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Abstract

It is well known that maintaining a good balance between convergence and diversity is crucial to the perfor-

mance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective

optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones.

This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the can-

didate solutions of the population. In addition, the proportion and angle function presented selects elites

during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows

highly competitive effectiveness on MOPs with six complex characteristics.

Keywords: Multiobjective optimization; Many-objective optimization; evolutionary algorithms; genetic

algorithms;

1. INTRODUCTION1

Recently, multiobjective evolutionary algorithms (MOEAs), have been proposed to solve multiobjective

optimization problems (MOPs) [39]. Generally, MOPs, which involve more one conflicting objective to be

optimized, can be formulated as follows:

min
x∈D

F (x) = (f
1
(x), f

2
(x), . . . , f

M
(x))T , (1)

where D ⊆ Rn is the decision space; x = (x1, x2, . . . , xn) ∈ D is the decision variable; M ≥ 2 is the number2

of the objectives, and F consists of M objectives. The rapid development of MOEAs directly reflects the3

need to handle MOPs in real-world scenarios, such as in optimizing visualization [23, 8, 25], traffic control4

[65][31], control system design [51][19], and industrial planning [1, 20, 22, 24]. MOEAs can find a set of5
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optimal solutions (rather than a single one) in an evolutionary manner and have performed excellently on6

various MOPs.7

In the development of MOEAs, Pareto-based approaches, such as dominance relation and density estima-8

tion, are first used to optimize MOPs. dominance relation selects a solution by the objectives’ values and9

provides selection pressure toward the Pareto front (PF). Density estimation is used to maintain diversity10

when some solutions are non-dominated according to the dominance relation.Deb et al.[34] proposed the11

non-dominated sorting generic algorithm II (NSGA-II) for conflicting problems. The NSGA-II has two main12

phases: first, a nondominated sorting approach is used to create Pareto rank; then a crowding distance is13

applied to implement density estimation. Zitzler et al.[16] modified the density estimation and presented an14

enhanced archive truncation method. However, it is a problem that Pareto dominance-based methods lead to15

the severe loss of selection pressure on the PF as the number of objectives increases. The primary reason be-16

hind the failure of Pareto-based MOEAs is the large increase of non-dominated solutions [53]. Another major17

reason is that the diversity of a population is hard to maintain with the limited population size in MOPs. Some18

studies have pointed out the drawback of Pareto-based algorithms [39][7][63]. To overcome the drawback of19

Pareto-dominance-based MOEAs, relaxed-dominance-based approaches have been proposed, such as epsilon20

dominance [45][44], favor relation [69][49], fuzzy Pareto dominance [43][3], particle swarm[61][26][50],21

and SDE [47].22

Indicator-based approaches adopt a performance indicator to optimize a desired ordering among the23

population set during the evolution. These approaches seem to be a direct way to solve MOPs. Among the24

current indicators available, the indicator-based EA (IBEA) [14] uses a single indicator to guide the search25

process. The hypervolume (HV) [13] is probably the most popular performance indicator in multiobjectve26

search due to its potential to balance convergence and diversity. A number of well-established indicator-based27

MOEAs that employ the theoretical properties of HV are available, such as the S metric selection evolutionary28

algorithm (SMS-EMOA) [48] and multiobjective covariance matrix adaptation evolution strategy (MO-CMA-29

ES) [10]. Nevertheless, there are two downsides to indicator-based MOEAs in handling MOPs[62]. One is30

that the computational cost of HV grows exponentially with an increase in the number of objectives [36].31

The other is too much selection pressure, which produces inferior performance in terms of distribution on32

the PF [46] [11]. In such conditions, the HV prefers to choose the knee and border of the PF rather than the33

points having more diversity [4][68]. To relieve the computational cost of HV, researchers use the indicator34

values of estimated HV to improve efficiency. For example, the hypervolume estimation (HypE) algorithm is35

widely applied in high-dimensional optimization problems by using a Monte Carlo simulation [42]. Recently,36

methods using several other performance indicators as a substitute have achieved similar results to those37

using the HV in the evolutionary process. For example, R2 and additive approximation [57][5].38

Decomposition-based approaches divide complex MOPs into a set of single-objective sub-problems through39

aggregation functions, and then solve them simultaneously in a collaborative manner. The evolution direc-40
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tion of a sub-problem is guided by specifying a set of well-distributed reference points that maintain the41

population’ diversity [59][6][66]. Decomposition-based approaches can be directly applied to the selection42

mechanism of MOEAs by a single scalar value rather than pareto dominance. Generally, weight vectors and43

the aggregation function are critical to decomposition-based approaches [40][67][38]. Weight vectors affect44

the distribution of the solutions in the objective space, and guide the evolutionary direction. The aggrega-45

tion function provides the mechanism to update individuals in the selection strategy. Recently, two types46

of decomposition-based approaches were classified [64]. The first type divides MOPs into a set of single-47

objective problems (SOPs). For example, Multiple Single Objective Pareto Sampling(MSOPS) and MOEA48

based on decomposition (MOEA/D) [52],NSGA-III [33]. The second type of decomposition-based approach49

divides MOPs into a set of sub-MOPs. For example, a multiobjective evolutionary algorithm using dynamic50

weight design method (MOEA/D-M2M) [17]. Although decomposition approaches have become popular due51

to their efficiency [47], they encounter difficulty in handing an irregular PF [7].52

Although many decomposition approaches based on adaptation have been proposed to solve MOPs with53

irregular PFs, it is hard to maintain a balance between convergence and diversity. Motivated by the ideas,54

we propose a new adaptation reference-point-based optimization algorithm, (ARMA), for solving MOPs.55

Compared with existing reference-point-based methods, the main contributions of this paper are as follows:56

• A hyperplane learning strategy is proposed to adjust the relative position of reference points to deal57

with MOPs that have a concave or convex PF. The proposed strategy uses a parameter ϕ to control the58

hyperplane shape of the reference points according to the objective value of a whole population so that59

the distribution of solutions can be improved.60

• The new clustering method is designed to balance the niche-preservation operation in multiobjective61

optimization according to the reference points. We divide a population into a number of niches by value62

of the proportion and angle, and then select a better solution in the niche. In this method, convergence63

and diversity are primarily measured by proportion and angles.64

The remainder of this paper is organized as follows. Section II reviews related work. The details of the65

proposed ARMA are described in Section III. Section IV present results and an investigation of multiobjective66

problems. Further discussion of parameter ϕ behavior is given in Section V. Finally, conclusions are drawn in67

Section VI.68

2. RELATED WORK69

Reference point-based MOEAs have been proposed in which the quality of the population is measured by a70

set of reference points. Two phases (constructing a reference set and measuring the quality of the population)71

are the main methods used in reference-point-based approaches. In NSGA-III [33][29], the reference points,72
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Figure 1: Pareto-optimal solutions (red solid dots) specified by different reference points (grey solid dots).

