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Abstract
The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is
a minimum spanning tree of a set of points in space where the edge weight between each
pair of points is their Euclidean distance. Since the generation of an EMST is entirely
determined by the Euclidean distance between solutions (points), the properties of
EMSTs have a close relation with the distribution and position information of solutions.
This paper explores the properties of EMSTs and proposes an EMST-based evolution-
ary algorithm (ETEA) to solve multi-objective optimization problems (MOPs). Unlike
most EMO algorithms that focus on the Pareto dominance relation, the proposed algo-
rithm mainly considers distance-based measures to evaluate and compare individuals
during the evolutionary search. Specifically, in ETEA, four strategies are introduced:
(1) An EMST-based crowding distance (ETCD) is presented to estimate the density of
individuals in the population; (2) A distance comparison approach incorporating ETCD
is used to assign the fitness value for individuals; (3) A fitness adjustment technique
is designed to avoid the partial overcrowding in environmental selection; (4) Three di-
versity indicators—the minimum edge, degree, and ETCD—with regard to EMSTs are
applied to determine the survival of individuals in archive truncation. From a series
of extensive experiments on 32 test instances with different characteristics, ETEA is
found to be competitive against five state-of-the-art algorithms and its predecessor in
providing a good balance among convergence, uniformity, and spread.

Keywords
Multi-objective optimization, evolutionary algorithms, Euclidean minimum spanning
tree, density estimation, fitness assignment, fitness adjustment, archive truncation.

1 Introduction

Many real-world problems involve simultaneous optimization of several competing
objectives. In these multi-objective optimization problems (MOPs), there is usually no
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single optimal solution, but rather a set of alternative solutions, called the Pareto set,
due to the conflicting nature of the objectives. In the absence of any further information,
the decision-makers usually require an approximation of the Pareto set for making their
final choice.

Over the past few years, evolutionary algorithms (EAs) have been gaining increas-
ing attention among researchers and practitioners to solve MOPs (Coello et al., 2007;
Deb, 2001; Branke et al., 2008). One main advantage of EAs is that they have low re-
quirements on the problem characteristics (e.g., nonconvexity, discontinuity, nonlinear
constraint, and multimodality), and objectives can be easily added, removed, or modi-
fied. Moreover, due to the fact that they act on a set of candidates, EAs are suitable for
generating a Pareto set approximation in a single run.

As a consequence, numerous effective evolutionary multi-objective optimization
(EMO) algorithms have been proposed, such as the non-dominated sorting genetic
algorithm II (NSGA-II; Deb et al., 2002), strength Pareto evolutionary algorithm 2
(SPEA2; Zitzler et al., 2002), Pareto-based evolution strategy (PAES; Knowles and
Corne, 2000), indicator-based evolutionary algorithm (IBEA; Zitzler and Künzli, 2004),
ε-dominance (Laumanns et al., 2002) based multi-objective evolutionary algorithm
(ε-MOEA; Deb, Mohan, et al., 2005), multi-objective covariance matrix adaptation
evolution strategy (MO-CMA-ES; Igel, Hansen, et al., 2007), S metric selection evo-
lutionary multi-objective optimization algorithm (SMS-EMOA; Beume et al., 2007), and
decomposition-based multi-objective evolutionary algorithm (MOEA/D; Zhang and
Li, 2007), some of which are applied to various problem domains (see Fonseca and
Fleming, 1995; Coello and Lamont, 2004; Tan et al., 2005; Abraham et al., 2005; Jin, 2006;
Bui and Alam, 2008; Wang et al., 2010; Teo and Abbass, 2004; Friedrich et al., 2010).
Generally speaking, these algorithms share the three common goals—minimizing the
distance to the optimal front, maintaining the uniform distribution, and extending the
distribution range along the optimal front.

In general, EMO algorithms, based on their selection mechanisms, can be di-
vided into three groups: Pareto-based algorithms, aggregation-based algorithms, and
indicator-based algorithms (Coello, 2011; Wagner et al., 2007).

The main idea of Pareto-based algorithms is to compare individuals of a popula-
tion based on their Pareto dominance relation and distribution. The Pareto dominance
relation is used to distinguish individuals in terms of convergence, and the distribution
is used to maintain the diversity of individuals in the population. Many effective EMO
algorithms belong to this group. Among them, NSGA-II (Deb et al., 2002) and SPEA2
(Zitzler et al., 2002) are two representative algorithms.

In aggregation-based algorithms, the objectives are normally aggregated in some
form (using either linear or nonlinear schemes), such that a single scalar value is gen-
erated. This scalar value is used as the fitness of the algorithm. In comparison with the
algorithms in other groups, aggregation-based algorithms require a priori definition of
relations among objective functions. As the earliest multi-objective optimization method
that can be traced back to the middle of the last century (Kuhn and Tucker, 1951), the
aggregation-based approach has become popular again in recent years, partially due to
the appearance of an effective algorithm, MOEA/D (Zhang and Li, 2007).

The basic idea behind indicator-based algorithms is to employ a performance indi-
cator to select individuals. One important characteristic of indicator-based algorithms
is that in contrast to Pareto-based algorithms which compare individuals using two cri-
teria (i.e., Pareto dominance relation and distribution), these algorithms adopt a single
indicator to optimize a desired property of the evolutionary population. The algorithm
IBEA (Zitzler and Künzli, 2004) is a pioneer in this group. Recently, some algorithms
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in this group, such as SMS-EMOA (Beume et al., 2007) and HypE (Bader and Zitzler,
2011), have been found to be promising in solving many-objective optimization prob-
lems (Wagner et al., 2007; Bader and Zitzler, 2011; Li et al., 2013).

This paper focuses on Pareto-based EMO algorithms. In these algorithms, the con-
vergence of individuals in the population is estimated according to the Pareto dom-
inance relation based fitness strategies, such as the dominance count (Fonseca and
Fleming, 1995), strength (Zitzler et al., 2002), and dominance rank (Deb et al., 2002).
However, such estimation depending fully on the Pareto dominance relation may lead
to the existence of a large amount of incomparable individuals in the population due to
the lack of the quantitative measure (see Farina and Amato, 2003; Ishibuchi et al., 2008;
Yang et al., 2013). On the other hand, with respect to diversity, most algorithms only
consider the crowding degree of individuals, but ignore the position of individuals in
the population. In fact, the position of individuals also has an important influence on
diversity since the uniformity and spread of the entire population need to be maintained
(a detailed explanation is given in the latter part of Section 3.1).

In this paper, we develop a Euclidean minimum spanning tree (EMST) based EA
(ETEA) to address the above issues. The aim of the paper is to employ the characteristics
of EMSTs and the distance relation among individuals to balance the convergence,
uniformity, and spread of the population during the evolutionary search. To this end,
firstly, an EMST-based density estimator is proposed to measure the crowding degree
and position of individuals in the population. Secondly, two distance-based measures
incorporating the Pareto dominance relation are used to compare individuals in fitness
assignment and environmental selection. Finally, three EMST-related indicators are
applied to maintain the archive set when the number of non-dominated individuals
exceeds the size of the set.

The EMST is a minimum spanning tree of a set of points in the space, where the
weight of the edge between each pair of points is their Euclidean distance. In other
words, an EMST connects a set of points in the space using lines in order to obtain the
minimized total length of all the lines and reach any point from any others through the
exclusive lines. EMSTs can be applied in a wide variety of domains, such as the net-
work, piping, Euclidean traveling salesman problems, among others (Lee, 1999; Bansal
and Ghanshani, 2006; Wieland et al., 2007; Šeda, 2008).

Since the generation of an EMST is entirely determined by the Euclidean distance
between solutions (points), some properties in EMSTs generally have a close relationship
with the distribution and position information of the solutions. For example,

• Solutions which are distributed in more crowded regions have shorter edges;

• The boundary solutions are often of low node degrees, yet some bridge-like
solutions have high node degrees;

• The line between an individual and its neighbor whose orientation is different
from others may have a higher likelihood of becoming an edge of the EMST;

• The EMST which is constructed by a non-dominated set in the 2-dimensional
space degenerates into linear structure.

In this paper, we will employ these properties to deal with MOPs.
As a first attempt to capture and utilize the properties of EMSTs in EMO, we have

recently developed a fitness assignment strategy and a diversity maintenance approach
in Li et al. (2008). In view of encouraging experimental results of these preliminary
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studies, this paper conducts a further and thorough investigation along this line. In
comparison with the previous work, the main contributions of this paper are summa-
rized as follows.

1. An elaborate fitness assignment scheme is designed, which takes a distance
comparison relation between non-dominated individuals and dominated ones
into account, instead of the simple distance evaluation in Li et al. (2008).

2. A fitness adjustment technique is introduced to avoid partial overcrowding by
penalizing the individuals once their neighbors have been picked out during the
environmental selection process.

3. An improved population truncation method is proposed to preserve the bound-
ary solutions as well as to eliminate crowded solutions in the archive.

4. Systematic experiments are carried out to compare ETEA with five state-of-
the-art algorithms on 32 test problems; only NSGA-II and SPEA2 were used to
validate the proposed algorithm on a few problems in Li et al. (2008). In addition,
this paper also contains a comparative study between ETEA and its predecessor,
an analytical and empirical study of computational cost, and an investigation of
different parts of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, relevant notation and def-
initions are reviewed. Section 3 is devoted to the description of the proposed algorithm.
Section 4 presents the algorithm settings, test functions, and performance metrics. Ex-
perimental results are presented and analyzed in Section 5. Finally, Section 6 concludes
the paper and presents future work.

2 Definitions and Terminology

The concepts of Pareto optimality have been well understood in the literature. This
section will introduce notation closely related to our work, such as extreme solutions
and boundary solutions.

Without loss of generality, we suppose that an arbitrary MOP consists of m objec-
tives, which are all to be minimized and equally preferable. A solution to this MOP
can be described in terms of a decision vector (x1, x2, . . . , xn) in the decision space X.
A function F : X → Y evaluates the quality of a specific solution by assigning it an
objective vector [f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)] in the objective space Y.

Pareto optimality is defined by using the concept of dominance. Given two decision
vectors a and b, a is said to dominate b (denoted as a ≺ b), iff a is at least as good as b

in all objectives and better in at least one objective. Accordingly, those decision vectors
that are not dominated by any other vectors are denoted as Pareto optimal solutions. In
general, the set of optimal solutions in the decision space is denoted as the Pareto set, and
the corresponding set of objective vectors as the Pareto front. Unfortunately, it is often
infeasible to obtain the Pareto set, and it is only hoped to find a good approximation of
the set. Usually, we consider the nondominated set found in one run as the approximation.

Although the solutions in a non-dominated set are incomparable with each other
on the basis of the Pareto dominance concept, their positions that affect the distribution
range of the set can be well distinguished. Several concepts about the range of a non-
dominated set are introduced as follows.

DEFINITION 1 (EXTREME SOLUTIONS): The solutions in a non-dominated set have the maximum
value for at least one objective.
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Figure 1: A tri-objective example of boundary solutions and extreme solutions of a
Pareto front: (a) Pareto front, (b) boundary solutions, and (c) extreme solutions.

The extreme solutions, which are used in numerous diversity maintenance strate-
gies and performance assessment techniques, can partly reflect the extent of a non-
dominated set. Especially for bi-objective problems, the extreme solutions play a de-
cisive role in the distribution range. The greater the distance between two extreme
solutions, the wider the distribution range of the non-dominated set. However, the ex-
treme solutions fail to provide enough information to report the range of solutions for
problems with more than two objectives. To this end, a concept of boundary solutions (Li
and Zheng, 2009) has been presented to overcome this shortcoming. In order to define
the boundary solutions, a comparison relation between individuals, called beyond, is
first introduced as follows.

DEFINITION 2 (BEYOND): A vector a is said to beyond a vector b in the objective space
(f1, f2, . . . , fm), if fi(a) ≥ fi(b) for all i ∈ {1, 2, . . . , m} and fj (a) > fj (b) for some j ∈
{1, 2, . . . , m}.

