transaction with a timestamp ts(W) arrives

after the transaction which is stamped with a timestamp ts(R) has been processed

and ts(W) > ts (R), the system rejects the write transaction.

The SDD-1 [BRGP78] - a System for Distributed Databases - allows data to be

replicated at several database sites. The mutual consistency of databases copies

in SDD-1 is achieved by the use of timestamps ordering supported by a series

of synchronization protocols. Transactions in a SDD-1 are classified into classes

which are defined in terms of the logical set of data to be read or written by the

transactions. In order to minimize the overhead involved in locking transactions

SDD-1 implements a protocol selector function - a formal analysis of transaction

processing - which choses a specific synchronization protocol for each class trans

action. The SDD-1 system implements a series of four synchronization protocols;

the efficiency of each depending on the degree of the weakness or strength of the

synchronization of the protocol. The strongest synchronization protocol in the

SDD-1 still uses some kind of block-resume. But, by classifying a right synchro

nization protocol for a transaction, an unnecessary strong synchronization can be

avoided thus the system performance is enhanced.

112

6.2 A T im e W arp D istr ib u ted D a ta b a se S ys

tem

In this section, a model of a distributed database whose transaction synchroniza

tion and concurrency control based on Time Warp mechanism is proposed. The

system is called the Time Warp Distributed Database System (TWDDS). The

TWDDS is an optimal timestamp ordering distributed database system. Its aim

is to provide more concurrency, no deadlock and system consistency, consistent

global notion of real-time, and authenticated protected data access. The system

consists of a collection of databases sites interconnected through a communication

network so database information can be replicated at several sites. The imple

mented Time Warp kernel which was described in Chapter 2 itself acts similarly

to the database manager in most database systems who handles the update and

retrieval request made by the users in such a way that the results overall process

is in correct mode.

6.2.1 M odularity and C om position o f th e T W D D S

TWDDS defines two types of Time Warp object: data-object is an object of an

information in the data base system, and apply-object is an object of a client at

the transaction application level. A data-object is an entity which is a storage

facility that can process requests on behalf of the transactions such as READ,

WRITE, + AND, OR, etc.. Each data-object has a unique identifier

and is communicated with by means of message invocation; messages sent to

a data-object requesting a particular action and a reply. The local state of a

data-object is allocated to that object and can only be changed by operations

performed at that object. Thus a transaction can only be performed on a data-

object by sending a transaction message with an appropriate operation(s) and/or

113

appropriate parameters to the object. An apply-object may contain one or many

main transactions and each of which may consist of sequences of subtransactions.

For each service request it sends an apply-object can assume that a response

message will be returned in the arbitrary but finite time. This indicates completion

of the service and may include return values.

To simplify the proposed system the following restrictions are applied in the

current state of the TWDDS: a) only one type of transaction message can be sent

from a data-object to its direct requestor; that is, the informing message which

carries the result of the request and indicates the completion of the service. A data-

object may not send a request transaction to another; and b) only apply-objects

can actually send updating/enquiry transaction messages to a data-object; no

apply-object may send a message to another apply-object and the only transaction

messages an apply-object may receive are the informing transaction messages

which are returned by its called data-objects. In summary a data-object can take

the following actions upon receipt of a transaction message: a) make decisions;

b) send an informing transaction message to the calling object; an apply-object,

however, can: a) make decisions; b) create or remove a data-object; c) make an

enquiry or updating transaction to a data-object.

It is to be noted that, as a simple model transactions of an apply-object in this

proposed TWDDS are executed in a sequence mode - a transaction must finish its

processing before an other transaction message can be processed. Parallel trans

action execution is possible. A main transaction can construct its subtransactions

in groups whereby each subtransaction is related by an OR, or AND relation so

they can be executed in parallel. This subject will not be discussed here but can

be considered as a subject for a further research.

114

6.2.2 Clocks and T im estam p Ordering in T W D D S

In the TWDDS, the nature of synchronization of transactions is captured by en

coding times as part of each transaction message transm itted between objects.

If a transaction should have a conflict with some other transactions the system

control selects its response based on the timestamp of the two transactions. Be

cause commitment to a transaction in TWDDS should only be granted in order of

transaction timestamp the system must provide a timestamp algorithm to main

tain a correct and complete global transaction ordering. TWDDS’s timestamp

algorithm and its clock structure will be discussed here in details.

T h e R ea l-tim e Issue

As in the experiment learned from the work of Reed [Ree78], the TWDDS rec

ognizes the necessity of the correlating the logical timestamp with the real time

notation. The following example [Ree78] illustrates the important role of the real

time in distributed database systems.

E x am p le 6.1: Imagine a system containing the database of a bank.

One from a city A opens an account and deposits an amount of money

in an account and then phones to his client in city B confirming the

credit transaction and asks him to issue a request on the account. It is

quite possible that the person at the city B will get a negative response

such as no such account. That can happen because if the request at

the city B received a lower timestamp, it would have been executed

before the transaction from the city A.

This problem has already been observed by Lamport in his paper [Lam79] and

has proposed a solution which involved of synchronizing physical clocks in the

system. Physical clocks, especially in distributed systems, may not keep perfect

115

time, but can drift with respect to another. Lamport presented a system of

processes in a form of a connected finite directed graph with diameter d. Each

process is provided with a clock, and every p seconds a synchronization message,

which contains a physical timestamp, is sent through every node. Upon receiving

a synchronization message, if needed, a process should set forward its local clock

to be later than the timestamp value contained in the incoming message. Let k

be the approximate correct rate of each clock (e.g. k < lO.e-6) and e the allowed

drifting of any two clocks. It is possible to compute the approximate value of e

in which e < d(2kp + z); where z is an unpredictable delay for an interprocess

message transit. The algorithm is rather complex and will not be discussed here.

Implementation of the algorithm and its proof are discussed in detail in [Lam79].

C locks an d T im es ta m p S tra teg y

The TWDDS presents both physical and logical clocks for its Time Warp objects

and transactions. Each Time Warp object in the TWDDS owns a local clock

which is a combination of the synchronizing physical clock and a logical clock.

The local clock of a Time Warp object contains four fields and is described as

follows:

1. S y stem rea l-tim e: The system real-time is the actual creation time of an

object or of a main transaction at a particular node - the current time value

of the physical synchronizing clock. It is the physical clock of the node which

is synchronized with the clock of other nodes in the system by means of the

clock synchronization algorithm.

2. Local rea l-tim e: The TWDDS recognizes that in the interval time be

tween two synchronization clock clicks a computer may be asked to create

many apply-objects. To make those objects’ local clocks unique throughout

the computer these local clocks must be initiated with the current value of

116

the local physical clock of the computer. The local real-time is the actual

creation time of an object based on its local physical clock.

3. N o d e ID : The unique identification number of the node where the object is

created. The TWDDS recognizes that it is possible 2 that two apply-objects

at two different computers may have the same system real-time and local

real-time. In this case the node ID makes transactions from these objects

unique through out the system so that a transaction may have higher priority

than another based on its node ID.

4. Logical tim e: The logical-time field holds the logical time which is set

to zero at the creation of the object and is increased by 1 each time a

transaction is generated. Thus at an object, the logical time indicates the

linear order of the transactions as they occur at that object. The TWDDS

encodes this relationship hierarchy by making one’s logical time less than

another.

Each transaction message in the TWDDS requires a unique timestamp and

a transaction is selected to be executed based on its timestamp. To generate a

total timestamp ordering and correctness of transaction executions throughout

the system, the following rules are applied to every Time Warp object:

• Each object increments its logical time between any two successive trans

actions messages and the sending transaction message is timestamped with

the current local clock of the sending object.

• Upon receipt of a transaction message an object advances its local clock up

to the timestamp value of the incoming message if the value is greater than

its current clock value.

2In reality this case may never happen.

117

• Only one message can be executed at a time at a object. Any incoming trans

action messages with timestamps greater than the local clock of the object

have to wait in the object input message queue for processing. An incom

ing message with timestamp smaller than the object’s local clock causes the

object to roll back to the earlier timestamp and then continue execution.

Thus, timestamps assigned by the same apply-object are unique because they

are different in logical time. Messages’ timestamps assigned by different apply-

objects are unique since each apply-object is different in creation time, and mes

sages’ timestamps assigned by different nodes are also unique since they have a

unique node ID. This results in an unique timestamp throughout the system.

It is to be noted that, the local clock of an apply-object is created when a client

opening a transaction process in the system and can be reset again when all of

the previous transactions of the object have been terminated and the user insists

on processing a new main-transaction. The local clock of a data-object may only

be set to the timestamp of the receiving transaction message and the timestamp

of an informing message being sent from a data-object is the current value of its

local clock, which is the timestamp of the request transaction message.

6.2.3 Transaction O peration in th e T W D D S

Transaction synchronization in the TWDDS is based on the timestamp ordering

concept and is supported by the Time Warp mechanism. The dependency rela

tion between transactions are captured in the order of transaction message times

tamps which indicate when transactions must occur in the system. In TWDDS by

timestamp ordering a data-object is not locked by any transaction and by goahead

the system does not enforce checking of timestamp ordering on each transaction.

Timestamp conflict is not solved by aborting transactions, but by rollback and

reordering the execution of the transactions. Within a Time Warp object, trans

118

actions are started as soon as possible according to their timestamps and are

permitted to run as long as necessary to fulfill their computational requirements.

Execution of a transaction in an apply-object is performed in a sequence mode.

The request transaction message is sent to the appropriate data-object and then

the object waits for the returning of the informing transaction message before the

next transaction step can take place. But during the waiting time an apply-object

can receive an anti-transaction message which may drive the object to roll back

and to re-send its transaction messages.

A data-object has more autonomy in its transaction operation. A transaction is

serviced in the order according to its timestamp and is executed without any form

of global control or blocking. This asynchronous operation may create conflict

between transactions. When a conflict occurs, that is when a transaction Ta with

an earlier timestamp tsx arrives after another transaction T& which is stamped

with a timestamp tsy has been processed, and tsx > tsy, the object rolls back

part of its computation and undoes what it has done by sending antimessages to

undo activity of the caller apply-objects which have been misled by its previous

actions.