(a) Pareto-optimal solutions specified by nine uniformly distributed reference points on a PF with the same

range.(b) Pareto-optimal solutions specified by nine uniformly distributed reference points with differently

scaled.(c) Pareto-optimal solutions specified by nine adapted reference points in the RVEA algorithm.

using Das and Dennis’s systematic approach [27], are predefined to ensure the population’s diversity. NSGA-73

III’s selection strategy uses the Pareto dominance relation and decomposition operator to balance convergence74

and diversity in the evolutionary process. In RVEA [54], a scalarization approach using angles and distances75

is adopted to measure solutions. In a strength pareto MOEA based on reference direction (SPEA/R) [58],76

a reference vector-based local fitness assignment scheme preserves the most promising individual in the77

subregion. Tian et al.[60] adapted the position of the reference point to preserve extreme solutions for better78

diversity. In indicator-based MOEA (AR-MOEA), an excellent individual from the archive is used to replace79

the poorly distributed reference point and serves as the reference point to guide the evolutionary search.80

Reference-point-based MOEAs maintain the distribution of the population through a clustering strategy81

using reference points as shown in Fig. 1(a). In general, the diversity of predefined reference points is crucial82

to the PF. Das and Dennis’s systematic approach, which places points on a f1+ f2+ · · ·+ fM = 1 hyperplane,83

is adopted in most MOEAs to generate the predefined reference points[9][56]. However, in Fig . 1(b), it is84

difficult to generate uniform reference points on differently scaled PF of MOPs, as is the case in the WFG test85

problems[55] and the scaled DTLZ problems [35] which have various features. Different scale optimization86

problems cause great difficulties for reference-point-based selection strategies.87

There are two methods to address this issue. One is that objective normalization dynamically is intro-88

duced as the search proceeds, as in NSGA-III, SPEA/R and θ-DEA. The other is to adapt the reference points89

according to the ranges of the objective values. In RVEA, reference point adaptation is used to deal with the90

badly-scaled PF in Fig. 1(c). These two methods have obtained better performance on the scale problem.91
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However, these methods do not achieve a relatively uniform distribution of solutions when coping with92

a non-planar PF, especially concave and convex PFs. From Fig. 1(c), it can be seen that the individual93

distributions of areas A and B perform differently. Compared with the A area, solutions in the B area are too94

sparse. Maintaining the diversity in the peak of the PF is becoming a new challenge for reference point-based95

MOEAs.96

3. PROPOSED ALGORITHM97

The basic framework of the proposed ARMA is described in Algorithm 1. At the beginning of ARMA, the98

population is initialized randomly and the reference points are constructed using Das and Denis’s system-99

atic approach and Two-layer methods. In each iteration, the parent population reproduces its offspring by100

crossover operation and mutation operation. Then, the parent and offspring are integrated into the double101

population. Next, in order to handle problems with disparately scaled objectives, the adjustment strategy102

dynamically adjusts the distribution of reference points according to the obtained solution on the approx-103

imated PF. Then the solution in the double population applies proportion [41] and angle to link up with104

one reference point. The double population is partitioned into N different subpopulations, where N is the105

number of the population. The proportion and angle are described in subsection B. After the clustering op-106

eration, the candidate solution with the smallest Fitness values is chosen in the environmental selection. In107

the following sections, the important procedures of the ARMA are described in detail.108

3.1. Adaptive Methods109

We are proposing new adaptation methods which comprise two steps to maintain the diversity of reference110

points. First, the reference points are adjusted for the scale problems and form the approximate shape of the111

PF by using the parameter ϕ. Further performance of parameter ϕ is described in Section V. Second, the112

relative position of the reference points must be reevaluated by its neighbor.113

In the early period, the maximum values of each objective function is obtained to deal with badly-scaled

PF in RVEA, but the worst individual in the population severely affects this implementation and fluctuates

strongly in the maximum values. Thus, we use small steps to readjust the reference point. The detailed

introduction of small step S and reference point adjustment are in equation (2).

S = argmin(Zmax
j − Zmax

j−1 ), 1 < j ≤ M, (2)

where Zmax
j denotes the maximum values of jth objective function; M is the number of objectives; and S

is the increment in the objective. Therefore, the maximum value of each objective function is readjusted as

follows:

Zmax′

j = Zmax
1 + S ∗ (j − 1), 1 < j ≤ M, (3)
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Algorithm 1 Framework of ARMA

Input: N (population size)

Output: The approximated Pareto-optimal front

1: Λ := Generate-Reference-Points().

2: P0 ← Initialize-Population().

3: t← 0.

4: while the termination criterion is not met do

5: Qt := Make-Offspring-Population(Pt).

6: Rt := Pt ∪Qt.

7: Λ := Adaptation-Reference-Point(Pt).

8: Compute the proportion and angle of the population and reference points, respectively.

9: for each solution i in Rt do

10: Associate Rt,i with reference point according to the proportion and angle.

11: end for

12: for each reference point jϵΛ do

13: Calculate Fitness values of solution in jth Niching.

14: Select the solution with smallest Fitness into Pt.

15: end for

16: end while

where modified Zmax′

j is the maximum value of jth objective function. After that, the relative position of the

reference point is adjusted by the vector Zt = (Zmax′

1 , Zmax′

2 , . . . , Zmax′

m ) for the first time in the following

manner:

Rt,i = R0,i ◦ Zt, 1 < i ≤ N, (4)

where Rt,i denotes the ith adapted reference point in the t generation ; R0,i denotes the ith reference point

generated in the initialization stage; N is the number of the reference points, and the ′◦′ operator denotes the

Hadamard product, which wisely multiplies two matrices of the same size. In order to make the reference

point satisfy the situation that the surface of the PF is curved, as shown in Fig. 2(a), the reference point

moves ϕ length of the distance between the reference point and the nearest individual in its niche along the

direction of the origin and the current reference point.

Rt,i = Rt,i(
||Rt,i||+ ϕD

||Rt,i||
), (5)

where D is the distance between the reference point Rt,i and the individual in Rt,i niche. The hyperplane114

that the modified reference points make up is pretty similar to the shape of the PF. However, the distribution115

of the reference points on the hyperplane is not as evenly even as before the modification process in Eq (5).116

The second modification process is therefore required to make the reference points distribute evenly on the117
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Figure 2: Adaptation reference points according to the solutions obtained. (a) nine reference points move to

PF. (b) adjusting the reference points according to their m neighbor. (c) Pareto-optimal solutions specified

by nine adapted reference points.

hyperplane. The detailed adjustment process of the reference points is as follows. First, for each reference118

point, the m neighbor is selected with maximum distance from the 2m neighbor, where the 2m nearest119

neighbor reference points along positive and negative directions of the coordinate axis are found. Then, the120

average values of all points’ Euclidean distances from the points to their m neighbors in m directions are121

calculated. If there are not any reference points in the positive direction for some reference points, take the122

boundary points for example, a value of average is assigned. Lastly, two reference points A and B with the123

largest distance in the mth objective are selected. In order to make their distance reach the average, A is124

adjusted to move B, and A and B are marked, where B must meet the following conditions:125

• condition 1: B has a value of 0 in the mth objective (boundary point).126

• condition 2: B is marked.127

• condition 3: if conditions 1 and 2 are not satisfied, B is randomly selected from A and B.128

This way, each reference point has the same approximate distance from its neighbors, thus having uniform129

distribution. The detailed procedure is introduced in Algorithm 2.130

It is worth emphasizing that the proposed adaptation method is different from other reference-point-131

based evolutionary algorithms, such as indicator-based MOEA (AR-MOEA). Compared with AR-MOEA, the132

proposed adaptation method adjusts reference points to form an approximated PF in this paper. In addition,133

the relative positions of the reference points are reevaluated by their neighbors. However, the goal of AR-134

MOEA is to preserve the extreme solutions for better diversity in the adjusting approach.135
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Algorithm 2 Reference Adaptive

Input: t (generation index), Pt (population Pt) Λ (unit reference point);

Output: adaptive reference point Λ’ for current generation;

1: Calculate the minimum S and maximal values Zmax
t by Eq.(1);

2: for i = 2 to N do

3: Zmax
i

′ =Zmax
1 + (i− 1) · S

4: end for

5: for i = 2 to N do

6: Ri
′ = Ri ◦ Zmax

i
′

7: end for

8: for i = 1 to N do

9: R′′
i = R′

i • (
||R′

i||+ ϕD

||R′
i||

)

10: end for

11: Find the average avg from all the points to their m neighbors.

12: Find the individual p which has the bigger Euclidean distance from its neighbor.

13: Queue s← p.

14: while s is not empty do

15: p := s dequeue.

16: Adjust p’s Euclidean distance from its neighbor according to the avg.

17: s← p’s neighbor.

