129 research outputs found

    Underwater localization and node mobility estimation

    Get PDF
    In this paper, localizing a moving node in the context of underwater wireless sensor networks (UWSNs) is considered. Most existing algorithms have had designed to work with a static node in the networks. However, in practical case, the node is dynamic due to relative motion between the transmitter and receiver. The main idea is to record the time of arrival message (ToA) stamp and estimating the drift in the sampling frequency accordingly. It should be emphasized that, the channel conditions such as multipath and delay spread, and ambient noise is considered to make the system pragmatic. A joint prediction of the node mobility and speed are estimated based on the sampling frequency offset estimation. This sampling frequency offset drift is detected based on correlating an anticipated window in the orthogonal frequency division multiplexing (OFDM) of the received packet. The range and the distance of the mobile node is predicted from estimating the speed at the received packet and reused in the position estimation algorithm. The underwater acoustic channel is considered in this paper with 8 paths and maximum delay spread of 48 ms to simulate a pragmatic case. The performance is evaluated by adopting different nodes speeds in the simulation in two scenarios of expansion and compression. The results show that the proposed algorithm has a stable profile in the presence of severe channel conditions. Also, the result shows that the maximum speed that can be adopted in this algorithm is 9 km/h and the expansion case profile is more stable than the compression scenario. In addition, a comparison with a dynamic triangular algorithm (DTN) is presented in order to evaluate the proposed system

    2-D DOA Estimation of LFM Signals Based on Dechirping Algorithm and Uniform Circle Array

    Get PDF
    Based on Dechirping algorithm and uniform circle array(UCA), a new 2-D direction of arrival (DOA) estimation algorithm of linear frequency modulation (LFM) signals is proposed in this paper. The algorithm uses the thought of Dechirping and regards the signal to be estimated which is received by the reference sensor as the reference signal and proceeds the difference frequency treatment with the signal received by each sensor. So the signal to be estimated becomes a single-frequency signal in each sensor. Then we transform the single-frequency signal to an isolated impulse through Fourier transform (FFT) and construct a new array data model based on the prominent parts of the impulse. Finally, we respectively use multiple signal classification (MUSIC) algorithm and rotational invariance technique (ESPRIT) algorithm to realize 2-D DOA estimation of LFM signals. The simulation results verify the effectiveness of the algorithm proposed