Note that the definition of beyond is equal to that of the Pareto dominance rela-
tion regarding a maximization MOP. In the following, the definition of the boundary
solutions in a non-dominated set is given according to the beyond relation between
solutions in the set.

DEFINITION 3 (BOUNDARY SOLUTIONS IN THE OBJECTIVE SPACE (f1, . . . , fi-1, fi+1, . . . , fm)
AND BOUNDARY SOLUTIONS): A vector a in a non-dominated set S is considered as a boundary
solution in the objective space (f1, . . . , fi-1, fi+1, . . . , fm) (denoted as BSi), if a is not beyond
by any member of S for the subset {f1, . . . , fi-1, fi+1, . . . , fm} of all the objectives. A vector a is
said to be a boundary solution of S if a is one of the vectors in BS1 ∪ BS2 ∪ . . . ∪ BSm-1 ∪ BSm.

The boundary solutions of a non-dominated set entirely determine its range. They
are significantly different from extreme solutions, despite the fact that boundary solu-
tions in general include extreme solutions and are even equal to extreme solutions on
bi-objective problems. Figure 1 gives an example of boundary solutions and extreme
solutions. A more detailed description and analysis can be found in Li and Zheng (2009).

3 Description of the Proposed Algorithm

ETEA is an EMO algorithm which utilizes the properties of EMSTs to solve MOPs. In
this section, we first present the main loop of ETEA and a density estimator based on
EMSTs. Then, we describe the fitness assignment process. Next, we introduce the fitness
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adjustment technique in environmental selection. Finally, a truncation strategy is given
to maintain diversity in the archive.

3.1 Main Loop and Density Estimation

The main loop of ETEA is given in Algorithm 1. Clearly, the basic procedure of the algo-
rithm is similar to general generational EMO algorithms except that a fitness adjustment
strategy is added in environmental selection (shown in line 7). Most of the generational
EMO algorithms (such as NSGA-II and SPEA2) directly select the best dominated indi-
viduals according to fitness information when the non-dominated individuals are not
enough to fill the archive. A shortcoming of this strategy is that it may lead to the loss of
diversity since neighboring individuals often have similar fitness values. The specific
process of fitness adjustment will be described in Section 3.3. In addition, it should
be pointed out that this paper only focuses on fitness assignment (line 4) and envi-
ronmental selection which consists of elitism selection, fitness adjustment, and archive
truncation (lines 5–10). In other words, mating selection and variation schemes in ETEA
are not determined and can be freely selected by users. In the following, we present a
density estimator which guides the search at different parts of the algorithm.

Most EMO algorithms try to maintain diversity by incorporating density informa-
tion into the selection process (see Horoba and Neumann, 2010): the higher the density
of the surrounding area of an individual in a population, the lower the chance of the
individual being selected. In other words, density estimation is needed in EMO al-
gorithms to encourage uniform distribution of individuals over the current trade-off
surface. In this paper, we employ the edges of an individual (node) in the EMST to esti-
mate its distribution. An estimator, called the Euclidean minimum spanning tree crowding
distance, is given here.

DEFINITION 4 (EUCLIDEAN MINIMUM SPANNING TREE CROWDING DISTANCE): Let T be a
Euclidean minimum spanning tree of a solution set P. For an individual X of P, let Yi(i =
1, . . . , d) denote the individuals sharing an edge with X , where d is the number of edges attached
to X (i.e., the degree of node X in the EMST; e.g., for node D in Figure 2, d = 3), and LXY i

denote the length (weight) of the edge XY i(i = 1, . . . , d), i.e., the Euclidean distance between
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Figure 2: An EMST of the set {A, B, C, D, E, F, G}, where LXY denotes the length of the
edge between solutions X and Y.

individuals X and Yi . The Euclidean minimum spanning tree crowding distance (ETCD) of X
is defined as follows:

ETCD(X ) =
(

d∑
i=1

L
0.5

XY i
/d

)2

(1)

Clearly, the ETCD of an individual is the kth power mean of the length of all its edges,
where k is equal to 0.5. For instance, in Figure 2, the density estimator of individual F
is determined by LEF and LFG, and its ETCD is the 0.5th power mean of them. Here,
assigning k the value 0.5 is a rough setting in order to obtain a tradeoff among the effects
of the neighbors of X with different distances. If k is set to 1.0 (i.e., ETCD is the arithmetic
mean of edge weights), all neighbors of X will have the same contribution to the density
of X no matter how far they are from X, which partly hinders the development of
uniformity of the population (see the example in the third observation of ETCD in the
list following the next paragraph). Therefore, a value of k lower than 1.0 may be suitable
for emphasizing the effect of the closer neighbors. However, when k approximates 0,
almost only the closest neighbor will contribute to the density of X, which apparently
ignores the effects of the other neighbors. Therefore, we simply set k to the middle value
between 0 and 1. In fact, other values between 0 and 1 can also be adopted as long as
they are away from the boundaries 0 and 1.

Similar to other density estimators, the effectiveness and characteristics of ETCD
rely heavily on the properties of the assessment technique, since different techniques
will lead to different judgments on density estimation. From the calculation of the
proposed estimator, we can draw some observations as follows.

1. In accordance with the greediness of the procedure of constructing an EMST, the
edge between an individual and its closest neighbor (i.e., the individual which
has the shortest Euclidean distance to it) belongs to the EMST. Accordingly, from
the second shortest edge to others, they generally have a decreasing chance to
become a component of the EMST.

2. According to the connectivity of an EMST, the line between an individual and its
neighbor whose orientation is different from others may have a higher likelihood
of becoming an edge of the EMST. For example, in Figure 2, for individual
B and its neighbors A and C, the line between B and A belongs to EMST in
contrast to the line between B and C, although the former is longer than the
latter. This is because relative to B, A has a different orientation against other
neighbors around B; yet there exists a closer neighbor (D) who has a similar
orientation to C with regard to B. Moreover, the second behavior derived from
the connectivity of an EMST is that some bridge-like individuals that connect
two clusters of individuals have higher ETCD values. For example, individuals
D and E in Figure 2 may be regarded as intermediate individuals joining two
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clusters ({A, B, C, D} and {E, F, G}). For individual D, clearly, a relatively higher
ETCD value is obtained since LDE is included in the calculation of the estimator.
In summary, from the above discussion, it becomes clear that the proposed
estimator prefers the individuals which can be regarded as an intermediate
connection for other members in the population. This phenomenon seems to
be consistent with the target of advancing the uniformity of distribution. This
is because these intermediates, in contrast to their neighbors, are often located
closer to other individuals (or clusters), and thus their offspring have a higher
likelihood of filling the empty areas between them and those individuals (or
clusters).

3. Note that the definition of ETCD is slightly different from that of the density
estimator in Li et al. (2008). In Li et al. (2008), the density estimator was defined
by calculating the arithmetic mean of edge weights. Here, the 0.5th power mean
is used to replace the arithmetic mean for improving uniformity. For example,
consider individuals B and F in Figure 2 regarding the two density estimators,
and assume LAB = 9.0, LBD = 1.0, LEF = 5.0, and LFG = 5.0. Clearly, according
to Li et al. (2008), the estimation value of B (5.0) is equal to that of F (5.0); yet for
ETCD, B performs worse than F (4.0 against 5.0).

The main difference between ETCD and other density estimators is that ETCD not
only reflects the crowding degree but partly implies the relative orientation and position
information of individuals. Yet most of the existing density estimators (such as the
niche techniques, Horn et al., 1994; Tan et al., 2001; Shir et al., 2010; crowding distance,
Deb et al., 2002; Nebro et al., 2008; kth nearest neighbor, Zitzler et al., 2002; Elhossini
et al., 2010; and grid crowding degree, Corne et al., 2001; Yen and Lu, 2003; Li et al.,
2010) only evaluate the density information of individuals. Although these strategies
seem to be reasonable, they may be imprecise due to the influence of individuals’
position: the individuals located on or near the border of a population usually have
a lower crowding degree; some bridge-like individuals, which are of great service to
uniformity, may be distributed in the region with a high crowding degree. For example,
considering individual D in Figure 2, it may be assigned a high density value by some
estimators (e.g., the niche techniques, crowding distance, kth nearest neighbor, and
grid degree), thus being eliminated early. However, as previously discussed, individual
D is important in the context of maintaining uniformity and can be regarded as an
intermediate individual connecting two clusters {A, B, C, D} and {E, F, G}.

3.2 Fitness Assignment

In order to evolve a population toward the optimum as well as to diversify its indi-
viduals uniformly along the obtained trade-off surface, the fitness value of individuals
should be assigned to reflect both convergence and diversity accordingly. At present,
most studies on fitness assignment mainly focus on the issue of the Pareto dominance
relation, such as the dominance count, strength, dominance rank, and others (Bosman
and Thierens, 2003; Li, 2003; Gong et al., 2008). In this paper, we prefer the distance
from individuals to the obtained trade-off surface. We consider the distance differ-
ences among some specific individuals and record the successful counts of them (called
the distance count here). In detail, with respect to the distance count, we distinguish
between non-dominated individuals and dominated ones. For a non-dominated indi-
vidual, its distance count is assigned to zero. For a dominated individual, denoted as
individual i, the non-dominated individual j which dominates and is the closest to i
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Figure 3: Comparison of fitness assignment strategies for a minimization bi-objective
problem. The numbers in the parentheses associated with the dominated solutions
correspond to the distance count, dominance rank, and strength in ETEA, NSGA-II,
and SPEA2, respectively. The dashed lines connect the dominated solutions to their
corresponding non-dominated solutions in the distance count calculation.

is first selected. Then, the distance count of i is determined by the total number of the
non-dominated individuals whose distance from j is shorter than the distance between
i and j:

D(i) =
{∣∣{k|Ljk < Lij ∧ k ∈ NDS, k 	= j}∣∣ + 1, i ∈ DS

0, i ∈ NDS
(2)

where
j ∈ NDS ∧ j ≺ i ∧ (¬∃r ∈ NDS, r ≺ i ∧ Lir < Lij ) (3)

where
∣∣ · ∣∣ denotes the cardinality of a set, Lij implies the distance from i to j, and DS

and NDS represent the set of dominated and non-dominated solutions, respectively.
Here, the distance count is minimized, and for dominated individuals, it is penalized
by adding one in order to guarantee that they have a larger value than non-dominated
individuals. For example, let us consider dominated individual A in Figure 3. First,
individual F is selected since it is the non-dominated individual which dominates and
is the closest to A. Then, we look for non-dominated individuals which can contribute
to the distance count of A. Here, only individual G is qualified, considering that its
distance from F is shorter than the distance between A and F. Thus, the distance count
of A is

∣∣{G}∣∣ + 1 = 2. To better understand the characteristics of this scheme, an example
of the distance count in comparison with two well-known strategies (the dominance
rank and strength) in NSGA-II and SPEA2 is illustrated in Figure 3.

Clearly, the distance count of dominated individuals is mainly determined by two
factors: (1) their distance from the non-dominated front, and (2) the distance between
the corresponding non-dominated individual and other ones. An individual with a
poor distance count means that it is far away from the non-dominated front, or the
non-dominated individual in the population who is the closest to and dominates it is
located in a crowded region. In Figure 3, individual D illustrates the first factor: it is
located far away from the non-dominated front, thereby obtaining a high distance count;
on the other hand, individual C provides an example for the second factor: since its
corresponding non-dominated individual is located in a crowded region, C is assigned
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a relatively high distance count value even if it approximates the non-dominated front.
However, the other two strategies (depending on dominance information) are not able
to effectively distinguish this case.