18: end while
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3.2. Selection Strategy136

There are many ways to divide the entire population into N subpopulations according to the reference137

points. In NSGA-III, the perpendicular distance between each solution and reference point is presented.138

In RVEA, the angle between the solution and reference point is used to complete the clustering operation.139

Compared with the aforementioned approaches, the ARMA partitions the population into N subpopulations140

using the approximation of proportion and angles, and the selection strategy is implemented separately in141

each subpopulation. The proportion and angles method can effectively avoid the impact of non-normalization142

and form a mapping relationship between reference points and the individual to complete the partition in143

the objective space. Thus, this method does not focus on a solution that is closed to the reference point but144

emphasizes the center of the population. In the proposed ARMA, the environment environmental selection145

operation comprises two steps: calculating the proportion and angle, and selecting an elite individual inside146

the subpopulations.147

3.2.1. Calculating the proportion and angle148

The center of population, or reference sets, denoted as CP or CR, could be estimated by the objective149

value of each individual or reference point. The proportion of i-th reference point, denoted as PRi, can be150

calculated as

(a)

Di 

Dj 

:Center of reference points

:Adjusted reference points

ri 

r�  O

CR

A

B

C�  

C  

r!  

(b)

:Solutions

:Adjusted reference points

:Center of reference points

:Center of solutions

Figure 3: Example showing the calculation of the proportion and angle.

151

PRi =
Di

max(D1, D2, . . . , D2N )
, (6)

where i is the i-th reference point, and Di is the perpendicular distance from the reference point i-th to the152

center vector CR from the origin to center as shown in Fig. 3(a). The proportion of an individual Pi, denoted153
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as PS, can be calculated using the same methods.154

The angle between vector
−−−−−→
ri − CR and vector

−−−−−→
f − CP can distinguish the relationship whether they have

the same direction or not. f is an individual in the population. The
−−−−−→
ri − CR and the

−−−−−→
f − CP can be considered

as the same direction vector if they have the smallest angle. Given two vectors, a large cosine value means a

smaller angle. The cosine value can be calculated as

cosθi,j =

−−−−−→
fj − CP ·

−−−−−→
ri − CR

||fj − CP || · ||ri − CR||
, (7)

where θi,j is the angle between the
−−−−−→
ri − CR and the

−−−−−→
f − CP .155

3.2.2. Selecting an elite individual inside the niche156

Population Pt is divided into N niches according to the proportion value and angle. Individual f is157

allocated to a reference point r if the angle and difference of proportion |PSf − PRr| between individual f158

and reference point r is minimal. PSf and PRr is the proportion of f and r, respectively. In other words,159

individual f and reference point r, which have the smallest angle and proportion difference, are linked160

together.161

After partitioning the population, it becomes important to select individuals from the subpopulation.

Most current algorithms based on reference vectors use the distance or angle between the individual and the

reference vector to select candidate individuals. In this paper, we propose an approach as

Fitnessf,r = Distancef,r +Anglef,r + |PSf − PRr|, (8)

where Distance (Angle) is the Euclidean distance (angle) between the individual and reference point in the162

niche, respectively. PSf and PRr are the proportion of individual f and reference point r.163

The Fitness function is designed to meet the convergence and diversity criteria. In the early stage of164

the Fitness function, providing strong convergence pressure makes the population quickly converge to the165

PF during the evolutionary process. Distancef,r plays a decisive role in the convergence so that the whole166

population can converge to the PF quickly. At a later stage, the mechanism of Anglef,r + |PSf − PRr|167

becomes more crucial than the convergence and provides a uniformly distributed solution set for decision168

makers. This means that the diversity criterion strongly affects the value of Fitness and plays a decisive role.169

In addition, although the solution sets are not evenly distributed in the early stage, the population is divided170

into N niches in the early evolutionary process, which roughly guaranteed the distribution. The balance of171

convergence and diversity can be maintained by selecting the elite individuals based on the smaller Fitness172

value in each niche.173

3.3. Computational complexity of the ARMA174

In order to analyze the computational complexity of the ARMA, we only consider the main steps and175

processes in one generation in Algorithm 1. The computational complexity of ARMA is composed of two176
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Algorithm 3 Selection Strategy

Input: Pt (population), Λ (unit reference point);

Output: Population Pt+1 for next generation;

1: /*The perpendicular specific value of the Population and reference point*/

2: Calculate the proportion value PR and PS; refer to (5).

3: /*Population Partition*/

4: for i=1 to |Pt| do

5: for j=1 to |Λ| do

6: Calculate the angle cosθi,j between
−−−−−−→
Pt,i − Cp and

−−−−−→
Rj − Cr by Eq.(6)

7: end for

8: end for

9: for i = 1 to |Pt| do

10: Individual link to the reference point according the proportion and angle;

11: end for

12: /*Elitism Selection*/

13: for j = 1 to N do

14: Selecting the elite solution with smallest Fitness from niche by Eq.(7).

15: end for

parts: reference-point adaptation and environmental selection.177

In Algorithm 2, the computational complexity of the reference points’ adaptation is O(MN2) when all the178

reference points need to be adjusted; N is the number of solutions, and M is the number of the problem’s179

objectives. In addition, environmental selection consists of partitioning the population and the elite selection.180

In population partition, the proportion and angle calculations take O(2MN) and O(MN2) in the worst case,181

respectively. Finally, the calculation of Fitness and elite selection just spends O(2N) in a niche in the worst182

scenario.183

Therefore, the worst case average computational complexity of ARMA within one generation is O(MN2),184

which is as efficient as RVEA and NSGA-III.185

4. Comparative Studies186

4.1. Performance Metrics187

In order to test the performance of the algorithm in the experiment, we used the well-known indicators188

IGD [21] and HV [13]. The details of IGD and HV are introduced next.189
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4.1.1. Inverted Generational Distance190

Inverted generational distance (IGD) can test the population obtained by the MOEA convergence infor-

mation and distribution information simultaneously. Let A be a set of solutions uniformly sampled from the

true PF, and P∗ be the approximated solutions in the objective space. The IGD calculated as follows:

IGD(A,P ∗) =
1

|P ∗|

√√√√|p∗|∑
j=1

d̃2i , (9)

where di(d̃i) is the Euclidean distance between the i-th member in set A and its nearest member in set P∗.191

4.1.2. Hypervolume192

The HV metric is used to measure the volume of the objective space. In general, HV can measure both the

convergence and diversity of a solution set in the last generation. Let P ∗ be a set of approximated solutions

in the objective space, and r = (r1, r2, . . . , rm)T be a reference point which is dominated by all individuals in

set P ∗. The HV is calculated as follows:

HV (P ∗, r) = volume

( ∪
f∈P∗

f [f1, r1]× . . . [fm, rm]

)
, (10)

In addition, we calculated HV exactly using the recently proposed WFG algorithm [42] for problems with no193

more than 8 objectives. The Monte Carlo simulation proposed in [32] was adopted to approximate the HV194

for problems having 12 objectives, and 10,000,000 sampling points were used to ensure accuracy.195

4.2. Experimental Settings196

4.2.1. Reproduction Parameters197

For the comparison in the experiment, all simulated binary crossover and polynomial variations in the198

algorithms’ settings were the same. The crossover probability and its distribution index were pc=1.0 and199

ηc = 20. Similarly, the polynomial mutation probability and distribution were set to pm = 1/n and ηm=20,200

respectively.201

4.2.2. Population Size202

The population size in 2-, 3-, 5-, 8- and 12-objectives was set to 100, 105, 126, 120, 110, respectively.203

4.2.3. Termination Condition204

The termination condition is set according to the maximum generation. The maximum number of gen-205

erations was set to 500 for ZDT suites problem, and for the DTLZ and WFG suites problems, the maximum206

generation was 1000. In addition, each algorithm ran independently 30 times for each problem.207

