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ABSTRACT 

Moghaddam, Mohsen. Ph.D., Purdue University, August 2016. Best Matching Processes 
in Distributed Systems. Major Professor: Shimon Y. Nof. 
 
 
The growing complexity and dynamic behavior of modern manufacturing and service 

industries along with competitive and globalized markets have gradually transformed 

traditional centralized systems into distributed networks of e- (electronic) Systems. 

Emerging examples include e-Factories, virtual enterprises, smart farms, automated 

warehouses, and intelligent transportation systems. These (and similar) distributed systems, 

regardless of context and application, have a property in common: They all involve certain 

types of interactions (collaborative, competitive, or both) among their distributed 

individuals�from clusters of passive sensors and machines to complex networks of 

computers, intelligent robots, humans, and enterprises. Having this common property, such 

systems may encounter common challenges in terms of suboptimal interactions and thus 

poor performance, caused by potential mismatch between individuals. For example, 

mismatched subassembly parts, vehicles--routes, suppliers--retailers, employees--

departments, and products--automated guided vehicles--storage locations may lead to low-

quality products, congested roads, unstable supply networks, conflicts, and low service 

level, respectively. This research refers to this problem as best matching, and investigates 

it as a major design principle of CCT, the Collaborative Control Theory. 



xxii 

 

The original contribution of this research is to elaborate on the fundamentals of best 

matching in distributed and collaborative systems, by providing general frameworks for (1) 

Systematic analysis, inclusive taxonomy, analogical and structural comparison between 

different matching processes; (2) Specification and formulation of problems, and 

development of algorithms and protocols for best matching; (3) Validation of the models, 

algorithms, and protocols through extensive numerical experiments and case studies. The 

first goal is addressed by investigating matching problems in distributed production, 

manufacturing, supply, and service systems based on a recently developed reference model, 

the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems 

are then formulated as mixed-integer programs. Due to the computational complexity of 

matching problems, various optimization algorithms are developed for solving different 

problem instances, including modified genetic algorithms, tabu search, and neighbourhood 

search heuristics. The dynamic and collaborative/competitive behaviors of matching 

processes in distributed settings are also formulated and examined through various 

collaboration, best matching, and task administration protocols. In line with the third goal, 

four case studies are conducted on various manufacturing, supply, and service systems to 

highlight the impact of best matching on their operational performance, including service 

level, utilization, stability, and cost-effectiveness, and validate the computational merits of 

the developed solution methodologies.
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CHAPTER 1. INTRODUCTION TO MATCHING PROBLEMS 

1.1 Research Motivation 

Every distributed system, natural or artificial, involves certain types of interactions 

between its entities�from nerve cells, colonies of ants, and flocks of birds to complex 

networks of sensors, machines, robots, humans, and enterprises. These interactions can be 

collaborative (common goals), competitive (conflicting goals), or both. To ensure high 

quality of interactions, it is necessary for each individual entity to know with whom to 

interact, how, and when. Potential mismatch between those entities may lead to inefficient 

and suboptimal interactions, which in turn diminishes their competitive performance with 

respect to critical criteria such as time, cost, quality, flexibility, and stability. To ensure 

competitiveness, therefore, the �����������	 
�	� �� �
��
���� ������� ���	� 
�������� ��

individual entities to each other; e.g., bolts--nuts (selective assembly); suppliers--retailers-

-customers (enterprise network design); jobs--machines/--computers (scheduling); 

vehicles--routes (transportation planning); sensors--locations (sensor network design); 

interns--factories (recruitment); robots--teams (team formation). 

Matching is a classic yet significant problem spanning almost every area of science, 

technology, engineering, mathematics, economics, and management. It is done with 

respect to the mutual interaction of individuals, their desirability or preferences for each 

other, and certain conditions. Matching preferences are diverse and context-dependent; e.g., 
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dimensional tolerance (bolts--nuts); lead-time/cost/quality (suppliers--customers); 

tardiness/makespan (jobs--machines); delivery time/cost (vehicles--routes); 

communication cost/energy consumption (sensors--locations); employee/employer 

satisfaction (interns--factories); conflict rate/resilience (robots--teams). Similarly, the 

conditions that influence a best matching process are context-specific, e.g., limitation on 

the number of interns that a factory can admit; precedence relations among a set of jobs 

allocated to a single computer; lateral collaboration among suppliers through demand and 

capacity sharing; interpersonal biases, emotions, and relational messages among members 

of a social network. 

Matching is a well-known combinatorial optimization problem that roots in various 

natural or artificial system. The problem, however, is not new and has been extensively 

studied for decades. It was firstly introduced by D.F. Votaw, Jr. and A. Orden in 1952 as 

the assignment problem, which involves matching the elements of two sets on a one-to-

one basis such that the sum of their associated weights is minimized. Several models and 

algorithms have been developed since then, led by pioneering works such as Hungarian 

algorithm by Kuhn (1955) and deferred acceptance algorithm by Gale and Shapley (1962). 

Matching, as defined by Oxford dictionaries, refers to [the proc��� ��� �corresponding or 

causing to correspond in some essential respect�� �making or being harmonious�� �	

�being equal to (something) in quality or strength�
 Accordingly, best matching is defined 

as follows: 

Definition 1.1. Best matching. It refers to the process of finding the best match 

between two or more sets considering certain conditions and criteria. 
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This definition implies a scope and impact for the matching problem even broader 

than the classic assignment problem, incorporating other significant problems such as 

scheduling, supplier selection, location-allocation, routing, clustering, team formation, 

partitioning, and so on. Nevertheless, there are some critical conflicts and shortcomings in 

representation of these diverse problems as matching problems, their comparative analysis, 

and potential extensions, which have motivated this research. The analogy between 

different and independent instances of matching is not fully utilized, for understanding and 

solving the existing problems, and for identifying and formalizing new problems that 

belong to this family of problems. More importantly, there is no cl��� ���� ��	
���� 
� 
��

problem�no taxonomic framework for synthesis and comprehensive study of the 

problems as a whole. Furthermore, there are several areas that�despite importance�have 

received insufficient attention. The goal of this research is to elaborate on the fundamentals 

of best matching in distributed systems by providing solid frameworks for 

� Systematic analysis of various best matching processes from different dimensions, 

and identification of new classes of the problem.  

� Comprehensive taxonomy, analogical and structural comparison between different 

best matching problems and processes. 

� ���
���
�	 ����
���	�
�
� 
� ���
���� ������	��, distribution of decision-making 

and control functions, and nature of interactions among distributed individuals. 

� Practical formulation of solutions based on a comprehensive set of tools�best 

matching algorithms and protocols.  

� Validation of the developed concepts, models, algorithms, and protocols through 

extensive numerical experiments and case studies.  
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high volumes/rates of arrival and retrieval, strict capacity limits, and/or critical 

accuracy requirements. In such systems, best matching can play a significant role 

in enhancing efficiency and productivity.  

� The process robots must be assigned the most suitable sets of tasks. Automated 

Guided Vehicles (AGVs), as an example of process robots, are responsible for 

carrying materials around the shop floor or warehouse. When multiple AGVs are 

working in the same facility, it is necessary to define who does what, how, and 

when, in order to minimize processing times and prevent conflicts (e.g., collision). 

This can be done through dynamic best matching between materials and AGVs. 

� The facility sensors must find the best peer sensors based on their network 

configuration/communication protocols to minimize energy consumption. Facility 

sensor networks are formed in different manners (e.g., single-multi-hop with/ 

without clustering), following certain communication protocols (e.g., point-to-

point; flooding; gossiping), in an attempt to minimize energy consumption through 

sending/receiving messages. One of the foremost processes in optimal 

configuration of sensor network as well as development of efficient communication 

protocols is best matching (e.g., between sensors; regions; clusters; cluster heads; 

base stations). 

� The feeder lines must rearrange/combine different component parts based on their 

similarity/affinity/dimensional tolerance. The classic bolt--nut best matching 

process is a good example to show the significant impact of best matching on 

selective assembly. Matching the component parts that arrive in the primary 

assembly line from different feeder lines (e.g., based on tolerance) can remarkably 
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improve the quality of final products (even in presence of manufacturing 

deficiencies and inaccuracies), and reduce the need for rework.  

� The Numerical Control (NC) milling machines must define the best tools with 

respect to the assigned jobs. Milling machines use various rotary cutters to remove 

materials from the surface of a work-piece. The rotary cutters differ in shape, size, 

material type, flutes/teeth, helix angle, coating, shank, etc., where each is suitable 

for different types of work-pieces. The wide range of choices and features of rotary 

cutters provide challenges the NC program to match the best tool to each work-

piece (based on the features of both). The problem becomes even more challenging 

when multiple NC milling machines collaborate by sharing tools and the number/ 

diversity of the tools is limited. 

� The virtual factory manager must identify the best virtual machine(s)/model(s) with 

respect to their workload/capabilities as well as the command type. The main 

purpose of virtual factories is to enable innovative and cost-effective production 

through adaptive design, virtual modeling and simulation, automated monitoring of 

products, processes, and factories, and knowledge integration. In this context, 

dynamic and optimal matching of modeling, analysis, and decision-making tasks 

to distributed resources (e.g., computer agents; programs; machines) with various 

workloads and limited capacities is the key for enhancing the productivity and 

flexibility of the cyber and physical layers of the manufacturing system. 

� The manufacturing site must categorize its suppliers based on their quality, 

trustworthiness, on-time deliveries, and cost. At a macro level, the manufacturing 

enterprise�encompassing all the aforementioned elements�must interact and 
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collaborate with suppliers of parts and raw materials and perhaps other similar 

manufacturing enterprises (e.g., lateral demand and capacity sharing). In order to 

minimize the procurement risk, enhance quality and service level to the customers, 

and improve flexibility in dealing with variations in demand and spot market price, 

the enterprise must identify the best portfolio of suppliers for each component part 

based on various supplier selection criteria. 

All the aforementioned (and similar) examples�in spite of their differences�have 

inherent matching elements that can be formalized, formulated, and optimized in a standard 

and general way. The interaction between each pair of individuals i  and j  can be 

formalized via a matching variable ij� , where  

1, if  and  are matched,

0, otherwise.ij

i j
�

�
� �
�

 

The matching indeed entails certain rewards (or costs), which can be represented as mutual 

preferences of individuals i  and j  for each other, i.e., ijP . The following assumptions are 

considered throughout this dissertation. 

General Assumptions 

1. All input parameters, including ijP , are given and known. (In some case studies, 

however, the uncertainties associated with the input parameters are considered and 

incorporated in models using different methods.) 

2. ��	 
	�� 
�	
����� ��� �		� ��	� �	�	��� 
��	� 
��������
 
�	 ����	�
�
���� �� the 

context of this research, a network refers to a group or system of interconnected 

individuals (e.g., supply network; individuals: suppliers, retailers, customers). 
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3. ��� ���� ���	� �
���� 
	 �	�� �� �
	�
���
	� ��� ��	� �
��� ������� 
��
�
��
�	

from other potential (and no necessarily optimal) matches. 

A problem with only two individuals i  and j  to match is trivial�the binary 

decision is made by merely deciding whether the respective reward (or cost) is sufficient 

(acceptable) or not. As the size and complexity of systems increase (and so does the 

possibilities of matching), however, it becomes more difficult to define what/who is the 

best match for what/whom. Consider a selective assembly system, where two sets of bolts 

I  and nuts J  must be matched to each other on a one-to-one basis. In this case, the quality 

of final products depends on the dimensional compatibility of the matched bolts and nuts, 

which can be formalized by ijP , and is unique for each pair of bolts and nuts. In addition, 

the numbers/possibilities of matching are limited, as each bolt/nut must be matched to 

exactly one counterpart. Hence, the best match between the sets of bolts and nuts can be 

obtained by solving the following integer program that maximize the total quality of match 

with respect to the conditions for one-to-one matching: 

 

� �

max ,

s.t. 1, ,

1, ,

0,1 , , .

ij ij
i I j J

ij
i I

ij
j J

ij

P

j J

i I

i I j J

�

�

�

�

� �

�

�

� � �

� � �

� � � �

��

�

�
 (M1.1) 

This is the most basic instance of matching, which can be easily solved by the 

Hungarian method (Kuhn, 1955) in polynomial time. Nevertheless, the complexity of the 

problem increases significantly by addition of more sets, conditions, and/or criteria, which 
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in turn causes considerable modeling and computational challenges. As will be discussed 

in the next chapters, although some of these extensions have already been studied in 

literature, some important aspects/families of matching problems have not been properly 

addressed, due to lack of a systematic and holistic view of the problem. Understanding, 

synthesizing, and formalizing the existing and additional aspects of the problem as well as 

solving the problems and challenges identified along the way are the main motivations of 

this study, and the foundations for the research problem and questions as outlined next.  

1.3 Research Problem 

Mismatch between individual entities of distributed systems is the challenging 

problem addressed in this research. Although a system with �mismatched 

individuals� may not necessarily collapse, it is certainly outperformed by an 

������	�
� �
���� ���� �����-matched �
�������	��� �
 ����� �� � ������
 �� �������	

criteria such as time, cost, quality, flexibility, and stability. The key challenge, 

therefore, is to identify those matching processes in a given distributed system, 

specify, structure, and formulate them in a systematic manner, and develop, test, and 

validate algorithms and protocols for solving them in an efficient manner.  

There is a need for hierarchical representation of best matching processes in various 

domains by defining and quantifying various dimensions and their sub-categories, 

standardizing best matching processes, and enabling problem-solving capabilities as well 

as identification of new matching problems. Such systematic specification and taxonomy 

of matching processes enable identification of 
�� ����	��� ���� ���� ���
 ����-the-������
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due to the lack of a holistic view. Systematic definition of matching problems with respect 

to standardized dimensions can enable powerful tools for scrutinizing diverse processes 

and systems in different manufacturing and service domains, and characterizing them as 

new instances in the family of best matching problems. The systematic framework for 

representation and identification of various and independent matching problems can trigger 

analogical reasoning by enabling systematic comparisons between diverse matching 

processes, and triggers ideas for development and validation of new algorithms and 

protocols based on the existing solution methodologies. 

1.4 Research Questions 

Structured representation, synthesis, and taxonomy of matching problems and processes 

enable analogical comparisons between different but analogous instances, and synergetic 

mechanisms for identification of new problem instances, formulations, and solution 

procedures, algorithms, and protocols. Hence, the first research question is outlined as 

follows. 

RQ1. What is a good taxonomic framework for systematic syntheses, identification, 

and specification of matching problems in different areas? What are the most 

important characteristics of such framework? 

Matching problems have been extensively studied in literature; however, the extensions 

are somewhat restricted to some certain aspects of the problem. Several instances of 

matching problems have not yet been addressed in literature and are not acknowledged as 

members of the same family of problems. This is an inevitable phenomenon due to the lack 
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�� � ����� �	
� �
�
���� �� ��
��
�� ���	����� ��� �����
� ��������� ��������� 	� ���

can therefore be utilized for identification and formulation of new matching problems. 

Some instances of such problems have been identified and solved in this research as case 

studies, and some have been outlined as future research directions. Several algorithms 

already exist for solving relatively standard matching problems. More advanced and 

unstructured instances, however, require exclusive extensions of the existing algorithms or 

even development of new ones. With this motivation, the second research question is 

outlined as follows. 

RQ2. What are the best approaches for structuring and formulating matching 

problems and processes? What algorithms and protocols can be developed to 

efficiently solve those best matching problems?  

The developed methodologies, including technical definitions, mathematical formulations, 

optimization algorithms, and control protocols, must be validated to ensure their quality 

and impact. This must be done by performing extensive numerical experiments on various 

test-beds and case studies, and statistical analysis and comparison between the developed 

and the existing methodologies. This issue motivates the third research questions, which is 

outlined as follows. 

RQ3. How can the developed best matching algorithms and protocols be validated? 

What case studies, experiments, scenarios, and statistical analysis methods must be 

deployed to test and highlight the relative impact of those methodologies? 
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1.5 Dissertation Structure 

The remainder of this dissertation is organized as follows. CHAPTER 2 reviews the 

background and previous work on problem structure and modeling, solution methodologies, 

and applications of matching in different domains. CHAPTER 3 presents the PRISM 

taxonomy of best matching, a systematic framework for identification and formalism of 

various problems and processes associated with matching. CHAPTER 4, CHAPTER 5, 

CHAPTER 6, and CHAPTER 7 present four case studies related to different instances of 

matching in production and supply, manufacturing and assembly, clustering and team 

formation, and service enterprises. Each case study includes definitions and background, 

mathematical models, solution methodologies, and numerical experiments and analyses. 

CHAPTER 8 summarizes the dissertation, and outlines recommendations for future 

research. 
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CHAPTER 2. BACKGROUND�MATCHING CHALLENGES AND SOLUTIONS 

Matching is a problem that has been widely studied and addressed in various disciplines 

with different, and not necessarily consistent, terminologies, assumptions, characteristics, 

constraints, and objectives; each with certain features and applications. Examples include, 

but are not limited to,  

� Manufacturing: Production planning; Scheduling; Assembly line balancing; Group 

technology; Shop floor control; 

� Supply and logistics: Supplier selection; Facility location; Warehousing; 

Remanufacturing; Reverse logistics; 

� Communications and networking: Telecommunication; Power systems; Grid 

computing; Sensor clustering and networking; Swarm robotics; 

� Transportation and routing: Air traffic control; Train coupling and sharing; Vehicle 

routing; Online travel agencies (bidding; customer sharing); Precision farming 

(mobile robot routing for farming and sensing); 

� Service: Market design (students-colleges; interns-hospitals; body organs-patients); 

Healthcare (resident matching; doctor sharing); Project management; Social 

networks (teaming; partnership).  

This chapter reviews different extensions of matching problems over the last 60 years, from 

the original assignment problem to more advanced instances with various formulations, 



14 

 

computational complexities, and applications. Several practical applications along with 

solution approaches are addressed. The purpose of this review is to highlight the 

significance of the proposed research concerning different dimensions of best matching 

problems, and development of efficient algorithms and protocols for solving them1.  

2.1 Matching Problem Structures and Characteristics 

The original matching problem appeared in an article by D. F. Votaw and A. Orden in 1952 

on providing exact solution procedures for classification and assignment of personnel to a 

set of jobs. It was later formalized and presented as the assignment problem in an article 

by Harold W. Kuhn in 1955 on the application of the Hungarian Method for solving the 

assignment problem. In this dissertation, without loss of generality and consistency with 

literature, I refer to the assignment problem as a special class of matching problems. The 

���� �����	
��
��� 
��	�
���
	 ��
� ��� �������� ����
 �����	
���
����� ���
� ����
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	� ����
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	���� �����

�������  ��� �����

�
	! ��

not all-inclusive, and restricts the problem to unidirectional two-sided matching, while 

many instances of matching problems involve bidirectional relations between the matching 

sets. 

The original assignment problem involves one-to-one matching between two sets 

of individuals, where the sizes of the sets are equal, and the objective is to minimize the 

total cost of assignment (see Model (M1.1) in CHAPTER 1). Since the development of the 

                                                 
1  Additional reviews are reported in the following chapters related specifically to the case studies. 
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first problem, several variations of it have been proposed and investigated in literature 

(Pentico, 2007). The most popular extensions are summarized below.  

1. Bottleneck matching. This extension deals with the objective of the classic problem, 

minimizing the maximum cost of matching (or, maximizing the minimum 

satisfaction degree). Some application examples of bottleneck matching 

(Ravindran and Ramaswami, 1977) are (1) how to match printing jobs and press 

machines in order to minimize the makespan (scheduling), (2) how to transport 

perishable goods from warehouses to markets without spoilage, or military supplies 

from warehouses to command posts in case of emergency. For a maximization 

problem (e.g., Model (M1.1) in CHAPTER 1), bottleneck matching maximizes the 

minimum satisfaction degree of individuals, i.e., 

 � �
,

max min .ij ij
i I j J

P �� �
 (2.1) 

2. �K matching. The focus of the �K matching is to find a set of matches for which the 

sum of the K most costly matches is minimized (Grygiel, 1981). 

3. Balanced matching. Similar to the bottleneck and �K matching, this extension 

minimizes the gap between the maximum and minimum satisfaction degrees 

(Martello, 1984). Balanced matching has many practical applications (Duin and 

Volgenant, 1991) such as (1) cooperation between competitors on the construction 

of a communication network with the objective of minimizing the gap between the 

maximum and minimum construction and future maintenance cost, and (2) 

matching patients with different degrees of condition severity to different test 

groups such that the gap between the maximum and minimum severity conditions 
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is minimized. In a maximization problem, balanced matching minimizes the gap 

between the maximum and the minimum satisfaction degrees as follows: 

 � � � �� �,,
min max min .ij ij ij ij

i I j Ji I j J
P P� �� �� � �  (2.2) 

4. Minimum deviation matching. Similar to the balanced matching but with a slight 

difference, the minimum deviation matching problem attempts to minimize the gap 

between the average and minimum satisfaction degrees (Gupta and Punnen, 1988). 

An application example is matching tasks and machines in a project with multiple 

independent phases, where the busy machines cannot be matched to the tasks of 

other phases until the current process is finished, and the objective is to minimize 

the machines idle times (Duin and Volgenant, 1991). In a maximization problem, 

minimum deviation matching minimizes the gap between the average and 

minimum satisfaction degrees as follows: 

 � 	min min .ij ij ij ij ij
i I j J i I j J

P P
 
 
� � � �
� 
� �� �� ��� ��  (2.3) 

5. K-cardinality matching. This problem instance involves two-sided matching 

between the sets of tasks (I) and agents (J), where (1) |I| � |J|, and (2) only K pairs 

of tasks and agents (K < |I|, |J�� ��� �� �� ���� �! "#�$$%&�'�� �(! )����$$�* +,,-�.
Suggested applications by the authors include matching workers and machines, 

where only a subset of the workers and machines need to be matched, and assigning 

time slots on a communications satellite being used to transmit information from |I| 

earth stations to |J| different earth stations. 

6. Agent qualification. This is a particular case of the problem with side constraints 

(i.e., resource-constrained matching) where not every agent is qualified to be 
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matched to every task (Caron et al., 1999), and the objective is to maximize the 

overall satisfaction degree of all elements. The agent classification assumption, 

however, can be incorporated in the original problem by assigning zero preferences 

to the unqualified agents. Another alternative approach for modeling this problem 

instance is fractional programming (a.k.a.,  fractional matching problem), where 

the conditions for agent qualification are incorporated in the objective function 

through a fractional term (Shigeno et al., 1995) 

7. Lexicographic bottleneck matching. This problem instance is based on the 

bottleneck matching problem, but focuses on the costs of all matches other than the 

costliest match, i.e., minimization of the second costliest, third costliest, etc. match, 

in addition to focusing on the costliest match (Burkard and Rendl, 1991; 

Sokkalingam and Aneja, 1998). 

8. Semi-matching. A basic assumption of the original matching problem is that all 

tasks and agents are unique. Semi-matching problem deals with instances where 

some elements of one set (either tasks or agents) are identical while the elements of 

the other set are unique (Kennington and Wang, 1992; Volgenant, 1995). Examples 

include manpower planning, scheduling, capital budgeting and planning, and 

project planning (Kennington and Wang, 1992). This extension, however, can be 

modeled by the original problem, where the preference values of identical elements 

of one set over the elements of the other set are equal. The only purpose of this 

extension is to reduce the computational complexity of the problem through 

restructuring the problem and the solution procedure regarding identical elements 

(Volgenant, 1995). 
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9. Categorized matching. This refers to instances where the elements of one set (e.g., 

tasks) are categorized in different groups and can be assigned to the elements of the 

other set (e.g., agents) based on a set of inter-group and/or intra-group sequences 

(Punnen and Aneja, 1993). This problem is indeed analogous to task assignment 

with precedence relations (e.g., assembly line balancing). The problem objective 

can take any of the aforementioned (or similar) instances. This class of problems 

will be further elaborated in the case study on tool sharing in collaborative assembly. 

10. Multicriteria matching. In many problem instances, there are multiple criteria that 

must be considered in finding the optimal solution. Multicriteria matching 

problems are typically classified into the following two approaches: 

� Combining criteria into one, where all criteria are to be considered 

simultaneously (Yuan et al., 1992; Geetha and Nair, 1993; Scarelli and Narula, 

2002). An example of this case is the National Resident Matching Program, 

where the graduates of medical schools must be matched to hospitals for 

internships, based on several evaluation criteria (Yuan et al., 1992). Parametric 

methods such weighted functions of all criteria are typically used in this case 

for defining the preferences (Scarelli and Narula, 2002). However, the decisions 

based on parametric approaches are not robust and depend highly on the 

expertise of the decision-maker. 

� Considering criteria sequentially, which implies instances where based on their 

importance, criteria are considered in sequences. For example, Lee and 

Schniederjans (1983) considered the problem of re-matching remedial 

education teachers from the schools at which they taught in the morning to the 
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schools at which they were to teach during the afternoon. The matching criteria 

were the costs of travel between the schools, the mutual preferences of teachers 

��� �������	 ��� 
�� ����

����
���� �� 
�� 
�������� ������������ 

11. Capacitated matching. This problem deals with instances where the elements of 

one set (e.g., agents) have limited resources, and the elements of the other set (e.g., 

tasks) take specific amount of resources if matched to each agent of the first set. 

Examples include production/service capacity, budgetary limitations, degree of 

technical training of personnel, and time restrictions. 

12. Quadratic assignment. This problem is formally defined as follows. There are two 

sets of facilities and locations, with the same size. A distance for each pair of 

locations and a flow for each pair of facilities are specified. The problem is how to 

match facilities and locations such that the sum of the distances multiplied by the 

flows is minimized. Similar to the majority of the extensions discussed above, this 

problem is also involved with the objective of assignment. An example is the 

assignment of doors on the opposite sides of a dock facility to the incoming and 

outgoing trucks, and the items in the incoming trucks are to be transported directly 

to the outgoing trucks, where the objective is to minimize the total travel distance 

for the forklifts performing the transportation (Tsui and Chang, 1992). 

13. Robust matching. This problem instance deals with the matching decisions under 

uncertainty, where the robust approach aims to provide solutions that are close to 

optimal given any input scenario (Kouvelis and Yu, 1997). The idea is to identify 

appropriate robustness scenario out of the following options: 
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� Absolute robust, which maximizes the minimum overall satisfaction degree, 

over all possible scenarios. 

� Robust deviation, which finds the best worst-case deviation from optimality 

considering all possible parameter value scenarios. 

� Relative robust, which finds a solution that gives the best worst-case percentage 

deviation from optimality given all possible parameter value scenarios. 

14. Generalized matching. This extension involves problems in which the elements of 

one set (e.g., agents) can be matched to more than one element from the other set 

(e.g., tasks), i.e., one-to-many matching. Applications of generalized matching 

problem include (Cattrysse and Van Wassenhove, 1992) vehicle routing, fixed-

charge location problems, grouping and loading in flexible manufacturing systems, 

scheduling projects, allocating storage, designing communication network, 

assigning jobs to computers, scheduling variable length TV commercials, and 

assigning ships to overhaul facilities. The extensions of this problem include 

multiple resources for each agent (Campbell and Langevin, 1995; Lee and Kim, 

1998; Nowakovski et al., 1999) along with bottleneck generalized matching 

problem (Martello and Toth, 1995; Chang and Ho, 1998), and quadratic generalized 

matching problem (Bokhari, 1987), both as extensions of the equivalent original 

problem. 

15. Multi-dimensional matching. This extension involves matching the elements of 

three or more sets such as jobs-workers-machines or students-teachers-classes (i.e., 

timetabling problem). Some of the aforementioned extensions of the classic 2D 

problem have also been generalized to multi-dimensional problems such as 
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bottleneck multi-dimensional matching (Malhotra et al., 1985; Vartak and Geetha, 

1990; Geetha and Vartak, 1995). The most common instance of this problem is 3D, 

and an interesting version is to add time, as the third factor to the classic 2D problem, 

i.e., assignment of agents to changing tasks over time. Examples are assignment of 

bus drivers to routes (Carraresi and Gallo, 1984) or medical residents to rotations 

(Franz and Miller, 1993) over time. A limitation and open question, however, is 

that integer timeslots must be considered, which may influence the optimality of 

results.  

