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Summary

While the technology for enabling fully autonomous self-driving cars is still
ahead, today automobiles massively rely on electronics for a variety of function-
alities. As these functionalities require more and more computational power, the
embedded systems introduced in the automobiles had to evolve accordingly. As of
today, Multi-processor System-on-Chips (MPSoCs) are commonly found for these
applications. Such SoCs embeds two or more processor cores within the same sil-
icon die, in conjunction with different peripherals and levels of memories (both
static and non-volatile). It is known that due to the harsh environment in which
they are deployed, physical malfunctions due hardware faults can manifest. Peri-
odic in-field self-testing represents a common countermeasure against these threats.
These mechanisms can be implemented both in hardware and software but, most
of them were originally devised for simpler single-processor SoCs. While in recent
years there has been a considerable effort in improving the hardware-based self-
test mechanisms, the same is not true for the software-based ones. Software-based
approaches mainly consist in the application of software self-test routines (or pro-
cedures) of a Software Test Library (STL). Over the years they have been shown
to be valuable especially for the processor core, being the most critical portion of
the system.

Therefore, the first contribution of this thesis was to study the applicability of
STLs in a multi-processor context. Rather than the development of new Software-
Based Self-test (SBST) methods, the main focus was the parallel execution of al-
ready developed STLs. This originates from the fact that automotive MPSoCs
reuse the same IP processor cores that have been used (and extensively verified)
for single-processor devices. In MPSoCs, it has been widely reported that the ma-
jor hurdle of embedded software is its predictability in terms of execution time.
In fact, when all the processor cores are active at the same time, the system bus
activity considerably increases with respect to a single-core system. This higher
activity (which induces the processor pipeline to stall) impacts the performances of
each processor, since the accesses to the memory sub-system are delayed. As the
STL is in practice a piece of embedded software, it is exposed to the same issues.

The most significant achievement under this perspective consisted in the devel-
opment of a software scheduler. Such a scheduler differs from any other software
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scheduler for embedded systems, since it is tailored for the needs of STLs in an
automotive MPSoC. Through extensive experiments, it was proven to be a valid
solution to fit the narrow test windows of industrial automotive MPSoCs (maxi-
mizing the overall system availability). At the same time, the proposed scheduler
demonstrated a good execution time predictability. This is remarkable, since it
was already mentioned that the embedded software execution time is hard to be
predicted accurately.

Furthermore, the research developed in this thesis demonstrates for the first time
through real industrial case study that this unpredictability is particular harmful
for self-test procedures. Indeed, it was observed that such unpredictability not only
alters self-test procedure execution time (when executed in parallel). Additionally,
some self-test procedures intermittently fail when in field and/or produce a fluctu-
ating fault coverage. For both cases, it was proposed a mitigation technique based
on the usage of the inner most level of private cache memories. When the self-test
procedures are executed from such private memories, with precautions, it is pos-
sible to isolate the self-test procedure execution form the rest of the system (thus
achieving the required stability).

When dealing with self-test mechanisms, it exists a further category of mech-
anisms which are said to be hybrid. They indeed consist of both hardware and
software cooperating together for implementing an efficient self-test. This thesis
contributes to this new emerging self-test approach with a novel hybrid technique
for checking the integrity of the comparators used in the lockstep configuration
(commonly found in automotive MPSoCs).

The third contribution of this thesis consists of optimizing the fault grading
methodologies to meet the necessities of the functional fault simulation. Functional
fault simulation is an emerging approach for performing fault simulation in safety-
critical applications when a processor executing software is involved. Recently, the
Electronic Design Automation (EDA) companies are providing tools able to sup-
port these methodologies. However, different aspects must be taken into account,
not previously considered with the traditional fault simulation approaches. It is
worth noting that the applicability of these researches is not limited to processors
of an automotive MPSoCs. One of the main applications of functional fault grad-
ing addressed in this thesis is in the STL development. The main bottleneck of
the STL development remains the fault simulation. Therefore, part of the research
efforts were directed towards the formulation of functional fault grading method-
ologies intended for STLs. The key concept behind these methodologies is the fault
dropping which allows to considerably reduce the effort for the fault simulation.

The fourth contribution still concerns the functional fault grading, but in a
rather different scenario. Due to the ever-increasing complexity of the newer de-
vices, designers are shifting to emulation of the ASICs in order to speed up the
verification process. The same emulators can be used as well for quickly evaluat-
ing the effectiveness of self-test mechanisms or general dependability analyses that
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require functional fault grading. This can be achieved by instrumenting the orig-
inal netlist, in order to enable the injection of different faults (most often either
Single-Event Transient or stuck-at). In this context, this thesis introduces a fault
emulation platform to support dependability analyses of safety-critical Application-
Specific Integrated Circuits (ASICs). Differently than existing works, the focus was
the fault detection mechanism that allows to mimic the detection mechanisms of a
fault simulator (including fault dropping introduced above). The proposed platform
can be integrated in the already-existing IEEE 1149.1 JTAG infrastructure of the
target ASIC. Therefore, it can be easily accessed with standard tools and perfectly
compatible with the modern industrial emulators based on Field-Programmable
Gate Arrays (FPGAs).