It is worthwhile to mention that a significant difference between ETEA and other
strategies is that ETEA places more emphasis on the distribution of non-dominated in-
dividuals, since its fitness strategy takes into account the distance measurement among
individuals. Actually, non-dominated individuals play a crucial role in the selection
process of EMO. The non-dominated front that is composed of these individuals can
largely determine the search direction and reflect the evolution bias in distinct areas.
Therefore, a non-dominated front with uniformly and widely distributed individuals
is considerably important and able to drive the whole population toward the desired
direction. Naturally, some dominated individuals who have a high likelihood of achiev-
ing this target (i.e., they are located near the sparse regions of the non-dominated front)
should be assigned better fitness values even if they are dominated by some individuals,
such as individual A in Figure 3.

Although the distance count provides elaborate preference information for dom-
inated individuals, it fails when most individuals in the population do not dominate
each other because it is equal to zero for all non-dominated individuals. In addition,
the density information of each individual in the population cannot also be directly re-
flected according to the distance count. Therefore, we incorporate ETCD into the fitness
in order to discriminate the individuals who have identical distance count as well as to
provide a density indicator for each individual. Here, we take the inverse of ETCD in
accordance with the minimization of the distance count value. Accordingly, the fitness
of individual i is defined as follows:

F (i) = D(i) + 1
ETCD(i) + 1

(4)

In the fraction of Equation (4), one is added to the denominator to ensure that its
value is greater than zero and smaller than or equal to one. As a result, the fitness for
non-dominated individuals is within the range of (0, 1], and for dominated individuals
larger than one.

3.3 Fitness Adjustment

Mating selection and environmental selection are two indispensable parts of an EMO
algorithm. Although both of them are based on fitness information of individuals, they
are, in principle, fully independent of each other. Mating selection aims at picking
promising individuals for variation and is usually performed in a random way. In
contrast, environmental selection determines which of the previously stored individuals
and the newly created ones are kept in the archive (Zitzler et al., 2004).

Unfortunately, most current EMO algorithms, such as NSGA-II and SPEA2, do not
distinguish this difference and often directly perform the selection operation according
to the straightforward fitness rank of individuals. In fact, in contrast to mating selection,
where the directly-selected way seems to be reasonable due to the randomness of the
selection, the environmental selection based on the straightforward fitness rank may
reduce the diversity of the archive because of the deterministic way in which individ-
uals move into the archive, ordered by their level of fitness. Since the fitness value of
individuals depends on their position compared with other individuals in the popula-
tion, those individuals that are closely located often have similar values. Therefore, it
is very likely that they are eliminated or preserved simultaneously, which may bring
about individuals crowded in some regions yet produce vacancies in other regions.
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Fitness adjustment(R)

Q (non-dominated set), N (archive size)
1. setemptyanGenerate S emptyancreateandindividualsdominatedbestthestoringfor

settemporary T Setneighbors.theirstoringfor Select num ← N |Q|−
2. |S| Select< num
3. p ← Findout best(R)

/∗ individualdominatedbesttheoutFind p (i.e., p value)fitnessminimumthehas ∗/
4. T ← Findout neighbor(R, p)

/∗ of pindividualsdominatedneighboringtheoutFind in R ∗/
5. Sort(T, p)

/∗ inindividualsallSort T fromdistancethetoaccordingorderdecreasingwith p ∗/
6. qi ∈ T, i 1, ...,|T|=
7. F(q i) ← F(q i +) i /∗ theofvaluefitnesstheAdjust ith inindividual T ∗/
8.
9. S ← S ∪{p} /∗ individualAdd p into S ∗/

10. R ← R\{p} /∗ individualRemove p from R ∗/
11.
12. S

In this study, we propose a fitness adjustment strategy in environmental selection.
The individuals are penalized once their neighbors have been selected into the archive.
Specifically, we consider the circle centered at the selected individual as its neighbor-
hood whose range is determined by the distance between it and the non-dominated
front. For individuals in the neighborhood, a hierarchical fitness penalty is executed
according to their distance from the center individual. It should be noted that this ad-
justment occurs when the non-dominated individuals are not enough to fill the archive,
and it only aims at the dominated individuals. Algorithm 2 gives the detailed procedure
of this fitness adjustment strategy.

In Algorithm 2, Function Findout neighbor(R,p) (line 4) is designed to find out the
neighbors of the current best dominated individual p in population R. The neighborhood
radius is defined by the distance from the center individual (i.e., the selected individual)
to its nearest non-dominated individual who dominates it. Lines 6–8 of the algorithm
inflict a fitness penalty on the neighbors of the selected individual. The penalty degree
of individuals relies on the crowding degree reflected by the total number of individuals
in the neighborhood as well as on the distance between them and the center. Therefore, a
more crowded neighborhood leads to a higher overall penalty; and for each individual,
the further it is from the center, the milder the penalty.

An example of fitness adjustment is illustrated in Figure 4. It is clear that the penalty
mechanism in ETEA largely avoids crowding in the archive, because once an individual
is picked out, its neighbors will be penalized (see Figure 4(a)–(d)). However, the selection
strategies in NSGA-II and SPEA2, which are directly performed according to the fitness
of individuals, reduce the diversity to some extent. Specifically, for NSGA-II, since
individuals A–F have the same dominance rank, the three most crowded individuals
C, D, and E will be eliminated. As to SPEA2, since the calculation of fitness of an
individual is based on the strength of the individuals that dominate it, individuals B,
C, and F, which are dominated by the individuals that have larger strength values, will
be eliminated.

3.4 Archive Truncation

As described in Algorithm 1, the first step in environmental selection is to copy all non-
dominated individuals into the archive. If there are still a certain number of available

Evolutionary Computation Volume xx, Number x 11

Evolutionary Computation corrected proof
doi:10.1162/EVCO_a_00106
 by the Massachusetts Institute of Technology



M. Li, S. Yang, J. Zheng, and X. Liu

Figure 4: A scenario of the fitness adjustment procedure in ETEA and its result compared
with that of NSGA-II and SPEA2. (a) Original set R. (b) D-eliminated set R. (c) A-
eliminated set R. (d) Final archive of ETEA. (e) Final archive of NSGA-II. (f) Final archive
of SPEA2. Where Select num = 3. A, B, C, D, E, and F are the candidate dominated
individuals. (a)–(c) are the fitness adjustment procedure in environmental selection of
ETEA; (d)–(f) are the final archive results by the environmental selection process of
the three algorithms. The number in the parentheses associated with each candidate
individual means the integral part of the fitness value (i.e., the distance count) in ETEA.
The circle corresponds to the neighborhood of the current best dominated individual.

slots in the archive, some best dominated individuals will fill the archive according to
the fitness adjustment strategy in the previous section. If the size of these non-dominated
individuals exceeds the upper bound of the archive, an archive truncation procedure
is activated to remove some individuals for obtaining a representative archive. How-
ever, obtaining a representative archive is not a trivial task, since both properties of
distribution (i.e., uniformity and spread) are supposed to be taken into account. On
the one hand, as a non-dominated front can be a convex, non-convex, disconnected, or
piecewise continuous hypersurface, the difficulty may arise regarding how to maintain
its proper distribution shape. On the other hand, the boundary effect will emerge when
the uniformity of a non-dominated set is considered (Farhang-Mehr and Azarm, 2002).
The number of the neighbors of outer individuals is generally less than that of inner
ones, even if they have a higher crowding degree. This may result in a misleading esti-
mation of individuals’ density. In addition, the reasonable integration of both properties
(uniformity and spread) into one truncation method is also a noticeable issue. The im-
provement of performance at one point should not cause a simultaneous degradation
at the other point.

In this study, we propose an archive truncation strategy by employing the EMST
to maintain uniformity and spread. The pseudocode is given in Algorithm 3. The main
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procedure of the truncation includes three steps. Firstly, an edge with the minimum
weight is found in the EMST (line 4), and the two endpoints of the edge are regarded as
the candidate individuals to be considered. Secondly, the degree property is introduced
to determine their survival (lines 5–10). If the degree value of one candidate is equal to
one, the other candidate is eliminated (according to the connectivity of an EMST, there
should not be two candidates whose degree is one unless the size of the set is equal to
two). Finally, if the degree values of both candidates are larger than one, the candidate
with a higher ETCD value is preferable (lines 11–18). Note that the original ETCD
of candidates has been slightly modified here: the edge with the minimum weight is
removed in the calculation of ETCD. A detailed analysis with regard to this modification
will be presented in the last part of this section.

Figure 5 shows an illustration of the truncation procedure for a tri-objective non-
dominated set. Firstly, an EMST of the original non-dominated set is generated, and
then the shortest edge LAB is found. Individual B is eliminated since the degree of
A is equal to one. And again a new EMST of the remaining individuals is generated,
and similarly candidates C and E are found. E is eliminated because (1) the degrees
of both candidates are greater than one, and (2) the modified ETCD of C is larger
than that of E (i.e., the length of edge LCA is larger than the 0.5th power mean of the
length of edges LEG and LED). This procedure is repeated until a predefined size is
achieved. The final individuals in the archive are A, G, and H. Clearly, by continuous
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Figure 5: An example of the archive truncation process on a tri-objective non-dominated
set, where the archive size is set to 3. (a) Original non-dominated set, (b) B-eliminated
set, (c) E-eliminated set, (d) F-eliminated set, (e) C-eliminated set, and (f) D-eliminated
set (i.e., the final individuals in the archive).

truncation in the archive, the two properties of distribution can be reasonably tuned,
and a well-extended and uniformly-distributed non-dominated front will be obtained.
More specifically, from the algorithm and illustration of archive truncation, we can draw
some in-depth observations as follows.

1. Duplicate individuals, if they exist, will first be eliminated. This is because the
edge weight between them is equal to zero in an EMST, and thus they would be
selected to become the candidates first.

2. The comparison of degree information in the truncation strategy can be consid-
ered as a reasonable integration of the two properties of distribution, since it not
only reflects the density of individuals but partly implies their position in the
population. On the one hand, an individual of degree one, in general, means
that it has a loose relationship with the surrounding individuals according to the
property of EMSTs. Thus, its crowding extent is generally lower than that of the
other individual sharing an edge. Obviously, preserving these individuals may
be beneficial to the uniformity of distribution, in comparison with preserving
their corresponding opponent. On the other hand, the boundary solutions (de-
fined in Section 2) have a high likelihood of being preserved according to the
degree comparison scheme. This is because they are located in the outer part of
the population, and not all the orientations around them are with individuals,
that is, only part of orientations may affect their degree. Therefore, for them, the
probability of the degree equal to one is higher than that for the inner individ-
uals. Figure 6 makes a statistical comparison between the boundary solutions
and non-boundary solutions regarding the case that their degree is equal to one,
considering 100 randomly generated non-dominated vectors (solutions) in the
multidimensional space. It is clear that the probability (>70%) of the case that
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Figure 6: The percentage of the case that an individual of degree one is the boundary
solution (BS), where the total case satisfies that, for a pair of individuals (i.e., two
individuals sharing an edge in the EMST), one and only one belongs to BS, and one
of them has the degree equal to one. The EMST is constructed by 100 non-dominated
vectors which are randomly generated in the k-dimensional unit hypercube [0, 1]k ,
where k = 2, 3, 4, 5.

the individual of degree one belongs to the boundary solutions is significantly
larger than the probability (<30%) of the case that it belongs to the non-boundary
solutions, especially in a lower dimension space. It is interesting to note that the
probability reaches 100% in the two-dimensional space. This is because the EMST
generated by two-dimensional non-dominated solutions is linear, and thus only
two boundary solutions whose degree is equal to one exist.

3. When the degree of both candidates is larger than one, the modified ETCD,
which takes into account their non-sharing edges, is introduced to determine
their survival. In other words, we estimate the density of the two candidates by
considering all individuals, except the closest one, connecting the candidates.
This modification seems to be reasonable. In fact, there is always one candidate
to be eliminated no matter how close the two candidates are, that is, the edge
formed by them will not appear in the next round of truncation. Therefore,
considering the effects of this edge is meaningless and may even lead to some
erroneous judgments on their distributions. As the edge LCD in Figure 5(d), the
original ETCD of individual C is larger than that of individual D, and thus D will
be eliminated. Obviously, this operation decreases the uniformity of solutions
in the archive, compared to the result in Figure 5(e) obtained by the modified
ETCD.