Table 2.1. Matching extensions and their classification with respect to the three 
dimensions of matching. 

Extension 
Dimension 

Sets Conditions Criteria 
Bottleneck matching   � 

�K matching   � 
Balanced matching   � 

Minimum deviation matching   � 
K-cardinality matching �   

Agent qualification   � 
Lexicographic bottleneck matching   � 

Semi-matching �   
Categorized matching  �  
Multicriteria matching   � 

Resource-constrained matching  �  
Quadratic assignment   � 

Robust matching   � 
Generalized matching �   

Multi-dimensional matching �   

Table 2.1 summarizes the aforementioned extensions of the matching problem and their 

classification with respect to three main dimensions of matching problems; sets, conditions, 

and criteria. As observed, the majority of extensions are concerned with the matching 



22 

 

criteria and sets characteristics. The extensions on matching conditions are mostly involved 

with resource constraints and precedence relations (i.e., categorized matching). These 

findings are important in characterizing the generic taxonomic framework for matching, as 

will be discussed in the next chapter. 

2.2 Methodologies 

The generalized matching problems are NP-hard1. Thus, development of computationally-

efficient algorithms is critical, especially in applications with highly dynamic and 

unpredictable domains (where the optimal solution must be calculated quickly and 

frequently). Hundreds of algorithms have been developed and examined for decades for 

solving different instances of the matching problem. Matching algorithms can be 

categorized into four major classes of exact, heuristic, approximation, and relaxation. Some 

of the most popular algorithms are briefly described below. 

1. Hungarian method. The Hungarian method is a combinatorial optimization 

algorithm that solves the original two-sided one-to-one matching problem in 

polynomial time. The algorithm is based on the duality theorem of linear 

programming as well as combinatorial tools in graph theory. Kuhn named the 

algorithm in honor of two Hungarian mathematicians, Dénes König and Jenö 

Egerváry, whose earlier works provided the basis for the Hungarian method (Kuhn, 

1955). The Hungarian method yields the optimal one-to-one matching between the 

                                                 
1  Sahni and Gonzalez (1976) proved that the assignment of tasks to agents on a one-to-many basis is an NP-

hard problem. Accordingly, every matching problem that can be reduced to this problem is NP-hard as 
well. This spans all the matching problems discussed in this dissertation, except for the original two-sided 
one-to-one matching problem.  
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elements of sets I  and J , based on their respective preference matrix P , where ijP  

denotes the mutual preference of i I�  and j J� . The method is based on the 

following theorem: If a number is added to or subtracted from all of the entries of 

any row or column of a cost matrix, an optimal match for the resulting cost matrix 

is also an optimal match for the original cost matrix (Kuhn, 1955). Since the 

objective of the original algorithm is to minimize the cost of matching I  and J , we 

also assume that the entries of the preference matrix are undesirable (e.g., cost) and 

must be minimized. 

2. Deferred acceptance algorithm. �� ����	 
�����
 ��	� ���

��� ����

���
 ���

��� �����
��� �� ��		������ ��
� ��� ����
�� � !"#$ ��%�
���� �� �
��	���� ����

does not necessarily yield the optimal matching with respect to the mutual 

preferences of individuals, but guarantees stable matching. According to the Gale-

Shapley definition of stability, a matching between sets I  and J  is stable if (1) no 

individual from either set is paired with an unacceptable match from the other set, 

and (2) there is no unmatched pair of individuals who both prefer each other to 

their current matches. The original work of Gale and Shapley was continued by 

several researchers for centralized market design, with applications such as 

matching interns to hospitals, students to colleges, and human organs to recipients 

(Roth, 2008). The deferred acceptance algorithm is suitable for finding the stable 

one-to-one or one-to-many match between the elements of sets I  and J  in 

polynomial time. The algorithm is based on an iterative centralized negotiation 

mechanism, where the elements of one set offer matching proposals in each 
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iteration, and the elements of the other set respond by either accepting, holding, or 

rejecting those proposals. The proposal offering and evaluation mechanisms are 

based on the preferences of the individuals for each other. Hence, the algorithm can 

be executed in two different manners considering who is proposing ( I  or J ), which 

may result in completely different matching results (Roth, 2008). 

3. Lagrangian relaxation. A remarkable number of computationally expensive 

������������ �	�
���
 ��� 
� ������ �
 ���
�� �	�
���
 ����������� 
� � 
����

number of constraints (Fisher, 1981). The Lagrangian relaxation method, due to 

Held and Karp (1970; 1971), is a smart use of this property fo	 
������ ���	��

constrained optimization problems through relaxation of certain sets of 

constraints�those that cause the computational complexity. The idea is to provide 

useful information through approximation by replacing strict inequalities with 

penalty costs associated with the violation of those inequalities using Lagrange 

multipliers. The Lagrangian relaxation method is widely studied for solving the 

generalized matching problem with resource constraints (Öncan, 2007). The 

solutions to the relaxed problem provide suitable (upper/lower) bounds to the 

original problem, which can then be used for solving the original problem using 

iterative Lagrangian relaxation method or other methods such as branch-and-bound. 

4. Branch-and-bound method. Branch-and-bound is a powerful discrete optimization 

method developed by A. H. Land and A. G. Doig in 1960. The idea is based on 

systematic enumeration of candidate solutions through state-space search enabled 

by different branching and bounding strategies. A branch produces two or more 
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candidate solutions with minor but known differences from the current solution. A 

bound, on the other hand, calculates a lower or upper bound for the objective value 

that is used for fathoming the candidate solutions. The logical structure of the 

branching and bounding procedures resembles that of a tree (Dakin, 1965). The 

branch-and-bound method provides an efficient (but computationally exhaustive) 

mechanism for solving matching problems (despite having exponential worst-case 

performance). A basic version of this method for solving generalized matching 

problems with resource constraints is discussed by Ross and Soland (1975). 

5. Genetic algorithms. This is a leading metaheuristic introduced by John H. Holland 

�� ��� ���	
�� 
�� ��������� ����� �o the survival of the fittest members of a 

���������� ����� �� �������������� ����������� ����� ������ ����������

���������� �� ����� ����� ������ ����� �������� 
��� � ���������� ������� �������� ���

process of natural selection supported by crossover and mutation operators, as bio-

�������� ���������� !�� ������������ ��� ���������� �! !����� ��!!��������� "enetic 

algorithms can be effectively designed for solving almost all variants of best 

matching problems, including complicated and advanced instances that are not 

solvable by the exact and heuristic algorithms discussed thus far. The challenge, 

however, is to find the best way to (1) encode a solution set into a chromosome that 

represents all necessary properties of the problem, and (2) reproduce new 

populations of chromosomes that lead to the optimal solution in an efficient manner, 

in terms of both computational time and solution quality. This method will be 

discussed in detail through the case studies. 
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6. Greedy Randomized Adaptive Search Procedure (GRASP). GRASP is a 

constructive metaheuristic due to Thomas A. Feo and Mauricio G. C. Resende 

(1989), which progressively (1) constructs greedy randomized solutions, and (2) 

improves them through neighborhood search. The first phase is accomplished by 

storing elements in a restricted candidate list (RCL) using a greedy function, and 

adding them to the solution, one at a time, according to their respective ranks in the 

RCL. In the second phase, the greedy randomized solution is improved via certain 

neighborhood search procedures. This procedure is repeated until the algorithm 

converges. GRASP is an efficient metaheuristic for best matching, especially for 

solving complicated instances such as biquadratic (Mavridou et al., 1998) and 

three-dimensional (Aiex et al., 2005) matching problems. 

7. Ant colony optimization. This is a constructive metaheuristic inspired by the 

foraging behavior of ants in their search for food and the shortest path back to their 

nest. The original algorithm was developed by Marco Dorigo and his colleagues in 

��� ������	 
���� �

� ����� 
�� 
����� ������� �
� �
����� ����
�� 
���������
�

and control problems. ACO is based on primitive behaviors of individual ants, 

which lead to highly intelligent behavior at the scale of colony or swarm, through 

efficient interaction. The pheromone functions as an indirect interaction 

mechanism between the ants, enabling a sign-based stigmergy that signals both the 

food source and a suggested path. Since pheromone is accumulated faster on shorter 

paths, however, this behavior of ants enables a reinforcement learning mechanism 
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that eventually leads to the detection of the shortest path. Ant colony optimization 

is an efficient metaheuristic for solving various hard best matching problems. 

8. Tabu search. This is a memory-based local search metaheuristic invented by Fred 

W. Glover in 1986. The neighborhood search follows certain prohibition strategies 

that mark previously visited solutions (either temporarily or permanently) as 

forbidden or tabu, in order to prevent cycling and improve the efficiency of search 

mechanism (Glover, 1986). The algorithm starts with an initial solution and 

continually explores through its neighborhood while exploiting the knowledge of 

tabu points, until a set of convergence criteria is satisfied. Similar to the other 

metaheuristics discussed so far, tabu search can be used for solving an extensive 

range of best matching problems. A detailed application of tabu search for solving 

three-dimensional matching problems will be discussed in the subsequent chapters 

on case studies. 

The literature of matching problems offers several algorithms and methodologies 

for solving different instances of matching (Table 2.2); however, most of those standard 

approaches (e.g., exact algorithms; relaxation methods) are limited to a limited range of 

problems and are very difficult to generalize for solving more advanced and complicated 

instances. Hence, our approaches in this research for solving new (and indeed more 

complicated) instances of matching are centered around heuristic and metaheuristic 

methods, as will be discussed in the next chapters. The reason is that these methods are 

������ �����	
�� ��� �
��
�� 
�����
�
	� ����	
��� 	� ��
��� ��	
�
�
	
�� �������� ��

trading optimality, completeness, and accuracy for computational efficiency. Heuristics are 
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usually ad hoc, suitable for particular problem instances. Higher involvement of intuition 

��� ������	�
 ���
�
-of-������ provides heuristic developers with more flexibility to 

������ ��� �� ��� ���� ��� 	����� 
�
�����
 that may be very difficult to prove in theory, 

but are extremely efficient in practice. 

Table 2.2. Solution approaches for best matching. 

Context Method Reference 

Approximation 
methods 

Approximation scheme Cohen et al. (2006) 
Simple heuristics Wilson (1997) 

Set partitioning heuristic Cattysse et al. (1994) 
Lagrangian relaxation Jeet Kutanoglu (2007) 

Heuristics/ 
Metaheuristics 

LP relaxation based heuristic Trick (1992) 
Tabu search Yagiura et al. (2004) 

Simulated annealing Osman (1995) 
Genetic algorithms Lorena et al. (1999) 
Neural networks Monfared and Etemadi (2004) 

Ant colony optimization Lourenc and Serra (2002) 
GRASP Lourenc and Serra (2002) 

Relaxation 
methods 

Linear programming relaxation Bender and van Nunnen (1983) 
Lagrangian relaxation Lorena and Narciso (1996) 

Lagrangian decomposition Yagiura et al. (1999) 
Variable depth search heuristics De Farias et al. (2000) 

Exact methods 

Polyhedral analysis De Farias et al. (2000) 
Branch and bound algorithms Haddadi and Ouzia (2004) 
Branch and price algorithms Savelsbergh (1997) 

Branch and cut and price 
algorithm 

Pigatti and Aragoa (2004) 
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2.3 Applications  

As discussed in the beginning of this chapter, applications of best matching are diverse, 

covering various production, manufacturing, and service industries. Scheduling (e.g., 

machine; computational grids; workforce planning; batching; load balancing), 

transportation and routing (e.g., vehicle routing), telecommunication, production planning 

(e.g., batch loading, group technology, order selection, lot scheduling), facilities layout, 

and supply network design and logistics (e.g., demand partitioning, sourcing, market 

clearing) processes can be regarded as instances of best matching in practice. Some 

examples of two-sided processes are (Cattrysse and Van Wassenhove, 1992) fixed-charge 

location problems, grouping and loading in flexible manufacturing systems, scheduling 

projects, storage allocation, designing communication network, assigning jobs to 

computers, scheduling variable length TV commercials, and assigning ships to overhaul 

facilities. Classic examples of problems with more sets involved include time-based 

allocation of bus drivers to routes (Carraresi and Gallo, 1984) or medical residents to 

rotations (Franz and Miller, 1993), followed by more advanced examples such as design 

of cyber-physical distributed systems or large-scale networks of multi-national 

corporations. Table 2.3 summarizes some practical applications of two-sided matching in 

various domains.  
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Table 2.3. Some practical applications of matching* (Öncan, 2007). 

Problem Matching entities Reference 
Project management Labors, Jobs Drexl (1991) 

Load balancing Machines, Jobs Harvey et al. (2006) 
Aeromedical routing Flights, Patients Ruland (1999) 

Vehicle routing Vehicles, Cities Baker and Sheasby (1999) 
Single egress selection Edge links, Prefixes Bressoud et al. (2003) 

Wireless networks Base stations, Terminals Barbas and Marin (2004) 
Batch loading Batches, Jobs Dobson and Nambimadom (2001) 

Capacity planning Periods, Batches Mazzola et al. (1989) 
Machine assignment Cells, Machines Cheng et al. (1996) 

Group formation Machines, Parts Shtub (1989) 
Storage assignment Locations, Items Lee (1992) 
Dynamic ordering Periods, Orders Lee and Kim (1998) 
Database partition Processors, Partitions Boffey (1989) 

Location-allocation Suppliers, Customers Ross and Solland (1977) 
Land use allocation Activities, Land parcels Cromley and Hanink (1999) 
Worker allocation Departments, Workers Campbell and Diaby (2002) 

Power management Voltage levels, Tasks Yu and Prasanna (2003) 
Stock management Demands, Stocks Privault and Herault (1998) 

Telescope scheduling Intervals, Activities Nowakovski et al. (1999) 
Resource scheduling Institutions, Activities Zimokha and Rubinstein (1988) 

Cane supply decisions Intervals, Paddocks Higgins (1999) 
Demand partitioning Facilities, Products Benjafaar et al. (2004) 

Snow disposal Disposal/removal sites Campbell and Langevin (1995) 
Single sourcing Warehouses, Customers Freling et al. (2003) 

Third party routing Depots, Customers Jalisi and Cheddad (2000) 
Market clearing Asks, Bids Kalagnanam (2001) 

Maximal covering Sites, Customers Klastorin (1979) 
Labor force scheduling Manpower, Sections Littschwager and Tcheng (1967) 
Dairy farm allocation Factories, Suppliers Foulds and Wilson (1997) 
Capacitated clustering Seeds, Customers Shieh and May (2001) 
Production planning Agents, Tasks LeBlanc et al. (1999) 

* Öncan surveyed assignment problems that are presented in this research as matching problems, as 
described earlier in this chapter. 

2.4 Concluding Remarks 

The conclusions drawn from what we learned from our literature review are threefold. First, 

best matching�as mentioned in the beginning of the discussion�is a broad problem, 
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spanning several disciplines including engineering, mathematics, economics, and 

management. This further highlights the significance of the problem and the impact of our 

contribution on these various disciplines. It is indeed a great opportunity for developing 

new ideas, problems, and methodologies through systematic taxonomy and analogical 

comparisons between different problems that may be completely different in nature�as 

outlined in RQ1. In addition, there is already an extensive pool of algorithms and solution 

approaches, which can inspire us for developing efficient algorithms and solution 

procedures for solving new problem instances that we identify and formulate (see RQ2 and 

RQ3). The last but rather the most important remark is that�as shown in Table 2.1�the 

research on matching problems and processes is still in progress. Its shortcoming becomes 

even more clear after defining and structuring the taxonomic matching framework 

(CHAPTER 3), as the �big picture� for comparative analysis and understanding of different 

instances of matching. This further highlights the lack of sufficient attention to some 

process characteristics that may significantly influence the outcomes of matching in 

practice (see RQ2). Motivated by this review, a novel taxonomic framework, the PRISM 

Taxonomy of Best Matching, will be presented in the next chapter as a theoretical 

foundation for addressing emerging matching problems in various manufacturing and 

service domains.  
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CHAPTER 3. METHODOLOGY�BEST MATCHING THEORY AND MODELS 

This chapter presents a taxonomic framework for all the aforementioned (and similar) 

problems in manufacturing and service domains that can be recast as best matching 

problems� ��� �����	
��� 
����� ���� ����� ���
�
�� 
� ���� ���
������ �����
 ��

at the PRISM (Production, Robotics, and Integration Software for Manufacturing and 

Management) Center of Purdue University, formalizes best matching problems with 

respect to 3+1 dimensions: D1, sets; D2, conditions; D3, criteria; D+, time, progression 

(Figure 3.1). The PRISM taxonomy provides a systematic framework for synthesis of 

matching processes in distributed and collaborative/competitive systems. The framework 

addresses collaboration as one of the major conditions of matching processes, and models 

and formulates two principles of CCT (Collaborative Control Theory), association-

dissociation and dynamic lines of collaboration, by incorporating the additional dimension, 

D+, in the decisions. The remainder of this chapter elaborates on the 3+1 dimensions of 

the PRISM taxonomy of best matching along with several examples and illustrations. 

3.1 The PRISM Taxonomy of Best Matching 

A taxonomic framework is developed to characterize and formalize matching processes 

with respect to 3+1 dimensions (Figure 3.1), and provide a holistic view of matching 

problems with respect to the research questions outlined in CHAPTER 1. 
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3.1.1 D1: Sets 

This dimension formalizes the individuals to be matched and their pairwise relations, and 

classifies them into two or more sets. More specifically, D1 defines: 

� The number of the sets (N). Individuals may be classified into two (e.g., tasks-

processors; students-schools) or more (e.g., jobs-machines-operators) sets. 

� Pairwise relations (R). The number of individuals in each set may be equal (e.g., 

bolt-nut) or different (e.g., interns-hospitals). Each individual may be matched to 

one or more individuals from the other set(s). Specifically, the pairwise relations 

between two sets of individuals may be one-to-one (e.g., organs-patients), many-

to-one (e.g., tasks-computing resources), or many-to-many (e.g., suppliers-

customers). 

This is one of the aspects of matching problems that have been extensively studied. The 

simplest case is when 2N �  (i.e., two sets) and : 1:1R �  (i.e., one-to-one relation and thus 

equal size). This is indeed the original assignment problem introduced by Votaw and Orden 

and solved by Kuhn via the Hungarian method. Other permutations of N  and R  lead to 

other (more complicated) instances including multi-dimensional and generalized matching 

(see CHAPTER 2). Nevertheless, the diversity of matching problems is not limited to these 

limited instances, and is indeed as broad as the variety of several other conditions that some 

of which are described next. 
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3.1.2 D2: Conditions 

Depending on the context and nature of the problem, best matching processes are 

sometimes conditioned by certain characteristics, requirements, and/or constraints. These 

conditions, if disregarded, may lead to misleading, inappropriate, or even infeasible 

matching results. In spite of their significant impact, however, best matching conditions 

(i.e., D2) have not been properly addressed in literature compared to the other two main 

dimensions of best matching (i.e., D1: sets; D3: criteria). The second dimension of the 

PRISM taxonomy of best matching therefore formalizes various conditions that may be 

involved in best matching processes. Accordingly, the D2 corresponding to a certain best 

matching process may involve one, some, or all of the conditions below (or other 

conditions not mentioned here). 

3.1.2.1 Resource Constraints 

Resource-constrained matching refers to instances where the elements of set J, for example, 

have limited resources, and each element of set I takes specific amount of resources if 

matched to an element of set J (e.g., jobs assigned to machines). This is a classic problem 

with many practical applications (e.g., scheduling, batching, supplier selection) and has 

been addressed in assignment problems through side constraints (Mazzola and Neebe, 

1986). In this class of matching, there may be no limit on the number of matches for the 

elements of set J, but the number of matches will indeed depend on the availability of their 

resources. Let jb  denote the level of available resources of j J� , and ijr  be the amount of 

resources demanded by i I�  if matched to j J� . This condition is incorporated in the 

matching by process by adding a resource constraint to the model. For example, the many-
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to-one matching between sets I and J with resource constrains and the objective of 

maximizing the overall satisfaction (OS) can be formulated as follows. 

M:1 / RC / +, OS 
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 (M3.1) 

Several instances of resource-constrained matching will be discussed through the case 

studies.  

3.1.2.2 Precedence Relations  

This condition occurs where there are precedence relations between the elements of set I 

regarding their matching to the elements of set J that are heterogeneous and can be matched 

to more than one element of set I. The precedence relation constraint between two elements 

i, i' 
 I regarding the elements of set J is formulated as follows (Note: It is assumed that J's 

are numbered from 1 to |J|): 

 , , ,i j ij i
j J j J

j j i I i PR� ��

 


�� � � �� �  (3.1) 

where PRi denotes the set of immediate predecessors of element i 
 I. That is, if i' 
 I has 

been matched to an element j 
 J, i 
 I can be matched to either the same element (j 
 J) 

or the next elements (j' 
 J, j' > j). Matching with precedence relations may reduce the 

options of elements with predecessors, if the number of matches for the elements of the 
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target set is limited, or the resources of the target set are limited (resource-constrained 

matching). For example, a many-to-one resource-constrained matching between sets I and 

J, with precedence relations between I's, and overall satisfaction degree as the matching 

criterion is formulated as follows: 

M:1 / RC, PR / +, OS 
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Resource-constrained matching is a special case of this problem instance�matching with 

precedence relations can be reduced to resource-constrained matching by setting all PRi = 


 for all i � I. This matching condition will be further investigated through the second case 

study. 

3.1.2.3 Resource Sharing 

This condition addresses an extension of resource-constrained matching where the 

elements of the set with limited resources are allowed to laterally share resources with each 

other in case some of them have extra resources while the others have shortage of resources. 

The resource constraints in Models (M3.1) and (M3.2) limit the number of I's that can be 

matched to each element of set J. Hence, some elements of set I may remain unmatched 
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due to resource shortage. On the other hand, some elements of set J are likely to end up 

with extra resources in case their demand is less than their capacity. Let I1 and I2 denote 

the sets of matched and unmatched elements of set I, respectively. Then, the amount of 

extra resources of j � J can be calculated as follows: 

 
1

, ,j j ij ij
i I

l b r j J�
�

� � � ��  (3.2) 

where 

 2, , .j ijl r i I j J	 
 � �  (3.3) 

The level of idle resources is actually equal to the slack variables of the resource 

constraints. Resource constraints �
� ��
� �� ���������
��� �����������
���� ��

resources�the elements i � I2 are left unmatched due to local resource shortage, while 

some elements of j � J have extra resources lj. This limitation can be resolved by enabling 

the elements of set J (the suppliers) to laterally share and integrate their resources in order 

to serve (be matched to) more elements of set I as a whole. It will be shown through the 

case studies that matching with resource-sharing leads to higher resource utilization and 

demand fulfillment rate by matching more elements from the resource demanding set (i.e., 

I) to the elements of the resource-sharing set (i.e., set J). In mathematical terms, resource-

sharing is represented as follows: 

 �  
1\{ }

, ,jj j j j ij ij
j j j i I

s s b r j J!" ""# #
$ % $ & '( (  (3.4) 

where jjs )  denotes the amount of resources j shares with j'. In the next chapters, it is proven 

mathematically that matching with resource-sharing leads to higher resource utilization, 

demand fulfillment, and stability, compared to matching without resource-sharing. 
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Matching with resource sharing will be investigated in detail in the next chapters (case 

studies). It will be shown that as the costs of resource-sharing may differ from one element 

of set J to another, it should be optimized in addition to the main objective of matching. 

Given these considerations, a resource-constrained matching between sets I and J with 

resource sharing and the objectives of maximizing the overall satisfaction (including the 

total cost of resource sharing) is formulated as follows: 

M:1 / RC, RS / +, OS 
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Matching with resource-sharing is extensively investigated through the case studies in 

supply networks, assembly systems, and collaborative networked organizations. It is 

proven that best matching between suppliers and customers considerably improves the 

quality of resource-sharing decisions in collaborative networks of enterprises, in terms of 

total collaboration cost and service level. In other words, matching is applied for 

optimization of resource-sharing decisions and protocols. Moreover, it will be proven that 

the combination of best matching and resource-sharing improves the stability of supply 

networks. It is also shown that resource-sharing has substantial impact on assembly 

systems in terms of resource utilization and line balanceability. 
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3.1.2.4 Interdependent Preferences 

The notion of interdependencies among preferences has been investigated in utility theory 

(e.g., Cabrales and Calvó-Armengol, 2008), where the preferences of each entity depends 

on the consumption or well-being of the other entities in their neighborhood. In this setting, 

entities may be altruistic or envious by the utility of the other entities. This idea is the 

initiative for the development and analysis of interdependencies among preferences in 

matching. Our definition of interdependent preferences is somewhat different from what 

has been discussed in the utility theory. Best matching with interdependent preferences 

refers to instances where the preference of i � I for j � J is influenced by and represented 

as a function of matching of i' � I, i' � i, to j � J. For instance, in team formation, the 

preferences of an entity over different teams may be influenced by the members of different 

teams. Such influences (if any), may increase or decrease the preference of an element over 

another element. The interdependent preference of i � I and j � J can be formulated as 

follows: 
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where 
i i� �  denotes the one-sided relation between i  and i��it takes positive/ negative/zero 

value, if i  is altruistic/envious/neutral about i� ; i.e., i I�  is  

� Altruistic about i I�� , i i� � , if 0i i� �  ; 

� Envious about i I!" , i i# $ , if 0i i% & ' ; 

� Neutral about i I() , i i* + , if 0i i% & , . 
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In this context, altruism and envy respectively represent situations where the preference of 

an element of set I for an element of set J is increased or decreased, if another element of 

set I is matched to that element of set J. The mathematical formulation of matching with 

interdependent preferences (i.e., �
ijP ) is the same as matching without any 

interdependencies between preferences (i.e., ijP ), except that the preferences are not fixed 

but functions of the decision variables i j� � . For example, many-to-one matching process 

with interdependent preferences is formulated as the following Quadratic Assignment 

Problem (QAP): 

M:1 / RC, IP / +, OS 

 

� �

max ,

s.t. , ,

1, ,

0,1 , , .

ij ij ij i i i j ij
i I j J i I j J i I

ij ij j
i I

ij
j J

ij

P P

r b j J

i I

i I j J

� � � �

�
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 (M3.4) 

Model (M3.4) is indeed a special QAP formulation. More elaborate definition, formulation, 

and analysis of this model along with its applications in clustering and team formation will 

be presented in one of the case studies presented in the next chapters. Interdependencies 

between preferences may take forms other than what were discussed in this section. The 

preference function may not necessarily be a linear function of mutual influences of 

����������� �� ���� ������� ��� �������! "�� ��##�� �������������� of all variants of 

matching with interdependent preferences, however, is in the nature of such 

interdependencies$that the mutual preference of two individuals may be changed, if 
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another matching takes place. The layered matching introduced next is another example of 

interdependent matches, where the quality of match in the current layer is a function of 

how individuals were matched in the previous layer(s). 

3.1.2.5 Other Extensions 

The conditions and process characteristics of matching indeed require further investigation. 

In line with RQ1, our aim is to identify and formulate new instances of matching with 

unique process characteristics, requirements, and objectives. An example of such 

conditions is layered matching, where the elements of two (or more) sets resulting from 

parallel and independent matching at one level are two be matched at a subsequent level. 

A practical example of this matching instance could be series-parallel assembly of 

component parts, where the objective is to find the best geometric or shape matching such 

that the overall quality of final products is improved. 

3.1.3 D3: Criteria 

Various criteria and objectives have been used in different studies for identifying the best 

match and distinguishing it from other potential matches. In this section, the most common 

matching criteria are reviewed and formalized. The formulations are standardized through 

translation of matching criteria into preference values normalized between zero and one. 

