1,380 research outputs found

    ETEA: A euclidean minimum spanning tree-Based evolutionary algorithm for multiobjective optimization

    Get PDF
    © the Massachusetts Institute of TechnologyAbstract The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in the space, where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based Evolutionary Algorithm (ETEA) to solve multiobjective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically in ETEA, four strategies are introduced: 1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; 2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; 3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; 4) Three diversity indicators-the minimum edge, degree, and ETCD-with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/K001310/1, and the National Natural Science Foundation of China under Grant 61070088

    Multiobjective optimization of electromagnetic structures based on self-organizing migration

    Get PDF
    PrĂĄce se zabĂœvĂĄ popisem novĂ©ho stochastickĂ©ho vĂ­cekriteriĂĄlnĂ­ho optimalizačnĂ­ho algoritmu MOSOMA (Multiobjective Self-Organizing Migrating Algorithm). Je zde ukĂĄzĂĄno, ĆŸe algoritmus je schopen ƙeĆĄit nejrĆŻznějĆĄĂ­ typy optimalizačnĂ­ch Ășloh (s jakĂœmkoli počtem kritĂ©riĂ­, s i bez omezujĂ­cĂ­ch podmĂ­nek, se spojitĂœm i diskrĂ©tnĂ­m stavovĂœm prostorem). VĂœsledky algoritmu jsou srovnĂĄny s dalĆĄĂ­mi bÄ›ĆŸně pouĆŸĂ­vanĂœmi metodami pro vĂ­cekriteriĂĄlnĂ­ optimalizaci na velkĂ© sadě testovacĂ­ch Ășloh. Uvedli jsme novou techniku pro vĂœpočet metriky rozprostƙenĂ­ (spread) zaloĆŸenĂ© na hledĂĄnĂ­ minimĂĄlnĂ­ kostry grafu (Minimum Spanning Tree) pro problĂ©my majĂ­cĂ­ vĂ­ce neĆŸ dvě kritĂ©ria. DoporučenĂ© hodnoty pro parametry ƙídĂ­cĂ­ běh algoritmu byly určeny na zĂĄkladě vĂœsledkĆŻ jejich citlivostnĂ­ analĂœzy. Algoritmus MOSOMA je dĂĄle Ășspěơně pouĆŸit pro ƙeĆĄenĂ­ rĆŻznĂœch nĂĄvrhovĂœch Ășloh z oblasti elektromagnetismu (nĂĄvrh Yagi-Uda antĂ©ny a dielektrickĂœch filtrĆŻ, adaptivnĂ­ ƙízenĂ­ vyzaƙovanĂ©ho svazku v časovĂ© oblasti
).This thesis describes a novel stochastic multi-objective optimization algorithm called MOSOMA (Multi-Objective Self-Organizing Migrating Algorithm). It is shown that MOSOMA is able to solve various types of multi-objective optimization problems (with any number of objectives, unconstrained or constrained problems, with continuous or discrete decision space). The efficiency of MOSOMA is compared with other commonly used optimization techniques on a large suite of test problems. The new procedure based on finding of minimum spanning tree for computing the spread metric for problems with more than two objectives is proposed. Recommended values of parameters controlling the run of MOSOMA are derived according to their sensitivity analysis. The ability of MOSOMA to solve real-life problems from electromagnetics is shown in a few examples (Yagi-Uda and dielectric filters design, adaptive beam forming in time domain
).

    Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation

    Get PDF
    Wind farm layout optimisation is a challenging real-world problem which requires the discovery of trade-off solutions considering a variety of conflicting criteria, such as minimisation of the land area usage and maximisation of energy production. However, due to the complexity of handling multiple objectives simultaneously, many approaches proposed in the literature often focus on the optimisation of a single objective when deciding the locations for a set of wind turbines spread across a given region. In this study, we tackle a multi-objective wind farm layout optimisation problem. Different from the previously proposed approaches, we are applying a high-level search method, known as selection hyper-heuristic to solve this problem. Selection hyper-heuristics mix and control a predefined set of low-level (meta)heuristics which operate on solutions. We test nine different selection hyper-heuristics including an online learning hyper-heuristic on a multi-objective wind farm layout optimisation problem. Our hyper-heuristic approaches manage three well-known multi-objective evolutionary algorithms as low-level metaheuristics. The empirical results indicate the success and potential of selection hyper-heuristics for solving this computationally difficult problem. We additionally explore other objectives in wind farm layout optimisation problems to gain a better understanding of the conflicting nature of those objectives

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics
    • 

    corecore