4 Experimental Design

This section is devoted to designing an experiment scheme for performance valida-
tion of ETEA. First, we briefly introduce the set of MOPs which will be used as the
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benchmark for this experiment. Then, two popular metrics are described to give an ap-
propriate performance evaluation for algorithms. Finally, a general experimental setting
is presented for the comparison between ETEA and the other six EMO algorithms.

4.1 Test Problems

In this section, we describe different sets of test problems according to the number of
objectives. These problems have been commonly used in the literature.

For the bi-objective problem set, we firstly choose problems from Van Veldhuizen’s
studies (Van Veldhuizen, 1999), including Schaffer1, Schaffer2, Fonseca, Kursawe, and
Poloni. Then, the ZDT problem family, including ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6
(Zitzler et al., 2000), is considered. Finally, the WFG problem family (WFG1 to WFG9)
(Huband et al., 2006), based on variable linkages, is included. For the tri-objective
problem set, three Viennet problems (Viennet1, Viennet2, and Viennet3; Van Veldhuizen,
1999) and the DTLZ problem family (DTLZ1 to DTLZ7; Deb, Thiele, et al., 2005) are
chosen. Moreover, three recent tri-objective problems (called the UF problems; Zhang
et al., 2009) which emphasize the complexity of the shapes of the Pareto set are taken
into account as well. All the problems have been configured as in the original papers
where they were described.

4.2 Performance Metrics

To compare the performance of the selected algorithms, we introduce two widely-used
quality metrics, hypervolume (HV; Zitzler and Thiele, 1999) and inverted generational
distance (IGD; Zhang et al., 2008), which can give a comprehensive assessment in terms
of convergence, uniformity, and spread. The HV metric is a very popular quality metric
due to its compliance with the Pareto dominance relation (see Zitzler et al., 2003). HV
calculates the volume of the objective space between the obtained solution set and a
reference point, and a larger value is preferable. On the other hand, IGD measures
the average distance from the points in the Pareto front to their closest solution in the
obtained set. A low IGD value indicates that the obtained solution set is close to the
Pareto front and also has good distribution uniformity and range.

The main difference between IGD and HV is that, for the former, the Pareto front of
problems must be known, and yet for the latter, a reference point that may bring about
some effects on the performance judgment has to be chosen appropriately. In addition,
the preference between uniformity and spread for the two metrics is also distinct. The
IGD metric, which is based on uniformly-distributed points along the whole Pareto
front, prefers the uniformity of the obtained solution set; while the HV metric, with
significant contributions from the boundary solutions, has a bias toward the extent of
the set.

4.3 General Experimental Setting

In order to validate the performance of ETEA, we compare it with six EMO algorithms:
NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2002), IBEA (Zitzler and Künzli, 2004),
ε-MOEA (Deb, Mohan, et al., 2005), TDEA (Karahan and Köksalan, 2010), and MST-
MOEA (i.e., the predecessor of ETEA; Li et al., 2008). NSGA-II1 is one of the most
popular EMO algorithms. The main characteristic of NSGA-II is its fast non-dominated
sorting and crowding distance-based density estimation. SPEA22 is also a prevalent

1The C code of NSGA-II is available at http://www.iitk.ac.in/kangal
2The C code of SPEA2 is available at http://www.tik.ee.ethz.ch/pisa
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EMO algorithm, which borrows a so-called fitness strength value and the kth nearest
neighbor to select individuals into the next population. In recent years, some indicator-
based EMO algorithms have also found to be competitive in balancing convergence and
diversity. Here, we select a representative indicator-based algorithm IBEA to make a
comparative study. IBEA3 aims to integrate the preference information of the decision-
maker into multi-objective search. The main idea is to define the optimization goal in
terms of a binary performance measure and then to directly use this measure in the
mating and environmental selection processes. ε-MOEA4 is a steady-state algorithm
that typically creates only one new member that is tested to enter the population at
each step of the algorithm (see Kumar and Rockett, 2002; Igel, Suttorp, et al., 2007;
Durillo et al., 2009). ε-MOEA uses a grid-based strategy and divides the objective
space into hyperboxes by the size of ε. Each hyperbox can contain at most a single
individual, thus preventing crowding. However, due to the feature of ε-dominance, the
boundary solutions may be lost in the evolutionary process (Hernández-Dı́az et al., 2007;
Karahan and Köksalan, 2010). Similar to ε-MOEA, TDEA5 is also a grid-based steady-
state algorithm. It defines a territory τ around an individual to maintain diversity.
Its main difference against ε-MOEA is that the hyperboxes of TDEA are based on
individuals rather than independent of them. The comparative study in Karahan and
Köksalan (2010) shows its competitiveness in comparison with some state-of-the-art
EMO algorithms. MST-MOEA is the first EMO algorithm that is designed based on
the EMST. Although both MST-MOEA and ETEA algorithms employ the properties
of EMSTs to enhance the performance of algorithms, they are of great difference in
fitness assignment, environmental selection, and archive truncation. In the following,
the experimental setting for the comparative study of these algorithms is listed.

• Parameter Setting for Crossover and Mutation. All selected EMO algo-
rithms are given real-valued decision variables. Two widely-used crossover
and mutation operators, simulated binary crossover (SBX) and polynomial
mutation (Deb, 2001), are chosen. Following the practice in Deb et al. (2002),
the distribution indexes in both SBX and the polynomial mutation are set to 20.
A crossover probability pc = 1.0 and a mutation probability pm = 1/n (where
n is the number of decision variables) are used according to Deb (2001).

• Population and Archive Size. Like most of the studies of EMO algorithms,
for generational algorithms the population size is set to 100, and the archive is
also maintained at the same size if it exists (Coello et al., 2007). For steady-state
algorithms, the regular population size is set to 100 according to Deb, Mohan,
et al. (2005).

• Number of Runs and Stopping Condition. We independently run each al-
gorithm 50 times for each test problem. The termination criterion of the al-
gorithms is a predefined number of evaluations. Here, we set the evaluation
number to different values for problems with different numbers of objectives,
since the difficulty of problems generally increases with the number of objec-
tives (Brockhoff et al., 2009; Schütze et al., 2011). Similar to the experimental

3The C code of IBEA is available at http://www.tik.ee.thz.ch/pisa
4The C code of ε-MOEA is available at http://www.iitk.ac.in/kangal
5The C code of TDEA was written by us.
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Table 1: Parameter settings of ε-MOEA and TDEA.

SCH1 SCH2 FON KUR POL ZDT1 ZDT2 ZDT3

ε 0.0200 0.0180 0.0028 0.0350 0.0400 0.0076 0.0076 0.0030
τ 0.0110 0.0075 0.0130 0.0080 0.0080 0.0090 0.0090 0.0070

ZDT4 ZDT6 WFG1 WFG2 WFG3 WFG4 WFG5 WFG6
ε 0.0075 0.0065 0.0070 0.0040 0.0200 0.0160 0.0160 0.0160
τ 0.0075 0.0060 0.0030 0.0070 0.0076 0.0100 0.0100 0.0100

WFG7 WFG8 WFG9 VNT1 VNT2 VNT3 DTLZ1 DTLZ2
ε 0.0160 0.0110 0.0160 0.1000 0.0070 0.0110 0.0340 0.0630
τ 0.0100 0.0070 0.0100 0.0800 0.0260 0.0200 0.0600 0.1050

DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 UF8 UF9 UF10
ε 0.0630 0.0150 0.0050 0.0300 0.0500 0.0150 0.0200 0.0050
τ 0.0200 0.0400 0.0110 0.0250 0.0600 0.0850 0.0700 0.0100

studies in Deb, Mohan, et al. (2005) and Beume et al. (2007), the algorithms
are assigned a larger number of evaluations for tri-objective problems than for
bi-objective ones, that is, 30,000 against 25,000.

• Parameter Settings in IBEA, ε-MOEA, and TDEA. In IBEA, the parameter
κ is set to 0.05 as recommended in Zitzler and Künzli (2004). ε-MOEA and
TDEA require the user to set the size of hyperboxes in grid (i.e., ε and τ ). In
order to guarantee a fair comparison, we set them so that the archive of the two
algorithms is approximately of the same size as that of the other algorithms
(given in Table 1).

• Reference Point Setting in HV. In the calculation of the HV metric for a
solution set, choosing a reference point that is slightly larger than the worst
value of each objective on the Pareto front is found to be suitable, since the
effects of convergence and diversity of the set can be well balanced (Knowles,
2006; Auger et al., 2009). Here, as suggested in Kukkonen and Deb (2006), we
select the integer point slightly larger than the worst value of each objective
on the Pareto front of a problem as its reference point. As a consequence, the
reference points for SCH1, SCH2, FON, KUR, and POL is (5, 5), (2, 17), (2, 2),
(−14, 1), and (0, 1), respectively. The reference points used in all the ZDT and
WFG problems is (2, 2) and (3, 5), respectively, and for VNT1, VNT2, and VNT3
is (5, 6, 5), (5, −16,−12), and (9, 18, 1), respectively. The reference point for the
tri-objective DTLZ and UF problems is (2, 2, 2), except (1, 1, 1) for DTLZ1 and
(2, 2, 7) for DTLZ7. Note that the solutions that do not dominate the reference
point are discarded in the HV calculation (i.e., the solutions that are worse than
the reference point in at least one objective will contribute zero to HV).

• Substitution of the Pareto Front for IGD. For the IGD metric, it is necessary
to know the Pareto front of test problems. In most of the test problems used in
this study, their Pareto fronts are known (families ZDT, DTLZ, WFG, and UF).
For them we select 10,000 evenly-distributed points along the Pareto front as
its substitution in the calculation of IGD since they can accurately represent the
true Pareto front (Sen and Yang, 1998). For other test problems, the substitution
of their Pareto fronts is available at the website http://www.cs.cinvestav.mx/
emoobook/.
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• Operating Environment. The hardware used in the comparison experiments
is a PC with 2.8 GHz Pentium 4 CPU with a memory of 1 GB, and the operating
system is Windows XP. The code of ETEA and MST-MOEA is written in C.

5 Results and Discussion

This section validates the performance of ETEA according to the experimental design in
the previous section. Firstly, we evaluate the proposed algorithm and compare it with
five state-of-the-art EMO algorithms: NSGA-II, SPEA2, IBEA, ε-MOEA, and TDEA.
Secondly, we analyze the time complexity of the proposed algorithm and show the
computational cost of all the considered algorithms. Then, a comparative study be-
tween ETEA and its predecessor (MST-MOEA) is presented. Finally, we investigate
the different parts of the proposed algorithm and identify their contribution to the
performance of the algorithm.

5.1 Performance Comparison

In order to systematically present the results, the test problems have been grouped
into two categories according to the number of their objectives. For each problem, we
executed 50 independent runs. The values included in the tables of results are mean and
standard deviation. The best mean for each problem has a gray background, as shown
in Table 2. In addition, a t-test at a .05 significance level has been used to compare ETEA
with its competitors. Symbols † and ‡ indicate that the p value of 98 DOF is significant
at a .05 level by a two-tailed t-test. The symbol † indicates that ETEA is better than its
competitor, and ‡ means the opposite.