Depending on the application, however, the preference values may be replaced with real 

parameters, e.g., cost, time, distance. The �best match� is essentially distinguished from 

other potential matches based on a set of criteria (one or more). The goal is then to enhance 

the performance of the system with respect to the given criterion/criteria by optimally 
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matching the distributed individuals. Best matching criteria are diverse and depend on the 

context and application domain�from traditional cost, time, efficiency, and productivity 

factors to emerging e-Criteria (Nof, 2007) such as: 

1. Integrability. Ability to integrate data from a number of distributed entities and 

increase its usefulness. 

2. Connectivity. Type, level, and quality of internet-supported connections between 

distributed operating systems, and application and network layers. 

3. Agility. Ability of a system, at individuals or network level, to respond and adapt to 

changes in real-time. 

4. Scalability. Ability of a process, system, or network to handle increasing amount 

of tasks and adapt to growth. 

5. Reachability. Effectiveness of interconnections and interactions between 

individuals in a distributed network. 

6. Viability. Ratio of the cost of operating/sustaining distributed individuals to the 

rewards gained from their service. 

7. Autonomy. Level of delegation of authority, task assignments, and decentralization 

in distributed networks. 

8. Dependability. Probability of a task to be successfully executed�system 

availability; reliability; sustainability; integrity; maintainability. 

9. Resilience. Ability to survive the unforeseen circumstances, risks, disruptions, and 

high impact events (a.k.a., transformability and adjustability). 
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Although the definitions of some criteria may be completely different, their 

implications are the same�desirable criteria (e.g., agility) must be increased while 

undesirable criteria (e.g., cost) must be decreased. Hence, without loss of generality, all 

matching criteria are formalized as preferences of individuals for each other. Specifically, 

the quality of matching individuals i I�  and j J�  is represented by their mutual 

preference as 

 , , ,ij i i j j j iP w p w p i I j J� �� � � � � � �  (3.6) 

where i jp	  and j ip 
  denote the normalized preferences of i I�  for j J� , and j J�  for 

i I� , respectively. Coefficients 
iw  and jw , 1i jw w
 � , denote the relative weights of 

individuals i I�  for j J�  in defining the mutual preferences. The third dimension of the 

PRISM taxonomy of best matching formalizes the matching criteria based on the mutual 

preference scores. Specifically, D3 provides information on the number and type (desirable: 

���� ������������ � �! "# $��%���� &NT) along with the formulation of the respective 

objective function (FN) (see CHAPTER 2 for some of the formulations): 

' Single criterion 

1. Overall Satisfaction (OS). This classic function maximizes the overall 

satisfaction of preference scores, e.g., minimizing the total cost of production 

( D3: ,OS( ) ); maximizing the overall service level ( D3: ,OS* + ); minimizing 

the total transportation time ( D3: ,OS* , ). 
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2. Bottleneck (BN). This function maximizes the minimum satisfaction degree of 

individuals. Some application examples of bottleneck assignment are 

(Ravindran and Ramaswami, 1977):  

a. Matching printing jobs and press machines in order to minimize the 

makespan ( D3: , BN� � ). 

b. Transportation of perishable goods from warehouses to markets with 

minimum spoilage ( D3: , BN� � ).  

c. Shipment of military supplies from warehouses to command posts in 

case of emergency ( D3: , BN� � ). 

3. Minimum Deviation (MD). This function minimizes the gap between the 

maximum and minimum satisfaction degrees (Martello et al., 1984) or the 

average and minimum satisfaction degrees (Gupta and Punnen, 1988). 

Application examples include (Duin and Volgenant, 1991): 

a. Cooperation between competitors on the construction of a communication 

network with the objective of minimizing the gap between the maximum 

and minimum construction and future maintenance cost ( D3: ,MD� � ).  

b. Allocation of patients with different degrees of condition severity to 

different test groups such that the gap between the maximum and minimum 

severity conditions is minimized ( D3: ,MD� � ). 

c. Assignment of tasks to machines in a project with multiple independent 

phases, where busy machines cannot process the tasks of other phases until 
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the current process is finished, and the objective is to minimize the machines 

idle times ( D3: ,MD� � ). 

� Multiple criteria 

4. Weighted Sum (WS). This function combines the normalized values of all 

criteria into one�with respect to their type (i.e., desirable/undesirable)�and 

optimizes all criteria simultaneously via the unified function. An application 

example is the assignment of referees to football matches in an Italian 

championship (Scarelli and Narula, 2002) based on multiple criteria such as 

reliability, evaluation of fitness, international prestige, and refereed 

matches/number of years worked ( D3: ,WS� ���� ). 

5. Goal programming (GP). This function prioritizes the criteria and considers 

them in sequence, based on certain target values and bounds. An application 

example is reallocation of remedial education teachers from the schools at 

which they taught in the morning to the schools at which they are to teach during 

the afternoon (Lee and Schniederjans, 1983). The matching criteria for this 

matching instance were (a) the cost of travel between the schools, (b) the mutual 

preferences of teachers and schools, and (c) the recommendations of the 

��	
���
� 
������
��
� ����� �	� >> (b) >> (c) ( D3: , LG� ��� ).   

3.1.4 D+: Time, Progression 

The additional dimension of matching (i.e., D+)�according to the PRISM taxonomy�is 

related to situations where the characteristics of one (or more) of the three main dimensions 
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(i.e., D1, D2, D3) undergo changes over time (e.g., the numbers/ characteristics of 

individuals are not fixed). A practical example is matching tasks and computational 

resources in Grid computing, where both the set of tasks to be processed and the set of 

available computational resources vary dynamically. Our proposal for solving this class of 

best matching problem is predictive and proactive solution mechanisms inspired by the 

notion of model predictive control. The idea of predictive best matching is to optimally 

match elements of two or more sets in the current timeslot, while taking into account their 

possible characteristics in the (near) future timeslots. These ideas and concepts will be 

further elaborated throughout the case studies. In mathematical terms, the time dependency 

can be incorporated in the model by adding a time factor t to the model. For example, the 

dynamic resource-constrained many-to-one matching between sets I and J can be 

formulated as follows: 

M:1 / RC / +, OS / DI, ES 

 � �
� �� �
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� �
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 (M3.5) 

3.2 Case Studies�A Synopsis 

Four case studies have been conducted on four important areas related to manufacturing 

and service. In line with systematic specification of matching through the PRISM 

taxonomy, the ultimate goal of these case studies is to shed light on different aspects and 
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dimensions of matching by presenting and formalizing new problems and developing, 

testing, and validating robust procedures for solving them (see RQ1-3). The case studies 

are briefly introduced below (see Table 3.1). 

1. Case 1: Collaborative Supply Networks. Demand and capacity sharing among 

entities within a supply network are common practice, and have become attractive 

strategies for competing and non-competing supply enterprises. Examples include 

airlines, test and assembly factories, and outsourced maintenance and logistics 

providers. The purpose is to maximize profit and resource utilization, enable timely 

delivery to customers in spite of uncertain market demands and unexpected 

capacity shortages, and maximize the overall stability. Demand-capacity sharing 

protocols are defined for the suppliers with capacity shortage to utilize excess 

capacities of other suppliers� ���� ��������	
 ����� 
����	� 
��������� ����	� ����

effectively, while eliminating excess inventory of capacity sharing suppliers. These 

sharing roles vary over time. High frequency of collaboration may impose 

additional costs to the supply network in terms of transactions, negotiations, and 

lateral transshipment of stocks. Best matching is thus the key to minimize the 

collaboration costs through dynamic matching of suppliers and customers with 

�����
� �� ��� 
��������� ����	� �	� ���������� ��������� 
���
��� �� ������ Best 

matching protocol is also applied for finding the best matches between the sharing 

proposals during collaboration negotiations among suppliers. A set of novel mixed-

integer programming formulations is developed for modeling and analyzing the 

combined matching-sharing decisions. The models are then solved for both static 

(w/o D+) and dynamic (w/ D+) cases, and validated using queuing theory, Task 
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Administration Protocols (TAP), and Predictive Best Matching Protocols (PBMP). 

It is shown mathematically and through numerical experiments that the proposed 

collaborative frameworks outperform the previous non-collaborative models in 

terms of resource utilization and stability, and provide dominating strategies in 

terms of optimizing the total profit and service level of the supply network. 

2. Case 2: Collaborative Assembly Lines. A Collaborative Assembly Framework 

(CAF), inspired by the design principles of CCT is developed in this case to 

enhance the balanceability of assembly lines. The notion of the CAF lies in 

dynamic utilization of idle resources to eliminate bottlenecks. The CAF is 

composed of two modules: (1) tool sharing protocol, which makes dynamic tool 

sharing decisions among fully-loaded (i.e., bottleneck) and partially-loaded 

workstations, and (2) best matching protocol, which dynamically matches tasks and 

workstations, and partially- and fully-loaded workstations for tool sharing. A multi-

objective mixed-integer programming model is developed for mathematical 

representation and a fuzzy goal programming approach is applied for optimization 

purposes. The objectives are to minimize the number of workstations, (2) cycle 

time, and (3) the total collaboration cost. The developed CAF is proven to guarantee 

relative balanceability of assembly lines, depending on pairwise tool compatibility 

and tool sharing performance. Moreover, a Collaborative Multi-Agent System 

(CMAS) enhanced with a sharing-matching protocol is developed to execute the 

plan, control the process, and modify the tool sharing decisions, considering 

dynamic changes in the system's operations (i.e., D+). The numerical experiments 

on a set of small-sized case studies repeated and expanded from previous research 
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show superiority of the CAF over the existing non-collaborative approaches in 

terms of line efficiency, utilization, and balanceability. 

3. Case 3: Clustering with Interdependent Preferences. Generalized matching has a 

variety of applications in areas such as team and network design, scheduling, 

transportation, routing, production planning, facility location, allocation, and 

logistics. The problem is indeed analogous to the capacitated clustering problem, 

where a set of individuals are partitioned into disjoint clusters with certain 

capacities. This case study defines, formulates, and analyzes an important behavior 

associated with the generalized matching: The mutual influence of the elements of 

��� ���� ��� �� ��	� ����
�� �
�
�
��	��� �
 ���	��� �� ��� ���� ������� �
 ���

other set. Such preferences are referred to as interdependent preferences (IP). A 

binary program is developed to formulate the problem and provide the basis for 

analyzing the impact of IP on generalized matching decisions from two 

perspectives: Optimal cluster formation (fixed sets) and evolution (emergent sets). 

A Genetic Algorithm (GA) and an Evolutionary Algorithm (EA) are then developed 

to handle the complexity of the cluster formation problem, and enable the network 

of clusters to autonomously adapt to random changes, recover, and evolve. Results 

from several experiments indicate (a) significant impact of IP on the optimality of 

cluster formation and evolution decisions, and (b) efficiency of the developed 

����������
� ����
����� �� �������� ��� �
������� 	���������� ��� ��� ���
����

behavior of matching. The experiments also indicate the impact of IP on the 

accuracy and optimality of capacitated clustering decisions. 
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4. Case 4: Collaborative Service Enterprises. The evolution of the Internet, clouds, 

information and communication technologies, and collaboration sciences has 

transformed traditional organizations of entities (e.g., humans; machines; 

enterprises) to highly distributed, internetworked, and collaborative virtual 

(v-)Organizations. The emerging extensions of the notion of cloud computing to 

areas such as manufacturing, business, education, banking, and healthcare have 

enabled more systematic integration, harmonization, and sharing of distributed 

resources for processing of dynamic and diverse pool of tasks. This case study 

contributes to the design of Collaborative Networked Organizations (CNO), in 

terms of location of resources and allocation of tasks in the network, by 

incorporating both the physical and virtual dimensions of CNO in the decisions. 

The problem is then to dynamically find, throughout the CNO, the best locations 

for individual resources (e.g., program; computer; sensor; robot) and the optimal 

allocation of each individual task to proper resources. Collaboration is enabled 

through cloud and cyber-supported communication technologies for sharing 

resources and electronic (e-)Tasks among remote organizations, such that the 

overall service level, network stability, and resource utilization are optimized. The 

problem is referred to as Collaborative Location-Allocation problem (CLAP). A bi-

objective mixed-integer programming formulation is developed for modeling the 

CLAP. Due to its computational complexity of the CLAP, a tabu search algorithm 

is developed with a novel best matching heuristic inspired by the natural justice 

rule (TS-Jr.). Several numerical experiments illustrate, analyze, and highlight the 

unique features of the CLAP and for optimal and efficient (re)configuration of CNO. 
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Table 3.1. Case studies�summary of developments and contributions*. 

Case 
PRISM Mapping (D1/D2/D3/D+) Validated concepts / 

tools D1 D2 D3 D+ 
1. Collaborative 
supply networks 

M:1 RC, RS 
4, �+++, 

OS 
DI 

Network stability / 
TAP, PBMP 

2. Collaborative 
assembly lines 

M:1 
RC, PR, 

RS 
3, � � �, 

GP 
DI 

Line balanceability / 
CAF, CMAS 

3. Clustering with 
IP 

M:1 RC, IP 1, +, OS ES IP / GA, EA 

4. Collaborative 
service enterprises 

M:M:1 RC, RS 
2, +�, 
WS 

DI CLAP / TS-Jr. 

* See Figs. 4.2, 5.2, 6.2, and 7.2 in Chapters 4 to 7. 
CAF: Collaborative Assembly Framework 
CLAP: Collaborative Location-Allocation 
Problem 
CMAS: Collaborative Multi-Agent System 
DI: Dynamic Inputs 
EA: Evolutionary Algorithm 
ES: Emergent Sets 
GA: Genetic Algorithm 
GP: Goal Programming 

IP: Interdependent preferences 
M:1: Many to one 
OS: Overall Satisfaction 
PBMP: Predictive Best Matching Protocol 
PR: Precedence Relations 
RC: Resource Constraints 
RS: Resource Sharing 
TAP: Task Administration Protocol 
TS-Jr.: Tabu Search with natural Justice rule 
WS: Weighted Sum 
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CHAPTER 4. CASE 1�COLLABORATIVE SUPPLY NETWORKS�  

Design and coordination of supply networks is a practical example of resource-constrained 

matching, where�even in the simplest two-tier case�the participants must be matched 

according to a set of criteria. This matching problem is typically on a many-to-one basis, 

implying that each supplier can serve more than one customer but each customer must be 

connected to only one (primary) supplier at any point of time (period). The motivation of 

this case study is to indicate the impact of best matching on the quality of collaborative 

Demand-Capacity Sharing (DCS) activities throughout supply networks. DCS between the 

elements of supply networks is common in practice, and has turned into an attractive 

strategy for competing and non-competing suppliers. DCS decisions help the suppliers with 

capacity shortage, referred to as demand sharing suppliers, utilize the extra capacities of 

other suppliers, referred to as capacity sharing suppliers, in fulfilling their current demand 

more effectively while reducing extra inventories of capacity sharing suppliers. These DCS 

roles vary over time. In spite of their unique advantages, however, high frequency of DCS 

decisions may impose additional costs to the Collaborative Network of Suppliers (CNS) in 

terms of transactions, negotiations, and lateral transshipment of stocks. Best matching is 

                                                 
�  The preliminary version of this case study was presented at the 22nd International Conference on 

Production Research, Brazil, 2013. The materials presented in this case study are adapted from two 
works of the author published in the International Journal of Production Economics 
(DOI:10.1016/j.ijpe.2013.11.015 and DOI:10.1016/j.ijpe.2015.07.038). 
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applied in this case as an effective tool for minimizing DCS costs through (1) dynamic 

matching of suppliers ��� �����	
�� �
�� �
��
�� �� ��
 �����	
��� �
	��� as well as the 

suppliers� ���
����
 �����
�� �� ����
� and (2) finding the best matches between DCS 

proposals during collaboration negotiations among suppliers. It will be proven 

mathematically and through numerical experiments that: (1) resource-sharing (i.e., DCS) 

outperforms traditional non-collaborative models in terms of resource utilization and 

stability, and (2) best matching provides a promising strategy, compared collaborative and 

non-collaborative without best matching, in terms of total CNS profit and service level 

(Moghaddam and Nof, 2013a, 2014, and 2016a). 

4.1 Motivation 

Dynamic nature of market behavior and unforeseen changes in customers� demand are 

inevitable features of modern supply networks. In distributed networks of suppliers, lateral 

collaboration between suppliers is known as an effective strategy in reacting to dynamic 

market behavior and abrupt variations in demand (Jagdev and Thoben, 2001). 

Collaborative Network of Suppliers (CNS) refers to a set of independent suppliers 

collaborating laterally under specific coordination and collaboration protocols (Nof, 2003), 

such that mutual benefits are achieved. In this context, sharing resources, information, and 

responsibilities, as the three pillars of collaboration (Nof, 2007), is the key enabler in 

reducing the total costs and improving the global efficiency of the entire CNS (Gavirneni, 

2002). In a typical CNS, each supplier has finite capacities for producing its own customer 

orders. Through effective collaboration, however, the suppliers can improve their stability 

under DCS decisions and protocols, especially in case the local orders cannot be satisfied 
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with the available local capacity (Yoon and Nof, 2010). Accordingly, the overall inventory 

level of demand sharing suppliers and backorder/stockout level of capacity sharing 

suppliers are reduced resulting in significant mutual benefits to all collaborating suppliers. 

Various DCS strategies have been developed in literature in order for individual 

suppliers (Kutanoglu and Mahajan, 2009; Tiacci and Saetta, 2011; Torabi and Moghaddam, 

2012) or collaborative networks of suppliers (Lee et al., 2007; Yoon and Nof, 2010 and 

2011; Seok and Nof, 2013) to deal with uncertain and dynamic demand patterns (Table 

4.1). Lateral collaboration is a promising strategy in mitigating the demand and/or supply 

disruption, and always outperforms the non-collaborative strategies in terms of cost, 

utilization of resources, and service level (Burton and Banerjee, 2005; Yoon and Nof, 2010; 

Tiacci and Saetta, 2011). A critical problem, however, is the additional costs associated 

with collaboration, mostly related to lateral transshipment. Several approaches have been 

developed and examined in literature, e.g., substitution of systematic inventory level 

equalization policies with ad-hoc and purpose-oriented transshipment (Burton and 

Banerjee, 2005; Olsson, 2009), and enhancement of reactive transshipment policies with 

proactive redistribution of stocks (Paterson et al., 2011 and 2012). The existing approaches 

deal with minimizing the indirect costs of lateral collaboration, e.g., improving the service 

level, minimizing the stockouts. Nevertheless, significant amounts of fixed and variable 

costs associate with the lateral transshipment/physical distribution of stocks are still present 

in all existing policies. This is the major limitation of the collaborative strategies, despite 

their remarkable benefits to CNSs. Thus, the frequency and quantity of DCS must be 

considered so as to minimize the costs of negotiations, information and resource sharing, 

physical distribution of stocks, and other business operation.  
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Table 4.1. Some recent studies on enterprise collaboration. 

Study Criteria D+ 
Burton and Banerjee (2005) Lateral transshipment cost  

Lee et al. (2007) 
Response time to demand variations; 

Penalty costs 
 

Kutanoglu and Mahajan (2009) Overall service level; Stock costs  
Olsson (2009) Service level; System cost  

Yoon and Nof (2010) 
Global benefit of CNE; Demand fulfillment 

rate 
� 

Yoon and Nof (2011) 
Total profit; Demand fulfillment rate; 
Impacts of low-performance parties 

� 

Tiacci and Saetta (2011) Mean supply delay  

Paterson et al. (2011 and 2012) 
Stockout probability; Safety stock; Service 

level 
 

Torabi and Moghaddam (2012) 
Total profit; Lead-time; Inventories and 

backorders/ stockouts 
 

Axsäter et al. (2013) System cost; Service level  

Seok and Nof (2014) 
Lost sales; Capacity utilization; Long-term 

balance of benefits to all parties 
� 

Moghaddam and Nof (2013a, 
2014, 2016a) 

Total cost; Demand fulfillment; Resource 
utilization; Stability 

� 

4.2 Outline 

Dynamic changes in the demand are not essentially in line with the variations in the 

available capacity of suppliers. Accordingly, the suppliers can be classified into either of 

the following categories: (1) Suppliers with capacity shortage; (2) Suppliers with extra 

capacity. Using the DCS protocols, the suppliers with capacity shortage are enabled to 

share their unfulfilled demand with the suppliers with extra capacity through negotiation 

(Yoon and Nof, 2010 and 2011). In view of that, a portion of the demand related to the 

suppliers with capacity shortage is indirectly satisfied by the suppliers with extra capacity. 

However, if the suppliers are not properly matched to the customers with respect to the 
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Consider a CNS where the dynamic demand of I  customers for N  different 

product types must be satisfied by a set of J  collaborative suppliers over a horizon of T . 

Each supplier is responsible for satisfying the demand of a specific set of customers using 

its limited capacity. The main objective is to protect the overall competitiveness and market 

share of the collaborative network of suppliers. Accordingly, our fundamental assumption 

is that depending on the dynamic variations of demands and capacities, customers can be 

served by different suppliers in different periods. In each period, upon supplier-customer 

matching, demand-sharing (if required) is performed by the suppliers with capacity 

shortage through negotiations with suppliers with extra capacity, and capacity sharing is 

accomplished through lateral transshipment of products between suppliers. The general 

characteristics and assumptions of the problem are then defined as follows: 

1. Each supplier has finite capacity and is able to produce all product types, which are 

under sharing considerations. 

2. Shared fulfillment is not allowed per product type; i.e., in each period, each 

customer must be matched to exactly one supplier regarding each product type. 

3. All parameters related to production, inventory holding, backordering, and DCS 

cost, and capacities of the supplier in each period are known. 

4. DCS cost refers to the fixed cost of DCS per proposal, i.e., updating, sharing and 

analyzing the information and available resources, preparing and evaluating the 

proposals, and lateral transshipment of products per unit between suppliers in each 

period. 
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time while taking into account potential future events. The RTO mechanism is proven in 

experiments to be an advantageous solution for mitigating the undesirable impacts of 

uncertainty and dynamicity on the CNS performance with respect to the four decision 

criteria. Figure 4.2 shows the status of the problem under study according to the PRISM 

taxonomy of best matching. 

4.3 Optimization: MIP and CPLEX 

A framework is developed for implementation of the resource-sharing and best matching 

decisions. The DCS and best matching protocols are dynamically activated in each period, 

taking into account the available capacities of suppliers, the demand forecasts related to 

each customer, and the inventory and backorder levels. The framework yields the optimal 

matches between the suppliers and customers, the optimal matches between the DCS 

proposals, and the optimal decisions recommending production and DCS plan, through the 

following steps (Figure 4.3): 

1. ��� �����	�
�� demand, available capacity of suppliers, production, inventory 

holding, and backordering costs, fixed cost of collaboration (i.e., negotiations, 

preparing and sharing DCS proposals), and variable cost of collaboration (i.e., 

transshipment between suppliers). The model with fuzzy input parameters (i.e., 

demand) is converted to its equivalent crisp model using a possibilistic 

programming method (see Moghaddam and Nof, 2014). 
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4. Capacity shortage (i.e., backorder) and extra capacity (i.e., inventory) levels are 

evaluated at each supplier with capacity shortage and with extra capacity, 

respectively. Since the inventory and the backorder variables cannot take positive 

values at the same time, each supplier must be classified into either Category 1 or 

Category 2.  

5. Each supplier with capacity shortage prepares and submits demand-sharing 

proposals. Each supplier with extra capacity analyzes the proposals, prepares and 

submits capacity-sharing proposals. 

6. Best matching between the DCS proposals is obtained. The matching criteria are 

the level of correspondence between the capacity shortage of and the extra capacity 

of the suppliers, fixed cost of collaboration, and unit lateral transshipment cost 

between the suppliers. This is a many-to-many best matching implying that the 

demand shared by each supplier with capacity shortage can be fulfilled by one or 

more suppliers with extra capacity, and the capacity shared by each supplier with 

extra capacity can be utilized by one or more suppliers with capacity shortage. 

7. Based on the optimal matchings between DCS proposals, the optimal decisions are 

then made on the production, inventory, and backorder levels, and the frequency 

and amount of DCS among all parties of the CNS. Note that this framework does 

not necessarily lead to zero inventory and backorder levels at the end of each period. 

There may be some inconsistency between the overall demand and capacity levels 

of the entire CNS. Besides, some suppliers may prefer backordering or inventory 

holding because of the lower costs compared to collaboration (or other reasons). 
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4.3.1 Mathematical Formulation 

Due to the uncertainty associated with the demand, a possibilistic MIP (Mixed-Integer 

Programming) formulation is developed for modeling the problem of matching with 

resource-sharing in collaborative supply networks. In order to solve the possibilistic model, 

a possibilistic programming method is applied (see Moghaddam and Nof, 2014, for details). 

The objective function and constraints of the model is as follows1: 

1. Objective function. The objective is to minimize the total cost of production, 

inventory holding, backordering, and lateral transshipment between the suppliers, 

along with fixed cost of collaboration, for all product types over the decision 

horizon. 

 � �min .njt njt njt njt njt njt njj t njj t jj t njj t
n N t T j J j J

p Q h I b B v T f �� � � ��� � � �
� �

� � � �	 

� �




 
  (4.1) 

2. Inventory balance constraints. This set of constrains guarantees inventory balance 

in each supplier for each product type in each period. They imply that in each period, 

the overall inputs at each supplier regarding each product type must be balanced 

with the overall outputs (see Figure 4.4). The possible strategies for holding this 

balance equality are: (1) inventory holding or backordering, (2) lateral 

collaboration through DCS with other suppliers, and (3) matching the suppliers 

(based on production capacity) and the customers (based on demand). 
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 (4.2) 

                                                 
1  This model is an extension of Model (M3.3), M:1 / RC, RS / +, OS, presented in Chapter 3. 
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�� .  However, since the capacities of the suppliers are limited, a portion of 

this gap may be left as backorder, i.e., *��� 0
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3. Best matching constraints. 

� Between suppliers and customers: Constraints (4.3) imply that each customer 

must be matched to exactly one supplier for receiving a specific product type in 

each period, while there is no limitation on the number of customers matched 

to each supplier (except the available capacity). 

 1, , , .nijt
j J

n N i I t T�
�

�  ! ! !"  (4.3) 

� Between DCS proposals: Constraints (4.4) ensure that suppliers can share their 

demand and capacity just in case their DCS proposals are matched in each 

period, regarding each product type, considering the fixed cost of collaboration 

(M is a very large positive number). 

 , , , , , .njj t njj tT M n N i I j j J t T#$ $ %& ' ( ( ( (  (4.4) 

4. Capacity constraints. This set of constraints guarantees that in each period, the 

production level of the suppliers for each product type does not exceed the capacity 

limit. 
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5. Feasibility of decision variables. This set of constraints ensures that all decision 

variables are non-negative and the auxiliary best matching variables are binary. 

 
� �, , , 0, , 0,1 ,
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 (4.6) 

Note that the problem is composed of two complementary matching processes, 

which are in fact multi-dimensional. In both problems, besides the mentioned sets (i.e., 

suppliers-customer; DCS proposals), there are two other dimensions
product types, and 

time. Since the best matching decisions for different product types and at each period are 

independent, however, the problem has been divided into several independent 2D 

matchings. Since the demand parameters in Constraints (4.2) are fuzzy (denoted by the 

superscript �), the model is treated as a possibilistic MIP, which must be converted into an 

equivalent crisp model. The uncertainty associated with the demand forecasts is modeled 

using possibility distributions, based on the historical demand data (objective data). The 

applied possibilistic programming method applied for defuzzification of the model is 

briefly described in Moghaddam and Nof (2014). The combined DCS-best matching 

concept, and its impact on the utilization, service level, and stability of supply networks 

has been mathematically validated using queuing theory. 