12



4.3. Performance on Multiobjective Optimization problems208

4.3.1. Test Problems and Other Algorithms in Comparison209

In order to study the performance of the ARMA algorithm on multiobjective problems, the test problems210

ZDT1, ZDT3 and ZDT6 were selected from the ZDT suites [15]. The ZDT multiobjective problems contain211

two objectives and all scaled decision variables. They were used to test the ability of MOEAs on the two212

objectives. ZDT1 has a convex PF with different partial constraints. ZDT3 is a non-continuous, convex PF213

test problem and poses a great challenge to the MOEAs.214

The ARMA algorithm is a reference-point-based decomposition algorithm instead of being reference-215

vector-based, so we chose MOEA/DD [37] and MOEA/D as contrasting algorithms for the multiobjective216

problems. MOEA/D is representative of the decomposition algorithm, and it has advantages in multiobjec-217

tive algorithms. MOEA/DD exploits the merits of both dominance- and decomposition-based approaches to218

balance the convergence and diversity of the evolutionary process.219

Table 1: MEAN AND STANDARD DEVIATION IGD AND HV VALUES ON ZDT PROBLEMS

Prob.
IGD HV

ARMA MOEA/D-PBI MOEA/DD ARMA MOEA/D-PBI MOEA/DD

ZDT1 3.6444E-3(0.000022) 4.3361E-3(0.009302)‡ 3.6608E-3(0.000586)‡ 3.6616E+0(0.000253) 3.6540E+0(0.043238)‡ 3.6579E+0(0.010103)‡

ZDT2 3.6558E-3(0.000004) 4.4443E-3(0.027939)‡ 3.6653E-3(0.080872)‡ 3.3291E+0(0.060728) 3.3248E+0(0.17208)‡ 3.3286E+0(0.063756)‡

ZDT3 1.4661E-1(0.000126) 1.9661E-2(0.011933) 6.8035E-2(0.01182) 3.7964E+0(0.000654) 4.6792E+0(0.057257) 4.6560E+0(0.069763)

ZDT4 3.8800E-3(0.000194) 4.5407E-3(0.001969)‡ 3.9164E-3(0.007304)‡ 3.6609E+0(0.001205) 3.6482E+0(0.006511)‡ 3.6552E+0(0.312785)‡

ZDT6 4.2466E-2(0.000014) 4.5755E-2(0.001211)‡ 4.2525E-2(0.035154)‡ 3.0400E+0(0.159858) 3.0327E+0(0.006087)‡ 3.0408E+0(0.00293)

‡ and † indicate ARMA performs significantly better than and equivalently to the corresponding algorithm, respectively.

4.3.2. Results on Multiobjective Optimization Problems220

The mean and standard deviation values of IGD and HV of the current population were used to evaluate221

the ARMA, MOEA/DD, and MOEA/D-PBI, where the best value for each problem is marked in grey back-222

ground. In addition, in order to accurately analyze the statistical results, the Wilcoxon rank-sum test was223

carried out to indicate the significance between different results at the 0.05 significance level in multiple224

comparisons [18].225

In the ZDT test suite, ZDT3 is the only disconnected problem. Table I shows that the ARMA performs, in226

terms of the number of the function evaluations, significantly better than MOEA/DD and MOEA/D-PBI on227

most of the test problems. Compared with MOEA/DD, the ARMA is better according to HV value with the228

exception of the ZDT3 and ZDT6 problems. In addition, the ARMA competes well with MOEA/D-PBI and229

MOEA/DD on problem ZDT3. It is due to the distribution of reference vectors in the ARMA that increases the230

probability of selecting solutions in sparse regions.231

In Fig. 4, approximated solutions over 30 independent runs are given with an intuitive understanding of232

the performance of the algorithm. All three algorithms could approximate the PF for three problems, but they233
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Figure 4: Approximated solutions for ZDT test problems, Left column:MOEA/D, middle column:MOEA/DD;

and right column:ARMA

performed differently in terms of convergence and diversity. First, for convergence analysis, the ARMA could234

approximate all the PF for the ZDT problems, which is significantly better than MOEA/DD and MOEA/D-235

PBI. MOEA/DD could approximate the PF at ZDT1 and ZDT3, but the MOEA/DD produces many dominant236

resistance solutions on the ZDT6 problem. MOEA/D-PBI had some non-convergence solutions although it237
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Figure 5: Evolution behavior comparison between ARMA and MOEA/DD for three stages on ZDT4 and ZDT6.

Left: 50th generation; middle: 200th generation; and right: 300th generation

could approximate to the PF. Secondly, for the diversity analysis, it can be clearly seen from Fig. 4 that the238

ARMA was better than MOEA/D-PBI and MOEA/DD on the test problems with sharp shapes. This is mainly239

due to the adaptation strategy of the ARMA on the PF.240

4.3.3. Comparison of Evolution Behavior With MOEA/DD241

Previous experiments have shown that the performance of the ARMA is more competitive among three242

algorithms, but the differences are not easy to observe even though they have the same reference-vector243

(point)-based framework. In order to verify whether there are differences in the evolutionary process, we244

represented the 50-generation, 200-generation, and 300-generation approximate PF, which were selected by245

the ARMA and MOEA/DD in the ZDT4 and ZDT6 test problems in Fig. 5. As can be seen from the figure, the246

convergence and the distribution of the ARMA were significantly better than MOEA/DD in the evolutionary247

process. This shows that the proportions and distances used in the PPM function of the ARMA to select elite248

individuals has obvious advantages.249

The experiment on the ZDT test suite shows that the ARMA performs significantly better than MOEA/DD250

and MOEA/D-PBI on most of the test problems. The ARMA exhibits strong competitiveness in multiobjective251

problems, especially convex functions.252
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4.4. Performance on Many-objective Optimization problems253

In order to illustrate the performance of the ARMA on many-objective problems, a comparison of the254

ARMA with five state-of-the-art algorithms is given.255

4.4.1. Test Problems256

As a basis for the comparisons, the experimental problems are the two well-known many-objective suites,257

Deb-Thiele-Laumanns-Zitzler (DTLZ) [35] and Walking Fish Group (WFG) [55]. These test problems have258

various features, such as having a linear, multi-modal, concave, discontinuous, or degenerate PF [46]. In259

Table II, we give a detailed classification of the features of the many-objective test problems. In addition, we260

use the convex function CDTLZ2 [11], which is a modification of the DTLZ2 problem in the experiment. For261

DTLZ1-6 and CDTLZ2 problems, the number of decision variables was set to n=m+k-1. In particular, DTLZ1262

was set to k=5, for DTLZ2-6 and CDTLZ2, to k=10. In addition, the number of objectives was 2,3,5,8,10263

and 12.