This thesis is organized as follow: Chapter 1 is devoted to the introduction.
The motivations leading to this thesis are discussed in great detail. Moreover,the
basic terminology used throughout the manuscript is provided. Then, the thesis is
divided into two main parts. The first one addresses the description of the self-test
mechanisms for automotive MPSoCs (Chapter 2, 3, 4).

The second part instead, focuses on the improvements in the functional fault
grading methodologies (Chapter 5, 6). In Chapter 7 concludes the thesis. In that
chapter, both the major achievements and future research directions are analyzed.
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Chapter 1

Introduction

Nowadays the automotive domain is one of the main drivers for the most recent
technology advancements. The pursue over the last decade for fully autonomous (or
self-driving) cars has radically changed the architecture of the embedded systems
deployed in such domain. While originally relatively small System-on-Chips (SoCs)
were deployed, today there is an opposite trend. Indeed, driven by the necessities
of more complex software tasks required for implementing Advanced Driver As-
sistance Systems (ADAS), Multi-Processor SoCs (MPSoCs) can often be found in
replacement of the simpler ones.

MPSoCs (or simply multi-core systems, the two terms are considered here as
synonyms) are mixed-signal SoCs, since they include on the same silicon die both
a digital (consisting of multiple processor cores, memories) and an analog portion
(e.g. analog-to-digital converters). Since the focus of this thesis is on the digital
portion, it is exclusively further discussed in the following. Before being adopted,
the MPSoC must satisfy the requirements imposed by so-called functional safety
standards. For the automotive field, the ISO 26262 [50] regulates the usage of
electronics devices. The standard is an adaptation to automotive systems of the
more general IEC 61508 [49]. The ISO 26262 covers the entire spectrum of the
functional safety of electronics components for automotive applications, from the
software to the hardware. Specifically to the hardware, the ultimate goal is to
avoid that a failure in a given hardware block provoke a catastrophic consequence
(e.g., damage to human beings). For avoiding such catastrophic consequences, the
standard suggests different solutions. These are called safety mechanisms. A safety
mechanism is a portion of the system intended for detecting faults and controlling
system failures in order to achieve or maintain a safe state. Depending on the risk
associated to the failure of the system, the standard defines the Automotive Safety
Integrity Levels (ASILs). They are labeled with A, B, C and D. Systems, or more in
general a hardware module, labeled as ASIL A signifies that the module is not safety
relevant. On the other hand, modules labeled ASIL D are the most critical ones. For
each of these levels, the standards defines the most appropriate safety mechanisms
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Introduction

in order to meet some minimum reliability requirements. Failures are caused due to
the occurrence of random hardware faults, which are distinguished in Single-Point
Faults and Multi-Point Latent Faults. The former are immediately effective faults,
meaning that when one of these faults occurs, the effects of its occurrence lead
to a failure within few clock cycles. Instead, Multi-point Latent faults are faults
within the safety mechanism. Their occurrence do not cause directly a failure.
However, they might become dangerous when a second fault arise in the module
guarded by the safety mechanism. Concerning these two types of faults, the ISO
26262 defines two metrics (directly related to the reliability requirments): The
Single-Point Fault Metric (SPFM) and the Latent Fault Metric (LFM). Each of
the above-mentioned ASILs has different requirements for these two metrics (Table
1.1). For assessing whether a given hardware module meets the required metrics for
the targeted ASIL, the Failure Mode Effects and Diagnostic Analysis (FMEDA) [62,
73] is performed. It defines failure modes, failure rate and diagnostic capabilities
for a given hardware module. In the context of this thesis, diagnostic capabilities
refer to the ability of detecting specific faults (either single or multi-point faults).
Together with the failure rate, they directly contribute to determine the SPFM.
The failure rate is measured in FIT (Failure In Time) and strongly depends on the
technology node used for manufacturing the device. The diagnostic capabilities are
expressed with the Diagnostic Coverage (DC). The DC indicates the number of
critical faults leading to a failure detected by the safety mechanism under analysis.
It is normally computed resorting to fault injection campaigns. For these, two
fault models are typically considered: the stuck-at and the Single-Event Upset or
Transient (SEU and SET respectively). During early dependability analyses, the
SPFM can be roughly approximated with the DC. Instead, the LFM indicates
the number of latent faults covered in the safety mechanisms and it is computed
considering exclusively stuck-at faults. Throughout this manuscript, the bare fault
coverage of a given safety mechanism or self-test procedure is simply referred to as
Fault Coverage. Withe Diagnostic Coverage instead the one considering the most
critical faults only.