Proposition 4.2. Considering the entire CNS as a single ��������� �� ��� �������

arrival rate (i.e., demand) is lower than the overall service rate (i.e., capacity), all 

suppliers are guaranteed to have stable processes via collaboration. 
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See Moghaddam and Nof (2014) for the proof of Proposition 4.2 using queuing theory.  

4.3.2 Numerical Experiments 

A set of experiments are conducted in this section to investigate the impact of DCS with 

best matching decisions on the performance of CNSs, based on the following three 

scenarios: 

1. No collaboration (C0). Each supplier has to fulfill its own demand, and no demand 

and capacity sharing is allowed among suppliers. This scenario is defined to 

highlight the relative value of lateral collaboration in CNSs. 

2. Collaboration with pre-matching (C1). Suppliers collaborate through dynamic 

sharing of their demand and capacity in each period to cope with the overall 

variations in their allocated demand. Through DCS, demand-sharing proposals, 

from the suppliers with capacity shortage, and capacity sharing proposals, from the 

suppliers with extra capacity, are received, analyzed, and matched. Under this 

scenario, the rate of lateral collaboration has a direct relation with the gap between 

the capacity of the suppliers and the demand of their fixed and pre-matched 

customers. Thus, this scenario is defined to underline the deficiency of DCS without 

dynamic best matching (with fixed pre-matching) in terms of total collaboration 

cost. 

3. Collaboration with best matching (C2). Prior to making the DCS decisions in each 

period, the suppliers and customers are matched according to the correspondence 

between their demand and capacity. It will be shown through Scenario C2 that best 

matching minimizes the capacity-demand gap of each supplier, leading to lower 
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total cost compared to the collaboration with fixed pre-matching scenario (i.e., C1). 

Thus, Scenario C2 is expected to outperform Scenario C1; the reason is that despite 

maintaining the unique properties of C1, C2 also minimizes the fixed and variable 

costs of lateral collaboration. 

The input parameters for the design of the CNS are available in Moghaddam and 

Nof (2014). Seven distributed suppliers are considered, which produce and deliver one 

product type to 21 customers over three consecutive periods. The data is generated 

randomly taking into account the meaningful relations between the values of the 

parameters. The General Algebraic Modeling System (GAMS) Software and the CPLEX 

solver are applied for solving the auxiliary crisp MIP model. Detailed information on the 

optimal values of decision variables under each scenario are also available in Moghaddam 

and Nof (2014). Under C1, there are fixed pre-matchings between the suppliers and the 

customers in all periods�each supplier has to fulfill the demand of its own predefined set 

of customers during the decision horizon, while the suppliers and the customers are 

dynamically matched under C2. 

Figure 4.5 illustrates the initial supplier-customer pre-matchings related to C0 and 

C1 and the dynamic matching obtained via C2 based on the capacity-demand gap. Figure 

4.6 shows the total number of customers matched to each supplier under C2 in different 

periods. Under C2, different customers are matched to each supplier over periods one to 

three. That is, the best matching model optimally matches suppliers and customers 

depending on the relative capacity-demand gap. In this example, the matching decisions 

vary from one period to another, and are considerably different from the fixed pre-
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1. Order fulfillment. Under C0, the capacity-demand gap results in either excessive 

inventory or backorder at the end of each period. Under the collaborative scenarios 

(i.e., C1 and C2), however, DCS is an attractive strategy to minimize the capacity-

demand gap through lateral collaboration. Nevertheless, since the capacities of the 

suppliers are limited, even the collaborative scenarios may result in certain amounts 

of inventories/backorders. The observations indicate lower level of unfulfilled 

orders under C2, compared to C1 and C0. The collaborative scenarios (i.e., C2 and 

C1) outperform the non-collaborative scenario (i.e., C0) in terms of demand 

fulfillment thanks to lateral collaboration. However, C2 is also preferred to C1, 

because it enables higher service level�some suppliers may be reluctant to sharing 

due to high costs of collaboration relative to inventory holding/ backordering; thus, 

C2 is recommended to minimize the capacity-demand gap through matching prior 

to making the DCS decisions, in order to improve the service level and eliminate 

�unnecessary collaborations�. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cost Effectiveness

Resource Utilization

Order Fulfillment

Stability

Non-Collaborative Collaborative w/o Matching Collaborative w/ Matching

Figure 4.7. Comparative analysis of scenarios C0, C1, and C2. (The average results are 
relatively normalized in [0, 1].) 
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2. Resource utilization. For each supplier, resource utilization is defined as the 

percentage of resources actually consumed relative to the amount of resources 

planned to be consumed. This evaluation criterion can be calculated through the 

following formula: 

 
*

100, , , ,njt
njt

njt

Q
U n N j J t T

K
� � � � � �  (4.7) 

where the optimal production level and capacity upper bound are respectively 

considered as the actual and the planned levels of utilization of resources. With this 

definition, resource utilization is 100% in all demand sharing suppliers. Through 

collaboration resource utilization can also be improved in the capacity sharing 

suppliers compared. Lateral collaboration indeed enhances the utilization of the 

existing resources rather than investing in extra resources for dealing with the 

����	
� �
���
�� �� �����	
��� �
	���� That is why C2 and C1 outperform C0 in 

terms of resource utilization. 

3. Cost effectiveness. In addition to considerable increases in the demand fulfillment 

rate under the collaborative scenarios C2 and C1 compared to C0, the total cost is 

also minimized through lateral collaboration. The substantial decrease in the total 

cost is due to the elimination of unnecessary inventories and backorders through 

DCS. Moreover, the total cost in C2 is also lower than the total cost in C1, which 

indicates the impact of best matching on the reduction of capacity-demand gaps of 

the suppliers, resulting in lower rates of lateral collaboration throughout the entire 

CNS.  
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4. Stability. Through analogical comparison of the supply processes with the birth and 

death process, the processes at the CNS and each individual supplier have been 

modeled as Continuous-Time Markov Chains, in order to analyze the stability of 

the process under each scenario. It has been proven through queuing models that if 

the overall demand rate is lower than the overall production rate, all suppliers are 

guaranteed to be stable, under collaboration (see Proposition 2). In practice, 

however, due to disruptions in demand and/or capacity, CNSs are not necessarily 

guaranteed to undergo an overall stable process. Collaboration through DCS, 

however, increases the stability of each supplier as much as possible. In the 

numerical example, the overall process of arrival and delivery of orders in the entire 

CNS is unstable or oversaturated. Nevertheless, our results show that even in case 

of overall instability, collaborative scenarios (i.e., C1 and C2) can still improve this 

unstable process compared to the traditional no-collaboration scenario (i.e., C0). 

4.4 Control: TAP and PBMP 

A novel control mechanism is developed to rationalize, coordinate, and harmonize 

distributed operations, and optimize collaboration decisions in real-time. The first objective 

is addressed by developing a TAP (Task Administration Protocol) for effective control of 

DCS operations. The TAP is composed of three sub-protocols for priority-based task 

initialization, resource-aware task allocation, and task monitoring re-allocation (Ko and 

Nof, 2012). In this context, a task refers to an order, and the resources used for processing 

the tasks refer to the suppliers. A PBMP (Predictive Best Matching Protocol) is also 

developed to tackle the second objective, i.e., RTO (Real-Time Optimization) of DCS 
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decisions. The PBMP is applied for dynamic matching of orders to resources in real-time. 

Inspired by the notion of Model Predictive Control (MPC), the PBMP matches entities 

(e.g., proposals, suppliers) in the current timeslot, while taking into account system 

characteristics in the near future timeslots. The RTO is then concerned with the total costs 

of collaboration (e.g., fixed costs of negotiation, information sharing) along with variable 

costs of transshipment, and service level, i.e., demand fulfillment rate. 

The proposed mechanism requires cyber-supported collaboration infrastructures 

for effective information sharing and enhanced connectivity among distributed participants. 

Advances in collaborative e-Work over the last two decades have provided effective 

computer-supported and communication-enabled solutions for design, engineering, and 

control of CNS (Nof et al., 2015). Development of the TAP and PBMP then relies highly 

on agent-based technologies in order to proactively identify resources, provide real-time 

value-added information, and reduce potential conflicts and errors (Klusch, 2001), as well 

as workflow technologies to enable scalability, availability, and reliability of processes. It 

is shown that deployment of agents, coordination protocols, and workflows�as the first 

theoretical foundation of collaborative e-Work (Nof, 2007)�coupled with planning 

models provide a powerful design-control loop that enhances the quality of collaboration 

decisions. The PBMP is indeed an agent-based optimization technique based on mediator 

architecture where a mediator agent monitors, synchronizes, and optimizes the activities 

of other distributed agents (Barbati et al., 2012). 
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4.4.1 General Logic 

The TAP and PBMP are developed for real-time execution of the generated plan in each 

period. The protocols frequently identify the current state of each individual supplier 

through distributed agents and following certain workflows, and take necessary actions to 

handle dynamic and unforeseen situations. Task administration�the process of receiving, 

processing, and delivering orders�ranges from priority-based initialization of tasks (e.g., 

based on due dates or order size) to allocation of resources and monitoring time-out 

����������� 	
 ������ � 
���� ���������� (i.e., D+ of the PRISM taxonomy) to the 

generated plan, the protocols are triggered for real-time control of the decisions. The TAP 

is composed of three sub-protocols that are the core of the proposed collaborative control 

mechanism for coherent and integrated administration and synchronization of distributed 

processes. The PBMP is triggered as the second stage of task administration, as a 

complimentary protocol for improving the performance of the TAP, in this case, in terms 

of total cost, resource utilization, service level, and stability of the CNS. This protocol is 

composed of three sub-protocols as follows (Figure 4.8): 

1. TRAP. Each task (i.e., order) has unique characteristics such as type, quantity, and 

due date, which define its priority compared to other tasks waiting in the queue to 

be processed by the same server (i.e., supplier). These characteristics are identified 

by Task Agents (TAs) responsible for the ongoing tasks in the queue of a given 

supplier (i.e., there are |J| TAs in the system). The role of the TRAP is timely 

identification of task requirements, and prioritization of them for being served by a 

busy server. 
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decisions). However, in unforeseen situations, those decisions are updated by the 

RAs using PBMP, taking into account events that may occur over a predefined 

interval starting from the current timeslot. 

3. STOP. In some situations, the task in process must be timed-out if certain conditions 

hold. Accordingly, the process is suspended by the RA, and the task is released or 

its load is relaxed. The STOP is triggered if at least one of the following conditions 

holds: Excessive occupation of resources by the task in process; Preemption by 

urgent tasks. 

4.4.2 TRAP�Task Requirement Analysis 

Each customer order is directed to the corresponding supplier according to the plan 

generated at the beginning of the period: Order 
io  arrives at supplier j, if � �

* 1ij , where 

superscript * denotes optimality. The order is specified as � � �� { , , }i i i io , where � i , �i
, 

and 	i  denote its processing time, quantity, and due date, respectively. (The values of 

these parameters are assumed to be known.) Upon arrival of a new order, the TA updates 

the priority of all orders in the queue. If all the priority values are the same, or the priority 

of the order is less than the other orders, it is simply added to the end of the queue, following 

the FIFO (First-In, First-Out) discipline. Otherwise, the queue is reordered according to the 

updated relative priorities. Various disciplines exist for prioritizing a set of tasks in a queue. 

Without loss of generality, however, the priorities are calculated following the Earliest Due 

Date (EDD) and Shortest Processing Time (SPT) disciplines to protect service level, i.e., 
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demand/capacity. Accordingly, supplier j is a demand sharing supplier at timeslot t, if at 

least one of the following conditions holds: 

 � �
� �
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  (4.9) 
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In Eq. (4.9), � �jK t  denotes the available capacity of supplier j at timeslot t, which implies 

that supplier j does not have enough capacity for fulfilling its orders. Eq. (4.10) implies 

that supplier j is under time limitation, i.e., there is (at least) an order 
io  that will be late if 

processed after other orders with higher priorities, and its priority cannot be increased. Two 

collaborative approaches are proposed for handling such situations: 

1. Decentralized DCS. In the decentralized approach, the RAs are responsible for 

generating DCS proposals, and negotiating with their most preferred counterparts 

(Yoon and Nof, 2010). Accordingly, the RAs make DCS decisions according to 

their own local benefits and objectives�they compete in case there are conflicts of 

interest, which does not necessarily lead to global optimal solutions for the entire 

CNS. Nevertheless, in competitive environments, which may be cooperative but 

not collaborative, decentralized approaches provide promising solutions (see Seok 

and Nof, 2014). Note that this is a discrete-event-based procedure, i.e., it starts 

automatically by any changes identified in the state of the system (e.g., arrival or 

departure of tasks). The decentralized DCS procedure is composed of the following 

steps (Figure 4.9): 
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a. Each RA ���������� ������ �� 	
����
 �
������ �� 	�������� �
������. If there 

is no demand sharing/capacity sharing RA, the procedure stops. Otherwise, 

it proceeds to the next step. 

b. The demand sharing RAs prepare demand-sharing proposals. The proposals 

include requests for partial or complete (or both) fulfillment of unsatisfied 

orders. Accordingly, the demand sharing RAs request capacity sharing for 

orders shared partially, and direct delivery from the capacity sharing 

suppliers in the case of complete sharing of an order (to minimize the 

shipment cost). 

c. The demand sharing RA j assigns a priority value to each target capacity 

sharing supplier j�  using the following formula: 

 1 ,
j

jj
j

jll CSS

v

v
� �

�
�

� �
�

 (4.11) 

where jCSS  denotes the set of all target capacity sharing suppliers for 

demand sharing supplier j. The target suppliers are sorted according to their 

unit transshipment costs (i.e., variable cost of collaboration). The goal is to 

minimize the collaboration costs. 

d. The demand sharing RAs submit their demand sharing proposals to the 

capacity sharing RAs following the priority values obtained from Eq. (4.11). 

If no capacity sharing supplier is willing to collaborate, the demand sharing 

RA rejects the excessive orders or keeps them as backorders. 
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capacity shortage, and the quantity of the capacity-sharing proposal will be 

equal to the whole capacity available at the capacity sharing supplier j. The 

demand sharing proposals are processed by the capacity sharing RAs 

following FIFO discipline. 

f. The capacity sharing RAs prepare capacity-sharing proposals and return to 

the corresponding demand sharing RAs. 

g. If there is no pending demand-sharing proposal, the procedure stops. 

Otherwise, it returns to Step (d). 

2. Centralized DCS�PBMP. In the decentralized procedure, the demand sharing RAs 

prepare proposals considering their own local benefits. On the other hand, the 

capacity sharing RAs evaluate the incoming proposals following FIFO discipline 

and accept/reject based on their own local benefit as well as their available 

capacities. This procedure does not guarantee the global optimality of DCS 

decisions for the entire CNS in terms of total cost and demand fulfillment rate. In 

addition, the existing approaches are not predictive and ignore possible changes in 

the state (i.e., capacity) of the system in the near future. For instance, a capacity 

sharing supplier accepts a demand-sharing proposal at time t , and then encounters 

capacity shortage due to unanticipated increase in its own customer order at time 

t �� . This may diminish the efficiency of collaboration decisions and cause 

conflicts during DCS. Hence, our proposal is a centralized predictive DCS 

mechanism organized by a Matching Agent (MA). The MA, integrated with all the 

distributed TAs and RAs, is a mediator agent (Barbati et al., 2012) that controls the 
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DCS decisions based on the current states of all collaborating suppliers, taking into 

account potential future events. The proposed PBMP comprises the following steps 

(Figure 4.10): 

a. Upon an updates in the system (i.e., arrival or departure of a task), the MA 

is triggered and requests updates from the distributed RAs. (The current 

timeslot is set to zero, t = 0). 

b. Demand sharing RA j (if any) evaluates and submits an order (i.e., demand-

sharing proposal) to the MA as { , , }j j j jo � � �� . 

c. The MA receives the orders, calculates the prediction interval using the 

following formula, and submits the result to the capacity sharing suppliers: 

 � �max .j
j DSS

��	 
  (4.13) 

The prediction interval determines the length of the future horizon 

considered by the MA for making current DCS decisions through PBMP, 

and encompasses the entire time interval that all the existing demand-

sharing proposals will remain in the system. 

d. Capacity sharing RA j calculates its expected capacity level considering 

future events during �. The future events involve planned orders from the 

customers matched to j. Accordingly, capacity sharing RA j submits the 

following expected capacity level: 

 � 
1*
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(4.14) 
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e. The MA evaluates the stability of the DCS process by checking the 

following inequality: 

 ,
� .j j

j DSS j CSS

K� � �
�� �

�� �  (4.15) 

If the stability Eq. (14) holds, the PBMP proceeds to the next step. 

Otherwise, the MA rejects one or more demand-sharing proposals through 

the following procedure: 

i. Define the capacity-demand gap G 

 ,
� .j j

j DSS j CSS

G K	 
 �

� �


 �� �  (4.16) 

ii. Find the order (i.e., demand-sharing proposal) jo  that 

minimizes j G� � . 

iii. Eliminate jo  from the demand-sharing proposals and update G 

in (15). If G < 0, go to Step (f). Otherwise, return to Step (ii). 

This procedure improves the service level by minimizing the number of 

demand-sharing proposals rejected due to capacity shortage, and the 

resource utilization through minimizing the gap between the available 

capacity and updated demand-sharing proposals. 

f. The MA defines the optimal match between orders placed by demand 

sharing suppliers and capacities shared by capacity sharing suppliers 

through solving the following MIP: 
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The objective function of Model (M4.1) minimizes the fixed and variable 

costs of collaboration. The first set of constraints prevents capacity limit 

violations in each capacity sharing suppliers. The second set of constraints 

guarantees fulfillment of each demand-sharing proposal. The third set of 

constraints implies that suppliers collaborate only if their DCS proposals 

are matched. The last set of constraints ensures the feasibility of decision 

variables. 

4.4.4 STOP�Synchronization and Time-Out 

STOP is a background protocol activated during the process of each task by the RAs to 

monitor the process in real-time. A task is timed out by STOP if at least one of the following 

conditions holds: 

1. Excessive resource occupation. Refers to situations where the actual processing 

time �i�  of order 
io  is much higher than their expected values, which, in turn, may 

delay the rest of the tasks waiting in the queue. A predefined threshold is defined 

for checking time-out conditions as follows: 
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 � ,i i� � �� �  (4.17) 

where �  denotes the threshold. However, there are two instances where the task is 

not timed out, even if Eq. (4.17) holds: (1) There is no other task waiting in the 

queue; (2) The in-process task will be delayed if timed-out. 

2. Preemption by urgent tasks. Refers to situations where a task may be late if it is not 

processed before the current process is completed. Although in the TRAP 

prioritizes the tasks based on the EDD policy, this situation is likely to occur due 

to dynamic changes in due dates and/or processing times. The preemption 

procedure is performed by the RAs as follows: 

a. The RA checks the following condition for all orders in the queue: 

 0.i it� �	 	 
  (4.18) 

b. If Condition (4.18) holds for order 
io  in the queue and for order 

io �  in 

process (i.e., � 
r
i i t� � �� , where � �r

i t� �  denotes the remaining processing 

time of 
io �  at timeslot t), 

io �  is preempted by 
io  and will be resumed after 

completion of 
io . 

4.4.5 Numerical Experiments 

Four scenarios are considered in order to investigate different aspects of the developed 

RTO mechanism compared to similar existing approaches: 

1. No collaboration with fixed pre-matching (S1). Each supplier is responsible for the 

demand of its own fixed set of customers where no DCS takes place among 
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suppliers. The purpose of S1 is to underline the relative impact of collaborative DCS 

along on the performance of individual suppliers and the entire CNS. 

2. Collaboration with fixed pre-matching (S2). Suppliers collaborate through DCS, but 

(a) the set of customers being served by each supplier, and (b) the demand/capacity 

sharing suppliers are fixed. The purpose of S2 is to highlight the role of TAP in 

RTO of the DCS decisions. 

3. TAP without PBMP (S3). The real-time control mechanism is activated at the 

beginning of each period after plan generation, and follows all sub-protocols of 

TAP to optimize the process in real-time. The SRAP, however, follows the 

decentralized DCS procedure. The purpose of S3 is to investigate the role of MA 

and PBMP in optimization of DCS decisions, especially in terms of total cost. 

4. TAP with PBMP (S4). The SRAP is performed through the centralized process 

performed by the MA. This scenario focuses on minimizing total collaboration cost 

in real-time, along with resource utilization, demand fulfillment rate, and stability, 

compared to S1, S2, and S3. 

All scenarios are simulated based on the generated plans presented in Section 4.3.2, and 

the results corresponding to each period are analyzed and compared. The statistical 

significance of all the resulting observations is then analyzed. The evaluation criteria and 

the findings are as follows: 

1. Order fulfillment. The variations in capacity-demand gaps of each supplier may 

result in shortage in some suppliers, and thus late deliveries or rejected orders. 

Lateral collaboration is a promising solution for minimizing these gaps, through 
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enabling demand sharing suppliers to make use of excess capacities available at 

capacity sharing suppliers. Our experiments indicate that collaborative scenarios 

(i.e., S2 to S4) outperform the non-collaborative scenario S1. Real-time execution of 

the collaboration plans, however, may encounter some deficiencies due to 

unforeseen variations in capacities and/or demands at different points of time. The 

developed RTO aims to minimize such gaps through dynamic requirement planning, 

allocation, and monitoring of plan execution, based on the TAP. The results shown 

in Figure 4.11 indicate improvements in fulfillment of customer demands by the 

TAP-enabled scenarios (i.e., S3 and S4) compared to non-TAP scenarios. Moreover, 

the results show superiority of S4 to S3 in terms of demand fulfillment rate, which 

is due to the predictive control mechanism of the PBMP during DCS process. 

2. Resource utilization. The non-collaborative scenarios are inferior compared to the 

collaborative scenarios in terms of resource utilization, which is due to their 

inflexibility in reducing the capacity-demand gaps. Collaboration enables the 

capacity sharing suppliers to improve utilization of their resources through sharing 

them with the demand sharing suppliers. The collaboration plans may need 

modifications in real-time. Results of simulation show that the TAP-enabled 

scenarios outperform the other scenarios in terms of resource utilization (Figure 

4.11).  

3. Stability. This criterion is evaluated for each individual supplier as the ratio of 

late/rejected orders to the entire orders received over each period. Collaboration 

significantly improves the stability of demand sharing suppliers by reducing their 
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capacity-demand gap (see Proposition 2). The proposed real-time control 

mechanism improves stability of suppliers through timely detection of shortages 

and optimal allocation of available resources. The simulation results shown in 

Figure 4.11 indicate superiority of TAP-enabled scenarios to the non-TAP 

scenarios in terms of stability. 

4. Cost effectiveness. The effect of collaboration on the total cost (Figure 4.12)�

according to the experiments�is twofold. Although lateral collaboration 

minimizes the undesirable costs of inventory holding and backordering, it imposing 

extra capacity-demand sharing costs. In some situations, the unit cost of 

collaboration may be much higher than the holding and backordering costs, and 

therefore, suppliers may not be willing to collaborate or even may leave the CNS 

in case this is a long-term situation (see CHAPTER 6). Nevertheless, even in such 

cases, the indirect cost of inventory holding or backordering, and their impact the 

long-term reputation and profit of suppliers should not be underestimated. The 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Order Fulfillment

Resource Utilization

Stability

S4 S3 S2 S1

Figure 4.11. Comparative analysis of scenarios based on order fulfillment, resource 
utilization, and stability. (Results: Mean values of 30 independent simulations; 

Relatively normalized in [0, 1]) 
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2013), and resource utilization, as a criterion highly correlated with the stock (Kutanoglu 

and Mahajan, 2009; Torabi and Moghaddam, 2012) and service (Olsson, 2009; Axsäter et 

al., 2013) costs, safety stock level and stockout probability/costs (Paterson, 2011 and 2012). 

It is also shown that DCS guarantees stability of each individual supplier, given that the 

entire CNS is stable. Even in case of overall instability in the network (i.e., overall demand 

higher than the total available capacity), DCS alleviates the instability effect on different 

suppliers to the minimum possible extent. Accordingly, in line with the previous studies 

(e.g., Burton and Banerjee, 2005; Yoon and Nof, 2010; Tiacci and Saetta, 2011), our 

observations indicate substantial improvements made by lateral collaboration as opposed 

to the conventional non-collaborative strategies. 

Lateral collaboration strategies, in general, impose extra costs associated with the 

fixed costs of negotiation and transactions along with variable costs of transshipment of 

stocks (Burton and Banjeree, 2005). The rate of lateral collaboration (and the 

corresponding costs) without best matching is directly correlated with the gap between the 

capacity of each single supplier and the aggregate customer demand allocated to it. Several 

policies and strategies have been proposed and discussed in literature, aiming at 

minimizing the lateral collaboration costs. Some studies attempted to deal with the lateral 

collaboration cost through considering direct shipments from the capacity sharing suppliers 

to the customers of the demand sharing suppliers. Nevertheless, in all those cases, the fixed 

cost of collaboration is not negligible. 

A dynamic best matching framework is developed and examined as an approach 

towards minimizing the cost of lateral collaboration through making supplier-customer 

best matching decisions prior to lateral collaboration. It is shown through this case study 
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that dynamic best matching between the suppliers and the customers is an appealing 

strategy in reducing these extra costs, and even improving the service level through 

minimizing the rate of unfulfilled demand compared to the collaborative scenarios with 

fixed pre-matchings. 

Some experts and practitioners, however, may prefer fixed matching between 

suppliers and customers as an advantage because of less complexity and easier 

implementation. Nevertheless, ���� ��� �	
�����
� �
����
��� �
���� ���
�
��� ���
����

and higher demand fulfillment rate seem to be more important factors compared to the 

source of supply. Moreover, from the viewpoint of the CNS, lower total costs, while 

maintaining the inherent benefits of lateral collaboration is superior as well. Besides 

collaborating suppliers, dynamic sharing of customers could be a beneficial strategy for 

competing suppliers, depending on the level of competition, transshipment cost, and 

differentiations between the suppliers (Zhao and Atkins, 2009). However, in case the 

capacity level of the suppliers and the demand level of the customer are less prone to abrupt 

fluctuations in long term, the supplier-customer matchings are also expected to have less 

variation. Thus, running the model in a long run could result in specific clusters of potential 

suppliers for each customer. Accordingly, collaboration within the clusters can combine 

the benefits of flexibility in matching under varying conditions, while maintaining some 

level of mutual loyalty between suppliers and customers in each cluster (see CHAPTER 6). 