Table 2: FEATURES OF THE TEST PROBLEMS

Problem Features

DTLZ1 Linear, Multi-modal

DTLZ2 Concave

DTLZ3 Concave, Multi-modal

DTLZ4 Concave, Biased

DTLZ5 Concave, Degenerate

DTLZ6 Concave, Degenerate, Biased

CDTLZ2 Nonconcave

WFG1 Mixed, Biased

WFG2 Convex, Discontinuous, Nonseparable

WFG3 Linear, Degenerate, Nonseparable

WFG4 Concave, Multi-modal

WFG5 Concave, Deceptive

WFG6 Concave, Nonseparable

WFG7 Concave, Biased

WFG8 Concave, Noseparable, Biased

WFG9 Concave, Noseparable, Deceptive, Biased

264
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4.4.2. Other Algorithms in Comparison265

In the comparison experiment of the ARMA, we chose the latest, promising MOEAs as a basis comparison.266

Therefore, five algorithms, RVEA [54], SPEA2+SDE [47], NSGA-III [33], MOEA/D [52], and HypE [32],267

represent different types of heuristics, respectively. The five state-of-the-art algorithms were considered to be268

the peer algorithms, and a brief description of each algorithm is given next.269

• RVEA [54]: The angle-penalized distance (APD) function is formed by the angle and the distance to270

balance the population convergence and diversity in high-dimensional space. In addition, reference271

vectors were dynamically adjusted by using the maximum value of the population in each objective, so272

it could cope with the scale of the multiobjective problem.273

• SPEA2+SDE [47]: SDE is a well known dominance-based algorithm. It uses a density-based estima-274

tion method that considers both the convergence and distribution information of individuals to provide275

strong selection pressure in high-dimensional space. SPEA2+SDE also have good performance of con-276

vergence and distribution under the conditions when the MOP’s PF is irregular.277

• NSGA-III [33]: NSGA-III is an improved version of NSGA-II. NSGA-III can not only solve non-dominant278

disadvantage in high-dimensional space, but also greatly improves the distribution of the population279

in the algorithm. The NSGA-III uses a reference vector to generate niches so as to associate and select280

elite individuals. This is the main reason for comparison to the ARMA test.281

• MOEA/D [52]: The MOEA/D algorithm is the representation of decomposition-based algorithms and282

has greater competitiveness in MOEAs. The penalty-based boundary intersection (PBI) is the most283

promising aggregate function because it can provide a balance between convergence and the distribu-284

tion maintenance mechanism during the process of environmental selection.285

• HypE [32]: HypE is a new hypervolume-based evolutionary algorithm for many-objective optimization,286

which uses HV indicators as criteria to choose elite individuals during environmental selection. In287

HypE, the non-dominated solutions are compared according to their hypervolume-based fitness values.288

4.4.3. Experimental Results and Analysis289

The HV results (mean and standard) are given in Table III for the six algorithms on all six MOPs categories,290

convex, concave, linear, discontinuous, degenerate, and mixed, respectively. The better mean is highlighted291

in grey background on each test instance. A detailed analysis is shown for each category for a number of test292

problems.293

• Convex Pareto Front294

We chose CDTLZ2 as a test MOP for the convex. As can be seen in Table III, the ARMA algorithm shows295

a clear superiority over the other algorithms on these problems.296
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Table 3: MEAN AND STANDARD DEVIATION HV VALUES OBTAINED BY SIX ALGORITHMS FOR DTLZ and

WFG PROBLEMS ON 2, 3, 5, 8 AND 12 OBJECTIVES.

Property Problem M HypE SPEA2+SDE NSGA-III MOEA/D-PBI RVEA ARMA

Convex CDTLZ2

2 8.6979E-1(2.85e-5)‡ 8.7028E-1(8.11e-4)‡ 8.7156E-1(2.91e-5)† 8.7055E-1(3.12e-5)‡ 8.6872E-1(1.00e-3)‡ 8.7171E-1(2.91e-5)

3 1.1387E+0(2.71e-3)‡ 1.2672E+0(3.74e-3) ‡ 1.2755E+0(2.07e-4)‡ 1.2728E+0(1.65e-3)‡ 1.2763E+0(4.79e-4)‡ 1.2771E+0(3.89e-4)

5 1.5900E+0(9.72e-3)‡ 1.5917E+0(3.52e-3)‡ 1.6087E+0(5.54e-5)‡ 1.5842E+0(2.47e-3)‡ 1.5947E+0(1.66e-3)‡ 1.6099E+0(6.28e-4)

8 2.1025E+0(5.73e-3)‡ 2.1309E+0(4.41e-3)‡ 2.1379E+0(1.20e-2)‡ 2.0286E+0(1.47e-3)‡ 2.1081E+0(7.88e-3)‡ 2.1401E+0(3.80e-2)

12 1.8256E-2(1.87e-1) 3.1266E+0(2.96e-2)‡ 3.1329E+0(6.67e-3)‡ 2.9972E+0(5.46e-2)‡ 3.1067E+0(6.44e-2)‡ 3.1403E+0(3.52e-2)

Concave

WFG4

2 8.4026E+0(6.52e-4) 8.6631E+0(4.22e-4)‡ 8.6715E+0(1.83e-4) 8.4511E+0(5.73e-4) 8.6647E+0(2.11e-4) 8.6796E+0(3.55e-4)

3 7.6062E+1(3.82e-3)‡ 7.5720E+1(7.36e-3)‡ 7.6144E+1(3.32e-3)‡ 7.1375E+1(6.01e-3)‡ 7.6146E+1(2.03e-3) 7.6105E+1(3.44e-3)

5 8.4309E+3(4.75e-3)‡ 8.4651E+3(5.84e-2)‡ 8.5701E+3(2.35e-3)‡ 8.2084E+3(1.37e-2)‡ 8.5794E+3(5.89e-3)‡ 8.6547E+3(4.74e-3)

8 2.4934E+7(7.43e-2)‡ 2.7251E+7(5.76e-2) 2.6194E+7(4.77e-2) 2.2012E+7(3.49e-2)‡ 2.7324E+7(6.47e-2) 2.5506E+7(5.43e-2)

12 5.2557E+12(6.37e-1)‡ 6.2125E+12(4.45e-1)‡ 6.6144E+12(5.28e-2)‡ 5.0625E+12(5.66e-1)‡ 7.3229E+12(7.99e-2)‡ 7.3877E+12(6.44e-2)

WFG5

2 7.9754E+0(7.13e-4)‡ 8.1879E+0(5.82e-3)‡ 8.2186E+0(2.84e-4)‡ 8.0585E+0(1.56e-4)‡ 8.2391E+0(2.67e-4)‡ 8.2843E+0(1.67e-4)

3 7.3216E+1(5.61e-2) 7.2675E+1(4.76e-3)‡ 7.2540E+1(5.94e-3)‡ 7.0139E+1(1.84e-3)‡ 7.2882E+1(2.18e-3)† 7.2964E+1(3.29e-3)

5 8.2287E+3(5.91e-3) 8.1732E+3(4.25e-2)‡ 8.3215E+3(4.15e-3) 7.9860E+3(3.47e-2)‡ 8.3241E+3(3.12e-3) 8.3323E+3(4.01e-3)

8 2.8561E+7(9.32e-2)‡ 2.6683E+7(8.93e-2)‡ 2.5793E+7(4.86e-2)‡ 2.2868E+7(6.51e-2)‡ 2.8843E+7(5.33e-2) 2.8806E+7(6.97e-2)

12 5.3169E+12(5.53e-1)‡ 6.3357E+12(7.43e-2)‡ 4.7239E+12(4.42e-3)‡ 4.8888E+12(8.59e-2)‡ 6.5335E+12(4.34e-2)‡ 6.6019E+12(3.31e-2)

WFG6

2 7.9447E+0(7.52e-3)‡ 8.3750E+0(3.82e-2)‡ 8.3597E+0(6.75e-3)‡ 8.0637E+0(4.76e-2)‡ 8.3596E+0(8.11e-3)‡ 8.3598E+0(7.44e-3)

3 7.3367E+1(2.38e-2)‡ 7.3359E+1(1.44e-2)‡ 7.5192E+1(4.01e-3)‡ 6.8629E+1(5.62e-2)‡ 7.5317E+1(7.76e-3)‡ 7.5458E+1(9.33e-3)

5 8.4070E+3(4.24e-2)‡ 8.2980E+3(6.68e-2)‡ 8.4971E+3(1.41e-2)‡ 7.1843E+3(7.21e-2)‡ 8.5044E+3(1.02e-2) 8.5007E+3(1.43e-2)

8 2.7801E+7(6.71e-2) 2.8595E+7(8.46e-2) 2.6136E+7(4.43e-3)‡ 2.4799E+7(3.38e-2)‡ 2.8657E+7(5.47e-3) 2.7722E+7(1.99e-3)

