65 research outputs found

    Modeling of RFID-Enabled Real-Time Manufacturing Execution System in Mixed-Model Assembly Lines

    Get PDF
    To quickly respond to the diverse product demands, mixed-model assembly lines are well adopted in discrete manufacturing industries. Besides the complexity in material distribution, mixed-model assembly involves a variety of components, different process plans and fast production changes, which greatly increase the difficulty for agile production management. Aiming at breaking through the bottlenecks in existing production management, a novel RFID-enabled manufacturing execution system (MES), which is featured with real-time and wireless information interaction capability, is proposed to identify various manufacturing objects including WIPs, tools, and operators, etc., and to trace their movements throughout the production processes. However, being subject to the constraints in terms of safety stock, machine assignment, setup, and scheduling requirements, the optimization of RFID-enabled MES model for production planning and scheduling issues is a NP-hard problem. A new heuristical generalized Lagrangian decomposition approach has been proposed for model optimization, which decomposes the model into three subproblems: computation of optimal configuration of RFID senor networks, optimization of production planning subjected to machine setup cost and safety stock constraints, and optimization of scheduling for minimized overtime. RFID signal processing methods that could solve unreliable, redundant, and missing tag events are also described in detail. The model validity is discussed through algorithm analysis and verified through numerical simulation. The proposed design scheme has important reference value for the applications of RFID in multiple manufacturing fields, and also lays a vital research foundation to leverage digital and networked manufacturing system towards intelligence

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    M3C: A Framework towards Convergent, Flexible, and Unsupervised Learning of Mixture Graph Matching and Clustering

    Full text link
    Existing graph matching methods typically assume that there are similar structures between graphs and they are matchable. However, these assumptions do not align with real-world applications. This work addresses a more realistic scenario where graphs exhibit diverse modes, requiring graph grouping before or along with matching, a task termed mixture graph matching and clustering. We introduce Minorize-Maximization Matching and Clustering (M3C), a learning-free algorithm that guarantees theoretical convergence through the Minorize-Maximization framework and offers enhanced flexibility via relaxed clustering. Building on M3C, we develop UM3C, an unsupervised model that incorporates novel edge-wise affinity learning and pseudo label selection. Extensive experimental results on public benchmarks demonstrate that our method outperforms state-of-the-art graph matching and mixture graph matching and clustering approaches in both accuracy and efficiency. Source code will be made publicly available.Comment: 26 pages, 10 figure

    Subject index volumes 1–92

    Get PDF

    Sustainable urban transport development : a dynamic optimisation approach

    Get PDF
    Current transport systems and transport planning methods and models are not necessarily compatible with the requirements of sustainable transport development. Adequate transport systems can only be obtained by use of a sustainable transport paradigm and accompanying analytical framework. Therefore, this thesis presents a theoretical framework, which is based on a paradigm for sustainable transport development. This paradigm advocates a comprehensive decision-making that anticipates and manages scarce resource use, including environment and finance, while developing the transport system in terms of quality of access and/or person throughput

    Mixing quantitative and qualitative methods for sustainable transportation in Smart Cities

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Game theoretic approaches to parallel machine scheduling

    Get PDF
    Tesis (Ingeniero Industrial)En un problema de programación de máquinas idénticas en paralelo que persigue minimizar dos criterios en particular, lapso y tiempo de terminación total, un mecanismo basado en la teoría de juegos es propuesto para solucionarlo. Se considera un juego bipersonal no-cooperativo de 2x2 en el que cada jugador busca minimizar alguno de estos criterios que propone el problema de producción. Cada escenario implica que los jugadores jueguen de manera simultanea y busquen minimizar los costos que están relacionados con los criterios a optimizar. El jugador que representa al trabajo tiene la opción de dejar al trabajo en su posición actual o moverlo a una posición previa, buscando minimizar su tiempo de terminación; mientras que el otro jugador, un agente controlador, toma la decisión de dejar al trabajo en la máquina actual o moverlo a otra, esperando balancear la carga de la máquina y minimizar el lapso. Como resultado de una serie de juegos repetidos entre estos agentes, el Frente de Pareto es construido, mostrando un conjunto de soluciones eficientes al problema.Universidad del Norte. Programa de Ingeniería Industrial

    Crew Management in Passenger Rail Transport

    Get PDF
    __Abstract__ Crew management in passenger rail transport is an important factor that contributes to both the quality of service to the railway passengers and to the operational costs of the train operating company. This thesis describes how the (railway) Crew Management process can be improved with the introduction of advanced decision support systems, based on advanced mathematical models and algorithms. We provide a managerial perspective on the change process, related to the introduction of these systems, and give an overview of the lessons learned. We have shown that introducing decision support can give substantial improvements in the overall performance of a railway company. Within NS, the support for the Crew Management process has led to a stable relationship between management and train crew. In addition, the lead-time of the planning process is shortened from months to hours and NS is now able to perform scenario analyses, e.g., to study effects of adjusting the labour rules. Also, NS can adjust their service when severe weather conditions are expected, by creating a specific winter timetable shortly before the day of operation. Finally, we also introduced a decision support system for real-time rescheduling of crew duties on the day of operations. This enables us to adapt the actual crew schedules very quickly. As a result, we reduce the number of cancelled trains and fewer trains will be delayed in case of unforeseen disruptions
    • …
    corecore