Table 1.1: SPFM and LFM Requirements for Safety-relevant Modules

ASIL SPFM/DC LFM

B ≥90% ≥60%
C ≥97% ≥80%
D ≥99% ≥90%

For these two metrics, the standard also defines the Fault Tolerant Time Interval
(FTTI). The FTTI is defined as the time interval required for detecting a fault and
then react accordingly. For example, for ASIL D devices the FTTI for single-point
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faults is in the range of 10-150ms. For the latent faults, the FTTI is expressed as
a multiple of 10 hours.

In general, certifying an SoC for the highest ASILs (C or D) does not require
deriving the SPFM and LFM metrics considering the SoC as a whole. Instead,
it is followed the process known as ASIL decomposition. For each safety-relevant
sub-module of the SoC, one or more safety mechanism is devised. Then, the final
coverage achieved on the entire SoC is given by the combination of the coverages
achieved in each sub-module. For example, considering the LFM for an ASIL D
SoC, this implies in practice that it is not necessary to achieve a 90% coverage in
each sub-module.

When considering the SPFM metric, the most commonly used safety mecha-
nisms are based on redundancy. These are also called primary safety mechanism.
When dealing with memories [38, 25, 63], Error Correction Codes (ECCs) are used
to protect against bit flips or errors in the memory array. More recently, advanced
schemes known as End-to-End ECCs [55] have been shown to be effective also to
protect against faults arising in the data path from a processing element (e.g., a
processor core) to the memory. As opposed with traditional approaches, End-to-
End strategies computes the ECC when the data is actually leaving the processing
element and it is send over the system bus to the memory. The ECC is send along
with the data over the system bus. When the data reaches the memory, the ECC
is computed again before being stored. In case the computed ECC differs with the
one that was send, a fault occurred. In the most advanced schemes, the ECC is
computed for control signals too.

For the processing elements as the processor cores, or safety-relevant hardware
blocks as the Direct Memory Access (DMA), the most common strategy consists
of replication [43]. For example, considering the processor core, the Dual-Core
Lockstep (DCLS) [51] is the most commonly used. Two processor cores (main and
checker) are paired together and fed with the same identical inputs. Their outputs
are continuously monitored by a set of comparators that signal a mismatch due to
the occurrence of a fault.

As already mentioned when introducing earlier the LFM metric, the addition-
ally circuitry of these safety mechanisms is equally exposed to faults occurrence.
This could invalidate the safety mechanism functionalities and might cause failures
of the safety-relevant blocks to go undetected. Therefore, additional diagnostic
safety mechanisms are required. They are exclusively intended for implementing
in-field self-test mechanisms functionalities to avoid latent faults accumulation in
the primary safety mechanisms. It is worth mentioning that the in-field test is
more constrained in terms of resources and fault models compared to the end-of-
manufacturing test. In general, the in-field test does not rely on an external tester
(i.e., an ATE) and the test patterns must be internally generated/stored within the
device itself. Moreover, since the test is performed when the device is already in the
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mission environment there exist also narrow test windows in which test must com-
plete. For these reasons, exclusively stuck-at faults are in practice considered when
devising self-test mechanisms for the LFM metric. Indeed, if one would consider
also more advanced faults models such as cell-aware ones [46], the test time required
for reaching an acceptable coverage would exceed the available test window.

When considering automotive devices (either single or multi-core), the in-field
test is further distinguished into the Power-On Self-Test (POST) and the on-line
self-test [82]. The former is the self-test performed when the device is turned on.
The latter, is the in-field test performed concurrently with the mission software
that the SoC is supposed to be running.

During the POST, the preferred self-test mechanisms are based on the Logic
and Memory Built-In Self-Test principle (LBIST and MBIST respectively)[89, 66].
The former addresses permanent faults in the safety-related digital logic. The lat-
ter instead within the embedded memories. In the literature there exist MBIST
strategies [74] that allow for a transparent execution with respect to the memory
content. On the other hand, the LBIST requires a full system reset after its comple-
tion. Indeed, LBIST is based on the already existing scan logic and thus it produces
non-functional stimuli. Therefore, its applicability is limited to the POST only.

This could become problematic if the time interval between two power-on events
is too long, as in the case of several hours of continuous operations. Consequently,
since latent faults must be checked even when the system is fully on-line, Software
Test Libraries are increasingly becoming used. An STL consists of a set of software
self-test procedures (or programs), and the main target are permanent faults within
the processor core [83, 58, 76, 42, 4, 41, 56, 81]. This technique is also known in
the literature as Software-Based Self-Test or SBST. The idea is relatively simple:
when the target device corresponds to or includes a processor, we can force it to
execute a suitable piece of code, possibly reading some input data and processing
them in a carefully selected manner. The produced output data are accumulated to
form a test signature. Such a signature is then used in filed to determine whether
the test passed or failed. Normally, this kind of self-test exclusively relies on the
already-existing on-chip resources.