To support the rollback process Time Warp objects in TWDDS keep record of

every step of their processing. The record history is the sequence of transaction

messages that have been performed at that object and the object’s state. The

choice of size of database object to be presented as a Time Warp data-object can

be varied. Small granules will considerably enhance system performance since the

probability of interference will be less but it also means using more storage in

object’s history saving, and addition cost in interprocess communication.

In non-replicated TWDDS, when a data-object is written with an update data,

the updating message will be saved for a lazy commitment. That is, before the

apply-object which issued the update transaction exits the system, the update

119

data will be sent to each of the replicated objects and then a global commitment

check for the system consistency is performed. In other words, the TWDDS

carries out its validation test when a client process requests its transaction(s) to

be committed. For example, when the client process signals the end of transaction

requests.

Global commitment check is a part of the system which controls the order of

the overall system transactions. It will ensure that no prior request transactions

from any other node are waiting or are not yet completed caused by communica

tion delay so that no conflict both in terms of internal conflict or conflict caused

by a remote transaction should occur after the termination of an apply-object.

The global commitment check has the same property and purpose as the GVT

calculation which was described in Chapter 2.

It is to be noted that, displaying of information in a database system is not so

critical as it has been stated in the Time Warp Global Control, Chapter 2. That

is, because in a database system information is changed from time to time, thus,

re-displaying the information (as a result of a rollback) is considered as a process

of informing the user of the most updated information, which is acceptable in the

user’s point of view.

6.2.4 R eplicated databases in the T W D D S

In a replicated distributed database environment, a local database object must

advise its replications of the updating after each update. An apply-object, when

it sends a modification to a host database, will only wait for the transaction to

be performed. The sending of updating transaction messages to the replicated

databases is the job of the host database and, is performed in parallel with the

processing of the other transactions in the system. If these updating transactions

are accepted, that is they can be performed at the replicated databases and the

120

same outcomes are given as the transactions were performed at the host database,

then no action is needed. If the updating transaction is not accepted among the

replicated databases, - indicating a data conflict has occurred - , the host database

is informed with a message. When this message arrives 3 at the host database it

causes the host database to roll back. The rollback at the host database will then

drive the apply-object to roll back too.

When an apply-object is informed with a GVT value which is larger than

the timestamps of the performed transactions, thus meaning commitments for

the transactions have been accepted. It is safe to terminate the apply-object.

Otherwise the apply-object goes in a waiting queue then requests a GVT process

again - that is to give time to the late transactions being executed or possibility

for a rollback if any.

6.2.5 A n Exam ple to Illustrate A dvantages o f th e T W D D S

In order to introduce gradually the concept and technique of the TWDDS and

show how transactions can be executed concurrently the following example gives

an overview of transaction working mode in the TWDDS. The example is artificial

and elementary; its purpose is to explain and to illustrate.

E xam ple 6.2: Two persons come to a travel agent to order a trip one

at terminal X at 9.30 another at terminal Y at 9.28. Unfortunately,

both ask for the same reservation; that is the ticket on the same flight

and room at the same hotel. They want both the air ticket and the

hotel room to be reserved, otherwise they would cancel the trip. For

simplicity, let us assume that information about the air ticket, the

3VRT of a message sent from a data-object to other data-object is the LVT of the sending
data-object and LVT of a data-object is always set to the VRT of the receiving message

121

hotel and the car rental are located at the same database site, and the

customers know exactly what type of reservations they want.

Case 1) Transaction operation at a tradition locking system: Processing step

at each terminal can be described as following: the terminal sends a READ trans

action message to the air ticket object, then locks the object from other users.

The same action is performed on the hotel object. When this is done, two W RITE

transaction messages are sent to the objects, each write to the object the update

data, and then the objects are unlocked. This locking scheme offers no concur

rency and the system performance is not good because the resource will have to

be held for at least several second since the READ and W RITE operations are

separated by an intermediate terminal activity. Another problem is that if the

first transaction message from Y arrives at the air ticket object after the one from

X - due to some computation and communication delay - terminal Y must wait

until the transaction processes at the terminal X are finished. When the first

transaction at the terminal Y is allowed to process it may return with a result No

air ticket available. W hat about if the person at the terminal Y complains about

why he is not to be served in the first come first served manner.

Case 2) Transaction operation at the Time Warp system: In TWDDS, to

order an air ticket, the two apply-objects can simultaneously send a transaction

message saying one air ticket reservation to the air ticket object, at which following

operations may be performed:

Read a i r ; th e c u r re n t t i c k e t a v a i la b le

I f (a i r > 0) th e n

a i r - (a i r - 1) ;

r e t u r n (l) ;

e ls e

r e t u r n (- 1) ;

122

In this scheme no locking is needed. When the air ticket object has finished

with a transaction another one can be executed immediately. Thus the system of

fers more concurrency. Let us see how this system solves the real-time transaction

problem which can not be solved in Case 1. As in the Case 1 it is assumed that

the reservation transaction message T{Y) from Y arrives at the air ticket object

after the one T (X) from X has been executed. In addition, we suppose that the

terminal X is still waiting for the result from the hotel reservation transaction;

otherwise, because the air ticket and the hotel reservation both must be confirmed,

the TWDDS then performs a global check to confirm the final commitment of the

orders before the exit of an apply-object. Now, because the T { Y) has a lower

timestamp it must be executed first. The arrival of the T(Y) rolls the air ticket

object back to the state before it executed the T(X) . From the input transaction

message queue of the air ticket object the T(Y) is the first to be executed, and

the next is the T(X) . When T(X) is being executed, two situations can happen

now:

1. If the last air ticket was taken by the T(Y) a transaction antimessage is sent

to the apply-object at the terminal X to roll the object back and cancel

the incorrect inform-transaction message. In this case the customer at the

terminal X is informed that there is No air ticket available.

2. If an air ticket is still available the outcome of the T (X) execution will be

the same as it did before rollback. So no action needs to be taken.

The second case demonstrates advantage of the Time Warp scheme.

A simple example TWDDS for the Travel Agent example has been imple

mented. The purpose is to study the feasibility of TWDDS implementation and

its working mode. The experiment have been carried out on a system which con

sists of a set of SUN workstations which are connected by the Ethernet. The

implementation model is simply a test model, thus, many configuration details

123

and facilities which must be included in a complete database system have been

omitted. For example, in this example model data-objects (hotel databases, car

rental databases, etc.) are distributed but not replicated and transactions of

apply-objects are simulated rather than type-in-mode as in a real situation.

We assume that the error drift of physical clocks between nodes is small, thus,

synchronization of the physical clocks would not needed. At the start, the real

time clock of every node is initiated to the same value and at any time it is the

sum of this time and the offset time since it started.

The system is initiated with a number of apply-objects. The creation times

tamp of an apply-object, the activation timestamp of a main transaction or the

offset time due to the delay of the user in communication with the machine are

generated in a random fashion. When an apply-object is created it is initiated

with a number of transaction procedures which will then be executed during the

object life.

A data-object is a database object which is combined with information and

methods accessing the information. Information of the data-object hotel X is, for

example, a list of available rooms in the hotel and associated information such as

prices, conditions etc. Methods of a data-object are, for example, the search and

reservation of a type of a room.

A data-object does not save its database after each modification but only

information about the modification are saved. The implementation model uses

the same saving and redoing techniques which have been used in the TW -0PS5.

That is: on each modification, information about the modification is saved, a

rollback is performed by redoing the transactions in reverse order, for example, a

delete operation is redone with an add operation.

An important characteristic of the Time Warp system is the probability that

an object receives a timestamp conflict message. Timestamp conflict is considered

124

e l s an uncommon situation. This type of conflict is mostly caused by the delay

of the transmission of the transactions. If we assume that a database object may

receive a transaction every 10 seconds we still hope that these transactions arrive

in a correct order, thus, rollback at the database object may not occur. However,

in order to study the system working mode, we did try to simulate the test system

so that as many timestamp conflicts could occur as possible.

The number of rollbacks occurring at an apply-object depends both on the

number of rollbacks occurring at the enquired data-object and the ability of pro

ducing the data conflict free at the enquired data-object. If we, for example in a

car rental database, can maintain a sufficient number of cars available, let us say

30 in every hour and transactions (reservation or returning of a car) arrive at the

database in every minute, there is definitely more chance for a goahead reserva

tion transaction to be successful - that is because a rollback at a database object

may still produce the same output as it did in the past. The knowledge from the

experiment again confirm that condition statements which have been stated in

Section 3.2, Chapter 3, is feasible and helpful for evaluation and in designing of a

Time Warp application.

6.2.6 M otivations

The following text illustrates the basic transaction conflicts which may happen in

any distributed database system. The text also shows how the conflicts are solved

in the context of the Time Warp philosophy. This also results in the motivations

for the proposed TWDDS.

Solving o f Transaction conflicts in the T W D D S

Inconsistency at a data-object may be caused by the execution of two consecutive

transactions out of order such as: WR (WRITE READ transactions), RW, or

125

WW transactions. The following text illustrates how a transaction conflict can

be solved in each case. In the illustration, the following notations are used: a

notation or Wti is a RE AD/W RITE transaction at the time ti; a notation

Rt2 — ► Rti indicates a conflict whereby Rt2 happens to be executed before the

Rti*

1. Wt2 — ► Wti : The data-object rolls back and then re-executes the trans

actions in the proper order. But anti-messages may not be sent. There is

an even chance of the data-object sending or not sending an anti-message,

because the data-object would only return a TRUE/FALSE flag in its in

forming transaction message after executing a WRITE transaction. If the

requestor wants the actual data value of a data-object after a WRITE trans

action, the requestor must send a READ transaction message to get it.

2. R t 2 — ► Wti / Wt2 — ► Rti : The data-object rolls back and then re

executes the transactions in the proper order. Depending on the context of

the READ transaction antimessages may or may not be sent. The following

cases explains this.

• Case 1: A transaction states (Read A and return 1 i f A > 0 otherwise

return -1). If the W RITE transaction left the data of the data-object

A with a value larger than 0 then the data-object A does not need to

send an antimessage to the requestor because the informing transaction

message which is already sent is still in the correct state.

• Case 2: A transaction states (Read the current data o f A - updating

data should be informed). In most cases the data value of A is different

from the one sent out. The data-object A sends an antimessage to the

requestor and another informing transaction message with the correct

data.