    Underwater Sensor Nodes and Networks

    Get PDF
    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field.Lloret, J. (2013). Underwater Sensor Nodes and Networks. Sensors. 13(9):11782-11796. doi:10.3390/s130911782S1178211796139Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654Martinez, J. J., Myers, J. R., Carlson, T. J., Deng, Z. D., Rohrer, J. S., Caviggia, K. A., … Weiland, M. A. (2011). Design and Implementation of an Underwater Sound Recording Device. Sensors, 11(9), 8519-8535. doi:10.3390/s110908519Ardid, M., Martínez-Mora, J. A., Bou-Cabo, M., Larosa, G., Adrián-Martínez, S., & Llorens, C. D. (2012). Acoustic Transmitters for Underwater Neutrino Telescopes. Sensors, 12(4), 4113-4132. doi:10.3390/s120404113Baronti, F., Fantechi, G., Roncella, R., & Saletti, R. (2012). Wireless Sensor Node for Surface Seawater Density Measurements. Sensors, 12(3), 2954-2968. doi:10.3390/s120302954Mànuel, A., Roset, X., Rio, J. D., Toma, D. M., Carreras, N., Panahi, S. S., … Cadena, J. (2012). Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology. Sensors, 12(3), 3693-3719. doi:10.3390/s120303693Jollymore, A., Johnson, M. S., & Hawthorne, I. (2012). Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream. Sensors, 12(4), 3798-3813. doi:10.3390/s120403798Won, T.-H., & Park, S.-J. (2012). Design and Implementation of an Omni-Directional Underwater Acoustic Micro-Modem Based on a Low-Power Micro-Controller Unit. Sensors, 12(2), 2309-2323. doi:10.3390/s120202309Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837Shin, S.-Y., & Park, S.-H. (2011). A Cost Effective Block Framing Scheme for Underwater Communication. Sensors, 11(12), 11717-11735. doi:10.3390/s111211717Kim, Y., & Park, S.-H. (2011). A Query Result Merging Scheme for Providing Energy Efficiency in Underwater Sensor Networks. Sensors, 11(12), 11833-11855. doi:10.3390/s111211833Llor, J., & Malumbres, M. P. (2012). Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols? Sensors, 12(2), 1312-1335. doi:10.3390/s120201312Zhang, G., Hovem, J. M., & Dong, H. (2012). Experimental Assessment of Different Receiver Structures for Underwater Acoustic Communications over Multipath Channels. Sensors, 12(2), 2118-2135. doi:10.3390/s120202118Ramezani, H., & Leus, G. (2012). Ranging in an Underwater Medium with Multiple Isogradient Sound Speed Profile Layers. Sensors, 12(3), 2996-3017. doi:10.3390/s120302996Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 12(4), 4237-4264. doi:10.3390/s120404237Gao, M., Foh, C. H., & Cai, J. (2012). On the Selection of Transmission Range in Underwater Acoustic Sensor Networks. Sensors, 12(4), 4715-4729. doi:10.3390/s120404715Gómez, J. V., Sandnes, F. E., & Fernández, B. (2012). Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors. Sensors, 12(2), 1930-1949. doi:10.3390/s120201930Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization Algorithms of Underwater Wireless Sensor Networks: A Survey. Sensors, 12(2), 2026-2061. doi:10.3390/s120202026Moradi, M., Rezazadeh, J., & Ismail, A. S. (2012). A Reverse Localization Scheme for Underwater Acoustic Sensor Networks. Sensors, 12(4), 4352-4380. doi:10.3390/s120404352Lee, S., & Kim, K. (2012). Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks. Sensors, 12(5), 5486-5501. doi:10.3390/s120505486Mohamed, N., Jawhar, I., Al-Jaroodi, J., & Zhang, L. (2011). Sensor Network Architectures for Monitoring Underwater Pipelines. Sensors, 11(11), 10738-10764. doi:10.3390/s111110738Macias, E., Suarez, A., Chiti, F., Sacco, A., & Fantacci, R. (2011). A Hierarchical Communication Architecture for Oceanic Surveillance Applications. Sensors, 11(12), 11343-11356. doi:10.3390/s111211343Zhang, S., Yu, J., Zhang, A., Yang, L., & Shu, Y. (2012). Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation. Sensors, 12(1), 373-390. doi:10.3390/s120100373Climent, S., Capella, J. V., Meratnia, N., & Serrano, J. J. (2012). Underwater Sensor Networks: A New Energy Efficient and Robust Architecture. Sensors, 12(1), 704-731. doi:10.3390/s120100704Min, H., Cho, Y., & Heo, J. (2012). Enhancing the Reliability of Head Nodes in Underwater Sensor Networks. Sensors, 12(2), 1194-1210. doi:10.3390/s120201194Yoon, S., Azad, A. K., Oh, H., & Kim, S. (2012). AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks. Sensors, 12(2), 1827-1845. doi:10.3390/s120201827Caiti, A., Calabrò, V., Dini, G., Lo Duca, A., & Munafò, A. (2012). Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network. Sensors, 12(2), 1967-1989. doi:10.3390/s120201967Wu, H., Chen, M., & Guan, X. (2012). A Network Coding Based Routing Protocol for Underwater Sensor Networks. Sensors, 12(4), 4559-4577. doi:10.3390/s120404559Navarro, G., Huertas, I. E., Costas, E., Flecha, S., Díez-Minguito, M., Caballero, I., … Ruiz, J. (2012). Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain). Sensors, 12(2), 1398-1421. doi:10.3390/s120201398Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s12020146

    Improved time-frequency de-noising of acoustic signals for underwater detection system

    Get PDF
    The capability to communicate and perform target localization efficiently in underwater environment is important in many applications. Sound waves are more suitable for underwater communication and target localization because attenuation in water is high for electromagnetic waves. Sound waves are subjected to underwater acoustic noise (UWAN), which is either man-made or natural. Optimum signal detection in UWAN can be achieved with the knowledge of noise statistics. The assumption of Additive White Gaussian noise (AWGN) allows the use of linear correlation (LC) detector. However, the non-Gaussian nature of UWAN results in the poor performance of such detector. This research presents an empirical model of the characteristics of UWAN in shallow waters. Data was measured in Tanjung Balau, Johor, Malaysia on 5 November 2013 and the analysis results showed that the UWAN has a non-Gaussian distribution with characteristics similar to 1/f noise. A complete detection system based on the noise models consisting of a broadband hydrophone, time-frequency distribution, de-noising method, and detection is proposed. In this research, S-transform and wavelet transform were used to generate the time-frequency representation before soft thresholding with modified universal threshold estimation was applied. A Gaussian noise injection detector (GNID) was used to overcome the problem of non-Gaussianity of the UWAN, and its performance was compared with other nonlinear detectors, such as locally optimal (LO) detector, sign correlation (SC) detector, and more conventionally matched filter (MF) detector. This system was evaluated on two types of signals, namely fixed-frequency and linear frequency modulated signals. For de-noising purposes, the S-transform outperformed the wavelet transform in terms of signal-to-noise ratio and root-mean-square error at 4 dB and 3 dB, respectively. The performance of the detectors was evaluated based on the energy-to-noise ratio (ENR) to achieve detection probability of 90% and a false alarm probability of 0.01. Thus, the ENR of the GNID using S-transform denoising, LO detector, SC detector, and MF detector were 8.89 dB, 10.66 dB, 12.7dB, and 12.5 dB, respectively, for the time-varying signal. Among the four detectors, the proposed GNID achieved the best performance, whereas the LC detector showed the weakest performance in the presence of UWAN