In contrast with the non-functional approaches such as the LBIST, the STL
produces exclusively pure functional stimuli. However, unlike the traditional func-
tional tests, this approach relies on structural information of the processor core
under test (i.e., a gate-level description). Therefore, it is possible to compute a test
coverage with respect to a given fault model. Since the self-test is performed with
the processor operating in mission mode, normally this self-test approach comple-
ments the non-functional stimuli produced by the LBIST [65, 45]. Indeed, it is
often the case that due to test mode constraints or clock gating structures, some
portions of the design are not fully accessible by the LBIST.

When used in automotive devices [13], the STL has two main roles depending
on the targeted ASIL. For ASIL B devices, the STL is often used in conjunction
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with other techniques as primary safety mechanisms to detect the occurrence of
single-point faults. For the most critical ones (namely ASIL C or D), the STL is
used for the purpose of detecting latent faults to avoid their accumulation in the
checker (or main) core of the DCLS configuration.

For both purposes, the STL is composed of two main portions: a boot-time
and a run-time portion. The self-test programs belonging to the first category are
executed during the namesake phase of the device, when the system is entering the
on-line phase. In this phase, the processor initializes the different peripherals, the
internal RAM blocks, the PLL and others. Before acting on these, the processor
executes the boot-time self-test programs. The goal of this self-test is to check most
of the processor functionalities. Self-test programs belonging to this category have
complete access to the available hardware resources: the processor Special Purpose
Registers, the Interrupt Vector Table. Additionally, they trigger exceptions and
preemption is not allowed. For the sake of test purposes, they require to access
specific addresses in the shared portion of the system RAM, outside the bound-
aries of the processor stack frame. Although there are in general fewer real-time
constraints on the execution of these kind of self-test programs, there is typically
an upper bound for the self-test to complete (also for sake of system availability).
Indeed, the MPSoC is part of a lager Electronic Control Unit (ECU). Within an
automobile, there are several ECUs that exchange information over a local network.
At the key-on, all the ECUs execute their own self-test and acknowledge over the
network the whether the test passed or failed. To avoid waiting endlessly for a
control unit response (which might be stuck due to a fault), a timeout is typically
set (which represents the aforementioned upper bound).

The self-test programs that belong to the second category are executed when the
system is fully on-line. That is, the operating system and the application software
are already running. They are conceived to coexist with the application source code
and they target mainly the computational units (e.g., arithmetic units) within the
processor core. Since they are executed in real time, they do not alter the processor
status and can be interrupted in case higher priority tasks require to be executed.
Differently than the boot-time self-test programs, the run-time ones do not access
system RAM addresses outside the processor stack frame. This kind of self-test
programs are designed to have minimal access to on-chip resources (i.e., minimal
intrusiveness) due to the coexistence with the application software. Therefore, in
general, the achievable coverage is lower compared to the boot-time ones.

The effectiveness of an STL (technically called fault grading) is normally as-
sessed with fault simulators [14] and it is historically the most expensive part of
the development flow. Additionally, the functional fault simulation is increasingly
often required. This kind of fault simulation is an emerging approach that stems
from the needs of the FMEDA analysis. Recently, it is being supported by the EDA
vendors too. This methodology differs from the traditional one since it simulates in
a unique model both the processor and the memories (data and code). Specifically,
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the stimuli are retrieved from the memories, unlike in the traditional one in which
the fault simulator provides to the design under test (e.g., the processor) the input
stimuli (usually stored in a textual file).

In general, fault simulation is a critical bottleneck in FMEDA analysis since it
is required for several applications.

In order to address the growing complexity stemming from the usage of MP-
SoCs, there has been a considerable effort from the research community in order
to improve the self-test capabilities. Most of these efforts were directed towards
the improvement of the LBIST [69, 60, 68, 67]. Specifically, the lager becomes
the circuit under test the higher is the pattern count for reaching the target LFM
coverage. This implies that the test application time increases, because patterns
are generated internally. Furthermore, the scan shift frequency is normally limited
for sake of power consumption. Towards this end, the main research efforts con-
sidered test point insertion (often shared with same test compression logic used for
end-of-manufacturing testing) for reaching the same coverage while reducing the
pattern count. Additionally, new LBIST schemes have been introduced that con-
siders the necessities of the automotive integrated circuits such as the LBIST with
Observation Scan Technology (LBIST-OST) [70]. In that approach, a dedicated
scan chain is inserted in the design with the only purpose of capturing data from
the combinational logic during the shift cycle. This yield a significant advantage,
since traditionally exclusively during the capture cycle the combinational logic is
observed.

For the STL-based approaches, or more in general, those based on the SBST
principle the same is not true. Indeed, most of the research efforts focused on the
end-of-manufacturing testing only. In that field, several works proposed different
solution aiming at reducing the test application time [6, 5, 37]. Since the in-field
self-test presents different constraints with respect to the scenario of the end-of-
manufacturing testing, these techniques are clearly not applicable.