126

It is to be noted that, a RR, R t2 — > R t 1 , is a transaction conflict in respect

of timestamp ordering, but the conflict does not cause any change to the actual

data of the data-object.

W ith the primary study of the proposed TWDDS the following facts are ob

served:

1. The Ccoat - the computation cost - of a transaction is very much dependent

on the basic operations of the transaction, the size and the location of the

corresponding data-object. If the transaction is imposed on a remote data-

object the communication cost may be larger than the Ccoat. But because

the TWDDS replicates most of its data-objects, most of its transactions are

performed on the local base, we may assume the time spent on a transaction

computation is larger than the communication cost of the transaction in

general.

2. The Pam - the probability that a straggler message will arrive at a Time

Warp object - is difficult to state. That is because the state of the Pam is

very much dependent on the system configuration, the transmission cost,

the replication strategy, and the context of the transactions. However, as

noted in Chapter 3, Section 3.2, a small Pna will result in a small number

of straggler messages.

3. When a conflict occurs transaction antimessages may not need to be gener

ated because the rollback data-object does not change its state or because it

may produce the same inform transaction message as it did before rollback.

In this case the Pna - the probability for the rollback data-object to generate

an antimessage - would be small.

127

6.2.7 Conclusions

Execution of a transaction in the TWDDS is based on the timestamp of the trans

action. A transaction which has the smallest timestamp is selected to be executed

first and, because timestamps are unique and ordered, the internal consistency

of the involved data-objects will be maintained. The TWDDS does not impose

any lock on data-object for transactions. Every transaction would be executed

according to their timestamp at a finite time and so there would be no chance of

deadlock4.

Most of the transactions which only require a view of the information do not

need a strong ordering control. The current information about the object can be

sent immediately although the information may be slightly out of date. In other

cases, when a query transaction needs a firm commitment at the time it makes

the request that the information will not be changed later by any transaction

which must have happened at the time before. The following solutions can be

chosen; 1) the up-to-date information can be committed by a global checking

which happens immediately after the object receives the request; or 2) delaying the

global checking to the end of the request process, during which time modification

of the information will be reported to the request. The Time Warp mechanism is

perfect for solution 2 since each transaction message is stamped with a timetag

which indicates the time of updating or querying of the data-object. The system

allows an inquiry to a data-object without any form of delay caused by data

commitment and only premature queries should be redone.

No interference would occur if each transaction has to wait until its predeces

sor is finished. However, the system performance would be greatly impaired since

no overlap computation could occur. We wish to permit any overlap of trans

4An active deadlock may occur in Time Warp system i.e. busy computation with no forward
movement.

128

actions which will still give the correct answers and leave the database in some

correct state. This will be true if the execution order of the primitive operations

of the set of overlapping transaction gives a result which is equivalent to some

serial schedule of the original transactions. In TWDDS, goahead in execution of

transactions and conflict solving by lazy cancellation in rollback can implicitly

permit some overlap of transactions. The idea behind not blocking is that most

update transactions, even to the same database object, do not affect each other,

and hence do not conflict. The concept has been illustrated very clearly in the

Travel Agent example.

The TWDDS does not initiate a system check on each transaction but does

only one global commitment check at the end of the transactions. At the execution

time of each transaction none checking has to perform. Thus the TWDDS is guar

anteed to allow more concurrency than classical locking approaches by avoiding

the actual locking of resources and the unnecessary global checking that restricts

concurrency.

Just by concatenating a logical timestamp and giving a site identification num

ber will not completely produce global ordering in a distributed database system.

The example 6.1 described an anomalous behaviour which could occur in such a

system. TWDDS can deal with real-time transactions because transactions are

ordered in correspondence with the real-time ordering and conflict resolution does

not result in aborting a transaction but re-ordering the execution of the transac

tions.

In a large computation system, it may be undesirable to repeat the entire

computation in the recovery process. The checkpoint method can be used to

solve this problem. At a checkpoint, the past activity thread and the state of

the computation can be saved. When a computation has to be restarted from

its checkpoint record, the state of the computation is restored and is reset to its

state and position at checkpoint time, so that currency indicators remain valid. In

129

TWDDS, a system recovery process is more similar to a conflict resolution process

at a data-object but it is involved with many data-objects and their replications.

System recovery is provided in the TWDDS with no extra cost in software im

plementation. This is because the system by its nature records data-object states

and executed transactions and provides the ability of undoing previously commit

ted transactions by sending transaction antimessages and re-sending transaction

messages.

6.3 T im ew arp — A n O p tim istic C oncurrency C on

tro l F ile Service

The concept of transaction control in database systems can be used in controlling

of file accessing in a multi-user file system. This section introduces an optimistic

concurrency control mechanism which has been presented in [Mul85, MT86] - the

Amoeba file service system - and discusses the extent to which the Time Warp

mechanism can be used as an enhancement control file service.

6.3.1 T he O ptim istic Concurrency C ontrol in T he A m oeba

File Service

The optimistic concurrency control in the Amoeba file service is using similar

technique which has been used in the NAM OS system, it is characterized with

no locking, timestamp ordering and versions. A file in the Amoeba file system

is characteristic of a time-ordered sequence of versions. Each version being a

snapshot of the file made at a moment determined by a client [MT86]. When

a client requests an access to a file a copy (version) of the current file version is

created for his private purpose. The file version which is being modified by a client

130

is called an uncommitted version. When the client has finished modifying he can

ask the file service to commit his version. Commitment of a file version is a process

which involves the serialisability 5 check for the content of the file. Commitment

conflict in the Amoeba file service is solved on the basic concept FCFS. The

system gives the right to the client who first asked for the commitment. A client

commitment may success if his modified parts were luckily not conflict with the

modification of any previous commitments from other clients. Otherwise the client

has to start his modification all over again. The idea behind that is by structuring

a file as a set of blocks of data so updates occur on a part of the file which may

not affect the other parts and thus no conflict may happen. As an example, the

following text and illustrations in Figure 6.2 explains the working mode of the

commitment process in the Amoeba file service system.

Suppose the file version 1 is the original current file version, version 1.1 and

1.2 are the creating private versions based on the version 1 as shown in Figure

6.2. A. If the client of the version 1.1 is the first who requests to commit his version

because the based version - version 1 - is still valid as the current file version the

commitment is accepted. The version 1.1 becomes the new current file version as

illustrated in Figure 6.2.B. From now on requesting for accessing the file will result

in versions 1.2.1, 1.2.2, and 1.2.3, which are version copies of 1.1. Now, suppose

that the owner of version 1.2 finished his modification and requests a commitment

for his version. Because the based version of the version 1.2 is not the current file

version, one of the two following situations may happen:

1. As illustrated in Figure 6.2.C, modifications on the version 1.2 occurred

entirely in block 2 whereas block 1 is the one which was modified by the

owner of the version 1.2. Thus there is no conflict and the commitment can

succeed. This results in block 2 of the current file version, version 1.1, is

5Two transactions to a data object are said to be serialisable if the net result is the same as
if they were run sequentially in either order [MT86].

131

replaced with the modified block 2 of the version 1.2.

2. As illustrated in Figure 6.2.D, block 1 in the version 1.2 was modified. That

is the same block which has been modified and committed by the version 1.1.

The requesting commitment from the version 1.2 is refused but a message

is sent to the owner of the version 1.2 telling him the status of the conflict.

At this point the owner of the version 1.2 can make a new version from the

current file version - version 1.1 - and resume his work.

6.3.2 O ptim istic Concurrency Control — T he U se o f T im e

W arp

The algorithms which have been presented for the TWDDS such as the concur

rency and synchronization control, the timestamp algorithm and the clock struc

ture, can be applied to create a Time Warp model for the file service system. The

implementation is straight forward. A file and a client accessing a file in the Time

Warp model file service have the same operation context as a data-object and an

apply-object in the TWDDS. A request for accessing of file has the same working

mode as a transaction to a data-object in TWDDS - accessing of a file is carried

out by sending to the file a request message which is either READ (open-read)

or W RITE (write-close) message and, timestamp of a file accessing message and

clock of a client/file object are operated in the same way as described in Section

6 .2 .2.

The Time Warp model can be considered as an enhanced implementation

model for the optimistic concurrency control of the Amoeba file service. The Time

Warp mechanism by its nature has implicitly included a well presented algorithm

to the requested working model. It can also provide the same benefits which are

offered by the Amoeba file service, that is: no blocking and more concurrency.

132

1.1.1 1.1.2

1.2

1.1.3

1.1 1.2

F . 6 .2 .A F . 6 .2 .B

M odified block

F. 6 .2 .C F . 6 .2 .D

Figure 6-2: Optimistic Concurrency Control in the Amoeba File Service System.

133

To illustrate the family of the operation of concurrency control between the Time

Warp and the Amoeba file service, examples in the Figure 6.2 are represented in

the following example.

Client X and Y send READ messages X R ta\ , Y R ta2 to the file F , ts l <

ts2. Servicing of the messages at F will result in a copy of F being sent to X

and Y . Now, suppose the client X has finished modifying and sent a WRITE

message X W tai.i to F. Because X W tai.i < Y R ta2 (timestamp of XW smaller than

timestamp of YR), arriving of the X W tai.i will drive the F to roll back to the state

just before the YRts2 - X W ta 1.1 would then be inserted into the input message

queue and would be the next to be serviced. F is then be updated with the

modification included in the X W tai.i, that is to make the copy version X becomes

the current file version. When it is done, the next message to be serviced is the

Y R ta2* At this point Y is informed of the changes which have been made by X .

It is to be noted that, as described in Section 6.2.2. timestamps of messages

sent from the same client object are only different in its logical time. Therefore, the

first message from Y , the X R ta\ , is timestamped with ts l and the second message

from X , the is timestamped with ts l . l , where ts l < ta l . l < ts2. If the Y

sends Y W ta2.1 to F before the X does, in order to have the same commitment order

used in the Amoeba file service, the Time Warp file service allows the Y W ta2.1 to

be executed. Both Y R t32 and Y W tS2.1 then will be removed from F input message

queue and any READ messages happened before Y W tS2.1 will be re-serviced. In

this case X R ta 1 is the one to be re-serviced. At this point X is informed with the

changes which have been made by Y .