Tables 2 and 3 show the results of the bi-objective problems in terms of HV and IGD,
respectively. It is clear that ETEA performs significantly better than the other five EMO
algorithms. For HV, the proposed algorithm obtains the best value in 13 out of the 19 test
problems, and IBEA, NSGA-II, and SPEA2 perform the best in 3, 2, and 1 out of all the
problems, respectively. Moreover, for the majority of the problems where the proposed
algorithm outperforms the other algorithms, the results have statistical significance
(12, 10, 13, 17, and 18 out of all the 19 problems for NSGA-II, SPEA2, IBEA, ε-MOEA,
and TDEA, respectively). To graphically illustrate the work of these algorithms, we
show typical distributions of the final solutions obtained by the six algorithms on ZDT4
and WFG6 in Figures 7 and 8, respectively. Clearly, the solutions of ETEA are located
uniformly along the whole Pareto front of the problems, which means that ETEA can
provide a good trade-off among convergence, uniformity, and spread.

Similar to HV, the results of IGD in Table 3 show that the proposed algorithm has
a clear advantage over the other five algorithms for the majority of the problems. It
obtains the best value in 13 out of the 19 problems, and most of the differences of the
results between ETEA and the other algorithms have statistical significance. Specifi-
cally, the number of the problems where ETEA outperforms NSGA-II, SPEA2, IBEA,
ε-MOEA, and TDEA with statistical significance is 16, 12, 17, 15, and 14, respectively.
Interestingly, these algorithms sometimes obtain different and contradictory compari-
son results regarding different quality metrics (i.e., HV and IGD), although both metrics
involve comprehensive performance of convergence, uniformity, and spread; for exam-
ple, for WFG3, ETEA performs the best in terms of HV, but obtains a worse IGD value
than ε-MOEA, whereas for WFG5, ETEA performs worse than IBEA with regard to HV
but obtains the best IGD value of all.

In order to investigate such a contradictory observation, we introduce three widely-
used performance metrics to separately assess the convergence, uniformity, and spread

Evolutionary Computation Volume xx, Number x 19

Evolutionary Computation corrected proof
doi:10.1162/EVCO_a_00106
 by the Massachusetts Institute of Technology



M. Li, S. Yang, J. Zheng, and X. Liu

Ta
bl

e
2:

T
he

H
V

co
m

pa
ri

so
n

of
th

e
si

x
E

M
O

al
go

ri
th

m
s

on
bi

-o
bj

ec
ti

ve
pr

ob
le

m
s.

Pr
ob

le
m

E
T

E
A

N
SG

A
-I

I
SP

E
A

2
IB

E
A

ε
-M

O
E

A
T

D
E

A

SC
H

1
2.

22
75

e+
1

(6
.4

7e
−4

)
2.

22
71

e+
1

(1
.5

7e
−3

)†
2.

22
74

e+
1

(7
.3

8e
−4

)
2.

22
72

e+
1

(1
.0

7e
−3

)†
2.

22
29

e+
1

(1
.0

7e
−3

)†
2.

22
70

e+
1

(2
.0

2e
−3

)†

SC
H

2
3.

82
59

e+
1

(2
.1

2e
−3

)
3.

82
46

e+
1

(3
.8

4e
−3

)†
3.

82
58

e+
1

(2
.4

1e
−3

)†
3.

79
81

e+
1

(1
.3

2e
−1

)†
3.

81
21

e+
1

(1
.3

4e
−3

)†
3.

82
19

e+
1

(2
.9

8e
−2

)†

FO
N

3.
06

21
e+

0
(1

.8
0e

−4
)

3.
06

18
e+

0
(1

.8
4e

−4
)†

3.
06

20
e+

0
(1

.1
6e

−4
)

3.
06

08
e+

0
(1

.5
2e

−4
)†

3.
05

95
e+

0
(6

.7
2e

−4
)†

3.
05

53
e+

0
(5

.0
3e

−3
)†

K
U

R
3.

70
72

e+
1

(1
.0

5e
−2

)
3.

70
05

e+
1

(1
.4

2e
−2

)†
3.

70
64

e+
1

(1
.1

5e
−2

)†
3.

66
62

e+
1

(5
.6

3e
−2

)†
3.

70
68

e+
1

(1
.4

6e
−2

)†
3.

70
50

e+
1

(2
.1

3e
−2

)†

PO
L

7.
53

16
e+

1
(4

.3
3e

−2
)

7.
52

67
e+

1
(5

.5
9e

−2
)†

7.
53

26
e+

1
(9

.7
2e

−2
)

6.
01

92
e+

1
(1

.2
0e

+0
)†

7.
09

77
e+

1
(7

.3
2e

−2
)†

7.
42

59
e+

1
(6

.5
6e

−1
)†

Z
D

T
1

3.
66

01
e+

0
(3

.9
2e

−4
)

3.
65

91
e+

0
(4

.1
0e

−4
)†

3.
65

94
e+

0
(4

.7
2e

−4
)†

3.
65

90
e+

0
(8

.0
2e

−4
)†

3.
64

76
e+

0
(1

.7
3e

−3
)†

3.
65

66
e+

0
(1

.7
6e

−3
)†

Z
D

T
2

3.
32

60
e+

0
(6

.6
8e

−4
)

3.
32

50
e+

0
(5

.7
9e

−4
)†

3.
32

48
e+

0
(8

.9
2e

−4
)†

3.
32

39
e+

0
(2

.7
5e

−4
)†

3.
32

30
e+

0
(1

.6
0e

−3
)†

3.
31

91
e+

0
(3

.0
5e

−3
)†

Z
D

T
3

4.
81

31
e+

0
(4

.4
7e

−4
)

4.
81

24
e+

0
(4

.6
6e

−4
)†

4.
81

18
e+

0
(5

.1
6e

−4
)†

4.
80

62
e+

0
(2

.1
1e

−4
)†

4.
80

94
e+

0
(1

.1
1e

−3
)†

4.
80

35
e+

0
(3

.6
1e

−1
)†

Z
D

T
4

3.
65

14
e+

0
(7

.7
3e

−3
)

3.
65

06
e+

0
(7

.7
5e

−3
)†

3.
65

00
e+

0
(8

.6
8e

−3
)†

2.
48

20
e+

0
(2

.0
9e

−1
)†

3.
63

50
e+

0
(2

.1
6e

−2
)†

3.
63

07
e+

0
(4

.1
1e

−2
)†

Z
D

T
6

3.
02

42
e+

0
(2

.5
8e

−3
)

3.
02

19
e+

0
(2

.7
2e

−3
)†

3.
02

30
e+

0
(2

.1
0e

−3
)†

3.
03

65
e+

0
(5

.7
0e

−4
)‡

3.
02

81
e+

0
(2

.2
2e

−3
)‡

3.
02

36
e+

0
(2

.6
8e

−3
)†

W
FG

1
7.

24
35

e+
0

(1
.2

6e
+0

)
7.

63
48

e+
0

(9
.9

6e
−1

)
7.

55
47

e+
0

(9
.2

2e
−1

)
7.

05
54

e+
0

(9
.8

1e
−1

)
5.

65
09

e+
0

(7
.4

1e
−1

)†
5.

43
01

e+
0

(8
.1

1e
−1

)†

W
FG

2
1.

11
51

e+
1

(4
.1

7e
−1

)
1.

10
01

e+
1

(4
.1

6e
−1

)
1.

09
52

e+
1

(4
.0

9e
−1

)
1.

09
47

e+
1

(4
.0

8e
−1

)
1.

09
14

e+
1

(4
.0

2e
−1

)
1.

08
58

e+
1

(3
.8

3e
−1

)

W
FG

3
1.

09
44

e+
1

(5
.1

1e
−3

)
1.

09
34

e+
1

(7
.0

3e
−3

)†
1.

09
40

e+
1

(5
.5

2e
−3

)†
1.

09
41

e+
1

(3
.0

9e
−3

)†
1.

09
26

e+
1

(8
.4

9e
−3

)†
1.

09
17

e+
1

(1
.3

5e
−2

)†

W
FG

4
8.

66
79

e+
0

(7
.3

4e
−3

)
8.

66
76

e+
0

(4
.0

1e
−3

)
8.

66
74

e+
0

(4
.9

3e
−3

)
8.

66
71

e+
0

(1
.6

4e
−3

)
8.

65
74

e+
0

(1
.1

6e
−2

)†
8.

65
07

e+
0

(1
.5

0e
−2

)†

W
FG

5
8.

15
75

e+
0

(3
.0

0e
−2

)
8.

15
86

e+
0

(3
.4

5e
−2

)
8.

15
31

e+
0

(3
.4

9e
−2

)
8.

19
53

e+
0

(4
.8

0e
−2

)‡
8.

12
83

e+
0

(2
.1

2e
−2

)†
8.

12
19

e+
0

(2
.7

4e
−2

)†

W
FG

6
8.

57
08

e+
0

(1
.0

7e
−1

)
8.

53
81

e+
0

(1
.4

6e
−1

)
8.

50
88

e+
0

(1
.5

7e
−1

)
8.

49
84

e+
0

(1
.9

7e
−1

)†
8.

47
75

e+
0

(1
.7

1e
−1

)†
8.

43
26

e+
0

(2
.2

4e
−1

)†

W
FG

7
8.

67
03

e+
0

(6
.6

4e
−3

)
8.

67
01

e+
0

(3
.0

2e
−3

)
8.

66
89

e+
0

(6
.5

4e
−3

)†
8.

66
75

e+
0

(1
.5

0e
−3

)†
8.

66
12

e+
0

(1
.0

5e
−2

)†
8.

64
88

e+
0

(1
.4

4e
−2

)†

W
FG

8
7.

00
08

e+
0

(3
.6

1e
−1

)
7.

10
49

e+
0

(4
.5

0e
−1

)‡
6.

99
88

e+
0

(4
.4

2e
−1

)
6.

92
44

e+
0

(4
.0

3e
−1

)†
6.

83
74

e+
0

(3
.2

5e
−1

)†
6.

78
56

e+
0

(2
.6

0e
−1

)†

W
FG

9
8.

43
77

e+
0

(1
.5

7e
−2

)
8.

43
27

e+
0

(1
.7

1e
−2

)†
8.

43
28

e+
0

(1
.4

8e
−2

)†
8.

44
35

e+
0

(2
.1

2e
−2

)‡
8.

41
43

e+
0

(2
.2

9e
−2

)†
8.

40
65

e+
0

(2
.2

7e
−2

)†

†T
he

p
va

lu
e

of
98

D
O

F
is

si
gn

ifi
ca

nt
at

a
.0

5
le

ve
lo

fs
ig

ni
fi

ca
nc

e
by

tw
o-

ta
ile

d
t-

te
st

.E
T

E
A

is
be

tt
er

th
an

it
s

co
m

pe
ti

to
r.

‡T
he

p
va

lu
e

of
98

D
O

F
is

si
gn

ifi
ca

nt
at

a
.0

5
le

ve
lo

fs
ig

ni
fi

ca
nc

e
by

tw
o-

ta
ile

d
t-

te
st

.E
T

E
A

is
w

or
se

th
an

it
s

co
m

pe
ti

to
r.

20 Evolutionary Computation Volume xx, Number x

Evolutionary Computation corrected proof
doi:10.1162/EVCO_a_00106
 by the Massachusetts Institute of Technology



ETEA: A Euclidean Minimum Spanning Tree-Based EA for Multi-Objective Optimization

Ta
bl

e
3:

IG
D

co
m

pa
ri

so
n

of
th

e
si

x
E

M
O

al
go

ri
th

m
s

on
bi

-o
bj

ec
ti

ve
pr

ob
le

m
s.

Pr
ob

le
m

E
T

E
A

N
SG

A
-I

I
SP

E
A

2
IB

E
A

ε
-M

O
E

A
T

D
E

A

SC
H

1
1.

66
00

e−
2

(9
.3

1e
−5

)
1.

87
70

e−
2

(4
.1

1e
−4

)†
1.

66
07

e−
2

(1
.0

4e
−4

)†
1.

90
27

e−
2

(4
.1

0e
−4

)†
5.

56
64

e−
2

(6
.1

4e
−4

)†
1.

73
82

e−
2

(4
.6

6e
−4

)†

SC
H

2
2.