The main problem to be faced when considering STLs for the in-field self-test
of MPSoCs is still the test application time. However, the problem is not related
to the number of stimuli to be provided. The processor cores used in MPSoC are
often the same used in single-core SoCs for sake of shortening the design cycle and
time-to-market for new devices. Therefore, the processor complexity is not altered
and the already-developed self-test algorithms for testing the processor modules are
re-used. The difference in MPSoCs is that all the available processor cores must
execute the same STL in almost the same test time window of the single-core SoC.
Ideally, a parallel execution of the STL would be the best solution. However, this is
not always possible, as it is better detailed in the dedicated chapter. Indeed, other
complications arise since the on-chip resources (in terms of available memory) for
the STL are usually limited.

For the reasons listed above, rather than the development of new self-test al-
gorithms, the thesis focuses on effective strategies for the parallel self-test when in
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field. The end goal is to reduce the test application time, while maintaining at the
minimum the amount of required resources.

While there exist two main approaches for the self-test of latent faults (i.e., the
software and the hardware ones), during the development of the thesis a further
approach was explored: the hybrid one. This approach is based on a cooperation
between software and hardware modules to implement the self test. Specifically
to this thesis, a hybrid on-line self-test approach was investigated as countermea-
sure for latent faults in the comparators of a DCLS system. For this and similar
purposes, the hybrid self-test approach is shown to be a valid alternative to the
most expensive (in terms of physical resources) hardware-based approaches. At the
same time, they inherit the flexibility of the software while overcoming the classical
limitations of these approaches (i.e., they are able to produce functional stimuli
only).

The second major focus of this thesis was on the fault grading process. On
one hand the idea was to improve the fault simulation methodology for STL to
meet the recent improvements concerning the functional fault simulation. Different
techniques to alleviate the effort required for the functional fault simulation were
proposed. Such techniques target the two different usages of the STL. That is,
part of the techniques are for the STL used as primary safety mechanism. This is
the case of single-core SoC or specific processor or co-processor within an MPSoC
intended for security tasks. The other techniques are for the STL used against latent
faults in a DCLS configuration. On the other hand, the fault grading process can be
further improved when considering FPGA-based fault emulation. Historically, fault
emulation was limited to transient fault models, most notably SET and SEU. This
was due to the relative limited capacity of the emulators themselves. However,
the recent improvements in the FPGA emulators capacity, now able to support
several billions of logic gates, make the emulation of permanent faults affordable.
Differently than the works present in the literature concerning fault emulation,
in the scope of this thesis the focus was the observation mechanism. Such term
refers to the mechanism through which a given fault can be marked as detected
or not. The one developed in this thesis resembles the fault dropping mechanism
implemented in modern fault simulators. This method allows to reduce the time
required for each the fault simulation since faults are simulated until a difference is
detected (with respect to a fault-free reference). The same principle was exploited
in the proposed fault emulator too, allowing for a reduction of the effort required
for the fault grading.
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Part I

On-line self-test mechanisms for
automotive MPSoCs

9





Chapter 2

Deterministic in-field parallel
execution of self-test programs in
MPSoCs

The purpose of this chapter is to introduce the problems to which self-test
programs are exposed when executed in parallel in an MPSoC. These problems
are always present independently from the selected scheduling approach. Indeed,
embedded software executed in a multi-core context suffers of a limited timing
predictability due to the higher system bus contention. When dealing with self-
test procedures, this higher contention might lead to a fluctuating fault coverage
or even the failure of some test programs when in field. To mitigate this issue,
a cache-based strategy is proposed. The methodology does not require significant
modifications of the already-existing algorithms and it does not introduce penalties
from the memory footprint perspective. Along with these advantages, it does not
require any additional on-chip resources.

This chapter is organized as follows: initially, a background section provides a
clear problem statement and an overview of the related works already present in
the literature. Then the proposed strategy is detailed. Finally, experimental results
demonstrate that it is possible to achieve a stable execution while also improving
the state-of-the-art approaches for the on-line testing of embedded microprocessors.
The effectiveness of the methodology was exhaustively assessed on representative
processor modules of an industrial MPSoC manufactured by STMicroelectronics.

This proposed approach and experimental results were published in [34].
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2.1 Background