This case study also pinpoints the impact of real-time collaborative control on the 

quality and efficiency of lateral collaboration processes. The presented experimental results 

and analyses indicate the impact of RTO mechanisms on further improvement of DCS 

decisions under dynamic and unforeseen changes in the behavior of the system. The idea 
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is to reduce the length of planning period, monitor and revise the plans in real-time with 

the aid of agent-based systems, effective TAP, and the respective workflows. The new 

collaborative control mechanism provides the basics for further automation of order 

fulfillment processes in CNS. Dealing with different various interrelated aspects of task 

administration, the TAP consolidates the initialization of ordering processes, allocation of 

resources, and process monitoring through logical workflows of their respective sub-

protocol (i.e., TRAP; SRAP; STOP). The TAP is known as an effective mechanism for 

improving enterprise collaboration decisions. The PBMP�the core of the new RTO 

mechanism�enhances the TAP using an agent-based system capable of optimizing the 

supplier-customer and supplier- supplier matching decisions in real-time. The primary 

focus of the centralized approach, enabled by the PBMP, is to minimize the collaboration 

costs by transforming blind/random sharing procedures to more intelligent and optimized 

matching mechanisms supported by multi-agent frameworks and collaborative control 

protocols. 
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CHAPTER 5. CASE 2�COLLABORATIVE ASSEMBLY LINES�  

This case investigates an instance of best matching with precedence relations and resource-

sharing. A common example of this extension of matching problems is Assembly Line 

Balancing (ALB), where a set of tasks with certain precedence relations must be matched 

to a set of workstations. This example is selected as the second case, because the insights 

provided by this case are complementary to those provided by the previous case. In Case 

1, matching (of suppliers-customers) was applied as a mechanism to improve the already 

existing sharing (of demand-capacity) decisions. In Case 2, in contrast, the classic matching 

(of tasks-workstation�� �������	� 
�� ��
����� �� �	���
��
��	� 
 ��
��	� ��� �������� 

mechanism in the decisions. In this case, thus, a Collaborative Assembly Framework 

(CAF), inspired from the design principles of CCT, the Collaborative Control Theory, is 

developed to enhance the balanceability of assembly lines (Figure 5.1). The notion of the 

CAF lies in dynamic utilization of idle resources to eliminate bottlenecks. The CAF is 

composed of (1) tool sharing protocol for making dynamic tool-sharing decisions among 

fully loaded (i.e., bottleneck) and partially loaded workstations, and (2) best matching 

                                                 
�  The preliminary version of this case study was presented at the 11th IFAC Workshop on Intelligent 

Manufacturing Systems, Brazil, 2013. The materials presented in this case study are adapted from two 
works of the author published in the IIE Transactions (DOI:10.1080/0740817X.2015.1027456) and 
Mechatronics (DOI:10.1016/j.mechatronics.2014.10.001) journals. 
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5.1 Motivation 

ALB (Assembly Line Balancing) is a classic resource-constrained matching problem that 

involves assignment of tasks of different duration and precedence relations to a sequence 

of interconnected workstations such that their workload is balanced with respect to the 

required production throughput (Nof et al., 1997). Every assembly process consists of a 

sequence of tasks that usually cannot be subdivided and must be processed at a specific 

workstation (Rekiek and Delchambre, 2005). ALB problems are typically classified into 

two types: 

1. Type-I. Minimize the number of workstations for a given cycle time. 

2. Type-II. Minimize the cycle time (or maximize the production throughput) for a 

fixed number of workstations. 

Further objectives have also been investigated in literature; e.g., maximizing line/operator 

efficiency (Song et al., 2006), and minimizing the costs of workforce (Sprechter, 1999; 

Sarin et al., 1999; Gamberini et al., 2006) and task duplication (Bukchin and Rabinowitch, 

2006) for design/reconfiguration of various assembly lines with specific product models, 

line layout/configuration, line control mechanisms, automation level, and industrial 

applications (see Ghosh and Gagnon, 1989; Becker and Scholl, 2006; Boysen et al., 2007 

and 2008). All the aforementioned objectives, however, are usually limited by the basic 

characteristic of ALB problems�task indivisibility. This characteristic causes unbalanced 

workload between workstations and lower flexibility in terms of production throughput. 

Bottleneck is an inevitable phenomenon in almost every assembly line, which restricts the 

production throughput and diminishes the line balanceability. 
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In practice, fully balanceable assembly lines are difficult (or, in most cases, 

impossible) to achieve (Anuar and Bukchin, 2006), due to the indivisibility of task along 

with processing time variations and precedence relation constraints. Accordingly, 

workstations are typically classified as (A) fully loaded, with workloads equal to the cycle 

time, or (B) partially loaded, with workloads lower than the cycle time. Set A is essentially 

non-empty, i.e., there is always at least one fully loaded workstation (i.e., the bottleneck) 

specifying the cycle time. Set B, however, may be empty but with a low likelihood and in 

case the line is fully balanceable (i.e., no possibility for further improvement). 

In traditional assembly lines, workstations are isolated and operate independently. 

In such settings, increasing the line throughput requires improving the performance of the 

workstation(s) in Set A, i.e., the bottleneck(s). Nevertheless, this is not an economically 

justifiable strategy since it requires additional investments (e.g., equipment duplication), 

while a part of the already existing equipment is idle in the workstation(s) in Set B. The 

notion of work sharing was suggested over the last decade to address this drawback (Askin 

and Chen, 2006; Anuar and Bukchin, 2006; Guo et al., 2008; Bukchin and Sofer, 2011), 

where tasks are allowed to be processed in multiple workstations in each cycle. The idea 

is based on substituting moving workers with moving tasks to avoid the movements of 

workers between the workstations and thus, improve the line productivity (Bukchin and 

Sofer, 2011). The work sharing idea, however, disregards the primary assumption of ALB 

problems on the indivisibility of tasks (Rekiek and Delchambre, 2005). This assumption 

can be justified from economic, technical, and technological perspectives; e.g., equipment 

duplication cost (Bukchin and Sofer, 2011), setup and configuration restrictions, space 

limitation. Moreover, some tasks may not be dividable or may require considerable setup 
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times (i.e.� ����� ���� 	��
�����
��� ��������
��� 	������ ������� �� ��� ��������

configuration may enforce reconfiguration of the workstations or even rebalancing of the 

line over time. Therefore, the redundant equipment may be useless in some cycles/periods. 

5.2 Outline 

The CAF is based on the utilization of available idle resources rather than investing in 

additional resources for improving the line balanceability. The CAF is composed of two 

major components�tool sharing, best matching. Tool sharing has been partly discussed 

by a few studies in the ALB literature, e.g., part-sharing (Chan et al., 2009) and operator-

sharing (Rabbani et al., 2012) among specific production facilities. A practical example of 

tool-sharing in assembly and test utilities is sharing of computer integrated testers and 

inspection tool, especially when their actual use is only during a small fraction of the 

assembly process at each assembly station (Esfarjani and Nof, 1998). In the context of the 

CAF, � �tool� refers to any type of resources (e.g., equipment; robot; operator) that are 

capable of processing the tasks and can be shared between the workstations. 

The matching decisions involve finding the best correspondence between the sets 

of tasks and workstations, taking into account tool sharing alternatives, processing times, 

precedence relations, and cycle time upper bound. Tool sharing decisions must be made 

after identifying any idle workstation, and involve preparing a tool sharing proposal with 

distinct characteristics including available tools to be shared and the sharing period. Based 

on the tool sharing proposals received from Set B (i.e., partially loaded) workstations, the 

best matching module matches the proposal to the best workstation in Set A, considering 

tool-task compatibility and pairwise linear distance between the corresponding 
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workstations. An MOMIP formulation is developed for mathematical representation and 

optimization purposes. The objective is to improve balanceability of the line with the 

minimum possible cost through minimizing the number of workstations (Type-I ALB), 

minimizing the cycle time (Type-II ALB), and minimizing the total cost of collaboration 

(i.e., tool sharing).  

It is proven that the balanceability of assembly lines depends highly on: (1) The 

compatibility of the shared tools with the ongoing tasks, and (2) The tool sharing 

performance. Hence, the CAF guarantees balanceability of assembly line in case all tools 

are compatible with all tasks and the pairwise distances between workstations are 

negligible. It is also proven that the CAF, in general, leads to relative balanceability, where 

the deviation of the optimal cycle time from the ideal cycle time (i.e., cycle time of fully 

balanceable line) is a function of tool compatibility and pairwise distances between 

workstations. Accordingly, the main prerequisite of the CAF to improve the balanceability 

of the line is to augment the capability of tools in processing the tasks related to other 

workstations; e.g., cross-trained operators (Bartholdi and Eisenstein, 1996; Hopp et al., 

2004); multi-purpose facilities/robots. A set of numerical experiments is conducted to 

illustrate the advantages of the developed CAF over the classic non-collaborative 

approaches. 

A CMAS (Collaborative Multi-Agent System) is also developed to enhance the 

automation of the CAF. Intelligent and autonomous agents, distributed among the 

assembly system, are considered to operate in accordance with a tool sharing-best matching 

decisions and protocol. The real-time, collaborative control mechanism is adapted and 

extended to provide feedback to the off-line plan generated and updated continuously using 
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the MOMIP model. Several experiments and analyses are conducted in to illustrate the 

applicability of the CAF in significantly improving the performance of assembly lines in 

terms of flexibility (i.e., cycle time reduction), utilization of tools, and balanceability in 

real-time (i.e., including D+ of the PRISM taxonomy). Figure 5.2 shows the status of the 

problem under study according to the PRISM taxonomy of best matching. 

5.3 Optimization: MOMIP and Goal Programming 

Consider an assembly process with dynamic demand of 
tD  over a T -period horizon. 

The assembly process is decomposed into J  tasks with certain processing times jt�  and 

precedence relations. Due to technological and economic limitations, an upper bound is 

defined for the number of workstations. An upper bound is also defined for the cycle time 

with respect to the demand rate 
tD  and the available production time 

tA  as follows: 

 , .t
t

t

A
C t T

D
� � �  (5.1) 

The theoretical lower bound for the number of workstations in each period is then defined 

according to the overall workload (i.e., sum of processing times) and the cycle time upper 

bound as follows: 
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 (5.2) 

Give these definitions, the general characteristics and assumptions of the CAF are 

as follows: (1) The processing times are independent from the matched workstation and 
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through tool sharing, as well as the pairwise linear distance between the 

workstations.  

2. Best matching protocol optimally matches tasks and workstations. The matching 

criteria are processing times and precedence relations, cycle time upper bound, and 

the lower bound on the number of workstations. This is a many-to-one matching 

problem, implying that each task must be matched to only one workstation, but 

each workstation may process more than one task. 

3. Tool sharing protocol classifies the workstations into Sets A and B, identifies the 

tool sharing offers, and calculates the potential tool sharing benefits according to 

the pairwise CEs. 

4. Best matching protocol matches the tool sharing proposals prepared by the 

workstations in Sets A and B. The matching criterion is the pairwise CEs. This is a 

many-to-many matching problem, which implies that each workstation of Set A can 

be assisted by more than one workstation of Set B, and each workstation of Set B 

is allowed to share its tools with more than one workstation of Set A. 

5.3.1 Mathematical Formulation  

The primary objective of the CAF is to improve the balanceability of assembly lines. This 

can be realized through minimizing (1) the number of workstations (the first objective, 

1Z ), (2) the cycle time (the second objective, 
2Z ), and (3) the total cost of collaboration 
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(the third objective, 
3Z ). The functions associated with these objectives are formulated as 

follows1: 

1. Number of workstations (Objective 1). Minimizes 
1Z  considering the costs of 

opening and facilitating workstations; 

 1min .jit
i I t T j J

Z i�
� � �

����  (5.3) 

According to Eq. (5.3), the optimal number of workstations in each period can be 

obtained using the following formula: 

 � �* *

,
max , ,t jit

i I j J
W i t T�� �	 
 �  (5.4) 

where * denotes optimality. The optimal number of workstations must lie between 

the theoretical lower bound and upper bound. 

2. Cycle time (Objective 2). Minimizes 
2Z  via tool sharing, i.e., smoothing the overall 

workload between partially loaded and bottleneck workstations; 

 
2min .

t
t T

C
Z

T
�

�

 (5.5) 

3. Collaboration costs (Objective 3). Minimizes 
3Z  by optimal matching of tasks and 

workstations, such that the rate of tool sharing between the workstations is 

minimized. Considering 
iif �  as the fixed cost of collaboration between workstations 

i  and i� , the total collaboration cost over the T -period horizon is calculated as 

follows: 

                                                 
1  This model is an extension of Model (M3.2), M:1 / RC, PR / +, OS, and Model (M3.3), M:1 / RC, RS / +, 

OS, presented in Chapter 3. 
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 3min .ii ii t
i I i I t T

Z f �� �
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����  (5.6) 

4. Resource constraints. This set of constrains ensures that the workload (i.e., the 

overall processing times of the tasks matched to each workstation) does not exceed 

the cycle time upper bound. 

 , , .jt jit t
j J

C i I t T� �
�

	 
 � ��  (5.7) 

5. Precedence relations constraints. This set of constraints guarantees that the 

pairwise precedence relations of the tasks are not violated, i.e., each task is allowed 

to be matched to the same workstation as its immediate predecessor(s) is (are) 

matched, or to the succeeding workstations. 

 , , , .j it jit j
i I i I

i i j J j IP t T
 
�
� �

�� � � � �� �  (5.8) 

6. Best matching constraints. 

� Tasks-workstations. This set of constraints ensures that each task is matched 

to exactly one workstation in each period. The only limitation on the number 

of the tasks matched to each workstation is the cycle time upper bound, 

according to (5.7). 

 1, , .jit
i I

j J t T�
�

� � � ��  (5.9) 

� Collaborating workstations. This set of constraints ensures that tool sharing 

is performed from workstation i  (Set B) to workstation i�  (Set A), if the 

corresponding tool sharing proposal has been approved with respect to the 

pairwise collaboration costs and pairwise CEs. 
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7. Tool sharing constraints. In these constraints, tool sharing variables are defined in 

order for the workstations in (a) Set A to make use of the tools shared by other 

workstations, and (b) Set B to share their tools during their idle times with other 

workstations, such that the cycle time is minimized. Tool sharing variables 

represent �virtual extra times� shared by the workstations in Set B with the 

workstations in Set A, which in turn augment their performances by reducing their 

workload. The efficiency of tool sharing depends on the pairwise compatibility and 

distance between the workstations, i.e., CE, where 1iie 	 
 implies 100% 

compatibility and negligible distance, while 0iie � �  implies no compatibility and/or 

extremely long pairwise distance between workstations i
  and i . 

 � � , , .jt jit ii t i i i it t
j J i I

S e S C i I t T� � � � ��� �
� � � � � �� �  (5.11) 

Since the conflicting objectives of minimizing the number of workstations and 

cycle time are considered simultaneously, some redundant workstations may be 

opened in some periods, without any matched tasks, just for the sake of tool sharing. 

The following constraints are then defined to eliminate such conflicts through 

allowing only active workstations to share their tools. 

 , , ,ii t jit
i I j J

S i I t T� ���� �
� �   ! !  (5.12.a) 

 , , .i it jit
i I j J

S i I t T" #$$% %
& ' ( () )  (5.12.b) 

8. Feasibility of decision variables. These constraints ensure that all decision 

variables are non-negative and the best matching variables are binary. 
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 � �, 0, , 0,1 ,  , , , .ii t t jit ii tS C j J i i I t T� �� � �� � 	 � � �  (5.13) 

A fuzzy goal programming method with imprecise goal hierarchy (Aköz and 

Petrovic, 2007) is applied for solving the above multiobjective model. The method enables 

the decision-makers to linguistically assign soft pairwise importance relations between the 

three conflicting objectives. The method utilizes an additive achievement function, as a 

linear combination of the achievement degrees of the goals, and the satisfaction degrees 

defined according to the hierarchical importance relations. Details of the fuzzy goal 

programming method with imprecise goal hierarchy are provided in Moghaddam and Nof 

(2015a). 

The CAF is guarantees the balanceability of assembly lines in cases where all tools 

are compatible and the pairwise distances between the workstations are negligible. 

Definition 5.1. An assembly line is 
balanceable� if the overall workload is equally 

distributed between all active workstations. 

Following the above definition, the necessary condition for a non-collaborative assembly 

line to be balanceable is  

 , ,B
j ji

j J

C i I� 

�

� � ��  (5.14) 

where BC  denotes the cycle time of an equivalent balanceable line. Accordingly, 
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j

j JBC
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�
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 (5.15) 
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Proposition 5.1. The CAF guarantees balanceability of an assembly line if 1iie � � , 

, .i i I�� �  

Proof. Let A and B denote the sets of fully- and partially-loaded workstations, respectively 

( A B I� � ). Their workloads can then be calculated as follows: 

 

, ,

, .
t

t

j ji i i i i
j J i B

i

j ji ii
n N i A

e S i A

L
S i B

� 	

� 	


 

� �


� �

� 
 � �
�� � � � ��
�

� �

� �
 (5.16) 

According to Eq. (5.14), an assembly line is balanceable if all workstations have the same 

workloads equal to the cycle time of the equivalent balanceable line, i.e., 
B

iL C� , i I� � , 

which, according to Eq. (5.15), can be written as 

 
1

.
I

B
i j

i j J

L I C �
� �

� � �� �  (5.17) 

According to Eq. (5.17), the line is balanceable if the overall workload of all workstations 

� !"#$% &' &(!  #) '* &(! &$ + , -.'/!  �01 &�)! 2 3.') Eq. (5.16), it can be concluded that 
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.
I

i j ii i i i i j
i j J i A i B j J

L S e S4 45 5 55 56 7 7 7 7
8 9: ; < => ?@ A

B B B B B  (5.19) 

Thus, the line is balanceable if the second term on the right-hand side of Eq. (5.19) is equal 

to zero. By definition, 
iiS C  represents the portion of time in which the tools of workstation 

i  shares with workstation iD . Hence, ii i i
i A i B

S SE E
E EF F

GH H , and therefore, since 0 1iie IJ J , 

,i i IKL M , the necessary condition for balanceability of the (collaborative) assembly line is 

1iie N O , ,i i IPQ R .  S 
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Even if ,i i I�� � , 1iie � � , the CAF still yields a relatively balanceable assembly line, 

where the overall workload is �almost� equally distributed between the workstations. The 

cycle time of a relatively balanceable line is higher than the cycle time of a fully 

balanceable line. 

Definition 5.2. An assembly line is relatively balanceable if the overall workload is 

almost equally distributed between all workstations due to having some CE 

coefficients less than one, i.e., ,i i I�	 
 , 1iie � � . The cycle time of a relatively 

balanceable line is greater than the cycle time of a fully balanceable line. 

 

Proposition 5.2. If ,i i I�
 � , 1iie � � , the CAF leads to relative balanceability of an 

assembly line, where the lower bound for the gap between the cycle time and CB is 
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Proof. Dividing both sides of Eq. (5.20) by the number of workstations, we have 
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(5.21) 

The left-hand side of Eq. (5.21) yields the average workload of all workstations that is 

greater than or equal to the cycle time of the line; since the workload is almost equally 

distributed among all workstations. Therefore, " #$ % % %%& &
' ( ) (**B

ii i i i i
i I i I

C C S e S I . + 
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5.3.2 Numerical Experiments 

Three test-problems with 12, 16 and 24 tasks (denoted by P12, P16 and P24, respectively) 

are adapted from Kim et al. (2009) for numerical illustration and analysis. Figure 5.4 shows 

the precedence relation diagrams with acyclic networks where nodes and arcs respectively 

represent the task numbers and processing times, and the precedence relations between the 

starting and the ending node tasks. The tasks are numerically labeled with respect to their 

precedence relations. The periods are considered monthly and three periods are taken into 

account in all test-problems. Assuming 8 working hours per day, and 22 working days per 

month, the available production time is 176 hours in each period. The demand (units), the 

cycle time upper bound (hours), and the upper bound and the theoretical lower bound for 

the number of workstations are presented in Table 5.1. The data related to pairwise CEs 

and collaboration costs is available in Moghaddam and Nof (2015a, b). 

To illustrate the superiority of the CAF over classic non-collaborative approaches, 

two scenarios are defined. The non-collaborative scenario, denoted by S1, considers cases 

where workstations are isolated and no collaboration through tool sharing occurs between 

them. The second scenario, denoted by S2, represents the CAF where collaboration is 

performed through tool sharing and best matching decisions. 

Table 5.1. Demand, cycle time upper bound, and lower bound (L#W) and upper 
bounds (U#W) for the number of workstations. 

Period 
Demand Cycle time L#W U#W 

P12 P16 P24 P12 P16 P24 P12 P16 P24 P12 P16 P24 
1 21.13 15 11 8.33 11.73 16.00 3 6 9 5 8 10 
2 28.16 18 10 6.25 9.78 17.60 4 7 8 5 8 10 
3 21.13 16 10 8.33 11.00 17.60 3 6 8 5 8 10 
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Table 5.3. Line balancing decisions for P16 under S1. 

Work-
station 

Tasks Workload 
Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

1 1-2 1-2 1-2 9 (B) 9 (A)* 9 (B) 
2 4 3-5 3-5-6 9 (B) 7 (B) 10 (A)* 
3 3-5-6 4 4 10 (B) 9 (A) 9 (B) 
4 7-8-10 6-7 7 11 (A)* 9 (A) 6 (B) 
5 9-12 8-9-12 8-9-10 7 (B) 9 (A) 10 (A) 
6 13-16 10-13 11-13 10 (B) 9 (A) 10 (A) 
7 11-14-15 11-14-15 12-14-16 9 (B) 9 (A) 10 (A) 
8 - 16 15 - 4 (B) 1 (B) 

 
Table 5.4. Line balancing decisions for P24 under S1. 

Work-
station 

Tasks Workload 
Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

1 2-5-6 1-2-6-11 1-4-11 14 (B) 17 (A)* 12 (B) 
2 1-8-9-12 5-8 2-5-8 15 (B) 7 (B) 14 (B) 
3 11-13-16 9-12-13-17 6-9-12-17 16 (A)* 14 (B) 14 (B) 
4 4-15 3-7-10 13-15 10 (B) 15 (B) 8 (B) 
5 3-20 14-18 18-20 16 (A) 16 (B) 16 (B) 
6 7-24 4-19 3-16 13 (B) 14 (B) 16 (B) 
7 10-14 15-16 22-24 13 (B) 14 (B) 17 (A)* 
8 18-19 20-22 7-10-14 16 (A) 17 (A) 17 (A) 
9 17-23 24 19 11 (B) 9 (B) 9 (B) 
10 21-22 21-23 21-23 16 (A) 17 (A) 17 (A) 

Tables 5.2-5.4 show that the workloads of different workstations are significantly different 

under S1. That is, without collaboration, Set B workstations suffer considerable idle times, 

while the line throughput is bounded due to the presence of fully loaded workstations (e.g., 

P12: workstations 1, 2-3, and 5 in Periods 1 to 3; P16: workstation 4 in period 1; P24: 

workstations 1, 8, and 10 in Period 2). Therefore, in order to improve the balanceability of 

the line (i.e., to simultaneously improve the overall utilization of the workstations and the 

line efficiency) tool sharing and best matching decisions must be applied, as suggested by 
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the CAF (i.e., S2). Details of the tool sharing decisions for P12, P16, and P24 are presented 

in Tables 5.5 to 5.7, respectively.  

Table 5.5. Tool sharing and best matching decisions for P12 under S2. 

i 
S���� Target workstations (i') Workload 

P1 P2 P3 P1 P2 P3 P1 P2 P3 
1 - 0.06 2.08 - 2 2-5 4.98 5.06* 5.08* 
2 2.00 -  1 - - 5.00 4.99 4.97 
3 1.07 - 2.05 1-4 2 5 5.07* 5.02 5.05 
4 - - 0.98 - 3 5 4.93 4.87 4.98 
5 2.07 2.06  4 2-3-4 - 5.07 5.06 4.92 

 
Table 5.6. Tool sharing and best matching decisions for P16 under S2. 

i 
S���� Target workstations (i') Workload 

P1 P2 P3 P1 P2 P3 P1 P2 P3 
1 0.34 - - 3 - - 9.34* 8.33* 7.91 
2 0.34 1.27 - 3 1-3 - 9.34 8.27 8.06 
3 - - - - - - 9.17 8.00 8.36 
4 - - 2.38 - - 2-3 9.26 8.00 8.38* 
5 2.19 - - 3-4-6 - - 9.19 8.05 7.92 
6 - - - - - - 9.21 8.08 7.97 
7 0.34 - - 6  - 9.34 8.10 8.02 
8 - 4.27 7.38 - 3-4-5-6-7 1-2-5-6-7 - 8.27 8.38 

 
Table 5.7. Tool sharing and best matching decisions for P24 under S2. 

i 
S���� Target workstations (i') Workload 

P1 P2 P3 P1 P2 P3 P1 P2 P3 
1 0.08 - 2.18 2 - 7 14.08* 14.00 14.18 
2 - 7.12 0.18 - 1-4-5-8 3 13.84 14.12* 14.18 
3 - 0.12 0.36 - 4 7 13.74 14.12 14.18 
4 4.08 - 6.19 2-3-5 - 5-6-8 14.08 13.99 14.19* 
5 - - - - - - 14.01 13.61 14.12 
6 1.08 0.12 - 5 8 - 14.08 14.12 12.43 
7 1.08 0.12 - 5-8 8 - 14.08 14.12 13.04 
8 - - - - - - 13.97 13.96 12.71 
9 3.08 5.11 5.18 8-10 8-10 8-10 14.08 13.11 13.18 
10 - - - - - - 14.02 14.12 14.19 
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The results shown in Tables 5.5, 5.6, and 5.7 indicate that S2 leads to �smoother� 

workloads through dynamic tool sharing between Set A and Set B workstations. Since the 

CEs are functions of pairwise linear distances between the workstations, the workstations 

in Set B prioritize their adjacent (or closer) bottleneck workstations for tool sharing purpose 

���� ����	�� 
�������
���� ������� 
� ������ ���-5.7). Figure 5.5 shows that tool sharing 

and best matching decisions (i.e., S2) result in smoother workloads in different workstations 

compared with the non-collaborative scenario (i.e., S1) solutions. The numbers on each plot 

represent the cycle times. Figure 5.6 shows the improvements in the line efficiency (i.e., 

cycle time improvement) and utilization of resources (i.e., idle times reduction). The 

optimal collaboration costs per cycle are as follows. P12: $17.67 in Period 1, $26.99 in 

period 2, and $53.71 in Period 3, P16: $135.8 in Period 1, $116.7 in Period 2, and $152.2 

in Period 3, and P24: $100.0 in Period 1, $125.2 in Period 2, and $115.3 in Period 3. These 

values correspond to the costs of tool sharing among workstations (e.g., additional setup; 

tool transfer; operator training), which is indeed lower than the costs of work sharing 

strategies, since under the CAF, there is no need to duplicate the tools for each single 

collaboration among the workstations. 

Since the tools of each workstation may not be fully compatible with the ongoing 

tasks of the other workstations, i.e., ,i i I�� � , 1iie � � , the CAF leads to partially 

balanceable assembly lines. Efforts must be made to improve the compatibility of the tools 

(e.g., cross-trained operators, multi-purpose facilities and robots) and augment tool sharing 

processes to achieve fully balanceable assembly lines through collaboration. To 
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numerically analyze the impact of CEs on the balanceability of the assembly lines, a 

sensitivity analysis is conducted on the P12, P16 and P24 test problems (Figure 5.7). 
  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P12

P16

P24

Line Efficiency

Figure 5.5. Line efficiency and resource utilization, under S2 and S1. (The average 
results of multiple periods are relatively normalized in [0, 1].) 
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P12 - Period 3  P16 - Period 3  P24 - Period 3 

Figure 5.6. The workloads and optimal cycle time in different periods�the non-collaborative (S1) vs. the CAF (S2). 
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P12 � Deviation from the balanceable cycle time  P12 � The Balanceability Index (BI) 

   

 

 

 
P16 � Deviation from the balanceable cycle time  P16 � The Balanceability Index (BI) 

   

 

 

 
P24 � Deviation from the balanceable cycle time  P24 � The Balanceability Index (BI) 

Figure 5.7. Cycle time variations/deviation from the balanceable cycle time and the BIs 
against different CEs, under the CAF. (PX: Period X; CB: Cycle time of balanceable line) 

5.4 Control: CMAS 

A CMAS (Collaborative Multi-Agent System) is developed for real-time implementation, 
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system performance. The CMAS is composed of a loosely coupled network of 

heterogeneous agents that collaborate to improve the flexibility and balanceability of 

assembly lines. Two types of agents are incorporated in the model: 

1. Workstation agent (WA). These agents are responsible for monitoring the progress 

of the ������ ���	
��
�� ��
 	��	����ing the estimated workload in each cycle. The 

WAs can be equipped with simple vision sensors and processors for calculation of 

the assembly task progress in real-time.  

2. Tool agent (TA). These agents are responsible for negotiations and decision-making 

regarding collaboration with other workstations through the tool sharing protocol. 

As mentioned earlier, �tool� refers to any entity that processes the tasks, from a 

human operator, an assembly device (manual, semi-automated or fully automate), 

an automated assembly tester, to a fully automatic robot.  