23
44

e−
2

(4
.4

1e
−4

)
2.

36
55

e−
2

(9
.1

9e
−4

)†
2.

26
45

e−
2

(5
.4

4e
−4

)†
1.

27
24

e−
1

(5
.6

4e
−2

)†
2.

37
06

e−
2

(1
.2

3e
−5

)†
2.

24
86

e−
2

(3
.2

6e
−4

)†

FO
N

4.
64

55
e−

3
(7

.1
4e

−5
)

5.
56

51
e−

3
(1

.9
4e

−4
)†

4.
66

01
e−

3
(7

.3
1e

−5
)†

2.
27

60
e−

2
(2

.4
6e

−3
)†

1.
65

71
e−

2
(1

.0
7e

−4
)†

4.
71

48
e−

3
(1

.3
7e

−4
)†

K
U

R
3.

37
64

e−
2

(6
.5

7e
−4

)
4.

23
30

e−
2

(2
.0

3e
−3

)†
3.

41
65

e−
2

(8
.0

0e
−4

)†
2.

03
70

e−
1

(2
.3

0e
−2

)†
3.

50
53

e−
2

(1
.9

2e
−4

)†
3.

40
03

e−
2

(1
.1

0e
−3

)†

PO
L

5.
31

60
e−

2
(1

.3
6e

−3
)

6.
96

75
e−

2
(4

.5
7e

−3
)†

5.
31

48
e−

2
(1

.1
7e

−3
)

4.
66

31
e−

1
(1

.3
2e

−1
)

1.
96

46
e−

1
(1

.1
8e

−3
)†

6.
16

38
e−

2
(2

.3
8e

−3
)†

Z
D

T
1

4.
02

41
e−

3
(6

.9
4e

−5
)

4.
81

65
e−

3
(2

.2
7e

−4
)†

4.
17

92
e−

3
(9

.2
1e

−5
)†

4.
14

47
e−

3
(6

.1
0e

−5
)†

4.
27

47
e−

3
(5

.4
3e

−5
)†

4.
23

14
e−

3
(1

.4
3e

−4
)†

Z
D

T
2

4.
00

65
e−

3
(7

.0
1e

−5
)

4.
82

54
e−

3
(1

.6
3e

−4
)†

4.
16

85
e−

3
(1

.0
6e

−4
)†

9.
28

89
e−

3
(4

.1
8e

−4
)†

5.
70

34
e−

3
(1

.7
5e

−4
)†

4.
36

42
e−

3
(1

.5
9e

−4
)†

Z
D

T
3

4.
91

52
e−

3
(1

.0
7e

−4
)

5.
68

77
e−

3
(2

.9
3e

−3
)†

5.
56

63
e−

3
(4

.1
3e

−3
)†

3.
17

54
e−

2
(3

.4
0e

−3
)†

8.
34

80
e−

3
(9

.0
2e

−3
)†

5.
15

57
e−

3
(7

.0
5e

−3
)†

Z
D

T
4

6.
04

13
e−

3
(2

.0
5e

−3
)

6.
56

46
e−

3
(1

.7
0e

−3
)†

6.
50

17
e−

3
(2

.0
9e

−3
)†

6.
11

94
e−

1
(1

.1
4e

−1
)†

6.
94

74
e−

3
(3

.7
7e

−3
)†

7.
58

64
e−

3
(1

.1
0e

−2
)†

Z
D

T
6

6.
85

28
e−

3
(6

.5
1e

−4
)

7.
68

25
e−

3
(7

.4
1e

−4
)†

7.
23

74
e−

3
(5

.6
7e

−4
)†

5.
52

67
e−

3
(1

.5
9e

−4
)‡

5.
19

94
e−

3
(3

.0
1e

−4
)‡

6.
23

96
e−

3
(5

.5
1e

−4
)‡

W
FG

1
7.

27
27

e−
1

(2
.0

9e
−1

)
6.

13
25

e−
1

(1
.7

1e
−1

)‡
6.

60
93

e−
1

(1
.5

8e
−1

)‡
8.

66
97

e−
1

(1
.5

1e
−1

)†
1.

02
43

e+
0

(1
.3

5e
−1

)†
1.

06
68

e+
0

(1
.6

8e
−1

)†

W
FG

2
1.

21
90

e−
2

(1
.8

2e
−3

)
1.

40
41

e−
2

(1
.7

6e
−3

)†
1.

29
86

e−
2

(1
.8

1e
−3

)†
7.

33
49

e−
2

(1
.0

0e
−2

)†
1.

35
16

e−
2

(2
.7

2e
−3

)†
1.

42
53

e−
2

(2
.6

6e
−3

)†

W
FG

3
1.

21
46

e−
2

(3
.7

7e
−4

)
1.

49
15

e−
2

(8
.4

8e
−4

)†
1.

23
83

e−
2

(3
.6

1e
−4

)†
1.

29
24

e−
2

(2
.0

3e
−4

)†
1.

18
27

e−
2

(2
.9

4e
−4

)‡
1.

19
23

e−
2

(4
.2

4e
−4

)‡

W
FG

4
1.

29
45

e−
2

(2
.5

0e
−4

)
1.

34
39

e−
2

(7
.4

6e
−4

)†
1.

29
13

e−
2

(3
.7

2e
−4

)‡
1.

84
21

e−
2

(1
.0

6e
−3

)†
1.

01
21

e−
2

(9
.6

4e
−5

)‡
1.

13
90

e−
2

(3
.7

6e
−4

)‡

W
FG

5
6.

67
40

e−
2

(2
.1

4e
−4

)
6.

79
11

e−
2

(1
.6

0e
−3

)†
6.

67
61

e−
2

(1
.1

3e
−3

)
7.

12
00

e−
2

(2
.9

6e
−4

)†
6.

83
38

e−
2

(3
.6

3e
−5

)†
6.

67
83

e−
2

(9
.4

0e
−5

)

W
FG

6
2.

65
14

e−
2

(1
.4

4e
−2

)
3.

08
66

e−
2

(2
.0

4e
−2

)
3.

30
49

e−
2

(2
.2

8e
−2

)
4.

18
43

e−
2

(2
.8

2e
−2

)†
3.

85
78

e−
2

(2
.4

6e
−2

)†
4.

19
92

e−
2

(3
.3

6e
−2

)†

W
FG

7
1.

30
16

e−
2

(2
.7

2e
−4

)
1.

61
55

e−
2

(8
.3

2e
−4

)†
1.

30
64

e−
2

(2
.9

5e
−4

)
2.

10
30

e−
2

(9
.6

1e
−4

)†
1.

63
74

e−
2

(1
.2

0e
−4

)†
1.

38
89

e−
2

(4
.0

7e
−4

)

W
FG

8
1.

70
05

e−
1

(3
.2

8e
−2

)
1.

60
18

e−
1

(4
.3

2e
−2

)
1.

69
54

e−
1

(3
.9

9e
−2

)
1.

93
61

e−
1

(2
.7

5e
−2

)†
1.

78
21

e−
1

(3
.0

7e
−2

)
1.

87
32

e−
1

(2
.1

2e
−2

)†

W
FG

9
1.

38
75

e−
2

(1
.1

8e
−3

)
1.

70
41

e−
2

(1
.6

8e
−3

)†
1.

40
64

e−
2

(1
.0

6e
−3

)†
1.

97
43

e−
2

(1
.6

5e
−3

)†
1.

69
12

e−
2

(1
.9

5e
−3

)†
1.

51
29

e−
2

(1
.5

2e
−3

)†

†T
he

p
va

lu
e

of
98

D
O

F
is

si
gn

ifi
ca

nt
at

a
.0

5
le

ve
lo

fs
ig

ni
fi

ca
nc

e
by

tw
o-

ta
ile

d
t-

te
st

.E
T

E
A

is
be

tt
er

th
an

it
s

co
m

pe
ti

to
r.

‡T
he

p
va

lu
e

of
98

D
O

F
is

si
gn

ifi
ca

nt
at

a
.0

5
le

ve
lo

fs
ig

ni
fi

ca
nc

e
by

tw
o-

ta
ile

d
t-

te
st

.E
T

E
A

is
w

or
se

th
an

it
s

co
m

pe
ti

to
r.

Evolutionary Computation Volume xx, Number x 21

Evolutionary Computation corrected proof
doi:10.1162/EVCO_a_00106
 by the Massachusetts Institute of Technology



M. Li, S. Yang, J. Zheng, and X. Liu

Fi
gu

re
7:

T
he

fin
al

so
lu

ti
on

s
ob

ta
in

ed
by

th
e

si
x

al
go

ri
th

m
s

on
Z

D
T

4.

22 Evolutionary Computation Volume xx, Number x

Evolutionary Computation corrected proof
doi:10.1162/EVCO_a_00106
 by the Massachusetts Institute of Technology



ETEA: A Euclidean Minimum Spanning Tree-Based EA for Multi-Objective Optimization

Fi
gu

re
8:

T
he

fin
al

so
lu

ti
on

s
ob

ta
in

ed
by

th
e

si
x

al
go

ri
th

m
s

on
W

FG
6.

Evolutionary Computation Volume xx, Number x 23

Evolutionary Computation corrected proof
doi:10.1162/EVCO_a_00106
 by the Massachusetts Institute of Technology



M. Li, S. Yang, J. Zheng, and X. Liu

of the solution sets. They are generational distance (GD; Van Veldhuizen and Lamont,
1998), spacing6 (SP; Schott, 1995), and maximum spread7 (MS; Zitzler et al., 2000). The
GD metric evaluates the convergence of a solution set by measuring the average distance
from the solutions in the set to their closest point in the Pareto front; SP evaluates the
uniformity of a solution set by calculating the standard deviation of the distance from
each solution to its closest neighbor in the set; and MS evaluates the spread of a solution
set by measuring the length of the diagonal of a minimal hyperbox that encloses the
set. For the former two metrics, a smaller value is preferable, and as to the last metric, a
larger value is better. More details of these metrics can be found in Van Veldhuizen and
Lamont (1998), Schott (1995), and Zitzler et al. (2000).

Here, the WFG problem family is selected for investigation since the contradictory
phenomenon on it appears to be the most obvious. Table 4 gives the results of all the
algorithms on the WFG problems in terms of GD, SP, and MS. Additionally, for a clearer
comparison, the table shows the rank of the six algorithms for each problem according
to their average value.

It can be seen from the table that in contrast to ETEA, NSGA-II, and SPEA2, the
algorithms IBEA, ε-MOEA, and TDEA show clear differences among convergence,
uniformity, and spread. IBEA performs the best in terms of MS but obtains the worst
results with respect to GD and SP. ε-MOEA and TDEA perform well in terms of GD but
have the worst values for the MS metric.

From the above observations, the contradictory results of the different algorithms
on the comprehensive performance metrics HV and IGD can be reasonably explained,
considering that HV prefers extensity and IGD has a bias toward distribution unifor-
mity. IBEA, which directly selects individuals according to their fitness based on a binary
performance measure, may fail to maintain the uniformity of a solution set, thus obtain-
ing a relatively poor IGD result; ε-MOEA and TDEA, which lack extensity-preserving
mechanisms, may lose the boundary solutions of the Pareto front, thus providing a
relatively low HV value.

On the other hand, the results in Table 4 also show that the proposed algorithm
ETEA is competitive for all the considered metrics. It takes the second, first, and third
places in terms of GD, SP, and MS, respectively, regarding the sum rank on all WFG
problems. This indicates that the solution set obtained by ETEA has a good balance
among convergence, uniformity, and spread.