2.1.1 Problem statement
The main idea of the self-test via software is to convert test patterns into soft-

ware instructions and accumulate their results to create a so-called test signature.
Then, such a signature is compared with the expected test signature (obtained in
a fault-free scenario, for example resorting to simulators) to determine whether the
test passed or failed. When the test is executed in field, the test signature represents
the only way to safely detect the occurrence of faults. When considering an MP-
SoC, a parallel execution of an STL is attractive for shortening the test application
time. For the vast majority of the self-test programs composing an STL, this does
not constitute a problem. However, some boot-time self-test programs, in order to
be effective, require a proper sequence of instructions to be executed without any
interruption. In MPSoC, this assumption cannot be guaranteed anymore. Indeed,
the embedded software running in a multi-core context suffers of a limited timing
predictability [61, 20], due to the higher system bus contention. These conflicts on
the system bus block the processor pipeline when fetching instructions from the
main memory. Due to these clock cycles of stall, the exact stream of instructions
entering the pipeline cannot be determined in advance anymore. In an MPSoC,
this has two important consequences on the self-test procedures requiring a specific
sequence of instructions. The first one concerns the fault grading: the fault cover-
age is uncertain and it might vary depending on which portion of the processor is
excited due to the system bus activity. Because of this, a given fault location might
not be excited correctly and therefore remains undetected. This represents a seri-
ous concern, since the ISO 26262 standard imposes stringent quality requirements
in terms of achieved fault (or diagnostic) coverage. The second one is related to the
signature generated by the test program, which is now unstable. It means that the
self-test procedure cannot safely identify whether the mismatch in the signature is
due to the occurrence of a fault or due to an unexpected instructions stream.

For better clarify this problem, let us consider two examples: the forwarding and
hazard detection mechanism of the classical 5-stage pipeline of the DLX processor
[77] and two self-test routines for testing such mechanisms.

Let us consider the forwarding mechanism. The reported example considers
forwarding among two consecutive instructions. It is important to note that the
same reasoning is perfectly applicable even to more complex multiple-issue proces-
sors. The only difference is that the forwarding can also take place among two
consecutive issue packets. Let us focus on the following forwarding path: the EX
to EX path that fed with the first operand the processor adder. Figure 2.1a shows
a portion of the assembly code testing the aforementioned path, along with its
evolution across the pipeline stages in a single-core scenario.

In this case, the forwarding mechanism is excited correctly. The second add
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(a)

(b)

Figure 2.1: (a) Single-core execution of the program. (b) Multi-core execution of
the program. In red the different paths activated by the same program.

instruction enters the pipeline exactly one clock cycle after the first one, since the
memory subsystem has not produced any stall. Figure 2.1b represents still the same
code fragment, but in a quite different scenario. It is assumed that the processor is
part of a larger multi-core system, and the self-test procedure is executed in parallel
by the other cores. As a result of the other processors’ activities, the accesses to the
memory subsystem are delayed. As depicted in that figure, the targeted forwarding
path is not triggered at all. The second add enters the pipeline at the fifth clock
cycle and can retrieve the content of R7 directly from the register file, without
activating the forwarding path. This is a possible scenario that a self-test routine
might encounter when executed in parallel in an MPSoC. In this context, the self-
test procedure yield a correct signature. Indeed, the results produced by the two
operations is still valid. However, the targeted forwarding path was not activated
at all. Thus, although it returns a correct signature, the fault coverage is likely to
be quite different since it varies according to the whole system activity.

When testing hazard detection mechanisms, in order to detect the occurrence
of performance faults [48] the processor Performance Counters can be exploited
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(when available). Performance Counters that count the number of pipeline stalls
are particularly useful since they could ease the detection of malfunctions in the
hazard detection unit (e.g., stalls inserted between instructions when not needed).
The self-test programs is the same seen before for the forwarding mechanisms, but
this time the Performance Counters contribute to the signature. In this case, it is
likely that the test program will produce an unstable signature. Considering the
examples of Figure 2.1b the execution time is slightly increased due to the additional
stalls, but yet enough for altering the values of the Performance Counters, that will
report 3 additional stalls. Once again, these stalls are completely unpredictable
and consequently also the signature.

Even though these phenomena have been described using as examples the for-
warding and hazard detection units, they are applicable to all those self-test pro-
cedures that require a specific sequence of instructions to be executed without
interruptions.

To mitigate these issues and achieve a deterministic execution, a cache-based
approach has been explored. This well matches the requirements of safety-critical
embedded software, for which predictability is mandatory and the memory re-
sources are limited.

2.1.2 Related works
The usage of caches has been explored to store the self-test procedures intended

for end-of-manufacturing testing of processors within a shared-memory multi-core
system [6]. The purpose of that work was to reduce the test application time,
avoiding off-chip memory accesses. The method is applicable exclusively for end-
of-manufacturing, since it assumes that the self-test procedures are loaded into the
caches through an external tester (which is not available when in field). Similarly,
in [87] it was shown that a cache-aware test scheduler can take advantage of the
memory hierarchy for speeding-up the run-time tests. Differently from these related
works, the proposed approach deals with the in-field execution of boot-time proce-
dures, and it uses caches for addressing the uncertainties introduced by a multi-core
architecture.

A possible alternative to the proposed one consists in exploiting the proces-
sor Tightly-Coupled Memories (TCMs, also known as scratchpad memories) [7, 9].
This approach is typically adopted for the execution of real-time programs. Such
programs are copied (during the system boot) and then executed from the instruc-
tion TCM when required. Conceptually, TCMs are similar to caches since they
consist of a bank of SRAM local to each processor. Unlike caches, there is not the
concept of cache miss or hit, since data or instructions have to be copied explicitly
to these memories before being used. However, the fundamental drawback is that
part of the TCM should be permanently reserved for test purposes (the amount of
extra memory occupied is proportional to the size of the test program). Clearly,
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this impacts negatively on both portability and flexibility of the STL.