The developed multi-agent system is collaborative in nature; because each agent 

(either WA or MA) is defined as an intelligent software system (with some computational 

capability) that communicates and cooperates with other software systems to handle the 

dynamicity of the collaboration and matching decisions in real-time�something beyond 

the capability of each individual software system (Shen et al., 2006). Both WAs and TAs 

must comprise the three principal c of an agent, according to Jennings et al. (1998): 

� The agents must be situated, i.e., must be able to receive sensory inputs from their 

environment. The WAs receive inputs through their sensors (e.g., vision sensor), 

while the TAs receive their required inputs from other TAs and WAs. The input 
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information, however, is limited and incomplete and thus, the agents need to 

collaborate under certain protocols for achieving a more flexible and balanceable 

assembly line. 

� Both WAs and TAs must be autonomous in making decisions. This implies 

autonomous workload estimations by the WAs, and sharing/matching decisions by 

the TAs, without any human intervention. 

� The TAs and WAs must be flexible; i.e., be responsive to changes, proactive, and 

opportunistic, and interact with other peers, resolve potential conflicts, and 

synchronize their actions. 

These characteristics can be achieved through ����������� �	 �
� �����
�

intelligence with effective coordination protocols. Various agent-based paradigms have 

been discussed in literature for distributed control of manufacturing and assembly systems 

(e.g., Seliger and Krützfeldt, 1999; Bussmann and Sieverding, 2001; Shen et al., 2005; 

Monostori et al., 2006; Leitão, 2009), which deploy different types of agents to represent 

the ongoing tasks in the system. For example, Seliger and Krützfeldt (1999) introduce 

scheduler agents (e.g., assembly, transportation, and supplier schedulers) along with carrier 

and assembly agents at different levels to construct a society of agents for assembly control. 

The CMAS developed here and the two types of agents, the WA and TA, can be embedded 

to any of such designs for a more holistic and practical representation of the system. The 

focus of this study, however, is on the real-time plan execution and feedback mechanisms 

for implementation of the CA framework. 
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role of the collaboration protocol is to control the tool sharing activities and optimize the 

decisions in real-time through matching idle tools with overloaded workstations. The 

matching type is one-to-one at any given time, implying that an idle tool can serve only 

one workstation at a time. An idle tool, however, can be matched to more than one 

workstation and serve them in sequence. The assembly system operates according to the 

off-line plan generated by the MOMIP model, as a supervisory control mechanism. The 

reason is that since the plan is updated continuously, the likelihood of deviations from the 

optimal plan caused by the changes in the system parameters should not be high. In view 

of that, the need for modification of the plan is minimized and the system is expected to 

follow the plan that is proven optimal. The tool sharing-best matching protocol is based on 

���������� ������	��
 �� ��
 ����
��� ����
� ��� ����	
�
 
�
���� 

5.4.1 Tool Sharing-Best Matching Protocol 

The plan is generated by solving the MOMIP model and obtaining 
*
iiS � , 

*
ji� , *C , and *W  

(optimal number of workstations), and is executed for */T C� �� �  consecutive cycles, where 

T denotes the running time of the model, and * denotes optimality. In each cycle, the TS-

BM protocol is activated as described below. 

1. For */T C� �� �  consecutive cycles, repeat Steps 2 to 9. At the beginning of each cycle, 

set the current time t  to zero.  

2. After becoming idle at time t , the TA of the corresponding workstation, denoted 

by k , estimates its �progress rate� as follows: 
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7. The TA of workstation k always selects workstation ki X�  as its next destination 

for TS, where 

 � �min .
ki X

k i k i�� � �  (5.26) 

8. The procedure fixes the value of � �k t	  for the rest of the cycle, then returns to Step 

2, and is applied to the next tool that becomes idle after t  and before 
C  (if any). 

9. At the end of each cycle, the real-time performances are recorded as feedback for 

the next generations of the off-line plan developed by the MOMIP model. 

Real-time control and modification of the plan via the tool sharing-best matching 

protocol are based on the �relative performance� of the tools in different workstations, 

represented by the progress rates 
 �i t� , where � � 1i t� � , � � 1i t� � , and � � 1i t� �  

respectively imply under-achievement of the expected performance values, over-

achievement of the expected performance values, and full correspondence between the 

expected and realized performance values. If the progress rates of all workstations are 

similar, then regardless of the values, there is no need to modify the generated plan (i.e., 

the second condition of Step 5-a always holds). Otherwise, the plan must be modified such 

that workstations with higher overall workloads receive extra aid from the other 

workstations, and thus the cycle time is improved. The modifications are performed by the 

TAs once their corresponding tools become idle.  

As mentioned in Step 5, the TAs of the idle tool may encounter three different 

situations: (a) the bottleneck is among their corresponding workstations planned for tool 

sharing or there is no bottleneck, (b) their own workstation is the bottleneck (considering 
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the workload of their originally assigned tasks along with the time required for TS defined 

by the off-line plan), or (c) the bottleneck is neither their own workstation nor among their 

corresponding workstations planned for tool sharing. In the first situation, the TA follows 

the initial plan expecting to receive extra aid from the other TAs that will be idled during 

the cycle time. In the second situation, the TA needs to revise its own tool sharing plan 

using Model (M5.1), as its own workstation is happened to be the bottleneck (considering 

the sharing times). In the first two sets of constraints in Model (M5.1), the TA revokes a 

portion of its tool sharing commitments and saves their times for their own workstation. 

The last set of constraints ensures that the overall workloads of other workstations do not 

exceed the revised cycle time. Similarly, in the third situation, the TA uses Model (M5.2) 

to revise the plan through revoking a portion of its tool sharing commitments (the first set 

of constraints), and either saving the time for its own workstation if it is bottleneck (the 

second set of constraints) or sharing with other bottleneck workstations (the third set of 

constraints). 

If the TA has more than one target workstations for tool sharing, the sequence of 

services is defined based on their linear distance (Eq. (5.26))�at any point of time, the 

closets workstation to the shared tool has the highest priority to be served first. Note that 

our assumption is that the assembly line is straight, and the workstations are numbered 

sequentially. The tool sharing-best matching protocol levels the workloads of all 

workstations and thus improves the flexibility and balanceability of the line during the 

��������� �� �	� 
��� �
 ������������
 ��� ���������� �
 �	� 
�
����
 ���������
 ���

characteristics. These objectives are achieved through dynamic matching of the idle tools 
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to the overloaded workstations. At the end of each cycle, the realized values of processing 

times, progress rates, and CEs are reported to the planning stage as feedback for the next 

generation. 

5.4.2 Numerical Experiments 

These experiments are intended to show the impact of the developed real-time control 

mechanism (the CMAS) on the flexibility of the designed system in terms of dealing with 

dynamic changes in the system's performance over time. Two scenarios are therefore 

defined in order to investigate different aspects of the dynamic CAF:  

� Static CAF (S1). This scenario merely considers the design aspect of the CAF; i.e., 

the results presented in Section 5.3.2. That is, the plan is generated off-line and no 

control mechanism is applied to modify the plan and provide feedback in real-time. 

The purpose is to highlight the role of the CMAS and the tool sharing-best matching 

protocol handling the uncertainties of the assembly process. 

� Dynamic CAF (S2). All aspects of the dynamic CAF, from off-line planning to real-

time control are incorporated in this scenario. The assembly line is simulated to 

investigate capability of the developed CMAS and the tool sharing-best matching 

protocol in maintaining the flexibility and balanceability of the line in uncertain 

and dynamic environments compared to S1. 

Theoretically, it can be shown that the static scenario S1, in its best performance, 

yields the same results as the dynamic scenario S2 (see Moghaddam and Nof, 2015b). This 

situation occurs where all tools have the same progress rate (no matter if it is better than 
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tool sharing ���� ���� 	
��
�� �
 ��
 ������� ��	����
�� �� ��
 ����
��� ���	���
	������� 

Moreover, our observations show that the gap between S1 and S2 is proportional to the cycle 

time. That is, as the cycle time of a system increases the positive/negative impact of 

high/low performance workstation, i.e., workstations with 1i� �  or 1i� � , on the gap 

between the cycle times of S1 and S2 becomes more evident. The average improvements in 

the cycle time by S2, compared to S1, are 8.8%, 22.1%, and 25.1% for P12, P16, and P24, 

respectively. This phenomenon is also further intensified as the number of workstations 

increases, which usually results in a more diverse population of high and low performance 

workstations.  

Compared to S1, S2 also yields lower variations in the cycle time in different 

independent experiments, which implies higher flexibility of the assembly system in the 

face of dynamic and unforeseen changes. In other words, minimization of the cycle time 

through S2 increases the capability of the system in increasing its throughput (without any 

additional resources) in the cases of abrupt increases in the demand. These findings indicate 

the superiority of the developed control mechanism over classic off-line planning 

approaches, and its role in upholding the performance of assembly systems in real-time. 
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P12 - Plan 2  P16 - Plan 2  P24 - Plan 2      

 
 

 
 

 
P12 - Plan 3  P16 - Plan 3  P24 - Plan 3 

Figure 5.9. Cycle time variations in different experiments�the static CAF (S1) vs. the dynamic CAF (S2). 
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5.5 Concluding Remarks 

It was shown, both mathematically and through several numerical experiments, that the 

relative balanceability of assembly lines is guaranteed by the CAF, where, for a fixed line 

configuration, the deviation of the optimal cycle time from its ideal value (i.e., the cycle 

time of balanceable line) is a function of CE coefficients. That is, assuming an ideal 

assembly line with �all-purpose� tools located in different workstations along with 

negligible tool transfer times, the CAF results in a fully balanceable assembly line. The 

experimental results highlight the impact of CEs on the balanceability of assembly lines. 

Improved balanceability, in turn, leads to higher flexibility of the assembly line in dealing 

with dynamic variations of the demand. 

Collaboration through tool sharing and best matching increases the maximum 

capacity of the assembly line in terms of throughput rate (i.e., minimizes the minimum CT). 

Accordingly, in case of unforeseen increases in the demand, the CAF enhances the 

possibility timely response to such disruptions without extra investments. On the other 

hand, in case the required throughput rate is lower than the maximum throughput rate (i.e., 

balanceable line), tool sharing may be temporarily avoided to reduce unnecessary 

collaboration costs. The unique advantage of the CAF compared to other collaborative 

approaches (e.g., work sharing) is the emphasis on optimal identification, assignment, and 

utilization of the existing idle resources in elimination of bottleneck workstations, rather 

than investing in extra resources (e.g., equipment duplication). The developed 

mathematical formulation provides a flexible and powerful multiobjective optimization 

tool for the CAF, which can be used for solving small-sized collaborative ALB problems. 
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The framework developed and discussed in this case provides necessary and 

general insights for understanding of the notion of collaborative processes in assembly 

lines and further investigations in the future. Thus, although the CAF is validated in this 

example with cases applied in previous research based on realistic small-sized ALB 

problems, a next step is to implement this framework in more complex industrial assembly 

lines. A multi-agent system is designed and the detailed workflow, from the design (the 

MOMIP model) to the real-time execution and control (the CMAS) is developed. The 

statistical analyses on the results of different scenarios indicate significant improvements 

in the cycle time by the newly developed design-control mechanism for the CAF, in 

comparison with the classic ALB approaches without tool sharing-best matching, and the 

static CAF (Moghaddam and Nof, 2015b).  

Without loss of generality, a set of simplifying assumptions have been made, which 

need further investigation from the systems engineering aspect. The CE coefficients are 

defined as the representatives of tool sharing success between each pair of workstations, 

considering tool-task compatibility, setup times, movement times, and so on. Clearly, case-

specific technical and technological limitations may prevent the CEs from taking their 

highest values, and thus the assembly line from being fully balanceable. Flexibility and 

capability of the shared tools in joining the process of a task at any point, and the possibility 

of processing a task with multiple tools at the same time are other challenges to be 

addressed in future work. 
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CHAPTER 6. CASE 3�CLUSTERING WITH INTERDEPENDENT 
PREFERENCES� 

The generalized matching problem is analogous to the capacitated clustering problem�

the problem of partitioning a number of individuals into disjoint clusters with certain 

capacities. That is, capacitated clustering can be recast as a problem of finding the best 

two-sided match between the sets of entities (set I) and clusters (set J). For example, 

customers, tasks, and interns may represent the sets of entities to be respectively matched 

to suppliers, machines, and hospitals, each representing a specific cluster with limited 

capacity (e.g., a supplier can serve a limited number of customers; a machine can process 

a limited number of tasks; a hospital can admit a limited number of interns). The difference 

between the many-to-one matching problem and the capacitated clustering problem, 

however, is in their objectives. The objective of the many-to-one matching problem is to 

maximize a set of matching criteria subject to certain capacity limits and requirements, 

����� ��� 	
�
	��
��� 	�
������� ������� ������ ���
��� ��
� ��� 	�
������ 	
�
	����� 
��

not violated (Osman and Christofides, 1994). 

Matching criteria, as thoroughly discussed in CHAPTER 3, are diverse; from cost 

to distance (e.g., between suppliers and customers), performance (e.g., machines 

                                                 
�  The preliminary version of this case study was presented at the Industrial and Systems Engineering 

Research Conference, Nashville, USA, 2015. The materials presented in this case study are adapted from 
two works of the author published in Decision Support Systems (DOI: 10.1016/j.dss.2015.08.005) and 
partially in the International Journal of Advanced Manufacturing Technology (DOI:10.1007/s00170-
015-7806-7). 
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social gathering and are going to choose a table to sit at (Guests: Set I; Tables: Set J). 

Besides your initial preference for each individual table (e.g., location; food), your choice 

may be influenced by the people who are already sitting at each table. It is a natural 

phenomenon; we have different perceptions and attitudes about different people. The 

preferences, as described earlier, are merely an abstraction of various matching criteria, 

and thus, such interdependencies may have certain implications in different application 

domains. Some practical examples are:  

� Enterprise collaboration. The profitability of a particular coalition for an enterprise 

may be influenced (increased/decreased) by the members (i.e., other enterprises) of 

that coalition. 

� Wireless sensor networks. The choices of an individual sensor for different clusters 

in terms of energy consumption may be influenced by the type, number, and energy 

level of the sensors in each cluster.  

� Swarm robotics. The efficiency of an individual robot may be influenced by its 

assignment to different teams, depending on the depending on the type, number, 

and functionality of the robots in each team. 

� Scheduling. The optimal allocation of a task to a machine in terms of makespan or 

cost may be influenced by the processing and/or setup requirements of the tasks 

that are already in process or in the queue of each machine. 

� Storage assignment. The best storage location for a particular product in terms of 

total movement time of material handling devices may be influenced by its affinity 

with the already allocated products. 
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6.1 Motivation 

Interdependencies between preferences can dramatically influence best matching decisions 

and lead to non-optimal or even paradoxical decisions, if disregarded. The notion of IP 

(Interdependent Preferences), coined by Gaertner and Pollak in the 1970s, has been 

extensively investigated in utility theory, as an indication of the dependencies of the 

�����������	 
��
������� �� ��� consumption or well-being of other individuals in their 

neighborhood (Tomes, 1986; Postlewaite, 1998; Koçkesen, 2000; Bell, 2002; Sobel, 2005; 

Cabrales and Calvó-Armengol, 2008). Also referred to as peer influence, neighborhood 

effect, bandwagon effect, and conformity (Yang and Allenby, 2003), IP leads to either 

altruistic or envious behaviors�instead of considering their own absolute payoffs, 

individuals tend to evaluate their payoffs relative to those of others (Risse, 2011; Jamison, 

2012). 

In social sciences and psychology, the notion of IP is known as interpersonal 

relations/behaviors/emotions (e.g., Lee et al., 2011; Morita and Burns, 2014), and is proven 

to have significant impacts on social interactions and team/group activities (Manning et al., 

2008; Yilmaz and Peña, 2014). Examples include success/failure of collaborative 

marketing and sales teams (Niculescu, 2013), conflicts, job satisfaction, effectiveness, and 

turnover of interactive nursing units (Cox, 2001), efficiency and rate of errors/ 

miscommunication in surgical units and operating rooms (Lingard et al., 2002; 

Romanowski et al., 2013), performance, throughput, and cost of construction projects 

(Ling and Tran, 2012), all influenced by certain mutual interactions among individuals. 
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The major motivations of this case are therefore the extensive applications of IP, 

the lack of generic and formal analysis of it in the matching literature, and the impact of IP 

on capacitated cluster formation and evolution. Accordingly, this case study defines, 

formulates, and analyzes an extension of the generalized matching with IP, where the 

elements of the same set influ���� ���� �����	
 ����������
 ��� ��� �
�����
 �� ��� �����

set(s), if matched to the same element. 

6.2 Outline 

The many-to-one best matching problem with IP (henceforth, BMP-IP) is considered, 

where each element of set I can be matched to up to one element from set J, considering 

interdependencies among the preferences of the elements of set I. The BMP-IP under study 

is indeed a capacitated clustering problem, where each element of set J can be matched to 

a limited number of elements from set I. The clustering must be performed with respect to 

the mutual preferences of I's and J's, the capacity limits of J	
� ��� ��� ���
�����
 �� I's on 

���� �����	
 ����������
� According to the PRISM taxonomy of best matching, the BMP-

IP can be characterized as shown in Figure 6.2. 

The BMP-IP is first investigated from the cluster formation perspective: Sets I and 

J are fixed, and all elements are matched simultaneously, given their preferences and 

respective IP, capacity requirements and limits. The outcome of the capacitated many-to-

one matching is a set of clusters, each corresponding to a specific element of set J. These 

clusters may not be necessarily disjoint and may interact and collaborate with each other; 

e.g., demand-capacity sharing among suppliers (Moghaddam and Nof, 2014); tool sharing 
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of the BMP-IP: The limited capacities of clusters and the interdependencies between the 

�����������	 
��
�������� �� ������������ ��������� ���� �� �����
��� �����oped to model 

and analyze the impact of IP on the real-time administration, optimization, and control of 

the evolution of the networked clusters. Several experiments are performed on various test-

problems to investigate the impact of IP on the formation and evolution of capacitated 

clusters, the sensitivity of best matching decisions to the intensity of interdependencies 

among preferences, and the computational efficiency of the developed algorithms.  

6.3 Cluster Formation: QAP and GA 

The mathematical formulation of the BMP-IP was presented earlier in CHAPTER 3 

(Model (M3.4); M:1 / RC, IP / +, OS) as a QAP (Quadratic Assignment Program). The 

QAP is NP-hard (Sahni and Gonzalez, 1976), and thus is the BMP-IP. Several exact and 

heuristic approaches have been developed and examined in literature for solving the QAP 

(see, e.g., Öncan, 2007; Burkard et al., 2009), among which Ant Systems (Gambardella et 

al., 1999; Maniezzo and Colorni, 1999; Talbi, et al., 2001), and GA (Ahujaa et al., 2000; 

Drezner, 2003 and 2008) are the most common techniques. In this case, GA is applied due 

to its simplicity and capability of solution representation and regeneration, ability to work 

with multiple solution sets, and compatibility with unique specification of different 

problems in terms of encoding and decoding schemes (see CHAPTER 2). 

The notion of GA is based on the evolution through natural selection, which is the 

foundation for the evolutionary mechanisms developed in this work. To avoid the 

infeasibility of the solutions (in terms of capacity limits) and increase the efficiency of the 

algorithm, a greedy heuristic is developed for generation of the initial population, and a 
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reproduction scheme based on path re-linking method (Glover, 1994) is developed for 

reproduction through crossover and mutation, as described next. 

6.3.1 Encoding 

In GA, each potential solution set is encoded as a chromosome. The efficiency and 

performance of the algorithm, in general, and the reproduction functions, in particular, 

depend on the applied encoding scheme. For the BMP-IP, a natural encoding scheme is 

applied: an array of length |I|, where each specific gene of a chromosome c corresponds to 

a specific element of set I, and each allele of each gene takes a value in J (Figure 6.3). Note 

that if the overall capacity of set J is less than the size of set I, some elements of set I may 

remain unmatched. In the proposed encoding scheme, the alleles of the unmatched genes 

(if any) take zero values. Note that due to the limitations on the number and capacity of the 

elements of set J, a generated chromosome may be infeasible. Therefore, a greedy heuristic 

is developed for initialization of the algorithm, as described next. 

6.3.2 Initialization 

The performance of GA substantially depends on the initial population generation, in terms 

of diversity, fitness, and, in this case, feasibility of chromosomes. To ensure these 

qualifications in the initial population, a greedy heuristic is developed, which generates 

each chromosomes of the initial population through the following steps: 

1. Generate a random permutation of the elements of I and store them in R in that 

order. 

2. Set �ij ijP P� , , .i j�  
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6.3.3 Fitness Evaluation 

The fitness value of each chromosome c, which represents the overall satisfaction degree 

of mutual preferences/IP is calculated using the objective function of Model (M3.5) in 

CHAPTER 3, where 

� �1, if

0, otherwise
ij

i j
�

���� �
��

c
 

6.3.4 Reproduction 

After generation of the first population and evaluation of their fitness values, the next step 

is to produce the next population from the existing population of chromosomes. In a GA, 

reproduction can be performed in a variety of manners and through different genetic 

operators. Parent chromosomes must be selected to produce offsprings. According to the 

theory of natural selection and evolution, natural reproduction must result in stronger or 

fitter chromosomes in the next generations. The reproduction mechanisms of the GA must 

then be designed in a way that mimics this trait of biological systems. In this case, in 

addition to the fitness of the generated offsprings, their feasibilities must also be taken into 

account	to uphold the performance of the algorithm, infeasible solutions must be avoided 

during the reproduction procedure. Hence, a reproduction scheme is developed based on 

path crossover and path mutation mechanisms. 


 Path crossover. Crossover is a major reproduction mechanism in natural evolution, 

which combines the genes of two (or more) parents to produce offsprings. The 



142 
 

 

crossover operator is critical for the success of GA. The operator must be able to 

probabilistically explore new solutions (to ensure diversity), and exploit good traits 

of previous generations (to ensure fitness). Therefore, a modified version of the 

path crossover method (Glover, 1994) with insert transformation (Ahuja et al., 2000) 

is developed, which besides diversity and fitness, guarantees the feasibility of the 

produced offsprings (Figure 6.4): 

1. Randomly select two parent chromosomes c1 and c2, and fix the genes with 

similar alleles (exploitation of good traits of parents). Randomly select a 

gene, and set Z = 0. 

2. If the current gene is fixed, set Z � Z + 1 and go to Step 3 (no offspring is 

generated). Otherwise, perform insert transformation: 

a) In parent c1, randomly select an unfixed gene (other than the current 

gene), which has the same allele as the one in the current gene of c2. 

If there is no such gene in c1, go to Step (c) (no offspring will be 

generated). 

b) Insert the allele of the selected gene at the current gene of c1, and 

shift the alleles of other unfixed genes to the right. 

c) Apply (a) and (b) to c2, then go to the next step. 

d) Place the original parents (i.e., c1 and c2) and the generated 

offsprings (i.e., transformed parents) into the chromosome pool CP.  

3. If Z = |I|, go to Step 4. Otherwise, move to the next gene, from left to right 

in a cyclic fashion, and return to Step 2. 
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offsprings are generated. If there is no idle capacity in the entire network of clusters, 

however, the mutation operator is skipped. The mutation procedure is as follows 

(Figure 6.5): 

1. Randomly select a parent chromosome c and a gene k � I, set Z = 0, and 

generate a list of J�� ���� �	

 ��
������ i.e., 

� �� �� �: : , , .jL j M i i j i I j J� � � � �c  

2. Replace the allele of the current gene of c (i.e., k) with l � L where 

� �� �max .kl j L kjP P��  

3. Place the original parent and the offspring into the chromosome pool CP, 

and set Z � Z + 1. 

4. If Z < |I|, move to the next gene from left to right in a cyclic fashion (i.e., 

update k), and then return to Step 2. Otherwise, go to the next step. 

5. Eliminate duplicates of chromosomes from CP (if any), sort the rest 

according to their fitness values, and select a number of fittest ones 

according to the population size and the mutation rate. 

6.3.5 Parameters Setting 

The parameters of the GA are set as follows. Population size is equal to 2×|I|, proportional 

to the size of the problem. The algorithm stops if there is no improvement in the best 

solution obtained in the last 100 generations (stopping criterion). The crossover rate is 0.7, 

i.e., 70% of the population undergo the path crossover operation. The mutation rate is 0.3, 

i.e., 30% of the population undergo the path mutation operation. 
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assumed that the information regarding the new individual (i.e., original preferences and 

mutual influences) is known. In addition, only one association/dissociation is considered 

at a time. This assumption, however, is made for simplicity and the developed algorithms 

can be modified to handle simultaneous changes.  

An EA is developed to enable optimal evolution and adaptation the networked 

clusters to changes. The EA follows the logic of the developed GA except for the 

initialization�after each single association/dissociation, the algorithm does not treat the 

problem as completely new. Instead, it exploits the good traits of the former network 

topology, which is assumed to be optimal, while exploring new solutions, in order to adapt 

to the respective change in a computationally efficient manner. Consider a network of 

capacitated clusters with optimal configuration, represented by chromosome c. After any 

of the four types of changes (i.e., association/dissociation of I�s or J�s) takes place, the EA 

incorporates that change in the original chromosome c through a set of heuristics, resulting 

in a modified chromosome cm. The modified chromosome then duplicates and reproduces 

itself through the path crossover and path mutation mechanisms until an initial population 

of chromosomes is generated. Afterwards, the first population of chromosomes evolves via 

the GA until the optimal configuration of networked clusters is obtained. This procedure 

is repeated after each single change occurs.  

6.4.1 First Generation 

The main assumption of the EA is that the original chromosome c (before any changes take 

place) represents the optimal configuration of the networked clusters. Hence, the modified 
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chromosome must be generated in a way that upholds its optimality, i.e., maintaining its 

good traits, while incorporating the new changes. A set of heuristics is developed to 

generate the modified chromosome under the four main types of evolution in the networked 

clusters:  

1. Association �� ���. After association of a new individual k to set I, i.e., I � I � {k}, 

a new gene is appended to the original chromosome c. The new gene corresponds 

to k, and its allele l represents its match in set J, which satisfies the following 

condition in the modified chromosome cm: 

� 	
 
max ,kl j L kjP P��  

where 


 �� �� �: : , , .jL j M i i j i I j J� � � � �c  

If L �� , set � � 0k �mc . The alleles of the other genes remain unchanged in the 

modified chromosome cm. The above procedure identifies the elements of set J with 

extra capacities, and then matches the new individual to the one with the maximum 

mutual preference score. 

2. Dissociation �� ���. After dissociation of an existing individual k from set I, i.e., I 

� I \ {k}, the gene of the corresponding individual is removed from the original 

chromosome c, resulting in the modified chromosome cm. 

3. Association of J��. After association of a new individual l to set J, i.e., J � J � {l}, 

the modified chromosome cm is generated as follows: 

a) �mc c . Sort the elements of set I in ascending order of �ijP  and place them 

in the temporary set T. 
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b) Pick the first element of T and denote it by k. 

c) If � �
kj klP P� , � �j k� mc , set � �k l�mc , and update 	

ijP is. Otherwise, go to 

Step 4. 

d) 
 �\T T k� . If 
 �� �: ,lM i i l i I� � �mc  or T ��  stop. Otherwise, 

return to Step (b). 

The above procedure identifies the least satisfied elements of set I, i.e., the ones 

with the lowest preference scores, and matches them, one by one, to l (the new 

element of Set J), in case this change increases their preference score. The 

procedure stops if l has no further capacity or there are no other elements in set I 

that prefer l to their current match in set J. 