Tables 5 and 6 show the results for the tri-objective problems in terms of HV and
IGD. The advantage of ETEA over the other algorithms on tri-objective problems seems
to be not as clear as that for bi-objective problems. Nevertheless, ETEA performs better
than the other five algorithms on more than half of all the problems. It is able to obtain
the best values in 8 and 7 out of the 13 problems for HV and IGD, respectively, and with
statistical significance in most of the cases. The number of the problems where ETEA
outperforms NSGA-II, SPEA2, IBEA, ε-MOEA, and TDEA with statistical significance
is 13, 10, 11, 8, and 8, respectively, for HV, and 13, 8, 10, 10, and 7, respectively, for IGD.
Figure 9 gives a typical distribution of the final solutions obtained by the six algorithms
on DTLZ1. For a better observation, the boundary of the Pareto front of the problem is
also plotted in the figure.

6The spacing metric is also called SS or S in some literature (see Knowles and Corne, 2002; Kukkonen
and Deb, 2006; Wei and Zhang, 2011).

7The maximum spread metric is called M∗
3, D, or FS in some literature (see Okabe et al., 2003;

Kukkonen and Deb, 2006; Wei and Zhang, 2011).
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Clearly, ETEA provides a good balance among convergence, uniformity, and spread.
NSGA-II and IBEA perform poorly in maintaining diversity, and especially for IBEA,
the solutions are grouped into three clusters which are around the extreme solutions of
the Pareto front. The solutions obtained by ε-MOEA appear to be the most uniform, but
they fail to expand to the boundary of the Pareto front. Considering SPEA2 and TDEA,
although they perform well in terms of uniformity and spread, some of their solutions
are located beyond the range of the Pareto front (i.e., fail to converge into the optimal
front).

However, it should be pointed out that for some problems that are difficult to con-
verge into the Pareto front, such as DTLZ3 and DTLZ6, the proposed algorithm performs
worse than IBEA and ε-MOEA. This may be attributed to the environmental selection
mechanism in ETEA that distinguishes solutions according to their distributions when
they are non-dominated to each other, which can lead to the longtime existence of the
dominance resistant solutions (i.e., the solutions with an extremely poor value in at least
one of the objectives, but with near optimal values in the others; see Ikeda et al., 2001) in
the population. These solutions will negatively affect the population searching toward
the Pareto front to a large extent (Hanne, 2001; Purshouse and Fleming, 2007). This
phenomenon happens more for tri-objective problems than for bi-objective problems.

Finally, note that for some of the complicated linkage problems (i.e., the WFG family
and the UF family), all the considered EMO algorithms encounter great difficulty in
reaching the Pareto front. One of the main reasons may be attributed to the fact that the
SBX operator cannot work well on variable linkage problems (Deb et al., 2006). In spite
of this, ETEA, compared to the other five algorithms, is able to obtain the best results
in 8 and 7 out of the 12 WFG and UF problems for HV and IGD, respectively.

5.2 Computational Cost

As can be seen from the outline of ETEA in Algorithm 1, the computational cost of the
algorithm is mainly determined by three steps: fitness assignment, fitness adjustment,
and archive truncation. In the following, we will briefly analyze the computational cost
of these steps.

• Computational Cost of Fitness Assignment. The computational cost of fit-
ness assignment can be divided into two parts: the calculation of the distance
count and the calculation of ETCD. Calculating the distance count needs to
identify the nondominated front in the population of size N. This usually
requires O(MN2) comparisons for all solutions in the population, where M is
the number of objectives. In addition, for all dominated solutions, O(MN2)
computations are required in order to find the nearest non-dominated solu-
tions which dominate them. Finally, the distance comparison among the non-
dominated solutions is introduced to define the distance count. This process
also requires O(MN2) computations. Thus, the total complexity of calculat-
ing the distance count is O(MN2). Concerning the calculation of ETCD, the
Euclidean distance between each pair of solutions is required to generate an
EMST of the whole population. This requires O(MN2) computations. The time
complexity is O(N2) for generating an EMST by the Prim algorithm and at the
same time calculating ETCD of each individual. Thus, the whole process of
the ETCD assignment requires O(MN2) computations, and further, the total
computational cost of the fitness assignment is O(MN2).
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Table 7: The average CPU time (s) used by each algorithm over 50 runs with/without
the cost of 30,000 function evaluations on DTLZ2. The left column corresponds to the
cost including the evaluations.

Algorithms Bi-objective Tri-objective

ETEA 6.8284 6.8147 13.674 13.6432
NSGA-II 1.035 1.0203 1.271 1.2404
SPEA2 8.0651 8.0505 12.4923 12.4642
IBEA 3.1267 3.1129 3.683 3.6554
ε-MOEA 0.5294 0.5145 0.6859 0.6512
TDEA 0.7625 0.7458 0.9403 0.9085

• Computational Cost of Fitness Adjustment. The procedure of the fitness
adjustment is implemented when the number of the non-dominated solu-
tions is insufficient to fill the slots in the archive. The computational cost
of this procedure is mainly determined by three functions: Findout best ,
Findout neighbor , and Sort (cf. Algorithm 2). Clearly, Findout best requires
O(N ) comparisons. The time complexity of the functions Findout neighbor

and Sort is O(MN ) and O(N log N ), respectively. Thus, the total time complex-
ity of this step is bounded by O(MN2) or O(N2 log N ), whichever is greater.

• Computational Cost of Archive Truncation. In contrast to fitness adjust-
ment, archive truncation is activated when the number of the non-dominated
solutions exceeds the upper bound of the archive. Similar to the calculation of
ETCD, the Euclidean distance between each pair of solutions is required first,
which needs O(MN2) computations. Since the process of archive truncation
belongs to recurrence-mode (i.e., assessment has to be performed on the re-
maining solutions in each cycle of the truncation; see Khor et al., 2005), the time
complexity is O(N3) (cf. Algorithm 3). Therefore, the total time complexity of
this step is bounded by O(MN2) or O(N3), whichever is greater.

In conclusion, the overall complexity of ETEA is divided into two cases: if the
fitness adjustment procedure is implemented, then the overall complexity is bounded
by O(MN2) or O(N2 log N ), whichever is greater; if the archive truncation is online,
then the overall complexity is O(MN2) or O(N3), whichever is greater. In most cases,
M < log N , and thus, the former is O(N2 log N ) and the latter is bounded by O(N3).

Table 7 shows the average computational cost of the six EMO algorithms on DTLZ2;
additionally, the average CPU time without the cost of function evaluations is also
contained in the table in order to understand the computational effort of the internal
algorithm procedures. On each problem, the evaluation number is set to 30,000. The
settings of other parameters are the same as those in the previous studies.

Clearly, the algorithms ε-MOEA, TDEA, NSGA-II, and IBEA take the first four
places. The computational complexity of them is O(MN ), O(MN ), O(MN2), and O(MN2),
respectively. ETEA and SPEA2 have similar computational costs, though ETEA per-
forms better on bi-objective problems, while SPEA2 obtains lower values for problems
with three objectives. This phenomenon may be due to the increasing proportion of
non-dominated solutions in the population with the number of objectives. For the case
in which the number of non-dominated solutions exceeds the archive size, the archive
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truncation process will largely govern the computational cost of the algorithms, and the
time complexity of ETEA is higher than that of SPEA2 (O(N3) against O(N2 log N )). For
the case in which the number of non-dominated solutions is smaller than the archive
size, although both algorithms have identical time complexity (O(N2 log N )), the den-
sity estimator in SPEA2 (i.e., the kth nearest neighbor) may take more time than the
sorting function in ETEA which does not aim at all individuals in the population.

Although ETEA generally requires more time than the other EMO algorithms,
it can be improved by several potential ways. The most direct way is to reduce the
time complexity of constructing an EMST. Indeed, there currently exist some more
efficient methods to speed up the construction of an EMST in comparison with the Prim
algorithm, especially in the two-dimensional space (Agarwal et al., 1991; Eppstein,
1995; Czumaj et al., 2003, 2005; Rajasekaran, 2005). Another way of decreasing the
computational cost of ETEA is to reduce the time complexity of the archive truncation
process. Since an EMST for all remaining individuals has to be generated in each cycle of
the truncation, the process requires O(N3) computations. Considering a smaller EMST,
which is constructed by the individuals that used to be the neighbors of the eliminated
individual, instead of the EMST of all remaining solutions, the time complexity of the
truncation can be reduced to O(MN2). Previous effort in this direction has been reported
in Li et al. (2009).

Finally, it is necessary to point out an interesting phenomenon in archive truncation
of ETEA for bi-objective MOPs. In these problems, the EMST of non-dominated indi-
viduals degenerates into a linear structure. Figure 10 exemplifies the truncation process.
Clearly, the degree of individuals in the EMST remains unchanged (i.e., the degree of
boundary individuals is always one, and the degree of inner individuals is always two).
Therefore, the boundary individuals in the truncation process will never be eliminated,
and the inner ones will be tested only by the distance from their two neighbors. In this
case, constructing an EMST seems to be unnecessary, and it can be replaced by renew-
ing and comparing the neighbor information of individuals. This process only requires
O(MN ) computations in each cycle. Therefore, the total time complexity of the archive
truncation procedure is O(MN2). In fact, the truncation can still be speeded up, using
some efficient data structure (e.g., heap) to orderly store the neighbor information of in-
dividuals. This is similar to Kukkonen and Deb (2006), where the population is rapidly
maintained by heapsort. In this case, the time complexity of the archive truncation of
ETEA for bi-objective MOPs can be reduced to O(MN log N ).

Table 8 shows the computational costs of ETEA for all the bi-objective test problems
after speeding up the archive truncation process according to the above method. The
upper value in each cell corresponds to the cost of the original ETEA. It is clear from the
table that for all the problems, the computational cost of the algorithm has a reduction
of at least 12%. Interestingly, the effect of the acceleration of the archive truncation on
different problems is apparently distinct. For some problems, such as SCH2, POL, and
WFG5, the reduction rate of the runtime reaches 60%. This occurrence can be attributed
to the difference of the numbers of the non-dominated solutions in environmental
selection during the evolutionary process. If the number of the non-dominated solutions
greatly exceeds the size of the archive set, the total time of ETEA will be significantly
reduced by speeding up the archive truncation.

5.3 Comparison with Its Predecessor

MST-MOEA is the first attempt to capture and employ the properties of EMSTs for
EMO. The comparison studies in Li et al. (2008) found that MST-MOEA is competitive
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Figure 10: An example of the archive truncation in ETEA for a bi-objective nondom-
inated set, where the archive size is 5. (a) The original non-dominated set; (b) C is
eliminated since LBC is the shortest and LCD < LAB; (c) F is eliminated since LEF is the
shortest and LFG < LDE; (d) The final archive set.

Table 8: Comparison of the computational costs of ETEA with and without the accel-
eration of the archive truncation for the bi-objective problems. The upper value in each
cell corresponds to the cost without the acceleration.

Problem Time Problem Time Problem Time Problem Time

SCH1 3.4886 ZDT1 6.3082 WFG1 9.3377 WFG6 8.3982
1.9223 3.4838 6.8621 4.4378

SCH2 8.2630 ZDT2 5.8952 WFG2 7.7727 WFG7 11.629
2.0765 4.0127 5.2836 6.2091

FON 5.9672 ZDT3 5.7923 WFG3 10.154 WFG8 7.9353
2.2415 3.4681 5.1103 6.9505

KUR 4.4482 ZDT4 5.3873 WFG4 8.8742 WFG9 11.424
2.1930 4.4862 4.7822 6.6900

POL 8.3503 ZDT6 5.6741 WFG5 12.165
2.0342 4.5270 4.7948

with NSGA-II and SPEA2 in terms of convergence and diversity. In this section, we
compare ETEA with this algorithm. Tables 9 and 10 show the HV and IGD results of the
two algorithms. The better value for each problem is painted with a gray background.

It can be observed from the tables that ETEA has a clear advantage over its prede-
cessor on most of the problems. For HV, ETEA obtains better values in 27 out of the 32
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Table 9: HV comparison results between MST-MOEA and ETEA.