2.2 The cache-based execution approach
The vast majority of computer programs exhibit the so-called principle of lo-

cality [77]: that is, a given program will access a (relatively) small portion of the
available address space. Two locality principles exist: temporal and spatial local-
ity. The former states that if a given memory address is referenced, then it is
likely that it will be referenced again soon. The latter stems from the observation
that programs are generally executed sequentially and they seldom branch far from
the actual program counter value. Additionally, data are often stored in contiguous
memory locations: therefore, if a given memory location is accessed, then it is likely
that the locations nearby will be accessed soon. Caches leverage these principles, by
storing the content the most referenced addresses (i.e., data and instructions). In
a multi-processor system, this provides isolation, considerably increasing the pro-
cessor performances. Although these advantages, the caches are not deterministic
since the actual increase in performance depends on the program length and organi-
zation, the cache size itself, and how often a context switch is performed. Therefore,
issues could arise when using caches in conjunction with self-test procedures, since
some of them require a precise timing.

However, it is possible to achieve a deterministic cache-based execution if the
test program:

• it is executed without any interruption;

• it exhibits strong temporal and spatial locality.

Given these two conditions, the idea is to move the self-test routine within the
innermost level of caches (i.e., the ones private to each processor core), isolating its
execution from the rest of the system.

From the above mentioned definitions of the locality principles, it is possible
to derive a general structure, that embeds the single-core version of the self-test
procedure. Given a generic boot-time test program, the few modifications required
are:

1. The test program should be executed twice in a loop-based fashion. The
body of the loop (blocks c and d in Figure 2.2b) is represented by the instruc-
tions intended for testing the processor which compose the single-core self-test
procedure (Figure 2.2a, blocks b and c). This allows for a strong temporal
locality, since all the addresses are referenced exactly twice. During the first
iteration (hereinafter loading loop, Figure 2.3a), the test program is moved
into the instruction cache. At the same time, the content of the data memory
addresses referenced (if any) during this first iteration are moved within the
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(a) (b)

Figure 2.2: The proposed Cache-based strategy. On the left-hand side the single-
core version. On the right-hand side the modified multi-core test program version.
In case of no-write allocate caches, the Test Program Body might be lightly modi-
fied.

data cache, assuming a write allocate cache memory. If this is not the case
(i.e., a no-write allocate policy) each store operation must be followed by a
dummy load operation to the same address. This will provoke a read cache
miss, that in turn causes data to be moved within the data cache. Therefore,
during the execution loop all the store operations will not generate a write
miss, since they will find the proper data already in cache. It is important
to note that during the loading loop the test program must not perform any
check of the signature. Since the first execution might be still influenced by
the other processors’ activity, the computation of the signature is unreliable.
Instead, the second iteration (the execution loop, Figure 2.3b) is the real test
program execution. Since the program is executed entirely from the caches,
the signature can be computed without the risk of being influenced by the
rest of the system.

2. The entire test procedure code must be loaded in the instruction cache during
the loading loop. This feature brings spatial locality and it avoids instruc-
tion cache misses during the execution loop that could potentially alter the
signature. This condition implies that:

2.1) Conditional branches that could potentially produce a different execu-
tion flow in the execution loop must be avoided. Exceptions are those
conditional branches that intentionally alter the execution flow but due
to the effect of a fault. Moreover, this does not preclude the applicability
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of the proposed methodology to loop-based test programs, as long as by
the end of the test program all the possible branches are taken.

2.2) The size of the multi-core version (Figure 2.2b) of the self-test procedure
must fit into the available cache memory. If the resulting test program
is larger than the available cache size, it must be split into two or more
smaller self-test procedures. It is important to note that this step is
exclusively required if the cache memory is not large enough, and it
does not compromise the fault coverage of the original single-core test
procedure.

3. Both data and instruction caches should be initialized, by invalidating their
content (Figure 2.2b, block b) prior the test program execution (Figure 2.2b,
block c and d).

The proposed strategy based on cache memories achieves the requirements of
both deterministic behavior and low resources usage since:

• Caches decouple the processor from the rest of the system. Therefore, the
instruction stream is not altered by other processors’ activity;

• The code is allocated in the cache memories, without altering the self-test
routine memory footprint.

2.3 Experimental results
This Section is organized as follows: the first subsection describes the case study.

The second, third and fourth subsections details the experimental results. These
include the evidences of the issues presented in the previous sections and then the
gathered results for the proposed methodology. Its effectiveness is also compared
with the one of the TCM-based approach.