12 5.3415E+12(7.44e-1)‡ 6.2533E+12(5.88e-1)‡ 4.3634E+12(4.13e-3)‡ 2.5938E+12(9.67e-2)‡ 6.6501E+12(4.74e-2)‡ 6.7462E+12(5.88e-2)

WFG7

2 8.2464E+0(6.71e-3)‡ 8.6729E+0(5.73e-3)‡ 8.6777E+0(3.23e-4) 8.4654E+0(8.23-3)‡ 8.6722E+0(3.01e-4)† 8.6731E+0(4.89e-4)

3 7.6377E+1(7.23e-3)‡ 7.6269E+1(4.56e-3)‡ 7.6714E+1(5.23e-4)‡ 6.9059E+1(6.32e-3)‡ 7.6798E+1(4.27e-4) 7.6927E+1(5.01e-4)

5 8.7337E+3(3.65e-3)‡ 8.6809E+3(7.69e-2)‡ 8.9143E+3(2.76e-3)‡ 7.9909E+3(3.22e-2)‡ 8.9215E+3(4.53e-3)† 8.9467E+3(5.23e-3)

8 3.0591E+7(8.89e-2) 2.8228E+7(4.92e-2)‡ 2.6643E+7(1.33e-2)‡ 2.3993E+7(5.52e-2)‡ 3.0625E+7(4.55e-2) 3.0141E+7(2.21e-2)

12 6.1199E+12(4.99e-2)‡ 6.3357E+12(1.84e-1)‡ 5.9366E+12(3.32e-2)‡ 5.4372E+12(7.79e-2)‡ 6.8461E+12(6.77e-2) 6.7749E+12(3.44e-2)

WFG8

2 7.2368E+0(7.43e-3)‡ 8.0437E+0(8.68e-3)‡ 8.0633E+0(5.78e-3) 7.8045E+0(9.77e-3)‡ 8.0086E+0(4.89e-3)‡ 8.0608E+0(5.43e-3)

3 6.8027E+1(3.72e-2)‡ 6.9412E+1(2.44e-2)‡ 6.9518E+1(6.88e-3)‡ 6.6673E+1(1.35e-2)‡ 6.9004E+1(5.44e-3)‡ 7.0633E+1(7.23e-3)

5 7.5261E+3(6.93e-2) 7.4783E+3(4.74e-2)‡ 7.4522E+3(2.56e-2)‡ 7.1321E+3(4.59e-2)‡ 7.4874E+3(2.81e-2)‡ 7.4911E+3(2.63e-2)

8 2.5793E+7(7.45e-2)‡ 2.5042E+7(8.89e-2)‡ 2.4973E+7(5.66e-2)‡ 2.3975E+7(6.84e-2)‡ 2.6183E+7(5.33e-2)‡ 2.7165E+7(3.64e-2)

12 5.1415E+12(5.16e-1)‡ 5.9716E+12(4.29e-1)‡ 6.2183E+12(5.54e-2)‡ 6.1192E+12(6.81e-2)‡ 6.2240E+12(6.44e-2)‡ 6.2677E+12(7.79e-2)

WFG9

2 8.1923E+0(5.49e-2)‡ 7.9961E+0(7.23e-2)‡ 8.4371E+0(3.44e-2)† 7.7245E+0(5.48e-2)‡ 8.3929E+0(3.95e-2)‡ 8.4389E+0(2.76e-2)

3 6.2927E+1(7.28e-2)‡ 6.7347E+1(5.99e-2)‡ 6.7641E+1(2.73e-2)† 6.3318E+1(7.56e-2)‡ 6.7699E+1(3.33e-2)† 6.7771E+1(3.89e-2)

5 7.9409E+3(8.01e-2)‡ 7.6619E+3(6.33e-2)‡ 7.9469E+3(4.81e-2) 7.0413E+3(6.33e-2)‡ 7.9474E+3(1.12e-2) 7.9435E+3(6.44e-2)

8 2.6124E+7(2.33e-1) 2.3917E+7(1.84e-1) 2.0264E+7(6.91e-2)‡ 1.8264E+7(7.53e-3)‡ 2.2910E+7(4.65e-2)† 2.3391E+7(7.74e-3)

12 4.8572E+12(1.95e-1)‡ 4.0796E+12(8.93e-2)‡ 3.0021E+12(5.53e-2)‡ 3.2073E+12(4.98e-2)‡ 4.3613E+12(6.01e-2)‡ 4.6287E+12(5.88e-2)

DTLZ2

2 3.1988E+0(4.51e-4)‡ 3.2001E+0(5.44e-4)‡ 3.2132E+0(2.87e-5) 3.2116E+0(4.22e-5) 3.2113E+0(3.12e-5)† 3.2115E+0(3.01e-5)

3 7.4115E+0(7.22e-4)‡ 7.4159E+0(5.91e-4)‡ 7.4166E+0(4.22e-5)† 7.4327E+0(5.72e-4) 7.4183E+0(4.11e-5)† 7.4182E+0(3.56e-5)

5 3.1634E+1(7.44e-4)‡ 3.1654E+1(5.77e-3)‡ 3.1666E+1(2.03e-4)‡ 3.1661E+1(6.49e-4)‡ 3.1668E+1(1.66e-4)† 3.1669E+1(1.45e-4)

8 2.5533E+2(3.89e-2)‡ 2.5581E+2(5.82e-2)‡ 2.5571E+2(3.29e-3)‡ 2.5582E+2(4.88e-2)‡ 2.5571E+2(3.25e-3)‡ 2.5585E+2(4.21e-3)

12 4.0947E+3(8.24e-2)‡ 4.0955E+3(7.51e-2)‡ 4.0961E+3(2.37e-3)† 4.0965E+3(3.52e-2) 4.0962E+3(6.01e-3)† 4.0964E+3(5.53e-3)

DTLZ3

2 3.1732E+0(4.79e-3)‡ 3.2044E+0(3.48e-3)‡ 3.2101E+0(1.43e-3)† 2.8383E+0(2.02e-3)‡ 3.1993E+0(1.65e-3)‡ 3.2105E+0(1.11e-3)

3 7.2869E+0(6.44e-3)‡ 7.4081E+0(8.92e-3)‡ 7.4178E+0(2.71e-3)† 7.2881E+0(4.22e-3)‡ 7.3938E+0(2.34e-3)‡ 7.4183E+0(2.46e-3)

5 3.1641E+1(4.34e-2)‡ 3.1623E+1(1.45e-2)‡ 3.1663E+1(4.23e-3)‡ 3.1669E+1(7.51e-2) 2.9267E+1(2.71e-3)‡ 3.1668E+1(2.55e-3)

8 2.5563E+2(6.84e-2)‡ 2.5571E+2(8.94e-2)‡ 2.5569E+2(3.32e-3)‡ 2.5581E+2(2.01e-3)† 2.5579E+2(1.19e-3)† 2.5582E+2(1.27e-3)

12 4.0391E+3(5.16e-2)‡ 4.0930E+3(3.74e-2)‡ 4.0801E+3(1.78e-3)‡ 4.0961E+3(4.25e-3) 4.0939E+3(1.79e-2)† 4.0959E+3(4.09e-3)

DTLZ4

2 3.2092E+0(5.33e-4)‡ 3.2098E+0(4.22e-4)‡ 3.2097E+0(3.67e-5)‡ 3.2023E+0(1.89e-3)‡ 3.2101E+0(4.08e-5)† 3.2105E+0(3.07e-5)

3 7.3991E+0(6.93e-3) 7.2167E+0(4.11e-3)‡ 7.4173E+0(5.33e-5) 7.4169E+0(2.03e-4)‡ 7.4180E+0(4.61e-5) 7.4183E+0(3.73e-5)

5 3.1583E+1(5.46e-2)‡ 3.1546E+1(7.12e-2)‡ 3.1681E+1(3.56e-3) 3.1533E+1(2.79e-2)‡ 3.1659E+1(2.22e-3)† 3.1669E+1(4.58e-3)