4. Dissociation of J��. After dissociation of an existing individual l from set J, i.e., J 

� J \ {l}, the modified chromosome cm is generated as follows: 

a) �mc c . 

b) Define sets L and T: 

� �� � � ��  : : , , \ ,jL j M i i j i I j J l! " ! # #mc  

$ %& ': .T i i l( (mc  

If L )*  or T )* , go to Step (d). Otherwise, go to Step 3. 

c) Find k + T such that , -,
. .maxkj i T j L ijP P/ /0 , j L1 2 , set 3 4k j5mc , and 

return to Step (b). 

d) If T 6* , set 7 8 0i 9mc , i T: ; . 

After removal of l, the above procedure matches its corresponding elements in set 

I to other elements of set J with extra capacities (if any), in a way that the overall 
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preference score is maximized (considering no other changes). In some cases, 

however, the number of elements of set I corresponding to l may be larger than the 

total available capacity of J's (after removal of l). In such cases, some elements of 

set I remain unmatched due to capacity shortage.  

The above ����������� heuristics	 may not guarantee the optimality of the modified 

chromosome; however, they provide satisfactory quality. Each single change, however, 

may significantly influence the optimal topology of the networked clusters due to the 

interdependencies among preferences. Therefore, it may be difficult to directly identify the 

required modifications after each change takes place. The modified chromosome generated 

by the above heuristics must therefore be evolved to obtain the optimal configuration of 

the capacitated network of clusters. Optimization is handled by duplicating and 

reproducing the modified chromosomes through the reproduction operators of the GA, as 

described next. 

6.4.2 Evolution 

After the modified chromosome is generated, it duplicates and reproduces itself using the 

GA operators to generate new offsprings and eventually a population of chromosomes. The 

duplication and reproduction mechanism is similar to the mitosis process in cell division 

and duplication (Figure 6.7). Specifically, the modified chromosome first generates 

another chromosome through mutation. The two chromosomes then generate two new 

chromosomes through crossover. The four chromosomes then generate four new 
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b) Randomly pair the chromosomes in C. For each pair c1 and c2, do path 

crossover until two offspring chromosomes 1 2 1 2� �� � �c c c c  are generated. 

� �1 2,C C � �� � c c . If |C| = PS, go to Step 5. Otherwise, return to Step 3.a. 

4.  

a) Perform swap mutation on cm to generate another chromosome: c' = cm, 

randomly select i, k � I, i 	 k, and then 
 � 
 �i k� mc' c  and 
 � 
 �k i� mc' c . 

� �C C� � c' . 

b) Randomly pair the chromosomes in C. For each pair c1 and c2, do path 

crossover until two offspring chromosomes 1 2 1 2� �� � �c c c c  are generated. 

� �1 2,C C � �� � c c . If |C| = PS, go to Step 5. Otherwise, return to Step 4.b. 

5. Take C as the initial population, and do GA until the optimal configuration is 

obtained. 

Steps 3 and 4 of the algorithm generate the first population of chromosomes. Step 

3 deals with the situations where at least one element of set J has extra capacity, and applies 

path mutation and path crossover as reproduction mechanisms to guarantee the feasibility, 

diversity (through exploration of new solutions), and quality (through exploitation of good 

traits of parent chromosomes) of the generated chromosomes. Step 4, on the other hand, 

handles the situations where none of the element of set J has extra capacity. In such cases, 

the path mutation is not applicable. Therefore, the modified chromosome cm first generates 

an offspring through a single swap mutation (Step 4.a), and then the rest of the initial 

population is generated through path crossover (Step 4.b). After generating the first 
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population, the GA developed in Section 6.3 is applied to find the optimal configuration of 

the evolved networked clusters.  

6.5 Numerical Experiments 

A set of numerical experiments is conducted on a set of test-problems to analyze the impact 

of interdependencies between preferences on best matching, from both cluster formation 

and evolution perspectives. The numerical experiments are specifically intended to 

illustrate the role of IP in the formation of capacitated network of clusters, and the negative 

impact of disregarding them on the optimal configuration of clusters and the entire network. 

The experiments also analyze the sensitivity of cluster formation decisions to the intensity 

of mutual influences and level of interdependencies between preferences. Moreover, the 

experiments illustrate the way capacitated clusters evolve, and the impact of IP and 

capacity limits on their evolution. The following two scenarios are defined to perform the 

above analyses: 

1. Best matching without IP (S0). The same methodology is applied for cluster 

��������� ��	 
���
����� ��
�
 ��
 ����

��
� �� ��	���	
��� �� 
��� ���
���

preferences are ignored in the optimization process. That is, the optimization is 

performed without considering the actual values of ��s, while they are ultimately 

incorporated in calculating fitness values. 

2. BMP-IP (S1). 

In both scenarios, it is assumed that there are interdependencies between the 

preferences of the elements of set I for the elements of set J. S0, however, disregards those 
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interdependencies. Four test-problems TP (20, 8), TP (40, 18), TP (60, 25), and TP (80, 30) 

are generated, where the first and second entries respectively denote |I| and |J| (the 

proportion between |I| and |J| in the test-problems are selected arbitrarily). In each 

experiment on each test-problem, the preferences, the influences of I's the preferences of 

each other, and the capacities of the J's are generated randomly following uniform 

distribution. The preferences are uniformly distributed in [0, 1], where 0 and 1 indicate no 

and full preference, respectively. The influences of I�� �� ���� �	��
�� �
�
�
����� �
�

uniformly distributed in [�0.2, 0.2]. The capacity limits of J's are generated randomly, 

where the total capacity is uniformly distributed in [|I|�0.1|I|, |I|+0.1|I|] (to ensure 

consistency and cover instances with limited and extra capacities). The reason behind using 

uniform distribution is to maintain the randomness of each independent experiment on each 

test-problem; that there is no a priori information on the exact values of the parameters. 

6.5.1 Results 

The first two goals of the numerical experiments are addressed in this section, i.e., the 

impact of IP on cluster formation and the sensitivity of the results to the intensity of mutual 

influences between I's. Ten experiments are performed on each test-problem. All 

experiments are independent of each other in terms of preferences, influences of I's on each 

�	��
�� �
�
�
������ ��� ������	��� �
 J's. Table 6.1 shows the optimal solutions 

(chromosomes) for the last experiment on TP (20, 8), under S0 and S1. The positions (genes) 

and their respective values (alleles) correspond to the elements of sets I and J, respectively. 

The two scenarios yield different network configurations with a considerable gap between 

their optimal fitness values, as expected. Figure 6.8 shows the gap between the normalized 
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A paired t-test is performed to analyze the significance of the gap between the 

optimal fitness values of S0 and S1. The test compares the means of the two treatments (i.e., 

the fitness values of S0 and S1) based on the following hypotheses: H0: 
0 1S SF F� ; H1: 

0 1S SF F� , where F  denotes the fitness values. At the significance level of 0.05 and the 

freedom degree of 9, the paired t-test parameter is 2.26, which is lower than the t-test 

estimates obtained for different test-problems: 5.63, 7.77, 9.94, and 10.26 for TP (20, 8), 

TP (40, 18), TP (60, 25), and TP (80, 30), respectively. The null hypothesis is therefore 

rejected, which implies a significant gap between the fitness values of S0 and S1. Since the 

gap is positive in all cases, it is concluded that S1 significantly outperforms S0, where the 

gap, according to the t-test estimates, is almost proportional to the size of the problem. 

The gap between the results of S0 and S1 is rooted in the intensity of the influences 

of the I's on each other's preferences (i.e., ��s). The results shown in Figure 6.8 are based 

on the default values of ��s (i.e., [�0.2, 0.2]). To indicate the impact of ��s on the gap 

between the results of S0 and S1, a sensitivity analysis is performed on each test-problem 

(one experiment on each), as shown in Figure 6.9. The results prove that higher mutual 

influences of I�� �	 
��
 ��

��� ��
�
�
	�
�� �������
 �� 	
�����
� �
�� �� ���
 ��������

changes in the optimal cluster formation, and disregarding such influences becomes 

substantially more detrimental to the optimality of matching. 
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6.5.2 Discussion 

In most cases, association/dissociation of an element to/from set I decreases/increases the 

fitness value (see Figure 6.10; a, c, e, g). Set J shows an opposite behavior (Figure 6.10; b, 

d, f, h). The reason lies in the capacity limitations of J's, which may prevent some I's from 

being matched to their more preferable element in set J. Hence, associating an additional 

element to set I makes the capacity limits even more restrict, while association of a new 

element to set J provides additional capacities and more possibilities, and thus alleviates 

such limitations. The same interpretation can also be valid for the dissociation of 

individuals. 

In spite of the above analyses, there are some cases with completely opposite 

behaviors, where, for example, dissociation of an element from set I decreases the overall 

fitness value (see, e.g., Figure 6.10.c, Iteration ~250). Such behaviors may be due to the 

interdependencies between preferences, rather than the capacity limits. For instance, 

dissociation of an element from set I with high positive � values (i.e., an element with 

highly positive influences on the preferences of the others) can considerably diminish the 

overall fitness value. 

��� ����	
� ��
 �	���������� �������� �� S0 is due to disregarding IP (Recall that 

the main assumption is that there are interdependencies between the preferences). That is, 

under S0, the clusters evolve without considering the actual values of the ��s. Nevertheless, 

the values shown in Figure 6.10 ��� ��� �������� �����		 �����	 �� ��� ���������	�
 ������
�

networks of clusters (considering the actual values of ��s). As shown in Figure 6.10, 

disregarding such interdependencies also leads to sub-optimal evolutions, where the gap 
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between the fitness values of the sub-optimal and optimal configurations is almost 

proportional to the size of the problem (see also Figure 6.9). 

The developed adaptation heuristics for generating the modified chromosome and 

the EA for generating the initial population effectively handle the evolutionary behaviors 

in terms of association or dissociation. As shown in Figure 6.10, the first generations of 

chromosomes (i.e., iterations) generated after each single change provide acceptable fitness 

values. Besides, the EA enables the clusters as well as the entire network to adapt, recover, 

and return to the optimal/near optimal state in a timely efficient manner, after a considerably 

small number of iterations. The computational efficiency of the developed algorithms is 

investigated next. 

6.5.3 Computational Efficiency 

The scalability of the developed algorithms in terms of variations in the computational time 

for different combinations of |I| and |J| values is analyzed here. Since the experiments are 

based on randomly generated parameters, the time required for collecting and cleaning 

input data is not included in the overall computational time. In some real-life applications, 

however, the data may be incomplete, fuzzy, or subjective, and the parameter values may 

need to be defined based on expert knowledge. For example, the actual gains or losses of 

an enterprise from joining, remaining in, or leaving a coalition is a function of various 

factors and dynamics such as market behavior, lifecycle of products, and political 

interactions with certain collaborators/competitors, and their calculation require 

compilation of various qualitative data such as surveys, interviews, and expert judgements 

into quantifiable preference scores. In such cases, however, the time required for preparing 
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developed algorithms. The computational efficiency of the GA represents that of the EA, 

since the EA uses the same mechanism except for the mitosis-like duplication and 

reproduction of the modified chromosome for generating the first population.  

6.6 Concluding Remarks 

In this case study, the BMP-IP is defined and analyzed, as a new instance of generalized 

matching problem where the mutual influences on and interdependencies between 

preferences are incorporated as determinant decisional factors. A QAP formulation is 

developed to mathematically formulate the BMP-IP. A set of evolutionary algorithms is 

developed to effectively handle the complexity of the problem with relatively polynomial 

growth in the computational time as a function of problem size, and enable self-adaptation 

and self-evolution of networked capacitated clusters. It is shown through several 

experiments that IP along with capacity limits dramatically influence generalized best 

matching decisions�the gaps between the fitness values of S0 and S1 in optimal cluster 

formation, association/dissociation of individuals and clusters are ~5%-15%, ~7%-11%, 

and ~15%-26%, respectively.  

The observations of this work indicate that, given interdependencies between 

preferences, the developed methodology substantially improves the performance of any 

networked system with analogous features and structures�from homogenous teams of 

humans (e.g., pilots; soldiers; students; workers; technicians; doctors; interns; roommates) 

to heterogeneous teams of humans and/or machines, with applications in production, 

manufacturing, supply, logistics, healthcare, and transportation. The main idea is that IP, 

driven by interpersonal emotions among humans, technical/technological specifications 
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and affinity attributes of machines/components, or both, is an influential and inevitable 

characteristic of any generalized matching problem. 

The results obtained through our experiments indicate that the BMP-IP, besides all 

of its known inherent complexities and dynamics, is sensitive to the mutual influences 

between every single pair of individuals. Although this phenomenon is more common in 

social networks compared to other types of systems, similar behaviors are expected from 

teams of artificial entities (e.g., sensors, robots, enterprises), based on factors analogous to 

emotion in humans (e.g., operational compatibility; task requirements). For example, 

product affinity is a practical example of IP in storage allocation (Li et al., 2015), where 

products with high affinity (e.g., being ordered together) are located in the same/closest 

possible aisles of the warehouse so that the material handling equipment take shorter routes 

while placing or picking up products1. 

 

 

 

 

 

 

 

                                                 
1  Note that this is a 1:1 matching problem between products and storage locations. See Li et al. (2015) for 

detailed description and formulation of affinity-based storage allocation. 
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CHAPTER 7. CASE 4�COLLABORATIVE SERVICE ENTERPRISES� 

An organization can be described as a system, or a system of systems, of homogeneous/ 

heterogeneous resources deployed for processing and synthesizing a set of tasks, in order 

to accomplish a set of goals (Ko and Nof, 2012). Examples include a procurement system 

with a network of order, product, and resource agents; an intelligent warehouse system 

with a network of sensors/RFID (Radio Frequency Identification) tags, readers, and 

antennas; a virtual factory composed of a set of reference models, decoupled software tools, 

shop floor devices, communication and computational elements, middleware, knowledge 

bases, servers; a manufacturing network with a set of suppliers, distributers, and 

manufacturing equipment. In line with the growing complexity and dynamicity of markets, 

businesses, and processes, and the emerging needs for higher flexibility, scalability, and 

resilience (Putnik et al., 2013), traditional organizations have gradually transformed from 

monolithic and self-reliant systems into highly-distributed and interconnected networks. In 

such emerging networks, the key to sustain and evolve is to engineer, improve, systematize, 

and automate collaboration among distributed entities (Nof et al., 2015; Moghaddam and 

Nof, 2015d). In this context, a Collaborative Networked Organization (CNO) refers to a 

                                                 
�  The preliminary versions of this case study was presented at the Industrial and Systems Engineering 

Research Conference, Montréal, Canada, 2014, and the INFORMS Annual Meeting, Philadelphia, USA, 
2015. The materials presented in this case study are adapted from two works of the author published in 
the International Journal of Production Research (DOI: 10.1080/00207543.2015.1125544) and under 
review in the Computers and Industrial Engineering journal. 
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network of autonomous, distributed, and heterogeneous entities (organizations and people) 

that collaborate through sharing information, resources, and responsibilities to achieve 

common/compatible goals (Nof, 2007; Camarinha-Matos et al., 2009). 

7.1 Motivation 

Advances in collaborative e-Work theories and technologies have facilitated computer-

supported and communication-enabled collaboration among geographically dispersed 

organizations, regarding e-Activities such as e-Business, e-Commerce, e-Logistics, and e-

Manufacturing. A CNO, besides its physical dimension, represents a virtual 

(v-)Organization as well; a distributed network of independent organizations that 

collaborate to achieve a set of individual and common goals (Camarinha-Matos et al., 

2009). The virtual dimension of the CNO, i.e., the v-Organization, enables collaboration 

among physical networked organizations, from minimal file exchange to direct access to 

resources such as computers, machines, software, and databases (Foster et al., 2001). 

Specifically, while some tasks require physical proximity to resources (e.g., sensing by 

distributed sensors; environmental monitoring or rescue by mobile robots; cross-docking 

in a distribution network), some other tasks can be processed remotely through information 

and communication channels (e.g., remote control of tele-robots; virtual manufacturing; 

remote modeling/simulation/problem-solving). In this case study, the tasks in the former 

and the latter classes are respectively referred to as physical (p-)Tasks and electronic 

(e-)Tasks. Table 7.1 summarizes examples of location-allocation decisions in various types 

of CNO, from micro-scale sensor networks to extended enterprises. 
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Table 7.1. Examples of collaborative location-allocation decisions in various cyber-supported CNO. 

CNO Organizations Resource sharing e-Task sharing Example refs. 

Wireless sensor 
networks 

Sensor clusters 

Dynamic clustering of 
sensor nodes, and/or 

reconfiguration of sensor 
network 

Collaborative info transmission 
to base-station under certain  

communication protocols 

Ko et al. (2010); 
Kulkarni et al. 

(2011) 

Swarm robotics Teams of robots 

Dynamic formation of 
teams of mobile robots; 

Dynamic sharing of data, 
code, memory, 

computational tools, etc. 

Dynamic (re-)allocation of 
tasks (e.g., sensing; picking/ 
placing; carrying; rescuing; 
cleaning) under unforeseen 

situations 

Grabowski et al. 
(2000); Nouyan et 

al. (2009) 

Collaborative R&D 
Institutes 

Universities; 
Laboratories 

Dynamic sharing of 
equipment, facilities, 
models, platforms, 

researchers, etc. 

Collaborative design, 
programming, decision-
making, problem solving 

Cummings and 
Kiesler (2005) 

e-Manufacturing 
networks 

Manufacturing 
sites; Suppliers; 

Distributers 

Dynamic allocation of 
decoupled software tools, 

shop floor agents, 
knowledge bases, servers, 
communication elements, 

etc. 

Collaborative process 
planning/scheduling, and 
factory design; Remote 

monitoring and control of 
agents, robots, machines, 

distribution networks 

Nof (2007); 
Shen et al. 

(2007); 
Camarinha-Matos 

et al. (2009) 

Multinational 
corporations 

Regional 
headquarters; 
Subsidiaries 

Dynamic allocation of 
employees, departments, 

authorities, planning, 
marketing, finance, IT 

resources, etc. 

Remote meeting/ conferences; 
Collaborative planning, 

scenario evaluation, analysis, 
visualization, and crisis 

management 

Kostova et al. 
(2008); Singh 

(2012) 
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This case study rethinks the design of CNO by incorporating both the physical and 

virtual dimensions of interaction and collaboration in the decisions. Without loss generality, 

CNO is abstracted as a network of organizations, each with a certain set of heterogeneous 

resources used for processing a set of tasks (p-Tasks and e-Tasks). Recently, various 

classes of the CNO have been inspired by the notion of cloud computing and its extension, 

from sharing merely computing resources (Mell and Grance, 2009) to other types of 

resources on the cloud, with applications in areas such as manufacturing (Xu, 2012), 

education (Sultan, 2010), and healthcare (Hood et al., 2012). Due to certain physical 

limitations associated with the p-Tasks and some resources, collaboration is enabled and 

augmented, in both physical and virtual dimensions, through two distinct but interrelated 

types of decisions, as follows (Figure 7.1): 

1. Allocation of tasks (virtual dimension). Each organization owns a certain set of 

resources and is assigned a certain set of tasks to process. Due to the dynamic 

variations in demand and capacity, organizations may encounter capacity 

��������	�
���
� �
�� ����� ��
�� ��� ��� ��� ��� ��������������� �� ������

organizations can collaborate by sharing their e-Tasks in the case of insufficiency 

of local resources. Collaborative processing of e-Tasks balances the overall 

workload of the network, and minimizes idle resources, congestions, and delays. 

2. Location of resources (physical dimension). Unbalanced distribution of resources 

among organizations may lead to considerable inefficiency and nullify the positive 

impacts of e-Task sharing. For instance, some organizations may lack enough 

resources for processing their assigned p-Tasks, which require physical proximity 
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search mechanism follows a novel best matching heuristic for neighborhood search 

inspired by the natural justice rule (henceforth, the algorithm is called TS-Jr.). The TS-Jr. 

algorithm enables optimal (re)configuration of CNO (Chituc and Nof, 2007), given the 

(potential) dynamic changes in the characteristics of the tasks and/or resources along with 

the topology of the network. Several experiments are conducted to illustrate the impact of 

collaboration in CNO through CLAP on task fulfillment, utilization of resources, and 

stability of the entire network, as well as the algorithmic efficiency and quality of TS-Jr. It 

is shown that the achieved improvements are in line with the emerging requirements for 

flexibility, scalability, and resilience of CNO. The CLAP, according to the PRISM 

taxonomy of best matching, is  

� A three-sided best matching problem between the sets of organizations O, resources 

R, and tasks T, where typically |O� � �R� � �T|. The pairwise relations between the 

sets, i.e., O:R, O:T, and R:T, are one-to-many, one-to-many, and many-to-many, in 

that order (Figure 7.2; D1), which imply that each organization can be assigned 

multiple resources and tasks, each resource can process multiple tasks, and each 

task can be processed by multiple resources.  

� A resource-constrained best matching problem (limited resources for processing 

the tasks), where collaboration is enabled among organizations through sharing 

resources and e-Tasks (Figure 7.2; D2). 

� A multi-criteria best matching problem (Figure 7.2; D3)�the objectives are to 

maximize task fulfillment, and minimize collaboration rate, which in turn lead to 

higher utilization of resources and stability of CNO. 
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A BOMIP formulation is developed for mathematical representation of the CLAP. 

A three-index formulation is applied, which represent best matching between the sets O, R, 

and T. The binary variables �ort are defined, where �ort = 1, if task t is allocated to resource 

r, and resource r is located in organization o, and �ort = 0, otherwise. The three-index 

formulation enhances the representation of the dependencies between the location and 

allocation decisions. In the following, the task fulfillment rate and collaboration rate 

objectives are presented, along with the constraints of the BOMIP model1: 

1. Objective 1: Maximize task fulfillment rate.  

 1max .
t

rt
r R t T

Z �
� �

� ��  (7.1) 

In the first objective function, �rt denotes the amounts of resources r � Rt consumed 

by task t � T. Accordingly, the fulfillment rate (FR) of each individual task can be 

estimated using the following formula: 

 
*

, ,
t

rt
t

r R rt

FR t T
C

�
	

 �

� 
 �� �
� �

�  (7.2) 

where superscript * denotes optimality. 

2. Objective 2: Minimize collaboration rate. 

 � �
2

\

min .
o

ort rt
o O r R t T T

Z � �
� � �

��� �  (7.3) 

The second objective function minimizes the overall amount of task sharing�the 

usage of external resources associated with other organizations for processing a 

task. Naturally, the value of Objective Function (7.3) is zero for all p-Tasks. This 

                                                 
1  This model is an extension of Model (M3.3), M:1 / RC, RS / +, OS, presented in Chapter 3 



173 
 

 

requirement is addressed by imposing proper constraints on �rt, as indicated in the 

following subsections. Given Objective Function (7.3), the collaboration rate (CR) 

can be estimated using the following formula: 

 
*
2

*
,

rtr R t T

Z
CR

�� �
�
� �

 (7.4) 

where superscript * denotes optimality. Note that, in this context, CR represents the 

ratio of the total collaboratively processed (consumed) tasks (resources) to the 

overall processing (consumption) of tasks (resources). 

3. Constraints 1: Resource limits. 

 , , .rt ort r
t T

L o O r R� �
�

	 
 � ��  (7.5) 

Constraints (7.5) ensure that the capacity limits of individual resources are not 

violated
the total capacity used by different tasks (including p-Tasks along with 

the original and shared e-Tasks) allocated to each resource must be less than or 

equal to its limit. 

4. Constraints 2: Task fulfillment. 

 1, .tFR t T� � �  (7.6) 

Constraints (7.6) ensure that the fulfillment rate of each task (see Eq. (7.2)) is 

bounded to one
the sum of the relative amounts of resources used by each task 

must not exceed one.  

5. Constraints 3: Allocation of tasks. 

 , , .rt rt ort
o O

C r R t T� �
�

� � � ��  (7.7) 
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 0, , , , , or , , .p
ort o to O r R t T t T o O r R t T� � � � � � � � � � �  (7.8) 

Constraints (7.7) ensure that if task t is not assigned to resource r at any organization, 

the respective consumption value, i.e., �rt must be zero. Otherwise, that value is 

limited to Crt, i.e., the capacity required by task t if processed by resource r. 

Constraints (7.8) ensure that (i) all p-Tasks can only be processed by their 

respective organization (are not shareable), and (ii) tasks (including all e-Tasks and 

p-Tasks) are not assigned to ineligible resources for processing. 

6. Constraints 4: Location of resources. 

 
� �1 , , , .o rt ort

o O t T
o o

o O r R t T	 
 	� �� �� ��

� � � � � ���  

(7.9) 

Constraints (7.9) satisfy the condition that each individual resource cannot be 

physically located in multiple organizations (� represents a sufficiently large 

positive number).  

7. Constraints 5: Feasibility of decision variables. 

 � �0, 0, 1 , , , .rt ort o O r R t T� �� � � � � �  (7.10) 

Constraints (7.10) ensure that the resource consumption variables are nonnegative, 

and the location-allocation variables are binary. 

7.4 Optimization: TS-Jr. 

The CLAP is a multidimensional (three-sided) generalized best matching problem, known 

as an NP-hard problem (Owen and Daskin, 1998). For solving the generalized best 
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matching problem, various exact (e.g., Savelsbergh, 1997; De Farias et al., 2000; Haddadi 

and Ouzia, 2004), approximation (e.g., Cohen et al., 2006; Jeet and Kutanoglu, 2007), 

relaxation (e.g., Benders and van Nunnen, 1983; Lorena and Narciso, 1996; Yagiura et al., 

1999), and metaheuristic (e.g., Osman, 1995; Lorena et al., 1999; Lourenc and Serra, 2002; 

Yagiura et al., 2004a) algorithms have been proposed in literature. Among all, a good 

candidate in terms of both solution quality and computational efficiency is tabu search 

(Yagiura et al., 2004b), which is also known as a powerful metaheuristic for solving 

multidimensional best matching problems (Laguna et al., 1995). 

Tabu search, a memory-based metaheuristic introduced by Fred W. Glover in 1986, 

is based on neighborhood search with prohibition strategies, which mark previously visited 

solutions (temporarily or permanently) as forbidden or tabu in order to prevent cycling and 

improve the efficiency of search mechanism (see CHAPTER 2). The algorithm starts with 

an initial solution S, and repeatedly explores through its neighborhood, while exploiting 

the knowledge of tabu points/areas, until a stopping criterion is reached. The moves are 

directed by various mechanisms, among which shift, swap, and ejection chains (Glover, 

1996) are the most common. For the multidimensional best matching problem, specifically, 

Laguna et al. (1995) recommend simple, double, and circular ejection chains as efficient 

mechanisms for movement in the neighborhood. Besides the movement mechanism, 

however, a critical step in tabu search is to find the best move in each iteration. 

In the CLAP, due to the interdependencies among task sharing and best matching 

decisions, identification of the best move may not be possible via simple infeasibility or 

cost-improvement measures (Laguna et al., 1995). Thus, a novel TS-Jr. algorithm is 
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and sand analogy in time management�is developed, which besides satisfaction of the 

rest of the constraints (i.e., nonnegative task fulfillment; resource limits), provides 

acceptable quality for the initial solution S. The idea of the rock and sand initialization 

��������� �� �	 
��	�
�� �
���� ���	����� 
� �	���� ����� �	 ��� 	��
���
��	�� ���� ������
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�
��� �������

resources and demand, and thus, reduce the need for task sharing (i.e., the CR objective). 

Allocation of resources to different tasks is then performed in a way that maximizes task 

fulfillment rates (i.e., the FR objective), while avoiding violations from the resource limits. 