An advantage of using the Time Warp model is that modifications of a com

mitted file are being passed on immediately to the other clients whereas a client

in the Amoeba file service only knows about the modifications when he asks for

a commitment of his working copy. A quick report of the modification is very

valuable. This means one does have to waste time working on a file which is late

134

found to be out of date or is found to have been refused.

Chapter Summ ary

This chapter has proposed a distributed database system using Time Warp

as a control mechanism for transactions synchronization. In the Time Warp dis

tributed database system by timestamp ordering a data object is not locked by any

transaction and by goahead the system does not enforce checking of timestamp

ordering on each transaction. Unlike many other database systems, timestamp

conflict in this system is not solved by aborting some transactions, but by roll

back and reordering the execution of the transactions. The use of Time Warp

(goahead and lazy cancellation) is based on two motivations: a) transactions in a

distributed database may not always affect each other; and b) even if there exists

a strong ordering between the transactions there is a chance that the execution

of an unordered transaction will still promise a correct accessing for the other

transactions.

An enhanced implementation model to the concurrency control in the Amoeba

file service using Time Warp has also been discussed. The Time Warp model

provides the same operation concept but with an optimal reporting of file modi

fication.

135

C hapter 7

C onclusions

This chapter summarises the research presented in this thesis. Areas for further

research are proposed. The chapter ends with the conclusions reached as a result

of this thesis.

7.1 S u m m ary

The work of this research has result in: a) the actual Time Warp environment itself

which is being available for others to use for experimentation; and b) the discovery

that the Time Warp mechanism can actually be applied to other application

domains other than the simulation domain.

C om m unication Overhead

Performance of a Time Warp application depends not only on the complex

ity of computation operations of the application but also on the quantity of the

overhead operations, such as those created by communication, synchronization,

and data exchange constraints. In some situations it may happen that the ex

ecution time of an application is actually governed by the time required by the

136

overhead operations rather than the actual computation operations themselves.

In fact, with an application where processes tend to exchange messages frequently,

the high communication cost reduces the speedup that can benefit from the goa

head (goahead needs more message when rollback occurs). Thus, in order to

obtain a good performance, one should have a balance between computation and

communication costs. The application must be structured in such a way that

synchronizations and data transfers appear as seldom as possible.

A ssignm ent o f O bjects

The number of processors used and the way Time Warp objects are allocated

to processors affect both the effectiveness and the cost of a distributed Time

Warp application. Load balancing using initial job placements can improve per

formance. But with a dynamic application, in which an initial balancing can not

be held all the time during the application’s computation life, a dynamic load bal

ancing algorithm1 must be used. Dynamic load balancing in any multiprocessor

systems has proved to be a very complex and expensive process. This is because

its effectiveness is closely related to the amount and accuracy of load and job in

formation made available to the placement decision makers and the efficiency with

which such information is used. In addition, the algorithm uses a lot of CPU’s

resources in computations and communications2. Because of the complexity of

the Time Warp object operation and its structure implementing a job migration

scheme proves to be difficult in a Time Warp system but it is still possible as an

alternative to initial job placement [Pad89, BM89].

In a distributed memory system it may be relatively expensive to move Time

Warp objects between processors, because it involves moving the image of a Time

1 Dynamic load balancing is a process whereby jobs can be relocated during the course of the
system execution.

2The cost o f migrating a process in the loosely coupled Sprite operating system can vary
from a fraction of a second to many seconds[Dou87j.

137

Warp object. This consists of a lot of data to describe the essential features of the

object. A Time Warp object, when it is relocated, moves with all the necessary

information such as the object’s states, input and output message queues, states

queues, etc. It further takes into account the costs associated with moving objects

in that object relocation must happen in a consistent state. Thus no form of

communication to the relocation objects is allowed during the relocation time. In

addition, the system must ensure that the new location of the object is known

by every object and the messages sent to the relocated object are directed to

the correct location. Though the job relocation facility is very important in any

parallel system the extent of benefits from the relocation is not easy to predict

in a Time Warp system. Because there may also be many other constraints on

communication, synchronization, and so forth, which work against the expected

performance.

D istributed Sim ulation in the Tim e Warp System

In distributed systems, speedup for a Time Warp simulation model is possible

although a large part of processing time is spent on synchronization requirements

and interprocessor communication delays. In general, the performance strongly

depends on both the working problem and the configuration of the system. The

work in Chapter 4 has shown a clear advantage of Time Warp (goahead and roll

back) over block-resume approach and with a careful structuring of a simulation

model a good speedup can be achieved. The results obtained in the Game of

Life simulation model demonstrate the extent to which Time Warp mechanism

can be used in exploiting parallelism of discrete simulation in a distributed sys

tem. Although the Game of Life simulation may not be fully relevant to realistic

population dynamics studies the simulation model provides a crucial idea - the

importance o f process relocation - in dynamic event-driven simulation.

Simulation problems in similar domains are typically amenable to a number of

138

subdivisions where the only information that needs to be communicated is data on

the boundaries of the sub-divisions. With certain shapes of the subdivisions, an

optimum with respect to the number of interprocessor communication messages,

(which must traverse in going from the boundary of one region to another), can

be obtained. However, since the pattern of the boundary regions may be changed

from one generation to another, in order to reduce the interprocessor communica

tion costs the system must provide object migration facility - that is an absolute

condition for any further speedup.

O PS5 Parallel Production Level in the T im e W arp System

A parallel production level3 OPS5 system has been implemented. Time Warp

has been used as a control mechanism to optimize the synchronization between

the computations of the partitions. The idea behind that is that matching process

at each partition may or may not result in a selected production and among these

productions there is only one production which can be executed - thus, by goahead

some partitions can continue with next execution cycle without waiting for other

partitions to catch up, and by lazy cancellation a fast partition may have a chance

to keep its computation path without being interrupted by a slow partition.

The time spent on interprocessor communications can have an important effect

on the overall performance of an application on a distributed system. These

communication costs may be relatively unimportant if the time for a typical task

is very much longer than the time to pass data between a pair of processing

elements. Unfortunately, this did not occur as in the case of the parallelization

at the production level of the experimented production systems. When solving

an 0PS5 problem, by subdividing production memory between processors, the

price to pay for such a decomposition is an increased communication overhead4.

3Production level parallelism of a production system is that productions in a production
program are divided into several partitions and the match for each of the partitions is performed
in parallel.

4It is to be noted that, in this research, all experiments have been done on a distributed

139

This is due to the fact that the updating of the working memory taking place at

the CPE must be informed to every PE. The implication is that the overheads

of interprocessor communications become more significant as more processors are

added to the system and the granularity (the time spent on the matching process)

becomes small.

The experiment has shown that in a distributed memory and slow communica

tion system, speedup is very difficult to obtain with parallelization at production

level of a production system - this is caused by the large part of reg u la r synchro

nization requirements and interprocessor communication delays. However, two

interesting points which have arisen out of the experiment are:

• There is a possibility of speedup by exploiting of parallelism in the OPS5

production system using Time Warp. That is in a shared memory system5

or in a more sophisticated distributed system6, where interprocessor com

munications can be reduced to a minimum cost, a positive speedup can be

achieved for the Time Warp OPS5. The use of a shared memory system or

a fast communication distributed memory system gives also a possibility of

parallelization of OPS5 at a more fine-grain level. A parallelization OPS5

project at the level of nodes (parallel extraction of working memory elements

and condition elements) in the RETE network is currently being carried out

at the University of Bath [Pad89].

memory and slow communication system.
5In a shared memory system the actual data transfer need not take place - one can just pass

the addresses. Even with a pure message passing mode in which sending a message is done by
copying the message from one place of the system memory to another a tightly coupled system
still promises a better communication speed.

6i.e BBN Butterfly system or Cm* system. These systems can support a user model of
computation based on either shared memory or message-passing and may consist of hundreds
of processors connected by a switching network. All of the memory in such a system resides
on individual processors, but can be addressed by any processor through the switch. In a
Cm* system , references to a remote memory may take from about 8.6 microseconds for an
intracluster reference to 35.3 microseconds for an intercluster reference, a short interprocessor
communication message-passing takes about 85 microseconds[GJS82].

140

• With the same production system and the same system configuration, the

Time Warp approach is clearly superior to any Block-Resume approach i.e.

the distributed production system which has been proposed by Oflazer[Ofl87],

The proposed Time Warp 0PS5 model in this thesis is better than the

Block-Resume OPS5 model in many aspects in all cases. First, the Time

Warp OPS5 required a small number of communication messages in com

parison with the Block-Resume OPS5. Second, the waiting time in the

Block-Resume OPS5 was turned into the benefit time in the Time Warp

OPS5.

D atabase Transaction Control in the T im e Warp System

To enhance system performance of a database system, concurrent updates may

be allowed by multiple users, however these updates must be carefully controlled

in order to ensure that integrity constraints are not violated. Synchronization

techniques used in most of distributed database systems are based on either two-

phase locking or timestamp ordering.

We have proposed a distributed database model in which Time Warp has been

used as an optimistic control mechanism for simultaneous transactions. Time

Warp permits more concurrency in transaction processing and also gives guaran

tee on preservation of the database integrity constraints. A simple example model

has also been implemented. The use of the Time Warp - goahead, rollback and

lazy cancellation - is based on two motivations: a) transactions in distributed

database systems may not always affect each other; and b) even if there exists a

strong ordering between the transactions, there is a chance that the execution of

an unordered transaction will still promise a correct accessing for the other trans

actions. The proposed model is operated on the assumption that the probability

of conflict between two transactions in general is small and the main transac

tion program at the application level is compacted with a set of subtransactions.

141

Each subtransaction can be performed when resources are available but the final

commitment will only be given at the end of the main transaction program.

The majority voting algorithm in Thomas’s database model allows an update to

be performed when a majority of relevant nodes approve. This algorithm reduces a

number of communications by using a daisy chain communication procedure, but

the algorithm still has to delay the update until a commitment check is performed

and is signalled with a positive voting. The working mode of the commitment

algorithm (the GVT process) in the TWDDS has the same effect as Thomas’s

majority voting algorithm. But instead of doing a check on each subtransaction,

the TWDDS does once at the end of the main transaction. This results in a more

aggressive computation, that is the main transaction can quickly continue with

sending the next subtransaction. However, in the worst case where there is only

one transaction in the main transaction program or each subtransaction needs a

final commitment at the end of the transaction, the commitment algorithm forces

the concurrency of a Time Warp system to the level of the Thomas’s majority

voting approach.

