940 research outputs found

    An Integrated Test Plan for an Advanced Very Large Scale Integrated Circuit Design Group

    Get PDF
    VLSI testing poses a number of problems which includes the selection of test techniques, the determination of acceptable fault coverage levels, and test vector generation. Available device test techniques are examined and compared. Design rules should be employed to assure the design is testable. Logic simulation systems and available test utilities are compared. The various methods of test vector generation are also examined. The selection criteria for test techniques are identified. A table of proposed design rules is included. Testability measurement utilities can be used to statistically predict the test generation effort. Field reject rates and fault coverage are statistically related. Acceptable field reject rates can be achieved with less than full test vector fault coverage. The methods and techniques which are examined form the basis of the recommended integrated test plan. The methods of automatic test vector generation are relatively primitive but are improving

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important

    LSI/VLSI design for testability analysis and general approach

    Get PDF
    The incorporation of testability characteristics into large scale digital design is not only necessary for, but also pertinent to effective device testing and enhancement of device reliability. There are at least three major DFT techniques, namely, the self checking, the LSSD, and the partitioning techniques, each of which can be incorporated into a logic design to achieve a specific set of testability and reliability requirements. Detailed analysis of the design theory, implementation, fault coverage, hardware requirements, application limitations, etc., of each of these techniques are also presented

    Self-Test Mechanisms for Automotive Multi-Processor System-on-Chips

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Genetic algorithm as self-test path and circular self-test path design method

    Get PDF
    The paper presents the use of Genetic Algorithm to search for non-linear Autonomous Test Structures (ATS) in Built-In Testing approach. Such structures can include essentially STP and CSTP and their modifications. Non-linear structures are more difficult to analyze than the widely used structures such as independent Test Pattern Generator and the Test Response Compactor realized by Linear Feedback Shift Registers. To reduce time-consuming test simulation of sequential circuit, it was used an approach based on the stochastic model of pseudo-random testing. The use of stochastic model significantly affects the time effectiveness of the search for evolutionary autonomous structures. In test simulation procedure, the block of sequential circuit memory is not disconnected. This approach does not require a special selection of memory registers such as BILBOs. A series of studies to test circuits set ISCAS’89 are made. The results of the study are very promising

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    Sustainable Fault-handling Of Reconfigurable Logic Using Throughput-driven Assessment

    Get PDF
    A sustainable Evolvable Hardware (EH) system is developed for SRAM-based reconfigurable Field Programmable Gate Arrays (FPGAs) using outlier detection and group testing-based assessment principles. The fault diagnosis methods presented herein leverage throughput-driven, relative fitness assessment to maintain resource viability autonomously. Group testing-based techniques are developed for adaptive input-driven fault isolation in FPGAs, without the need for exhaustive testing or coding-based evaluation. The techniques maintain the device operational, and when possible generate validated outputs throughout the repair process. Adaptive fault isolation methods based on discrepancy-enabled pair-wise comparisons are developed. By observing the discrepancy characteristics of multiple Concurrent Error Detection (CED) configurations, a method for robust detection of faults is developed based on pairwise parallel evaluation using Discrepancy Mirror logic. The results from the analytical FPGA model are demonstrated via a self-healing, self-organizing evolvable hardware system. Reconfigurability of the SRAM-based FPGA is leveraged to identify logic resource faults which are successively excluded by group testing using alternate device configurations. This simplifies the system architect\u27s role to definition of functionality using a high-level Hardware Description Language (HDL) and system-level performance versus availability operating point. System availability, throughput, and mean time to isolate faults are monitored and maintained using an Observer-Controller model. Results are demonstrated using a Data Encryption Standard (DES) core that occupies approximately 305 FPGA slices on a Xilinx Virtex-II Pro FPGA. With a single simulated stuck-at-fault, the system identifies a completely validated replacement configuration within three to five positive tests. The approach demonstrates a readily-implemented yet robust organic hardware application framework featuring a high degree of autonomous self-control

    A Multiple Model Based Approach for Deep Space Power System Fault Diagnosis

    Get PDF
    Improving protection and health management capabilities onboard the electrical power system (EPS) for spacecraft is essential for ensuring safe and reliable conditions for deep space human exploration. Electrical protection and control technologies on the National Aeronautics and Space Administration's (NASA's) current human space platform relies heavily on ground support to monitor and diagnose power systems and failures. As communication bandwidth diminishes for deep space applications, a transformation in system monitoring and control becomes necessary to maintain high reliability of electric power service. This paper presents a novel approach for on-line power system security monitoring for autonomous deep space spacecraft

    What is the Path to Fast Fault Simulation?

    Get PDF
    Motivated by the recent advances in fast fault simulation techniques for large combinational circuits, a panel discussion has been organized for the 1988 International Test Conference. This paper is a collective account of the position statements offered by the panelists

    New techniques for functional testing of microprocessor based systems

    Get PDF
    Electronic devices may be affected by failures, for example due to physical defects. These defects may be introduced during the manufacturing process, as well as during the normal operating life of the device due to aging. How to detect all these defects is not a trivial task, especially in complex systems such as processor cores. Nevertheless, safety-critical applications do not tolerate failures, this is the reason why testing such devices is needed so to guarantee a correct behavior at any time. Moreover, testing is a key parameter for assessing the quality of a manufactured product. Consolidated testing techniques are based on special Design for Testability (DfT) features added in the original design to facilitate test effectiveness. Design, integration, and usage of the available DfT for testing purposes are fully supported by commercial EDA tools, hence approaches based on DfT are the standard solutions adopted by silicon vendors for testing their devices. Tests exploiting the available DfT such as scan-chains manipulate the internal state of the system, differently to the normal functional mode, passing through unreachable configurations. Alternative solutions that do not violate such functional mode are defined as functional tests. In microprocessor based systems, functional testing techniques include software-based self-test (SBST), i.e., a piece of software (referred to as test program) which is uploaded in the system available memory and executed, with the purpose of exciting a specific part of the system and observing the effects of possible defects affecting it. SBST has been widely-studies by the research community for years, but its adoption by the industry is quite recent. My research activities have been mainly focused on the industrial perspective of SBST. The problem of providing an effective development flow and guidelines for integrating SBST in the available operating systems have been tackled and results have been provided on microprocessor based systems for the automotive domain. Remarkably, new algorithms have been also introduced with respect to state-of-the-art approaches, which can be systematically implemented to enrich SBST suites of test programs for modern microprocessor based systems. The proposed development flow and algorithms are being currently employed in real electronic control units for automotive products. Moreover, a special hardware infrastructure purposely embedded in modern devices for interconnecting the numerous on-board instruments has been interest of my research as well. This solution is known as reconfigurable scan networks (RSNs) and its practical adoption is growing fast as new standards have been created. Test and diagnosis methodologies have been proposed targeting specific RSN features, aimed at checking whether the reconfigurability of such networks has not been corrupted by defects and, in this case, at identifying the defective elements of the network. The contribution of my work in this field has also been included in the first suite of public-domain benchmark networks
    • …
    corecore