8 2.5553E+2(4.26e-2)‡ 2.5567E+2(2.21e-2)‡ 2.5581E+2(1.33e-3)‡ 2.5488E+2(2.29e-3)‡ 2.5580E+2(7.03e-3)‡ 2.5582E+2(8.41e-3)

12 4.0947E+3(8.71e-2)‡ 4.0959E+3(3.97e-2) 4.0954E+3(2.18e-3)† 4.0947E+3(5.79e-3)‡ 4.0951E+3(3.57e-3)† 4.0955E+3(6.35e-3)

Linear

DTLZ1

2 8.7241E-1(4.72e-4)‡ 8.7013E-1(5.62e-4)‡ 8.7374E-1(3.09e-5)† 8.7074E-1(4.32e-4)‡ 8.7373E-1(2.51e-5)† 8.7375E-1(2.12e-5)

3 9.7175E-1(5.66e-4)‡ 9.6401E-1(4.28e-4)‡ 9.7411E-1(1.12e-5) 9.7586E-1(6.44e-5) 9.7403E-1(2.55e-5)‡ 9.7411E-1(2.14e-5)

5 9.6746E-1(5.29e-4)‡ 9.8719E-1(4.52e-4)‡ 9.9873E-1(1.33e-5) 9.9865E-1(1.01e-6)† 9.9872E-1(1.71e-5) 9.9871E-1(2.01e-5)

8 9.9905E-1(6.85e-2)‡ 9.9911E-1(4.99e-2)‡ 9.9998E-1(1.89e-3) 9.9997E-1(2.1e-3) 9.9996E-1(2.71e-3)† 9.9996E-1(3.33e-3)

12 9.9419E-1(7.72e-2)‡ 9.9897E-1(2.54e-2)‡ 9.9909E-1(3.84e-3)‡ 9.9998E-1(2.13e-3) 9.9998E-1(4.71e-3) 9.9997E-1(1.87e-3)

WFG3

2 1.0836E+1(6.34e-2)‡ 1.0884E+1(4.33e-3)‡ 1.0921E+1(3.42e-3) 1.0708E+1(2.21e-2)‡ 1.0911E+1(7.45e-3)† 1.0918E+1(5.65e-3)

3 7.1961E+1(4.55e-2)‡ 7.4602E+1(7.88e-2)‡ 7.4879E+1(3.97e-3)‡ 6.5095E+1(3.62e-2)‡ 7.4790E+1(7.22e-3)‡ 7.4885E+1(6.32e-3)

5 6.9142E+3(1.33e-1) 6.1983E+3(5.99e-2) 6.0695E+3(2.44e-2)‡ 6.3654E+3(3.04e-2) 6.0701E+3(3.45e-2)† 6.0716E+3(2.33e-2)

8 2.1621E+7(3.87e-2) 2.0272E+7(4.15e-3) 1.5741E+7(5.56e-3)‡ 1.2997E+7(4.07e-3)‡ 1.0911E+7(7.59e-3)‡ 1.8273E+7(5.51e-3)

12 4.3299E+12(3.12e-2)‡ 4.1295E+12(2.37e-2)‡ 1.4656E+12(3.46e-3)‡ 1.2756E+12(5.69e-3)‡ 3.2278E+12(1.97e-3)‡ 3.2971E+12(2.43e-3)

Mixed WFG1

2 4.4873E+0(5.79-2)‡ 8.2916E+0(4.55e-2)‡ 9.2551E+0(4.72e-2) 8.7537E+0(4.87e-2) 8.3899E+0(3.22e-2)† 8.6176E+0(2.04e-2)

3 5.3962E+1(5.18e-2)‡ 5.9573E+1(5.34e-2) 5.2725E+1(3.33e-2)‡ 5.0125E+1(7.12e-1)‡ 5.6246E+1(5.34e-2)† 5.6690E+1(4.55e-2)

5 4.6356E+3(8.97e-2)‡ 5.0241E+3(5.33e-2) 4.8596E+3(3.01e-2)‡ 4.7908E+3(3.41e-2)‡ 4.8606E+3(5.66e-2) 4.8602E+3(4.61e-2)

8 1.3631E+7(4.51e-2)‡ 1.5974E+7(5.44e-2) 1.4486E+7(1.45e-2) 1.6631E+7(3.22e-2) 1.2039E+7(4.46e-2)‡ 1.3866E+7(7.19e-2)

12 2.9263E+12(5.98e-2) 3.7601E+12(4.61e-2) 2.0639E+12(2.61e-3)‡ 2.2224E+12(1.18e-3)‡ 2.4204E+12(2.69e-2)‡ 2.7548E+12(3.22e-3)

Discontinuous WFG2

2 1.1098E+1(4.12e-2)‡ 1.1386E+1(8.33e-2) 1.0588E+1(6.11e-2)‡ 9.1223E+0(8.53e-2) 1.1265E+1(6.12e-2)† 1.1273E+1(5.56e-2)

3 8.4885E+1(9.88e-2) 8.1379E+1(8.01e-2)‡ 8.4563E+1(3.44e-2)‡ 7.8959E+1(4.88e-2)‡ 8.4503E+1(4.22e-2)‡ 8.4833E+1(3.41e-2)

5 9.3235E+3(7.29e-2) 9.3893E+3(3.34e-2) 8.4596E+3(5.66e-2) 8.2371E+3(6.54e-2)‡ 8.4217E+3(8.44e-2)‡ 8.4487E+3(7.23e-2)

8 3.4239E+7(2.43e-3) 2.9707E+7(5.22e-2)‡ 3.2817E+7(1.35e-3)‡ 3.0942E+7(4.35e-3)‡ 3.2198E+7(2.68e-3)‡ 3.3575E+7(2.72e-3)

12 6.2894E+12(2.49e-2) 7.0864E+12(4.29e-2) 5.8644E+12(7.78e-3) 5.3988E+12(1.73e-3)‡ 5.3139E+12(2.64e-3) 5.5124E+12(6.37e-3)

Degenerate

DTLZ5

2 3.1994E+0(6.81e-3)‡ 3.2091E+0(7.44e-3)‡ 3.2098E+0(3.13e-4)† 3.2026E+0(4.87e-3)‡ 3.2101E+0(2.77e-4)† 3.2105E+0(1.87e-4)

3 6.0791E+0(7.47e-2) 6.1018E+0(7.98e-2) 6.0123E+0(4.39e-2)‡ 6.0807E+0(9.18e-2) 5.9324E+0(4.39e-2)‡ 6.0456E+0(5.44e-2)

5 2.3450E+1(7.49e-2)‡ 2.3491E+1(8.63e-2) 2.2241E+1(3.69e-2)‡ 2.2289E+1(8.79e-1)‡ 2.2208E+1(6.16e-2)‡ 2.3477E+1(5.77e-2)

8 1.7772E+2(5.46e-2)‡ 1.8306E+2(4.37e-2) 1.6412E+2(1.18e-1)‡ 1.7773E+2(1.89e-1)‡ 1.7239E+2(3.37e-1)‡ 1.7991E+2(2.39e-1)

12 2.1232E+3(3.55e-1)‡ 2.8488E+3(5.52e-2) 2.3011E+3(5.92e-1)‡ 2.6951E+3(6.99e-1)‡ 2.4053E+3(4.44e-1)‡ 2.7516E+3(5.15e-1)

DTLZ6

2 3.1170E+0(6.84e-3)‡ 3.0564E+0(7.42e-3)‡ 3.2269E+0(3.13e-4) 3.2141E+0(3.72e-3)‡ 3.2263E+0(5.52e-4)† 3.2265E+0(4.73e-4)

3 5.2212E+0(8.74e-1)‡ 6.0001E+0(7.12e-2) 5.9272E+0(6.78e-2)† 5.1802E+0(8.93e-1)‡ 5.9612E+0(5.48e-2)† 5.9844E+0(9.73e-2)

5 1.1664E+1(7.01e-1)‡ 2.2403E+1(6.35e-2)† 2.2695E+1(3.85e-2) 2.2907E+1(8.41e-1) 2.2604E+1(6.47e-2) 2.2513E+1(3.94e-2)

8 1.4268E+2(2.81e-2)‡ 1.6631E+2(3.71e-2) 1.6032E+2(3.45e-3)‡ 1.7087E+2(3.78e-3) 1.4414E+2(4.51e-3)‡ 1.6618E+2(2.28e-2)

12 2.0358E+3(8.73e-2)‡ 2.2894E+3(4.21e-1)‡ 2.1246E+3(5.22e-2)‡ 2.6025E+3(4.33e-3) 2.3854E+3(5.79e-2)‡ 2.5749E+3(1.68e-2)

‡ and † indicate ARMA performs significantly better than and equivalently to the corresponding algorithm, respectively.