The TWDDS model is also similar to the NAMOS in terms of module of

database information and the use of the real-time clock. But there are many

differences between the two systems. Data-objects in NAMOS keep record history

based on timestamp and object’s states (data-object versions) and transaction’s

timestamps in NAMOS can be set to an earlier time so enquiry transaction to old

versions of a data-object can be performed. The idea behind that is, by providing

a multiversion of a replicated database object, one can enquire a specific version

of the information at the same time as another version of the information is being

modified. Hence, the system offers a quick response. In addition multiversion

schemes can also be used in supporting the recovery process in response to some

exceptional condition.

We found the facility is expensive because a large memory must be used to

142

store all database versions, and can not be considered because: a) in an actual

database system, the facility of addressing an old version of information is not

necessary, most of the transactions are intended to have the most updated infor

mation; b) performing of transaction in the TWDDS is based on goahead concept,

thus, there is no unnecessary waiting time; and c) restoring of a database in the

TWDDS is carried out in a more efficient way - TWDDS does not back up its

databases after each modification, only operations which modify the database are

recorded, restoring of a database is carried out by redoing in a reverse way the

past transactions.

Finally, in NAMOS and other database systems (i.e. the Thomas’ database

model and the SDD-1) when a transaction conflict occurs they solve the problem

by aborting the transaction whereas in TWDDS transaction conflict is solved in a

much more intelligent way. The Time Warp system rolls back to the correct state

before the conflict, redoes the incorrect transactions, then resumes the normal

operation.

The O ptim istic File Service in the Tim e W arp System

We have proposed a file service model based on the Time Warp mechanism.

This model can be considered as an enhanced implementation model for the opti

mistic concurrency control of the Amoeba file service. The Time Warp mechanism

by its nature has implicitly included a well presented algorithm to the requested

working model. The Time warp model provides the same benefits which are of

fered by the Amoeba file service, that is no blocking and more concurrency. An

advantage of the Time Warp model is that modifications of a committed file are

being passed on immediately to the other clients whereas a client in the Amoeba

file service only knows about the modifications when he asks for a commitment of

his working copy. A quick report of the modification is very valuable. This means

one does have to waste time working on a file which is late found to be out of date

143

or is found to have been refused.

O ther A pplications

Parallel processing has been known as an interesting subject for many com

puting scientists and therefore there is a great number of parallel algorithms or

applications can be found in literature. The majority of parallel algorithms found

in literature such as sorting, searching, matrix multiplication, solving of partial

differential equations, etc. are more suitable for a tightly coupled system. Because,

in parallel processing, if speedup is the only question, a tightly coupled system

performs better than a loosely coupled system due to the constraint of interpro

cessor communication between two loosely computers. In addition, the constraint

of the large grain-size of parallel objects in a loosely coupled distributed system

limits the maximum performance which can be achieved by a further partition of

the parallel objects, - fine-grain parallelism.

Though parallel algorithms as known are difficult to be adapted into a loosely

coupled system, finding a suitable algorithm for a Time Warp distributed system

has proven to be even more difficult. The main problem is that computation at

each stage process in an asynchronous parallel algorithm 7 is too independent.

Processes do exchange state information but they do not need to synchronize

their computations. This information is used in every process to cut off extra

unnecessary computation but, in fact, a process can perform its computation using

the best known solution value without waiting for updates. In such an application,

a conflict which is caused by an overshoot execution order at a parallel process does

not cause any incorrect computation in the overall result. When such a conflict

occurs it can simply be solved by halting the current execution of the process

then starting a new execution with the recently provided information. The TSP

as described in Chapter 3, is a typical problem which can perform better with

7As defined, an asynchronous parallel algorithm is a parallel algorithm in which the relations
of computation stages of the algorithm are not strictly sequence.

144

parallel processing, but there is no more speedups with the using of Time Warp.

7.2 A reas for F urther R esearch

There are a number of ways in which the work of this thesis could be extended to

provide a better understanding of the Time Warp mechanism and its performance.

These include the investigation of the applicability of the Time Warp mechanism

to a tightly coupled system, a better implementation algorithm for the mechanism

itself, and further investigation of applications.

System Im plem entation Im provem ents

In the current implemented environment, a broadcasting is done simply by

sending a number of copies of the same message 8 to the underlying communication

buffer for it to be sent to the actual destination. In this scheme, much of the

CPU resource was spent on decoding each message text and copying it into the

communication buffer. This cost can be greatly reduced by implementing an

algorithm which decodes the broadcasting message text only once, then the same

data message in the communication buffer can be used each time a message is

transmitted to the receiver, the algorithm must only provide each message with

an appropriate destination identification.

An implementation issue that bears further investigation is the design of a

tightly coupled Time Warp system. The current Time Warp environment was

implemented in a loosely coupled system where interprocessor communication

costs in such the system are still far more than a satisfactory level. This is bound

to the fact that the current system is only efficient when interaction between tasks

located on different machines occurs in an infrequent mode. In a loosely coupled

system, the real time cost for an interprocessor message ranges in the order of

8In fact, these message are different in the destination identification

145

milliseconds. Whereas, in a tightly coupled system, with a pure message passing

implementation, an interprocessor message shrinks by utilization of copying from

memory-to-memory down to the order of some microseconds. When interprocessor

communications can be reduced to a minimum cost a better performance will be

achieved for the experimented applications.

Another area that seems of particular interest is using another implementation

language. As mentioned, the reason for using Lisp is mainly its powerful capa

bilities and interesting consequences for the communication between Time Warp

objects in the Time Warp system. Unfortunately the executed implementation

image, which includes the Lisp environment and the Time Warp is too big (about

4 Mega-bytes). In U N IX such a heavy image will not be loaded entirely into the

system. Thus much of real-time has been used by the system to swap the pro

cessing. This cost increases the total cost of execution of the application in the

experiment system. An alternative solution is by using C as the implementation

language which results in a smaller execution image. Hence, this may improve the

total performance of the system.

The current implemented Time Warp system does not support Time Warp

object migration, but the system was designed within the idea so that further

developments can be carried out. Each Time Warp object was provided with a

history record containing the current information about the rate of rollback, the

state of LVT in comparison with the GVT, the rate of interprocessor communica

tion message, the actual CPU time taking by the object, etc.. This information

can be used for an optimal object relocation. For example, to reduce the num

ber of interprocessor messages a certain objects can be relocated into the same

processor according to their communication record history.

Finally, the implemented Time Warp environment is incomplete as it does not

address an important area of the distributed programming environment - an user

friendly interactive program debugging. One could not work with confidence when

146

such an important tool is not provided.

Further Works in the Im plem ented A pplications

In the implemented Time Warp 0PS5 model, the fastest PE still has to wait

for the working memory modification message from the CPE before it can proceed

to the next iteration. A further improvement in the Time Warp OPS5 is possible.

This can be done by implementing an appropriate method which allows iterations

to sweep over more than one time step. That is, when a PE has finished its local

act-match-resolution, instead of waiting for the arrival of the modification working

memory message from the CPE it can now continue with the next iteration by

invoking to itself its local instantiation message. In this scheme, the message itself

signals to the PE that it can go on with the subsequent iteration immediately.

The advantage of this implementation scheme is that the CPE must only send

modification working memory messages to slower PEs. Hence, the number of

interprocessor communication messages is cut down by one with each iteration.

This is given with the assumption that the PE’s recent instantiation would become

the global instantiation for the system. However, if the assumption is wrong the

system will suffer badly by a more number of rollbacks and antimessages.

The proposed Time Warp database system in Chapter 6 has shown a great

opportunity for an optimal system performance and system consistency. But to

come to a final conclusion, the proposed model should be implemented in a real

system for experimentation.

CODD (COroutine Driven Database) proposed by King [Kin79] is a database

system in which database transactions are formed in a relation mode - a pipeline

structure. Each link in the pipeline structure is operated in the procedure and

consumer coroutine concept. The query language in CODD is block structured

and checkpoints occur at the end of each block. Though the system performance

147

as reported in [KM83] was quite impressive 9 the system was developed for single

users mode and was not intended to handle heavy update traffic but is used almost

solely for retrieval purposes.

A question of extending the CODD system with the use of Time Warp concept

arises as the underlying ideas in the CODD system such as the relation mode,

the coroutine concept, and the block structure of the transaction seem to be very

suitable for the Time Warp. In addition the system may enable many simultaneous

READ/W RITE transactions in a distributed environment. In a relation database,

a transaction in the command language style is broken into several subtransactions

and each subtransaction is related to others through the intermediate results. In

a Time Warp system the relation database concept is where we see the benefit of a

temporary acceptance of the intermediate results combined with lazy commitment

on each subtransaction.

7.3 C on clu d in g R em arks

Coding of the Time Warp mechanism was not a difficult task because the mech

anism was clearly explained and illustrated in literature by the inventors, but

since the system operates in a asynchronous fashion mode, testing its working

and debugging may take more time than expected.

The Time Warp mechanism pays a penalty for the asynchrony among its com

putation components by spending more real time rolling back objects and un

doing the side effects of erroneous or premature computations. It also requires

more memory to store old states and executed messages in order to support the

rollback process. In addition, when the cost of interprocessor communications is

more than satisfactory benefit from goahead and rollback can be under-mined by

9A joint query involving 4,280 input tuples and 193,348 output tuples took only 27.59 seconds
(CPU time) on an IBM 370/165.

148

the high cost of communications. This is because Time Warp objects need more

communication messages when a rollback occurs. One need to carefully design

applications for an optimal benefit from the Time Warp.

Important factors which must be considered in designing of a Time Warp

application are : a) the ratio of the computation cost in comparison with the

transmission cost of messages; b) the frequency of interacting for synchronization

between the parallel submodels; c) the probability of a straggler message to arrive

at a submodel; and d) the probability of a rollback submodel to generate an

antimessage in its rollback process. An understanding of the relationship between

the inherent parallelism of an application and these above factors, is an essential

stage in evaluating the advantage of the application in a Time Warp system.