The rock and sand initialization heuristic is as follows: 

0. Generate a (|T|+1)×|R| zero matrix M. 

Location of Resources 

1. For all organizations o � O, estimate (average) the overall resource requirement: 

, .
o t

rt
o

t T r R t

C
ER o O

R� �
� �

� � � ! !" #
$$  

2. Locate the largest resource in the organization with maximum estimated overall 

resource requirement (break ties arbitrarily): 

% & ' ( ' () )* *1, , max ; max .r r o o
r R o O

r o L L ER ER+ +, , ,M  

3. Set - - -o o rER ER L. /  and 0 12\R R r3 . If R 45 , go to Step 4; otherwise, return to 

Step 2. 
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Allocation of Tasks 

4. Given the location decisions, calculate the average resource requirement for all 

tasks: 

, ,
t

rt
t

r X t

C
AR t T

R�
� �

� � �� �� �	 

�  

where � 
� �| ; 1, ;t t oX r r R r o t T� � � �M , 
pt T� � , and t tX R� , 

et T� � . 

5. If T ��  or R �� , go to Step 7; otherwise, identify task �t  where (break ties by 

prioritizing p-Tasks over e-Tasks; if the tasks are the same type, break the tie 

arbitrarily) 

� �� min ,tt t T
AR AR�  

and set ! 1tz " . 

6. Identify resource #$
tr X%  where & '() )) min

tr Xrt rtC C*+  (break ties arbitrarily). 

Calculate , , ,, ,rt t rtz C- . / : 

0 If 1 11 rrt L2 3 , set 445 51, rtt r 67 89 :; <M ; == = =r r rtL L >? @ ; A BC\T T tD ; and return to 

Step 5. 

0 If E EE rrt LF G , set HI I1, rt r LJ KL MN OM , P 0rL Q , R ST\R R rU , V WX X Y\t tX X rZ  and 

[ \] ] ]] ] .rt t rtz z L C^ _ If ` ,tX ab  redo Step 6; otherwise, return to Step 5. 

7. Output matrix M as the initial solution S. 

The rock and sand heuristic is composed of two phases, for (i) locating the resources 

in the organizations, and (ii) allocating the p-Tasks and e-Tasks to the combinations of 

organizations and resources. This is done by estimating the amount of resources required 
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by each organization, considering its respective tasks (Step 1), and locating the largest 

resources, one at a time, in the organization with the highest demand (Steps 2 and 3), 

following the rock and sand analogy. This heuristic procedure is intended to minimize the 

CR by distributing the resources with respect to the levels of demand. The idea behind the 

task allocation heuristic is that (i) tasks with lower average resource requirements, in 

general, have higher priority for allocation, and (ii) in case of ties, p-Tasks are prior to e-

Tasks. This is done by prioritizing the tasks based on their average resource requirements 

(given the allocation of resources) (Steps 4 and 5), and then allocating them, one at a time, 

to the most efficient resource(s) (Step 6). This procedure continues until all tasks and/or 

resources are allocated. 

The fitness of matrix M is calculated using the following formula: 

 � � � � � �1 ,FR t CRt T
F w FR T w CR�� � � � 	
M  (7.11) 

where FRw  and CRw  respectively denote the weights of the FR and the CR objectives, and 

the values of tFR  and CR  are obtained through Eq. (7.2) and (7.4), respectively, where 

� �
 1, , , ,rt t r r R t T� � � � � �M  

� � � �1, if 1, and 1, 0,
� , , .

0, Otherwise,
ort

r o t r
o O r R t T�
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��

M M
 

7.4.2 Neighborhood Search: The Natural Justice Rule  

Various theories and philosophies stress, in some way, the existence of justice in nature 

!"#! $you gain what you deserve%& '"( !"()*+ ), -)./#0 1#*2/3/456 #3 (7!(34/)3 ), 8"#*0(4
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�������� 	�� 
� natural selection to sociology, states that stronger/weaker individuals or 

groups have higher/lower chances of survival, growth, and dominance in society. Oxford 

Dictionaries define justice �� �just behavior or treatment
 
� �the quality of being fair and 

reasonable
� ����� ��� �
 � ����� ������� ���	����� �� ��� �
��
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costs/benefits, resources, fitness, dimensional tolerance, and so on. Accordingly, following 

the natural justice rule, the deviation between the power and the gain of individuals (e.g., 

tasks; resources; organizations) can be viewed as an indication of the quality of a solution. 

This is the basis for the TS-Jr. algorithm developed in this work. 

In tabu search, the moves in each iteration are applied in the neighborhood by 

making slight changes in the current solution S; e.g., changing the assignment of one or 

more tasks in the best matching between tasks and agents (Yagiura et al., 2004). The main 

challenge, however, is to find the best move (e.g., the best alternative tasks and the 

respective changes in their assignments). The developed neighborhood search heuristic 

addresses this issue�based the natural justice rule�by defining a generic power-gain 

deviation function, as follows: 

 , ,i i iD P G i ! "  (7.12) 

where Pi and Gi respectively represent the levels of power and gain of individual i. 

Accordingly, individuals with larger values of |Di| have higher likelihood of being selected 

for the next move in the neighborhood. For instance, if the actual processing time of a task 

on its assigned machine (i.e., gain) is considerably higher/lower than its average processing 
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where 0� �  is a predefined parameter, and �� �� �  denotes the ceiling function. 

6. Update tabu list �  ! ", ,TL TL o r t# $ , , ,o O r R t T% & & & , ' (, , 0o r t) * , set 

M0 = M as the initial solution S, and return to Step 1. 

The neighborhood search heuristic starts by probabilistically selecting two 

organizations in two consecutive rounds, following the natural justice rule: In the first 

round, the organization with the largest deviation+based on the justice rule (either positive 

or negative)+is selected (Eq. (7.14.a)), while in the second round, an organization is 

selected, which has the most opposite situation of the first organization (Eq. (7.14.b)). The 

use of parameter ,0 enables exploitation of the knowledge provided by the natural justice 

rule (i.e., neighborhood search on the two extremely opposite cases of capacity-demand 

imbalance) as well as exploration of new solutions in each iteration. The selection is 

followed by an extended version of the ejection chains proposed by Laguna et al. (1995), 

where the organization with extra capacity shares one of its resources that best fits the 

resource requirement of the organization with capacity shortage (Step 2). Following this 

update, the tasks that are not in the tabu list (exploitation of former knowledge on 

previously visited low-quality points) are reallocated to the organizations and resources via 

the task allocation stage of the rock and sand heuristic presented earlier (Steps 3).  

The fitness of the updated solution is calculated using Eq. (7.11). If no improvement 

is made (i.e., the gap between the fitness values of the current and the best solutions is 
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smaller than a predefined parameter � > 0) over the last ITmax iterations, the algorithm stops. 

Otherwise, it updates the tabu times and the tabu list, and resumes the neighborhood search. 

For simplicity and without loss of generality, the tabu times are considered proportional to 

the improvements made in the fitness values after each iteration (Eq. (7.15)). That is, if 

adjustment of a certain set of variables results in a larger improvement in the fitness value, 

those variables remain in the tabu list for a longer period. If there is no/negative 

improvement, the leaving variables do not enter the tabu list. Parameter � is defined by the 

user, based on the fitness values, to adjust the performance of the algorithm. Depending on 

the application and computational requirements of specific problems, however, other (more 

advanced) functions can be applied for this purpose. 

The main purpose of the developed rock and sand heuristic and the neighborhood 

search heuristic based on natural justice rule is to enhance the quality and efficiency of tabu 

search in finding the optimal solution to the CLAP. 

7.5 Numerical Experiments 

The CLAP is an extension of the original LAP (Location Allocation Problem) with 

additional considerations on capacity limits and collaboration through resource and task 

sharing. Hence, in order to highlight the impact of collaboration on the quality of location-

allocation decisions in collaborative CNO in terms of task fulfillment and collaboration 

efficiency, the results of the CLAP obtained from the TS-Jr. algorithm (as scenario S1) are 

compared with the results of a non-collaborative scenario (S0), which involves all the 
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features of the CLAP and TS-Jr. (including optimal resource location decisions) exclusive 

of the possibility of dynamic task sharing (virtual collaboration) among organizations. 

Several test-problems, denoted by |O|:|R|:|T|, are generated through a random 

procedure for relative comparison between S1 and S0 as well as performance analysis of the 

TS-Jr. It is assumed that all resources are eligible for processing all tasks, i.e., Rt = R, � t 

� T. The capacity requirements by individual tasks are randomly generated following 

Uniform distribution for all problem instances: Crt � Uniform [50, 150], � r � R, t � T. 

The capacity limits of the resources are generated with respect to the capacity requirements 

(90%-110% of the mean): Lr = Uniform [0.9, 1.1] × meant (Crt), � r � R. The type of the 

tasks (Tp or Te) and their respective organizations (To) are determined randomly in a way 

that each organization is attributed to at least one task. The algorithmic parameters are also 

set as follows: �0 = 0.30 � = 0.01; � = |T|; ITmax = 500; 0.5FR CRw w� � . 

7.5.1 Results and Analyses 

20 independent small- to large-sized CLAPs are generated following the experimental 

design procedure explained earlier. For each problem, the TS-Jr. algorithm is capable of 

suggesting the (near) optimal decision regarding the best location of resources, allocation 

of tasks to resources/organizations, and collaboration among organizations through 

resource sharing and task sharing. All this information is integrated and reported�for 

decision-maker/user of the TS-Jr.�through matrix M of the optimal solution. Figure 7.4 

presents the results obtained from the TS-Jr. algorithm for scenarios S0 and S1, in terms of 
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Table 7.2. Details of the CLAP test-beds. 

Problem ID Size (|O|:|R|:|T|) |Te|/|Tp| Run time (sec.)* 
P17 120:600:800 0.90 452.23 
P18 150:800:1200 0.99 797.11 
P19 180:900:1500 0.98 1031.90 
P20 200:1200:2000 0.97 1429.91 

* The TS-Jr. algorithm is programmed in MATLAB R2014a executed from the Purdue 
������ �� 	
���
 
���� �� �� ���
�� 
��
� �� ����
����� 

The experimental results reveal that, in all cases, scenario S1 outperforms scenario 

S0 in terms of FR thanks to the possibility of collaborative processing of e-Tasks by 

organizations. This indicates the significant impact of collaboration on the service level 

and utilization of distributed resources, where less than 20% of the e-Tasks, on average, 

are processed locally at their respective organizations. This, in turn, increases the flexibility 

and stability of the CNO in handling demand disruptions with the same level of resources 

(Moghaddam and Nof, 2014). The experiments also show that as the number of resources 

and tasks�and thus their variety�increases, become more capable of fulfilling the tasks, 

due to access a larger and more diverse pool of resources and higher likelihood of finding 

their best match. This phenomenon can be explained, more technically, by the collaborative 

fault tolerance principle of the collaborative control theory (Nof, 2007), where larger 

networks of agents/resources are proven to result in more resilient network�and thus 

higher FR�through teaming (Reyes Levalle and Nof, 2015). 

A paired t-test is conducted to evaluate the significance of the gap between the 

results of S0 and S1. The test compares the mean values of two treatments, the FR of S0 

and S1 obtained for P01 to P20, according to the following hypotheses; H0: FRS0 = FRS1; 

H1: FRS0 � FRS1. At the significance level of 0.05 and freedom degree of 19, the paired t-
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test parameter is 2.09, which is lower than the t-test estimates obtained based on the results 

of S0 and S1: 3.87. Hence, the null hypothesis is rejected, implying a significant gap 

between the FR values of S0 and S1. Consequently, because the gap is positive in all test 

problems, it can be concluded that S1 significantly outperforms S0. 

7.5.2 Computational Efficiency 

The TS-Jr. algorithm is experimentally proven to be able to yield near-optimal solutions to 

the CLAP with significantly short computational time (see Table 7.2). However, since both 

the initialization and the neighborhood search mechanisms are the first of their kind, the 

performance of the TS-Jr. algorithm must be compared with a benchmark in order to ensure 

its computational efficiency and solution quality. This is typically performed by comparing 

the performance of the developed algorithm with other similar/peer exact/heuristic/ 

metaheuristic algorithms (e.g., genetic algorithms; simulated annealing; branch-and-

bound), or its solution with a lower/upper bound. Since CLAP is a new problem and none 

of the aforementioned (and similar) algorithms has been used for solving it/its extensions 

before, the following two benchmarks are used for performance evaluation of the TS-Jr. 

algorithm: 

1. Tabu search (B1) is considered as the first benchmark, with all the features and 

mechanisms of TS-Jr. for initialization and neighborhood search (i.e., the rock and 

sand heuristics) except for the ejection chains for neighborhood search, which are 

based on random selection of organizations (rather than selection based on the 

natural justice rule). 
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2. Upper bound (B2) for the CLAP is generated through a heuristic procedure based 

on the rock and sand analogy, and considered as the second benchmark. The upper 

bound is obtained by relaxing the condition on local processing of p-Tasks at their 

respective organization, and setting their resource requirements equal to their 

minimum value, i.e., 

min { }, .rt r R rtC C t T�� � �  

The optimal solution to the modified CLAP (see Moghaddam and Nof, 2016b) 

provides an upper bound for the FR objective. The experimental results presented 

in the previous section indicate that CR is approximately equal to 80% of the ratio 

of e-Tasks. Hence, 80% of this value is simply considered as an approximate 

experimental lower bound for CR. Accordingly, the upper bound for the CLAP is 

calculated as follows:  

 
� �

max , 1 1 0.7 .
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� 	
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�
�

 (7.16) 

Figure 7.5 summarizes the performance comparison between the TS-Jr. algorithm 

and the two benchmarks, tabu search and the upper bound. Both the TS-Jr. and the tabu 

search algorithms are executed 5 times, for 500 iterations, and on four small- to large-sized 

CLAPs. (Note that the test-problems generated in this section are different from the test-

problems used earlier.) The presented results illuminate the computational efficiency and 

quality provided by the developed neighborhood search mechanism based on the natural 

justice rule�as the only distinction between the TS-Jr. algorithm and the applied tabu 
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7.6 Concluding Remarks 

This case study formalizes an emerging problem in the design of cyber-supported and 

communication-enabled CNO, and develops a computationally efficient and high-quality 

algorithm for optimization of the problem. The CLAP offers improvements in the 

utilization, service level, and stability of any CNO, from sensor networks and teams of 

robots to large-scale enterprises and multinational corporations, through dynamic 

collaboration and best-matching of distributed tasks and resources. Although certain 

modifications may be required in each case, the overall mechanics of the process are similar 

and in line with the fundamentals of the CLAP. The TS-Jr. algorithm, an improved tabu 

search with a powerful neighborhood search mechanism inspired by the natural justice rule, 

is proven as an effective tool for solving large-scale CLAPs. The computational efficiency 

of the TS-Jr. enables fast reconfiguration, adaptation, and evolution of CNO under various 

dynamic changes in the characteristics/domain of the problem; e.g., association/ 

dissociation of organizations, resources, and/or tasks to/from the CNO. 

The main assumption in defining the CLAP and developing the TS-Jr. algorithm is 

that the goals of all individuals are in line with the global goals of the entire CNO�that all 

interactions are collaboration-based rather than competition-based. In some systems, 

however, individuals may be biased, untrustworthy, or have conflicting goals with the goals 

of other individuals or the entire CNO. That is, not every individual is incented to 

collaborate. In such situations, the CNO is prone to substantial conflicts and instability; 

therefore, the collaboration and best-matching decisions must be made through centralized 

negotiation protocols or delegated to distributed intelligent and autonomous agents. 
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Accordingly, distributed and agent-based CLAP together with the issues of trust, security, 

and incentive-based collaboration constitute the main stream of research on the CLAP in 

the future. 
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CHAPTER 8. CONCLUSIONS 

8.1 Summary of Original Contributions 

Advances in service-orientation and collaborative e-Work have gradually increased the 

need for scalability, integrability, and resilience of systems, and enabled concurrency in 

distributed operations�from minimal file exchange to large-scale inter-organizational 

collaborations. The escalated rates of interactions in such complex networks, however, 

have brought up a new cohort of challenges in terms of flexibility and scalability along 

with optimality and timeliness of decisions. In this context, the hypothesis is that if every 

single element of a distributed system is matched to its best peer(s) at the right time (e.g., 

suppliers--retailers--customers in enterprise networks, jobs--machines--sensors in factories, 

vehicles--routes in transportation systems, robots--humans--orders in warehouses), the 

outcome will be a better system that addresses (at least partially) those emerging challenges. 

The complex, dynamic, and uncertain nature of modern manufacturing and service systems, 

however, has made such best matching processes very difficult to accomplish; in terms of 

both distribution of decisional capabilities (e.g., hierarchy/heterarchy) and nature of 

interactions among distributed individuals (e.g., competitive/cooperative). 

This dissertation investigates the problems of mismatch and best matching in 

distributed manufacturing, supply, and service systems. In this context, three research 

questions were outlined, and addressed as follows (Table 8.1): 
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RQ1-1: What is a good taxonomic framework for systematic syntheses, identification, 

and specification of matching problems in different areas? 

Answer: The PRISM taxonomy of best matching is proposed as a systematic framework 

for synthesis, identification, and specification of matching processes with 

respect to 3+1 dimensions (see CHAPTER 3). The PRISM framework provides 

a general mechanism for classification of matching processes with respect to 

three main dimensions: D1, the characteristics of the individuals/sets to be 

matched; D2, specific conditions/requirements of the matching process; D3, the 

criteria and procedures by which the best match is evaluated and determined. 

The additional dimension (D+) addresses the progression in the three main 

dimensions of matching, that may or may not take place over time.  

RQ1-2: What are the most important characteristics of such framework? 

Answer: The developed (and similar) taxonomic framework must be simple and 

comprehensive. Its simplicity enhances mapping of different matching 

processes to a general structure, which in turn enables analogical reasoning and 

comparison between similar but unrelated matching processes. Its 

comprehensiveness enables covering every aspect and feature of various 

matching processes in one unified and efficient structure.  

RQ2-1: What are the best approaches for structuring and formulating matching 

problems and processes? 

Answer: Matching is a binary decision, and, in mathematical terms, is represented by 

binary variables. Best matching is an optimization problem; the problem of 
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finding the best match out of a set of potential alternatives. Hence, best 

matching problems are naturally formulated as binary programs or mixed-

integer programs, when other dependent (and not necessarily binary) decision 

variables are involved. In a best matching model, the three dimensions of the 

PRISM taxonomy may be formulated as objective function(s), constraints, or 

both. For example, resource sharing decisions are represented in capacity 

constraints, while IP (Interdependent Preferences) are incorporated in the 

objective function of matching problems, leading to nonlinear (e.g., quadratic) 

objective functions. Although binary/mixed-integer programming are efficient 

methods for mathematical formulation of matching problems, they are limited 

to centralized and static settings (i.e., no D+). In dynamic and distributed 

environments where decision-making authority is delegated to decentralized 

individuals, matching processes must be formulated using interaction 

mechanisms and protocols. 

RQ2-2: What algorithms and protocols can be developed to efficiently solve those best 

matching problems? 

Answer: Matching is known as an NP-hard problem. Various exact and heuristic 

approaches have been proposed in literature for handling its computational 

complexity. In this dissertation, various heuristic and metaheuristic tools, 

including genetic and evolutionary algorithms and tabu search, are developed 

for solving the new (and relatively unstructured) best matching problems in 

classic centralized and static environments. In addition, several interaction 
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mechanisms and protocols including task administration and predictive best 

matching protocols and collaborative multi-agent systems are developed for 

design and execution of matching processes in distributed and dynamic 

environments.  

RQ3-1: How can the developed best matching algorithms and protocols be validated? 

Answer: The developed concepts, models, algorithms, and protocols are validated 

mathematically (e.g., network stability�Case 1; line balanceability�Case 2) 

and/or through numerical experiments. The new concepts (e.g., best matching 

with resource sharing; IP) are validated through comparison with the existing 

concepts (e.g., non-collaborative matching; no IP). The new optimization and 

control mechanisms are also compared with the existing equivalent 

methodologies in terms of both computational efficiency and decision-making 

capabilities. 

RQ3-2: What case studies, experiments, scenarios, and statistical analysis methods 

must be deployed to test and highlight the relative impact of those 

methodologies? 

Answer: Four case studies are conducted on recent and emerging instances of matching 

in supply networks, manufacturing systems, social networks, and service 

systems. The case studies provide detailed descriptions on various extensions 

of matching problems, in terms of definition, impact, and solution 

methodologies. The case studies were selected according to the mission of the 

PRISM Center as well as the expertise and interests of the author. 
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Table 8.1. Relationship between research questions and dissertation structure. 

Research Question Concepts and Methodologies 

RQ1 

What is a good taxonomic framework 
for systematic syntheses, 

identification, and specification of 
matching problems in different areas? 

3.1 The PRISM Taxonomy of Best 
Matching 
3.1.1 D1: Sets 
3.1.2 D2: Conditions 
3.1.3 D3: Criteria 
3.1.4 D+: Time, Progression 

What are the most important 
characteristics of such framework? 

RQ2 

What are the best approaches for 
structuring and formulating matching 

problems and processes? 

2.1 Matching Problem Structures 
and Characteristics 

4.3 Optimization: MIP and CPLEX 
4.3.1 Mathematical Formulation 

5.3 Optimization: MOMIP and Goal 
Programming 
5.3.1 Mathematical Formulation 

6.3 Cluster Formation: QAP and GA 
7.3 Mathematical Formulation 

What algorithms and protocols can be 
developed to efficiently solve those 

best matching problems? 

2.2 Methodologies 
4.4 Control: TAP and PBMP 

4.4.1 General Logic 
4.4.2 TRAP�Task Requirement 

Analysis 
4.4.3 SRAP�Shared Resource 

Allocation 
4.4.4 STOP�Synchronization 

and Time-Out 
5.4 Control: CMAS 

5.4.1 Tool Sharing-Best 
Matching Protocol 

6.3 Cluster Formation: QAP and GA 
6.3.1 Encoding 
6.3.2 Initialization 
6.3.3 Fitness Evaluation 
6.3.4 Reproduction 
6.3.5 Parameters Setting 

6.4 Cluster Evolution: EA 
6.4.1 First Generation 
6.4.2 Evolution 

7.4 Optimization: TS-Jr. 
7.4.1 Initialization: The Rock 

and Sand Heuristic 
7.4.2 Neighborhood Search: The 

Natural Justice Rule 
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Table 8.1. Relationship between research questions and dissertation structure. 

Research Question Concepts and Methodologies 

RQ3 

How can the developed best matching 
algorithms and protocols be 

validated? 

4.3 Optimization: MIP and CPLEX 
4.3.2 Numerical Experiments 

4.4 Control: TAP and PBMP 
4.4.5 Numerical Experiments 

5.3 Optimization: MOMIP and Goal 
Programming 
5.3.2 Numerical Experiments 

5.4 Control: CMAS 
5.4.2 Numerical Experiments 

6.5 Numerical Experiments 
6.5.1 Results 
6.5.2 Discussion 
6.5.3 Computational Efficiency 

7.5 Numerical Experiments 
7.5.1 Results and Analyses 
7.5.2 Computational Efficiency 

What case studies, experiments, 
scenarios, and statistical analysis 

methods must be deployed to test and 
highlight the relative impact of those 

methodologies? 

CHAPTER 4 Case 1�Collaborative 
Supply Networks 

CHAPTER 5 Case 2�Collaborative 
Assembly Lines 

CHAPTER 6 Case 3�Clustering 
with Interdependent 
Preferences 

CHAPTER 7 Case 4�Collaborative 
Service Enterprises 

8.2 Future Research Directions 

Future research must investigate the limitations of this work regarding key success factors 

in interconnected and vibrant manufacturing, supply, and service networks, develop 

solutions for real-���� �����������	 �	
 ��	���
 �� �	��������	�� �	
 �	��	�� ��� �	
���
��
��

intelligence for timely decision-making regarding of what to do, with whom to interact, 

how and when. Realization of this goal indeed requires (1) comprehensive characterization 

and taxonomy of distributed manufacturing and service systems, their requirements, 
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constraints, and objectives; (2) assessment of the nature of interactions (e.g., 

competitive/cooperative), and development of proactive mechanisms for handling 

controllable and uncontrollable behaviors; (3) design of effective decision-making 

networks through optimal distribution of decisional capabilities (e.g., hierarchy/ 

heterarchy); and (4) development of models and algorithms based on operations research, 

artificial intelligence, and information technology (i.e., analytics and informatics) for 

design, administration, and feedback. 

The existing knowledge on the theories of interaction, distributed control, and 

matching is not sufficient for addressing such challenges in modern manufacturing and 

service systems, and that motivates my research on interaction engineering through best 

matching. This PRISM model formalizes such processes with respect to 3+1 dimensions, 

and provides a comprehensive and standardized framework for identification, specification, 

and design, in various domains such as supply (Case 1), manufacturing (Case 2), social 

(Case 3), and service (Case 4) networks. This dissertation sheds light on the significant 

impact of best matching on the competitive performance of distributed systems. 

Realization of such design guidelines in practice, however, requires tremendous efforts in 

both basic and applied research in this area. Moreover, the following directions are 

recommended with respect to the specific problems addressed throughout the case studies: 

1. Variability and uncertainty. The uncertainties associated with costs of 

matching/sharing, information exchange, and possibility of acceptance/rejection of 

collaboration proposals during negotiations are practical scenarios that are worthy 

of attention in future studies. 
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2. Steady state matching. Optimal cluster design (e.g., for supplier-customer/tool-

workstation pairs) in the steady state, and inter- and intra-collaboration decisions 

and protocols are other directions to be addressed in future research. 

3. Real-time decisions. All case studies present, to some certain extent, a macro view 

of matching processes. Implementation of such algorithms and protocols in real 

time, however, requires certain information exchange and negotiation procedures 

between different individuals. This issue must be addressed in future research. 

4. Communication and informatics. Future research also must address the design of 

middleware architecture and the supportive components, decision support systems, 

modeling tools, and database systems associated with the presented best matching 

processes.  

5. Conflict and error detection and prevention (Chen and Nof, 2007). Future research 

must address the issues related to the detection, resolution, and prevention of 

potential errors and conflicts in matching; e.g., delayed response/sharing; conflict 

of interest for collaboration. 

6. Group- vs. self-orientation. It is assumed in all case studies that the entire network 

of individuals is incented to collaborate. That is, all elements are group-oriented, 

seeking a set of common objectives that are necessarily in line with their local 

objectives. In some cases, however, the individuals may be self-oriented and their 

individual goals may contradict the common goal of the network. The network is 

then prone to instability, and the developed methodologies may require substantial 

modifications in order to be applicable. 
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7. Variable preferences and perceptions. The preferences of individuals (e.g., cost; 

time) are modeled as functions of the mutual influences of individuals on each 

������� ���	���
���, where each pair of individuals is assumed to have fixed 

perceptions about each other (Case Study 3). This, however, may not be true in 

many cases where two individuals may change their perceptions about each other 

after a period or dynamically. This issue increases the complexity of the match and 

requires modifications in the definitions, formulations, and methodology. 

8. Multidimensional matching. The basic instance of generalized matching was 

considered for studying the BMP-IP for the sake of simplicity in definitions and 

formulations. In a similar manner, the methodology can be extended to more 

comprehensive and realistic instances of the BMP-IP. 

9. Social networks and emotion. An important trait that differentiates networks of 

humans (social networks) from other types of networks is emotion. The IP was 

formulated as a linear (increasing, altruism; decreasing, envy) function of the 

�
�
�� �
	�
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��� �	 �
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��� �
 ���� ������� ���	���
���� �
 ������ 
��������

however, such influences may not be easily quantifiable and may have nonlinear 

relation with IP, due to the complexity and ��
������� �	 �
��
�� ������
 �
 �����

mutual communications and interactions. 

10. ���������  ! "�  #�$%$% �&. In spite of the benefits of collaboration, competition 

is an inevitable behavioral pattern in almost every system, from microorganisms to 

multinational corporations. Altruistic and selfish behaviors always go side by side 

�
� '��� ���� ����� ���
�
'� (�� 
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theory to represent situations where competitors prefer to both compete and 
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collaborate with each other. In the context of matching, this is an important topic 

�� ������� �	 �
� ������
 �
��� �
� ����	����	 �� ��
� ���� ����
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depends on the mutual interaction and local benefits of individuals. 
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