The 3-dimensional figure is given for the diversity of convex problem CDTLZ2. We can see that the297

ARMA algorithm achieved the best performance on the CDTLZ2 instances from Fig. 6. The ARMA had298

the best solution in the boundary of the PF. However, MOEA/D-PBI, SPEA2+SDE, NSGA-III, and RVEA299

had very poor performance in this situation, although their overall distribution was better than HypE.300

To describe the distribution of obtained solutions in the high-dimensional objective space, we used 12-301
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objective CDTLZ2 instance as an illustration. Fig. 7 plots the final solutions of six algorithms. It can302

be clearly seen that the ARMA found the best convergence of the PF, whereas HypE and MOEAD-PBI303

could only be partially solved.304

• Concave Pareto Front305

In this category, we chose nine test problems, WFG4-9, DTLZ2-4, to measure the performance of the306

algorithms. It can be seen in Table III in the 2-, 3-, 5-, 8- and 12-objectives experiments and Fig. 8307

that the ARMA almost won all the comparison algorithms according to the HV metric in 24 out of308

45 examples. However, NSGA-III was better than the ARMA on the 2 objectives of WFG7, but the309

difference was small. We analyzed this result and found that the distance between the reference point310

at the boundary and its neighbor is slightly larger than average.311

• Linear Pareto Front312
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Figure 6: Obtained solutions by HypE, SPEA2+SDE, NSGA-III, MOEA/D-PBI, RVEA and ARMA for the convex

Pareto-optimal problem CDTLZ2 on 3-objectives.

The WFG3 and DTLZ1 are linear problems. According to Table III, all compared algorithms maintained313

a good distribution and convergence on the DTLZ1 problem. Despite that, the ARMA had more advan-314

tages than RVEA, MOEA/D-PBI and NSGA-III on all objectives. However, the ARMA lost its advantage315

on WFG3 except on 3 targets. The other algorithms, NSGA-III, PBI and HypE, to a certain tried to a316

better HV metric for the 2-, and 5-objectives WFG3 problem.317

• Discontinuous Pareto Front318
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Figure 7: Obtained solutions by HypE, SPEA2+SDE, NSGA-III, MOEA/D-PBI, RVEA and ARMA for the convex

Pareto-optimal problem CDTLZ2 on 12-objectives.

The WFG2 is a non-continuous, convex PF test problems. As can be clearly observed, the HV values319

in the table obtained by the ARMA and RVEA were better overall than NSGA-III and MOEA/D-PBI,320

although they were not competitive with SPEA2+SDE. Indeed, HypE performed best in 5-objectives321

instances.322

• Degenerate Pareto Front323

The DTLZ5 and DTLZ6 are designed to measure the convergence ability of MOEA to a curved PF. In fact,324

the ARMA, like other pre-defined reference point algorithms, cannot fully satisfy degenerate problems.325

One major reason behind the failure can be attributed to the sharp PF of MOPs. Compared to the326

MOEA reference-based, nonreference-based MOEA, SPEA2+SDE is more suitable for this category in327

the experiment. As can be seen in Table III, SPEA2+SDE showed a clearer advantage than reference-328

based MOEA in 2-, 3- and 5-objective DTLZ5 instances. Although the MOEA/D-PBI performed better329

than SDE and HypE, SDE and HypE were the most competitive overall in DTLZ5 and DTLZ6 problems.330

• Mixed Pareto Front331

The WFG1 is a mixed, biased test problem, which poses a huge challenge to MOEA in maintaining332

diversity. According to the HV from the Table III, SDE performs better than other algorithms. Although333

the ARMA is only slightly superior to RVEA and HypE, it performed significantly better than NSGA-III334

and MOEA/D-PBI.335
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Figure 8: Obtained solutions by HypE, SPEA2+SDE, NSGA-III, MOEA/D-PBI, RVEA and ARMA for the con-

cave Pareto-optimal problem WFG4 on 12-objectives.

• Result Summary336

To summarize, the ARMA generally outperformed HypE, SPEA2+SDE, NSGA-III, MOEA/D-PBI, and337

RVEA in terms of convex and concave problems. The ARMA had a better HV value in 30 out of the 50338

test instances for the two categories. Unfortunately, the reference point-based ARMA, RVEA, MOEA/D339

and NSGA-III also failed to maintain their better performance in the discontinuous, degenerate and340

mixed categories.341

5. Discussion342

One important issue in the reference point adaptation process of the ARMA framework is the setting of343

parameter ϕ. The ϕ argument directly uses the Euclidean distance to control the convex (or concave) degree344

of the reference point hyperplane. A large ϕ will result in a large degree of convex PF(or concave PF).345

Therefore, it is critical for the ARMA to set a suitable ϕ value in the reference point adaptation process.346

In order to verify the influence of different values of ϕ in the ARMA, we conducted experiments to analyze347

its performance on different classifications of ϕ. To observe the pure effect of ϕ, other conditions in the348

algorithm were set the same. The ϕ is between 0-1, and we chose ϕ =0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,349

0.95 and 1. DTLZ2 was selected as the test problem for ϕ with varying number of objectives, and HV metric350

was normalized to 0-10 for display in Fig. 9.351
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Figure 9: Examination of the influence of ϕ on IGD and HV of ARMA for DTLZ2 problems with varying

number of objectives m.

Fig. 9 presents the performance of the ARMA with various parameter ϕ on DTLZ2 problems in terms of352

average IGD and average HV. As can be seen from Fig. 9, setting ϕ to 0.6-0.9 leads to the worst performance353

according to the IGD metric. The ARMA’s better performance was obtained with setting ϕ to 0.9-1, and354

ϕ=0.95 was the best parameter having the best overall performance among the experiments. According to355

this method, the IGD indicator will become better gradually with an increase of the ϕ value. This phenomenon356

indicates that there may be better performance when the reference points have similar PF characteristics. The357

performance of the ARMA on most of the problem instances is robust as ϕ > 0.9.358

6. CONCLUSION359

In this paper, an alternative has been proposed based on the decomposition-based strategy, termed ARMA,360

to deal with MOPs with various properties. In the ARMA, a reference point adjustment strategy is used361

to improve the balance between the convergence and diversity of the solutions during the evolutionary362

process. The adjustment strategy adjusts the relative position of the reference point based on its neighbor363

solutions at each generation. Additionally, a new Fitness function maintains the elite individual in the364

environmental selection by using proportion and angle. The empirical results demonstrate that the proposed365

ARMA outperforms five representative MOEAs on problems with six various complex characteristics. The366

results indicate the ARMA applied to the concave and convex problems is more effective than its competitor.367

Although the ARMA performed well in the test instances considered in this paper, it also needs to be368

examined on intermittent and degenerative problems. The reference-point-based algorithm is still in its369

infancy, and it has several problems that need to be solved. Therefore, these will be addressed in future370
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work.371
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