Distributed discrete event simulation is an application domain which shows a

great potential benefits from distributed processing in Time Warp environment.

This is especially true with a simulation model where submodels are often weakly

interacting or the computation cost between two event messages at a simulation

submodel is much larger than the cost of the message transmissions. However,

Time Warp may not be entirely good for every simulation problem, and with the

same simulation problem, differences in programming strategy and data organi

zation can give differences in system performance.

In a distributed memory and slow communication system, parallelization of

production level parallelism production systems has proven to be a difficult prob

lem, due in large part to extensive and regular synchronization requirements and

interprocessor communication delays. However, the experiment has shown that

in the same system configuration and production system Time Warp will yield

a better performance than any Block-Resume approach. Another fact learned

from the experiment is that in introducing parallelism into a production system

at production level the system produces three main losses: a) the regular inter-

partition communication overheads; b) the load unbalance; and c) losses in shared

149

condition-objects of Rete network due to forced concurrency.

Time Warp with its radical way of synchronizing transaction accessing and

solving of transaction conflicts in a distributed database system shows a great op

portunity for optimizing system performance and system consistency. An interest

ing point is that, the same technique can easy apply to an optimistic concurrency

control file service for a multiuser file system.

In the context of distributed computations, Time Warp will perform best in

a partial synchronous algorithm (i.e. Distributed Simulation Systems and Dis

tributed Database Systems); a possibility of better performance than any Block-

Resume approach in a synchronous algorithm (i.e. Distributed Production System

at Production Level), but no speedup for a purely asynchronous algorithm (i.e. the

Parallel Travelling Salesman Problem). However, searching suitable applications

for Time Warp will not stop here. We believe that with more time and research ef

fort more applications which can have benefit from goahead and rollback concepts

will eventually be found.

The work described in this thesis provides fundamental knowledge about the

design and implementation of a Time Warp environment and the knowledge about

the working mode of the system and its applications. Detailed descriptions of the

implementation of the Time Warp environment have been given, so that it could

be replicated elsewhere with minimal effort. The presentations and implementa

tions of some Time Warp applications and conclusions about how well such the

applications can be performed have been discussed in detail. This gives a useful

result in the question of the applications in which Time Warp can be used and

how the implementations must be carried out for the best result. However because

Time Warp by its nature is characterized as a dynamic behavior system, that

is because the behavior of rollback and antimessage depends very much on the

system constraint and the nature of the application, there is still need for more

work in the establishment of a formal understanding. In addition, in this thesis

150

the process of finding a suitable application for the Time Warp experiment has

been made extensive use of heuristic investigation and assumptions and so must

be viewed as preliminary results, a more careful and profound formula analyzing

of the actual applications may be needed to confirm the validity of the final deci

sion. We hope that the work of this thesis provides a new insight and generates

new approaches to research on Time Warp and its applications.

151

Bibliography

[AS83]

[BF81]

[BN68]

[Ben84]

[BRGP78]

[BG81]

[Ber86]

G.R. Andrews, and F.B. Schneider. Concepts and Notations for Con

current Programming. Computing Surveys, March 1983.

A. Bau, and E.A. Feigenbaum. Production Systems. The Handbook

o f Artificial Intelligence, Vol. 1, 1981.

M. Bellmore, and G.L. Nemhauser. The Traveling Salesman Problem:

A Survey. Operations Research 16, 1968.

K.H. Bennett. Mechanisms for Distributed Control. Distributed Com

puting, Academic Press, 1984.

P.A. Bernstein, J.B. Rothnie, N. Goodman, and C.A. Papadimitriou.

The Concurrency Control Mechanism of SDD-1: A System for Dis

tributed Databases. IEEE Transactions on Software Engineering, May

1978.

P.A. Bernstein, and N. Goodman. Concurrency Control in Dis

tributed Database Systems. Computing Surveys, June 1981.

0 . Berry. Performance Evaluation of the Time Warp Distributed Sim

ulation Mechanism. Ph.D. Thesis, University of Southern California,

1986.

152

[BT89]

[BFKM85]

[Bor84]

[BMF89]

[BM89]

[CM79]

[CM81]

[Dew84]

[Dou87]

[Fit88]

D.P. Bertsekas, and J.N. Tsitsiklis. Parallel and Distributed Compu

tation. Prentice-Hall, 1989.

L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Ex

pert Systems in OPS5: An Introduction to Rule-Based Programming.

Addison- Weslet, 1985.

R. Bornat. Imperative Languages in Distributed Computing. Dis

tributed Computing Systems, IEE Digital Electronics and Computing

Series 5, 1984.

C. Burdorf, J.B Marti, and J. Fitch. Minimizing Interprocessor Com

putation Overhead in Concurrent Lisp Systems. In preparation.

C. Burdorf, and J.B. Marti. Load Balancing Strategies for Time Warp

on Multi-User Workstations. In preparation.

K.M. Chandy, and J. Misra. Distributed Simulation: A Case Study in

Design and Verification of Distributed Programs. IEEE Transactions

on Software Engineering, September 1979.

K.M Chandy, and J. Misra. Asynchronous Distributed Simulation via

a Sequence of Parallel Computation. Communications o f the ACM

24, April 1981.

A.K. Dewdney. Computer Recreations. Scientific American, Decem

ber 1984.

F. Douglis. Process Migration in the Sprite Operating System. Uni

versity of California, February 1987.

J. Fitch. A Loosely Coupled Parallel Lisp Execution System. In

the Design and Application of Parallel Digital Processors, IEE, pages

128-133, 1988.

153

[For81]

[For82]

[FJL+88]

[Gar71]

[GM89]

[GJS82]

[Gup87]

[HB85]

[JS82]

[Jef85]

[Kes88]

[Kin79]

C. Forgy. OPS5 User’s Manual. Dept, of Computer Science, Carnegie

Mellon University, 1981.

C. Forgy. Rete: A Fast Algorithm for the Many Pattern/M any Object

Pattern Match Problem. Artificial Intelligence 19, 1982.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker.

Solving Problems on Concurrent Processors. Prentice-Hall, 1988.

M. Gardner. Mathematical Games. Scientific American, October 1970

and February 1971.

B. Gates, nd J. Marti. An Empirical Study of Time Warp Request

Mechanism. In preparation.

E.F. Gehringer, A.K. Jones, and Z.Z. Segall. The Cm* Testbed Com

puter, October 1982.

A. Gupta. Parallelism in Production System. Pitman, 1987.

K. Hwang, and F.A. Briggs. Computer Archritecture and Parallel

Processing. McGraw-Hill, 1985.

D. Jefferson, and H. Sowizral. Fast Concurrent Simulation Using the

Time Warp Mechanism, Part I: Local Control. Rand Note N-1906-AF,

December 1982.

D. Jefferson. Virtual Time. ACM TOPLAS, July 1985.

R.R. Kessler. LISP, Objects, and Symbolic Programming. Scott -

Foresman and Company, 1988.

T.J. King. The Design of a Relation Database Management System.

Ph.D. Thesis, University of Cambridge. 1979.

154

[KM83]

[Lam79]

[LM85]

[LeL81]

[LMSK63]

[Mis86]

[MB76]

[Mul85]

[MT86]

[Ofl87]

T.J. King, and J.K.M. Moody. The Design and Implementation of

CODD. Software Practice and Experience, Vol. 13, 1983.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed

System. Communications of the ACM , July 1979.

L. Lamport, and P.M. Melliar-Smith. Synchronizing Clocks in the

Presence of Faults. Journal o f the Association for Computing Ma

chinery, January 1985.

G. LeLann. Motivations, Objectives and Characterization of Dis

tributed Systems. Lecture Notes in Computer Science, Vol. 105,

Spring er-Verlag, 1981.

J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel. An Algorithm

for the Traveling Salesman Problem. Operations Research 11, 1963.

J. Misra. Distributed Discrete-Event Simulation. Computing Surveys,

March 1986.

R.M. Metcalfe, and D.R. Boggs. Ethernet: Distributed Packet Switch

ing for Local Computer Networks. Communications o f the ACM , July

1976.

S.J. Mullender. A Distributed File Service Based on Optimistic Con

currency Control. 10th ACM. SOSP , December 1985.

S.J. Mullender, and A.S. Tanenbaum. The Design of a Capability-

Based Distributed Operating System. The Computer Journal, Vol.29,

No.4, 1986.

K. Oflazer. Partitioning in Parallel Processing of Production Systems.

Ph.D. Thesis, Dept, of Computer Science, Carnegie Mellon University,

1987.

155

[PF87]

[Pad89]

[PT89]

[PWM79]

[Ree78]

[Wie83]

[Sam85]

[Sel89]

[SR88]

[TR85]

J. Padget, and J. Fitch. Concurrent Object-Oriented Programming.

Technical Report 87-05, Bath University, 1987.

J. Padget. Concurrent Object-Oriented Programming in Lisp. Will

be presented in High Performance and Parallel Computing in Lisp,

EURO PAL Workshop, November 1990.

T.S. Papatheodorou, and N.B. Tsantanis. Fast Soliton Automata.

Lecture Notes in Computer Science, Vol. 401, Spring er-Verlag, 1989.

J.K. Peacock, J.W. Wong, and E. Manning. Distributed Simulation

Using a Network of Processors. Computer Networks 3, February 1979.

D.P. Reed. Naming and Synchronization in a Decentralized Com

puter System. Ph.D. Thesis, Dept, of Electrical Engineering, M.I.T.,

Cambridge, Mass., 1978.

G. Wiederhold. Database Design. McGraw-Hill, 1983.

B. Samadi. Distributed Simulation - Algorithms and Performance

Analysis. Ph.D. Thesis, University of California, Los Angeles, 1985.

G.A. Selim. The Design and Analysis of Parallel Algorithms. Prentice-

Hall, 1989.

J.A. Somers, and P.C. Rem. A Parallel Cellular Automata Imple

mentation on a Transputer Network for the Simulation of Small Scale

Fluid Flow Experiments. Lecture Notes in Computer Science, Vol.

384, Springer-Verlag, 1988.

A.S. Tanenbaum, and R.V. Renesse. Distributed Operating Systems.

Computing Surveys, Vol. 17, December 1985.