Algorithms Algorithms

Problem MST-MOEA ETEA Problem MST-MOEA ETEA

SCH1 2.2274e+1 (7.20e−4) 2.2275e+1 (6.47e−4) WFG7 8.6702e+0 (7.07e−3) 8.6703e+0 (6.64e−3)

SCH2 3.8258e+1 (2.16e−3)
† 3.8259e+1 (2.12e−3) WFG8 6.9259e+0 (3.86e−1)

† 7.0008e+0 (3.61e−1)

FON 3.0620e+0 (1.16e−4)
† 3.0621e+0 (1.80e−4) WFG9 8.4416e+0 (1.80e−2)

‡ 8.4377e+0 (1.57e−2)

KUR 3.7071e+1 (1.18e−2) 3.7072e+1 (1.05e−2) VNT1 6.1571e+1 (4.63e−2)
† 6.1582e+1 (4.15e−2)

POL 7.5303e+1 (5.31e−2)
† 7.5316e+1 (4.33e−2) VNT2 1.9138e+0 (4.34e−4)

† 1.9146e+0 (3.90e−4)

ZDT1 3.6598e+0 (5.42e−4)
† 3.6601e+0 (3.92e−4) VNT3 2.8305e+1 (9.25e−3) 2.8303e+1 (1.09e−2)

ZDT2 3.3238e+0 (1.18e−3)
† 3.3260e+0 (6.68e−4) DTLZ1 9.7263e−1 (6.53e−4)

† 9.7286e−1 (3.30e−4)

ZDT3 4.8119e+0 (6.54e−4)
† 4.8131e+0 (4.47e−4) DTLZ2 7.3909e+0 (8.69e−3)

† 7.3948e+0 (6.57e−3)

ZDT4 3.4475e+0 (1.60e−1)
† 3.6514e+0 (7.73e−3) DTLZ3 2.2463e+0 (3.04e+0) 2.3436e+0 (2.75e+0)

ZDT6 3.0162e+0 (5.49e−3)
† 3.0242e+0 (2.58e−3) DTLZ4 7.0395e+0 (4.46e−1)

† 7.2158e+0 (3.19e−1)

WFG1 6.8129e+0 (9.98e−1) 7.2435e+0 (1.26e+0) DTLZ5 6.1012e+0 (4.34e−4)
† 6.1015e+0 (6.15e−4)

WFG2 1.0884e+1 (3.87e−1)
† 1.1151e+1 (4.17e−1) DTLZ6 4.6281e+0 (1.84e−1) 4.6522e+0 (1.66e−1)

WFG3 1.0941e+1 (6.23e−3)
† 1.0944e+1 (5.11e−3) DTLZ7 1.1827e+1 (1.99e−1)

† 1.3400e+1 (2.60e−2)

WFG4 8.6680e+0 (7.47e−3) 8.6679e+0 (7.34e−3) UF8 7.0190e+0 (3.58e−1) 6.9641e+0 (3.83e−1)

WFG5 8.1581e+0 (3.29e−2) 8.1575e+0 (3.00e−2) UF9 6.8827e+0 (2.76e−1)
† 7.1990e+0 (3.41e−1)

WFG6 8.4764e+0 (1.64e−1)
† 8.5708e+0 (1.07e−1) UF10 5.2137e+0 (6.82e−1) 5.2946e+0 (7.31e−1)

†The p value of 98 DOF is significant at a .05 level of significance by two-tailed t-test. ETEA is better than its
competitor.
‡The p value of 98 DOF is significant at a .05 level of significance by two-tailed t-test. ETEA is worse than its
competitor.

Table 10: IGD comparison results between MST-MOEA and ETEA.

Algorithms Algorithms

Problem MST-MOEA ETEA Problem MST-MOEA ETEA

SCH1 1.6604e−2 (9.86e−5) 1.6600e−2 (9.31e−5) WFG7 1.3021e−2 (3.00e−4) 1.3016e−2 (2.72e−4)

SCH2 2.2449e−2 (5.33e−4)
† 2.2344e−2 (4.41e−4) WFG8 1.7341e−1 (3.40e−2) 1.7005e−1 (3.28e−2)

FON 4.6585e−3 (7.67e−5)
† 4.6455e−3 (7.14e−5) WFG9 1.3855e−2 (1.10e−3) 1.3875e−2 (1.18e−3)

KUR 3.3983e−2 (7.28e−4)
† 3.3764e−2 (6.57e−4) VNT1 1.3095e−1 (2.58e−3)

† 1.2664e−1 (2.38e−3)

POL 5.3633e−2 (1.46e−3)
† 5.3160e−2 (1.36e−3) VNT2 1.2494e−2 (2.39e−4)

† 1.2305e−2 (2.54e−4)

ZDT1 4.0634e−3 (8.10e−5)
† 4.0241e−3 (6.94e−5) VNT3 3.2256e−2 (1.13e−3)

† 3.2065e−2 (1.09e−3)

ZDT2 4.0941e−3 (3.48e−4)
† 4.0065e−3 (7.01e−5) DTLZ1 2.1356e−2 (1.43e−3)

† 2.0657e−2 (5.21e−4)

ZDT3 5.5663e−3 (4.13e−3)
† 4.9152e−3 (1.07e−4) DTLZ2 5.4460e−2 (1.11e−3) 5.4021e−2 (9.72e−4)

ZDT4 7.5463e−3 (6.87e−3)
† 6.0413e−3 (2.05e−3) DTLZ3 1.4639e+0 (1.21e+0) 1.4106e+0 (1.10e+0)

ZDT6 9.0741e−3 (1.53e−3)
† 6.8528e−3 (6.51e−4) DTLZ4 2.3510e−1 (1.75e−1)

† 1.5341e−1 (1.46e−1)

WFG1 8.0317e−1 (1.58e−1)
† 7.2727e−1 (2.09e−1) DTLZ5 4.4181e−3 (1.17e−4)

† 4.2391e−3 (3.82e−4)

WFG2 1.3277e−2 (1.73e−3)
† 1.2190e−2 (1.82e−3) DTLZ6 5.0035e−1 (5.09e−2) 4.9256e−1 (4.74e−2)

WFG3 1.2398e−2 (4.02e−4)
† 1.2146e−2 (3.77e−4) DTLZ7 2.2135e−1 (2.15e−1)

† 6.2268e−2 (1.16e−3)

WFG4 1.2892e−2 (3.68e−4)
‡ 1.2945e−2 (2.50e−4) UF8 1.4014e−1 (4.17e−2) 1.3654e−1 (4.47e−2)

WFG5 6.6388e−2 (2.12e−3)
‡ 6.6740e−2 (2.14e−4) UF9 1.8481e−1 (4.28e−2)

† 1.6542e−1 (5.21e−2)

WFG6 3.0332e−2 (2.42e−2) 2.6514e−2 (1.44e−2) UF10 3.2988e−1 (5.51e−2) 3.1911e−1 (6.83e−2)

†The p value of 98 DOF is significant at a .05 level of significance by two-tailed t-test. ETEA is better than its
competitor.
‡The p value of 98 DOF is significant at a .05 level of significance by two-tailed t-test. ETEA is worse than its
competitor.
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Figure 11: The final solutions obtained by MST-MOEA and ETEA on DTLZ7.

problems, and with statistical significance on 20 problems. Concerning IGD, it is able
to achieve better results in all the problems except WFG4, WFG5, and WFG9, and with
statistical significance on 21 problems. Additionally, for some problems, such as ZDT4
and DTLZ7, the MST-MOEA algorithm cannot always find the whole Pareto front. The
frequency of success is 18/50 and 31/50 on ZDT4 and DTLZ7, respectively. The typical
failure for DTLZ7 is shown in Figure 11, which may be attributed to the sensitivity of
fitness to the density estimator in MST-MOEA: the fitness of some dominated individ-
uals will be very poor if the estimation value of their corresponding non-dominated
individuals is significantly low. However, these dominated individuals may be located
in the outer part of the population and close to the boundary solutions, and thus can
largely extend the search toward undeveloped areas.

5.4 Study of Different Components of ETEA

In the previous sections, we studied ETEA as a whole by comparing it with the other
five state-of-the-art EMO algorithms and its predecessor. However, an investigation of
the different components of the proposed algorithm is also very useful to allow us to un-
derstand whether these newly introduced components are indeed able to improve the
algorithm as well as how these different components contribute to the performance of
the algorithm. The main components of ETEA are the density estimator, fitness assign-
ment, fitness adjustment, and archive truncation. Here, we investigate their contribution
by simply exchanging them with the standard algorithm or by directly removing them.

NSGA-II is selected as the standard algorithm due to its reputation in the EMO
community. ETEA separately exchanges the density estimator, fitness assignment,
and archive truncation mechanisms with NSGA-II, called ETEA(EDE), ETEA(EFA), and
ETEA(EAT), respectively; the fitness adjustment mechanism in ETEA is removed since it
is nonexistent in NSGA-II and the new resulting algorithm is called ETEA(RFA). Table 11
gives the HV values of the four algorithms on all the test problems, and the results of
the original ETEA are also repeated in the table. Additionally, for a clearer comparison,
Table 11 shows the rank of the five algorithms on each problem.
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Clearly, all the four components play an important role in ETEA. The algorithm
with them exchanged with NSGA-II or removed performs worse for the majority of
the test problems. As can be seen from the table, the sum rank of the original ETEA is
significantly better than that of the other four algorithms (52 for ETEA against 83 for
ETEA(EDE), 104 for ETEA(EFA), 132 for ETEA(EAT), and 93 for ETEA(RFA), respectively).
On the other hand, considering the contribution of the different components to the
algorithm, the archive truncation appears to be most influential to the performance of
ETEA, followed by the fitness assignment, fitness adjustment, and density estimation
(the sum rank of ETEA(EDE), ETEA(EFA), ETEA(EAT), and ETEA(RFA) is 132, 104, 93, and 83,
respectively). This means that a good archive truncation strategy which can effectively
maintain both uniformity and spread of a population is very important in an EMO
algorithm.

6 Conclusions and Future Work

This paper proposes a Euclidean minimum spanning tree-based evolutionary algo-
rithm, denoted ETEA, to solve multi-objective optimization problems. ETEA explores
the characteristics of EMSTs and the distance relation among individuals to guide the
search during the evolutionary process. On the one hand, ETEA defines a density es-
timator ETCD which not only reflects the crowding degree of individuals but partly
implies their relative orientation and position in the population, and combines it with
several properties of EMSTs to maintain diversity in fitness assignment and archive trun-
cation. On the other hand, ETEA considers the neighborhood of individuals formed by
their distance to the obtained trade-off surface, and adjusts their fitness according to
the number and position of individuals in the neighborhood.

Systematic experiments have been performed by making an extensive comparison
of ETEA with five state-of-the-art EMO algorithms (NSGA-II, SPEA2, IBEA, ε-MOEA,
and TDEA), and its predecessor (MST-MOEA). Thirty-two test problems and two pop-
ular quality metrics are chosen to assess performance of the selected algorithms. The
results reveal that ETEA can provide a good balance in finding a well-approximated
non-dominated set, keeping the uniformity of solutions, and extending the distribu-
tion range along the optimal front. ETEA performs significantly better than the other
algorithms in terms of uniformity, and is competitive in convergence and spread. The
results of ETEA with respect to the comprehensive performance also achieve the best
among the tested algorithms for the majority of the test problems.

Furthermore, the contribution of different components of the proposed algorithm
has been experimentally investigated. The results show that the newly introduced
archive truncation is most influential to the performance of ETEA, followed by the
fitness assignment, fitness adjustment, and density estimation. In addition, the study
on runtime indicates that although ETEA generally requires more computational time
than the other algorithms, it can be improved by several efficient methods.

One area for subsequent work is to obtain a deeper understanding of the algorithm
behavior. In this context, the effects of the population size and the number of variables
will be investigated. In addition, applying ETEA to some constrained MOPs and real-
world scenarios is also an important aspect of our further research.
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