    A Hybrid Indoor Location Positioning System

    Get PDF
    Indoor location positioning techniques have experienced impressive growth in recent years. A wide range of indoor positioning algorithms has been developed for various applications. In this work a practical indoor location positioning technique is presented which utilizes off-the-shelf smartphones and low-cost Bluetooth Low Energy (BLE) nodes without any further infrastructure. The method includes coarse and fine modes of location positioning. In the coarse mode, the received signal strength (RSS) of the BLE nodes is used for location estimation while in the fine acoustic signals are utilized for accurate positioning. The system can achieve centimeter-level positioning accuracy in its fine mode. To enhance the system’s performance in noisy environments, two digital signal processing (DSP) algorithms of (a) band-pass filtering with audio pattern recognition and (b) linear frequency modulated chirp signal with matched filter are implemented. To increase the system’s robustness in dense multipath environments, a method using data clustering with sliding window is employed. The received signal strength of BLE nodes is used as an auxiliary positioning method to identify the non-line-of-sight (NLoS) propagation paths in the acoustic positioning mode. Experimental measurement results in an indoor area of 10 m2 indicate that the positioning error falls below 6 cm

    Mobile node-aided localization and tracking in terrestrial and underwater networks

    Get PDF
    In large-scale wireless sensor networks (WSNs), the position information of individual sensors is very important for many applications. Generally, there are a small number of position-aware nodes, referred to as the anchors. Every other node can estimate its distances to the surrounding anchors, and then employ trilateration or triangulation for self-localization. Such a system is easy to implement, and thus popular for both terrestrial and underwater applications, but it suffers from some major drawbacks. First, the density of the anchors is generally very low due to economical considerations, leading to poor localization accuracy. Secondly, the energy and bandwidth consumptions of such systems are quite significant. Last but not the least, the scalability of a network based on fixed anchors is not good. Therefore, whenever the network expands, more anchors should be deployed to guarantee the required performance. Apart from these general challenges, both terrestrial and underwater networks have their own specific ones. For example, realtime channel parameters are generally required for localization in terrestrial WSNs. For underwater networks, the clock skew between the target sensor and the anchors must be considered. That is to say, time synchronization should be performed together with localization, which makes the problem complicated. An alternative approach is to employ mobile anchors to replace the fixed ones. For terrestrial networks, commercial drones and unmanned aerial vehicles (UAVs) are very good choices, while autonomous underwater vehicles (AUVs) can be used for underwater applications. Mobile anchors can move along a predefined trajectory and broadcast beacon signals. By listening to the messages, the other nodes in the network can localize themselves passively. This architecture has three major advantages: first, energy and bandwidth consumptions can be significantly reduced; secondly, the localization accuracy can be much improved with the increased number of virtual anchors, which can be boosted at negligible cost; thirdly, the coverage can be easily extended, which makes the solution and the network highly scalable. Motivated by this idea, this thesis investigates the mobile node-aided localization and tracking in large-scale WSNs. For both terrestrial and underwater WSNs, the system design, modeling, and performance analyses will be presented for various applications, including: (1) the drone-assisted localization in terrestrial networks; (2) the ToA-based underwater localization and time synchronization; (3) the Doppler-based underwater localization; (4) the underwater target detection and tracking based on the convolutional neural network and the fractional Fourier transform. In these applications, different challenges will present, and we will see how these challenges can be addressed by replacing the fixed anchors with mobile ones. Detailed mathematical models will be presented, and extensive simulation and experimental results will be provided to verify the theoretical results. Also, we will investigate the channel estimation for the fifth generation (5G) wireless communications. A pilot decontamination method will be presented for the massive multiple-input-multiple-output communications, and the data-aided channel tracking will be discussed for millimeter wave communications. We will see that the localization problem is highly coupled with the channel estimation in wireless communications

    Thruster Communication for Subsurface Environments; Turning Waste Noise into Useful Data

    Get PDF
    Acoustic communication serves as one of the primary means of wirelessly communicating underwater. Whereas much of the developments in the field of wireless communication have focused on radio frequency technology, water highly absorbs radio waves rendering the link not feasible for most all subsurface operations. While acoustic links have enabled new capabilities for systems operating in this challenging environment, it has yet to reach the commodity availability of radio systems, meaning that an entire class of small, low-cost systems have been unable to make use of these links. The systems in question are primarily autonomous underwater vehicles (AUVs), as they typically operate untethered as compared to remotely operated vehicles (ROVs). To address this gap in capability, a prototype system was constructed leveraging the ambient noise produced by brushless electric thrusters to transmit data. This research aims to build on this work and answer some key questions about the technology. The primary research question is how the operation of a thruster as a propulsor impacts the transmission of data. A characterization of the system will be presented, isolating the behavior of the thruster. From this, it will be shown that a thruster behaves in a manner nearly identically to a purpose-built transducer solution. From this finding, an analysis into the optimization of the link is presented, analyzing protocol improvements, inter symbol interference, and approaches to leveraging signal harmonics of the data link to increase bandwidth. From this work, a transmitter implementation was demonstrated utilizing frequency shift keying to send data at a rate of 2000 bits per second. Beyond the specifics of this work, this transmission system was demonstrated on a low-cost, open-source motor controller, enabling a system to easy integrate or enable this capability. This demonstrates that most any system can leverage this technology to add additional operational capability
    corecore