156

[Thi87] H.W. Thimbleby. Delaying Commitment. University of York, Depart

ment of Computer Science, YCS90, 1987.

[Tho78] R.H. Thomas. A Solution to the Concurrency Control Problem for

Multiple Copy Data Bases, in Proc. 1978 COMPCON Conf. (IEEE),

New York, 1987.

157

A ppendix A

- T he T W -O PS5 Code

A .l L ist A . l — In terp reter M od ifica tion C ode

The following code shows the modifications which have been made to the original

OPS5 interpreter. The modifications are marked with TW-OPS5 ... END.

; ; ; LHS C o m p ile r

(d e fu n p -e v a l (name m a tr ix)

(o r * i -g -v -h a s - b e e n - r u n *

(e r r o r " T ry in g to lo a d a p ro d u c tio n b e fo re i - g - v "))

; TW-0PS5

; P a r t i t i o n o f p ro d u c tio n s to PEs is c a r r ie d o u t by th e CPE. A t th e s t a r t o f a

; ru n th e p ro d u c tio n program is lo ad ed in to th e CPE and f o r each p ro d u c tio n

; b e in g com piled th e CPE c a l ls th e (tw o p s - p a r t i t io n p-nam e p -b o d y) w hich has a

; c e r t a in r u le to a l lo c a t e th e p ro d u c tio n t o PE.

158

(i f (and *TW* *CPE*) (tw o p s-p a r titio n name m atrix))

;END

(f i n i s h - l i t e r a l i z e)

(o r (h a v e -c o m p ile d -p ro d u c tio n) (t e r p r i))

(p r in c * *)

(f in is h - o u t p u t)

(c o m p ile -p ro d u c tio n name m a t r ix))

; ; ; C o n f l ic t R e s o lu t io n

(d e fu n c o n f l i c t - r e s o lu t io n n i l

(l e t ((l e n (le n g th * c o n f l i c t - s e t *)))

(i f (> le n *m a x -c s *) (s e tq *m a x -c s * l e n))

(s e tq * t o t a l - c s * (+ * t o t a l - c s * l e n))

(i f * c o n f l i c t - s e t * (l e t ((b e s t (b e s t -o f * c o n f l i c t - s e t *)))

; TW-0PS5

; C o n f l ic t - r e s o lu t io n in TW-0PS5 re tu rn s a co m p le te s t r u c tu r e o f th e

; in s t a n t ia t io n (th e b e s t c o n f l i c t e le m e n t) . In TW-0PS5 an in s t a n t ia t io n a t a

; PE is n o t be removed a u to m a t ic a l ly a f t e r th e c o n f l i c t r e s o lu t io n o p e ra t io n .

; But in s te a d i t w i l l be removed by a c o n firm in g message fro m th e ACTCPE to

; th e PE.

(cond (*TW * (s e t f * tw -s a v e -b e s t -c s e * b e s t) b e s t)

;END

(t

(s e tq * c o n f l i c t - s e t * (d e le te b e s t * c o n f l i c t - s e t * : t e s t # ' e q u a l))

159

(p n am e-in stan tia tion b e s t)))))))

; ; ; WM m a in ta in in g fu n c t io n s

; In TW-0PS5, m o d if ic a t io n s on to th e w o rk in g memory a t th e CPE w i l l be saved

; in t o th e * t w - s a v e - a f f e c t - l i s t * . The ACTCPE when f in is h e d RHS e x e c u tio n w i l l

; b ro a d c a s t th e u p d a tes to e v e ry PE. RHS e x e c u tio n a t th e CPE w i l l n o t fo l lo w

; w ith a s e a rc h in g (m a tc h) . In o th e r hand , any w o rk in g memory m o d if ic a t io n a t

; a PE w i l l f o l lo w w ith a m atch p ro c e s s .

(d e fu n add-to -w m (wme o v e r r id e)

(s e tq * c r i t i c a l * t)

(i n c f * c u rre n t-w m *)

(i f (> *c u rre n t-w m * *m ax-wm *) (s e tq *max-wm* *c u r re n t -w m *))

(i n c f * a c t io n -c o u n t *)

(l e t ((f a (wm-hash wme))

(t im e ta g (o r o v e r r id e * a c t io n - c o u n t *)))

(i f (n o t (member f a * w m p a r t - l is t * : t e s t # ' e q u a l))

(push f a * w m p a r t - l i s t *))

(push (cons wme t im e ta g) (g e t f a 'w m p a r t*))

;TW-0PS5

(cond (*TW *

(cond (*C P E *

(i f * i n - r h s *

(push (l i s t '= > wme t im e ta g) * t w - s a v e - a f f e c t - l i s t *)))

(*P E *

(m atch 'new w m e))))

160

;END

(t

(re c o rd -c h a n g e , =>wm * a c t io n -c o u n t* wme)

(m atch ’ new w m e)))

(s e tq * c r i t i c a l * n i l)

(i f (and * i n - r h s * * w t r a c e *)

(l e t * ((s tre a m (t r a c e - f i l e)))

(fo rm a t s tream "~&|=>wm: ")

(ppelm wme s t r e a m)))))

(d e fu n rem ove-from -wm (wme)

(l e t * ((f a (wm-hash wme))

(p a r t (g e t f a ’ w m p a rt*))

(z (asso c wme p a r t : t e s t # ’ e q u a l)))

(cond (z

(l e t ((t im e ta g (c d r z)))

(i f (and * w tra c e * * in - r h s *)

(l e t ((p o r t (t r a c e - f i l e)))

(fo rm a t p o r t "~&|<=*wm: ")

(ppelm wme p o r t)))

(i n c f * a c t io n -c o u n t *)

(s e tq * c r i t i c a l * t)

(d e c f *c u rre n t-w m *)

;TW-0PS5

(cond (*TW *

(cond (*C PE*

161

(i f * i n - r h s * (push (l i s t '< = wme t im e ta g)

* t w - s a v e - a f f e c t - l i s t *)))

(*PE*

(m atch n i l w m e))))

;END

(t

(re c o rd -c h a n g e '^ w m t im e ta g wme)

(m atch n i l w m e)))

(s e t f (g e t f a 'w m p a rt*) (d e le t e z p a r t : t e s t # * e q u a l))

(s e tq * c r i t i c a l * n i l))))))

162

A .2 L ist A .2 — T h e T W -O P S 5 In terface to th e

T im e W arp S ystem

; N o te s :

; (Sendcommand d c ra s) : send a command message m to d e s t in a t io n m achine

; in d e x number d , c is command number (1 : e x e c u te th e message e x p re s s io n) and

; s i s th e in d e x number o f th e send ing m ach ine.

; (SendTWMessage t d msg) : send a Time Warp message msg to d e s t in a t io n

; m achine; in d e x number d , t is th e VRT o f th e message msg.

; G lo b a l v a r ia b le s

(d e fv a r *P E s -n a m e lis t* n i l) ; N a m e - l is t o f PEs in th e system

(d e fv a r *TW* n i l) ; Time Warp f l a g

(d e fv a r *CPE* n i l) ; CPE f l a g

(d e fv a r *P E * n i l) ; PE f l a g

(d e fv a r * t w - s a v e - a f f e c t - l i s t * n i l) ; S a v e - l is t f o r w o rk in g memory m o d if ic a t io n s

(d e fv a r * tw -s a v e -b e s t -c s e * n i l) ; Save-memory f o r c o n f l i c t s e t e lem en t

; ; ; P E 's Type d e f in i t io n and m ethods.

(d e f in e - ty p e pe

(: v a r p e o b j-c s (: i n i t n i l)) ; Save-memory f o r th e c o n f l i c t s e t

(: v a r p e o b j-c s e (: i n i t n i l)) ; Save-memory f o r th e b e s t c o n f l i c t

; e lem ent — h ig h e s t r a te d in s t a n t ia t io n .

: a l l - i n i t a b l e : a l l - g e t t a b l e : a l l - s e t t a b l e : a l l - p r i n t a b l e)

163

;; R estore g lo b a l v a r ia b le s a f te r a ro llb ack

(d e fin e -m e th o d (PE tw p e - r e s to r e -g lo b a l) ()

(s e t f * c o n f l i c t - s e t * p e o b j-c s

* tw -s a v e -b e s t -c s e * p e o b j-c s e))

; ; Undo th e m o d if ie d w o rk in g memory e le m e n ts .

(d e fin e -m e th o d (PE tw p e -n n d o -a c t) (a c t - l i s t)

(d o l i s t (a c t io n a c t - l i s t) ; scan th e saved a c t io n l i s t .

(l e t ((a c t (pop a c t io n)) ; g e t a c t io n .

(wme (pop a c t io n)) ; g e t w o rk in g memory e le m e n t.

(t im e ta g (pop a c t io n))) ; g e t t im e ta g .

; <= : a p a s t rem ove-from -wm is redone w ith add-to -w m

; => : a p a s t add-to -w m is redone w ith rem ove-from -wm

(cond ((e q l a c t '< =) (ad d -to -w m wme t im e ta g))

((e q l a c t *=>) (rem ove-from -w m wme))

(t (e r r o r " I l l e g a l WM-act in tw p e -u n d o -a c t a c t))))))

; ; U pdate th e w o rk in g memory and p e rfo rm th e c o n f l i c t r e s o lu t io n

(d e fin e -m e th o d (PE tw p e -a c t) (d e lc s e f la g a c t - l i s t)

(i f d e lc s e f la g

(s e t f * c o n f l i c t - s e t *

(d e le te * tw -s a v e -b e s t -c s e * * c o n f l i c t - s e t * : t e s t # * e q u a l)))

(s e t f * tw -s a v e -b e s t -c s e * n i l)

(i f a c t - l i s t

(d o l i s t (a c t io n a c t - l i s t)

164

(l e t ((a c t (pop a c t io n))

(wme (pop a c t io n))

(t im e ta g (pop a c t io n)))

(cond ((e q l a c t '= >) (ad d -to -w m wme t im e ta g))

((e q l a c t ’ < =) (rem ove-from -w m wme))

(t (e r r o r 11 I l l e g a l WM-act in tw c p e -u n d o -a c t ~A~y#" a c t))))))

(s e t f *p h a s e * *c o n f l i c t - r e s o lu t io n)

(l e t ((c s -e le m e n t (c o n f l i c t - r e s o l u t i o n)))

(cond (c s -e le m e n t

; c s -e le m e n t found

; send th e s e le c te d p ro d u c tio n to th e CFRCPE

(SendTWMessage (1+ (MYLVT)) ' CFRCPE

* (tw c p e -c s CFRCPE ' ,c s - e le m e n t)))

((e q l *SYSTEMMODE* 'b lo c k)

; i f c s -e le m e n t n o t found and B lock-Resum e mode

; th e n in fo rm th e CFRCPE "No in s t a n t i a t io n found"

(SendTWMessage (1 + (MYLVT)) ' CFRCPE

* (tw c p e -c s CFRCPE 'N O - IN S T)))))

; save g lo b a l v a r ia b le s

(s e t f p e o b j-c s * c o n f l i c t - s e t *

p e o b j-c s e * tw -s a v e -b e s t -c s e *)

(a c c u m -s ta ts))

; CPE's ty p e d e f in i t io n and m ethods.

The CPE a c ts as c o o rd in a to r f o r c o l le c t iv e o p e ra t io n s and m e d ia te d e x te r n a l

o u tp u t a c t i v i t i e s . The CFRCPE c o l le c t s th e i n s t a n t i a t i o n s fro m PEs and

;; performs c o n f l i c t r e so lu t io n . ACTCPE execu tes th e RHS a c tio n s o f the

;; s e le c te d production and informs th e change o f th e working memory to PEs.

(d e f in e - ty p e cpe

(: v a r c p e o b j - a c t l (: i n i t n i l)) ; s a v e - l i s t f o r th e p e rfo rm ed a c t io n s

(: v a r c p e o b j-a c tc (: i n i t 0)) ; number o f p e rfo rm e d a c t io n s

(: v a r c p e o b j-c y lc (: i n i t 0)) ; number o f p e rfo rm e d a c t - r e c o g n iz e

(: v a r c p e o b j-rm c (: i n i t 0)) ; system re m a in in g c y c le number

: a l l - i n i t a b l e : a l l - g e t t a b l e : a l l - s e t t a b l e : a l l - p r i n t a b l e)

; ; R e s to re g lo b a l v a r ia b le s a f t e r a r o l lb a c k

(d e fin e -m e th o d (CPE tw c p e - r e s to r e -g lo b a l) ()

(s e t f * r e m a in in g -c y c le s * cp eo b j-rm c

♦ c y c le -c o u n t * c p e o b j-c y lc

♦ a c t io n -c o u n t* c p e o b j-a c tc))

; ; Undo th e m o d if ie d w o rk in g memory e le m e n ts .

(d e fin e -m e th o d (CPE tw c p e -u n d o -a c t) ()

(d o l i s t (a c t io n c p e o b j - a c t l)

(l e t ((a c t (pop a c t io n))

(wme (pop a c t io n))

(t im e ta g (pop a c t io n)))

(cond ((e q l a c t '< =) (ad d -to -w m wme t im e t a g))

((e q l a c t *=>) (rem ove-from -w m wme))

(t (e r r o r " I l l e g a l WM-act in tw c p e -u n d o -a c t ~k~V' a c t))))))

166

;; E valuation of RHS a c tio n s o f th e s e le c te d production .

; ; Send u p d ates to PEs.

(d e fin e -m e th o d (CPE tw c p e -a c t) (pename in s ta n c e)

(cond ((c h e c k - to q u i t (c a r in s ta n c e))

(tw o p s -s to p))

(t

(s e t f * t w - s a v e - a f f e c t - l i s t * n i l)

(s e t f *p h a s e * (c a r in s ta n c e))

(a c c u m -s ta ts)

(e v a l - r h s (c a r in s ta n c e) (c d r in s t a n c e)) ; e x e c u te th e RHS

(c h e c k - l im it s)

(d e c f * r e m a in in g -c y c le s *)

; save RHS a c t io n s

(s e t f c p e o b j-a c t l * t w - s a v e - a f f e c t - l i s t *)

(s e t f * t w - s a v e - a f f e c t - l i s t * (r e v e r s e * t w - s a v e - a f f e c t - l i s t *))

; send up d ates to PEs

(d o l i s t (o b j-n am e *P E s -n a m e lis t*)

(i f (e q u a l pename o b j-n am e)

; s e t f l a g * t to re q u e s t th e PE to remove

; th e c s -e le m e n t fro m th e c o n f l i c t s e t

(SendTWMessage (1+ (M YLVT)) ob j-nam e

f (tw p e -a c t , ob j-nam e t

* , * t w - s a v e - a f f e c t - l i s t *))

(SendTWMessage (1+ (M YLVT)) ob j-nam e

' (tw p e -a c t , o b j-n am e n i l

' , * t w - s a v e - a f f e c t - l i s t *))))

167

; save g lo b a l v a r ia b le s

(s e t f c p e o b j-rm c * re m a in in g -c y c le s *

c p e o b j-c y lc * c y c le -c o u n t *

c p e o b j-a c tc * a c t io n -c o u n t*)

(i f *TW -F lag -E N D * (T W S e n d T W -F la g -E n d)))))

(d e fv a r b es tcse -n o d e -n am e)

; ; C o n f l ic t r e s o lu t io n

(d e fin e -m e th o d (CPE tw c p e -c s) (c s -e le m e n t)

(s e t f *p h a s e * n i l)

(cond ((e q l * SYSTEMMODE* 'goahead)

; goahead w o rk in g mode (TW -0PS5)

(s e t f bestcse -n o d e-n am e (aeons c s -e le m e n t

(C u r re n t - In p u t-M s g -s e n d e r) b e s tc s e -n o d e -n a m e))

(push c s -e le m e n t * c o n f l i c t - s e t *)

(i f (n o t (N e x t -M s g -E q l-V r tp))

(s e t f *p h a s e * 'c o n f l i c t - r e s o l u t i o n)))

((e q l *SYSTEMMODE* 'b lo c k)

; b lo c k w o rk in g mode (B lock-R esum e 0PS5)

(when (n o t (e q u a l c s -e le m e n t 'N O -IN S T))

(push c s -e le m e n t * c o n f l i c t - s e t *)

(s e t f b es tcse -n o d e-n am e (aeons c s -e le m e n t

(C u r re n t - In p u t-M s g -s e n d e r) b e s tc s e -n o d e -n a m e)))

(in c f c p e o b j-a c tc)

(when (e q l c p e o b j-a c tc (1 - *MAXMACHINEINDEX*))

(s e t f *p h a s e * 'c o n f l i c t - r e s o l u t i o n)

168

(s e t f cp eob j-actc 0))))

(i f *p h a s e *

(l e t * ((in s ta n c e (p n a m e - in s ta n t ia t io n (c o n f l i c t - r e s o l u t i o n)))

(nodename (c d r (assoc * tw -s a v e -b e s t -c s e *

bes tcse -n o d e-n am e : t e s t # 'e q u a l))))

(s e t f * c o n f l i c t - s e t * n i l)

(s e t f b estcse-n o d e-n am e n i l)

; send in s t a n t ia t io n to ACTCPE f o r RHS e x e c u tio n

(SendTWMessage (1+ (MYLVT)) 'ACTCPE ' (tw c p e -a c t ACTCPE

' , nodename ' , in s ta n c e)))))

(d e f in e -m e th o d (CPE tw c p e -s ta r t) ()

(d o l i s t (o b j-n am e *P E s -n a m e lis t*)

; i n i t i a l i z e s t a r t in g message to PE

(SendTWMessage (1+ (MYLVT)) ob j-nam e

‘ (tw p e -a c t , ob j-nam e n i l n i l))))

(d e fv a r * In itM sg C m d * ' (In itM s g to O b j 'ACTCPE ' (t w c p e - s t a r t ACTCPE 0)))

; ; ; TW-0PS5 s t a r t program

(d e fu n TW O PS-Start ()

; O b je c t assignm ent and i n i t i a t i o n p ro cess

(TW A ssignO bject 'CFRCPE 1)

(SendCommand 1 1 ' (s e t f CFRCPE (m a k e -in s ta n c e 'CPE)) 0)

(TW A ssignO bject 'ACTCPE 1)

(SendCommand 1 1 ' (s e t f ACTCPE (m a k e -in s ta n c e 'CPE)) 0)

169

(s e t f *P E s -n a m e lis t* n i l)

(do ((i 2 (1 + i))

(o b j-n a m e))

((> i *MAXMACHINEINDEX*))

(s e tq ob j-nam e (s i : s t r in g - t o - o b je c t (fo rm a t n i l "PE~D" i)))

(s e t f *P E s -n a m e lis t* (cons ob j-nam e * P E s -n a m e l is t *))

(TW A ssignO bject ob j-nam e i)

(SendCommand i 1 ' (s e t f , ob j-nam e (m a k e -in s ta n c e 'PE)) 0))

(SendToA llR em ote ' (s e t q *P E s -n a m e lis t* ' , * P E s - n a m e l is t *))

(S etU pO bjsLoc)

(asynchronous)

; i n i t i a l i z e s t a r t p ro cess a t th e CPE

(SendCommand 1 1 * In itM sg C m d * 0)

(G V TM onitor 1 0 0 0 0))

(d e fv a r * o p s -p a r -p r o f a c t * 1)

(d e fv a r p a r t - r u le s c o u n t 1)

(d e fv a r p a r t-m a c h in e in d e x 2)

; ; D is t r ib u t io n o f p ro d u c tio n s in ro u n d -ro b in fa s h io n

(d e fu n t w o p s -p a r t i t io n (name p ro d)

(l e t ((p lh s (append (l i s t 'p name)

(subseq prod 0 (1+ (p o s i t io n ' — > p ro d : t e s t # ' e q l))))))

(i f (> p a rt-m a c h in e in d e x *MAXMACHINEINDEX*)

(s e t f p a r t-m a c h in e in d e x 2))

(SendCommand p a r t-m a c h in e in d e x 1 p lh s 0)

(cond ((> = p a r t - r u le s c o u n t * o p s - p a r - p r o f a c t *)

170

(i n c f p a r t-m a c h in e in d e x)

(s e t f p a r t - r u le s c o u n t 1))

(t

(i n c f p a r t - r u le s c o u n t)))))

171