2.3.1 Case study and experimental setup
The device used this experimental part was an industrial heterogeneous triple-

core System-on-Chip, manufactured by STMicroelectronics. The device is designed
to be compliant to automotive safety-critical applications ranked as ASIL D. It
embeds three dual-issue processor cores. Hereinafter, these cores will be labeled as
cores A, B and C. The two cores A and B are the same 32-bit processor model,
while the core C is different since it implements an extended instruction set able to
deal with 64-bit operands. Each processor includes two Tightly-Coupled Memories
modules (for data and instructions), along with private data (4 kB) and instruction
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(a)

(b)

Figure 2.3: Example of the proposed cache-based execution. In an MPSoC two
CPUs (labeled with 0 and 1) execute in parallel an STL. CPU0 executes a test
program TP1 that uses the cache-based execution, while CPU1 executes another
portion of the STL. In (a) is represented the loading loop. In (b) the execution
loop. It is worth mentioning that normally in STLs the TEST DATA AREA is
protected by access mechanisms. These are required for sake of determinism, for
avoiding one core interfering with the execution of another.

(8 kB) caches. The caches support both write allocate and no-write allocate policies
(configurable before being used).

For this device, two STLs were developed (core A and B share the same STL).
Since the STLs are intended for latent faults (the processor cores are configured
in lockstep), stuck-at faults were exclusively considered. Nevertheless, the applica-
bility of the proposed methodology is not limited exclusively to this specific fault
model. The total number of stuck-at faults of these processors varies from 643,209
(core C) to 473,052 (core B). It is worth noting that although core A and B are
functionally identical they underwent different physical design processes (common
practice for automotive designs). Therefore, from the testing viewpoint, they are
quite different since the stuck-at fault lists are different.

For proving the effectiveness of the proposed cache-based strategy, the faults
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belonging to the Interrupt Control Unit and Hazard Detection Unit were exclu-
sively considered. The self-test procedures developed for these units are significant
examples of the complications that arise when considering a multi-core execution.

The problems related to the Hazard Detection Unit (which includes also the
forwarding mechanism) were already presented earlier in this chapter in the Sub-
section 2.1.1. In the considered processors, the Hazard Detection Unit is composed
of a Hazard Detection Control Unit and a Forwarding Logic. The former detects
dependencies among issue packets, driving the forwarding paths and possibly stalls
the pipeline if the forwarding is not possible. The latter is composed by the multi-
plexers that directly fed and collect the results produced by the different execution
units of the processor.

The self-test program that addresses these mechanisms is based on the algo-
rithm presented in [19]. The above-mentioned testing algorithm exhaustively test
all the possible existing forwarding paths, both interpipeline (that is, dependen-
cies between instructions of the same issue packet) and intrapipeline (dependencies
between instructions of two consecutive issue packets). Moreover, it leverages per-
formance counters for tracking the number of pipeline stalls in the processor during
the self-test procedure execution (for detecting wrongly inserted stalls by the hazard
control unit).

Concerning the Interrupt Control Unit, synchronous imprecise interrupts were
examined. Such class of interrupts are still generated as consequence of a partic-
ular instruction being executed (i.e., synchronously) and from sources within the
CPU. But, unlike precise interrupts [88], the imprecise ones are not recognized
immediately, but only after that a variable number of instructions are executed
beyond the interrupting instruction. The actual number of instructions depends on
the instructions stream entering the pipeline, which is highly unpredictable in an
MPSoC. Therefore, also the self-test procedures targeting these interrupts suffer of
an unstable signature that varies depending on the other processors’ activity. For
testing this mechanism, a self-test procedure based on the strategy presented in
[86] was implemented. The second column of Table 2.2 and the third of Table 2.3
report the number of faults within these units.

Finally, caches were configured with a write allocate policy: therefore, for both
test programs, it was not required to insert additional load operations to avoid
write misses in the execution loop (as explained in Section 2.2). Furthermore, for
both test programs, it was not necessary to split them, since the instruction cache
was large enough to contain the entire self-test procedure code.

2.3.2 Variability in MPSoCs
A first set of experiments consisted in analysing the behavior of the STL in an

MPSoC. For this initial set of experiments, the test programs targeting imprecise
interrupts and hazard detection unit were not included in the library and analyzed
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separately. The STLs were executed in parallel on the physical microcontroller.
Their execution was tracked leveraging an external debugger, that monitored the
number of clock cycles of stall due to the memory subsystem in each processor
core. Table 2.1 reports the gathered measurements. As it can be noticed, when
moving from a single-core scenario (in which all the other cores are completely
turned off) to a triple-core scenario, the number of stalls in the system increased
considerably. The major source of stalls is represented by the instruction fetch
unit (second column of Table 2.1). This is a direct consequence of the higher bus
contention: the instruction fetch operations are delayed due to the other processors
requests, and as a consequence the pipeline is stalled. Moreover, it is worth noting
that the figures in the second and third row of Table 2.1 represent average values
gathered across several executions. The actual number of clock cycles of stall varies
depending on the initial MPSoC configuration (and therefore it is not predictable).

Table 2.1: Parallel STLs Execution - Stalls (in Clock Cycles, CC) due to the
Memory Subsystem

# Active Cores IF Stalls
[CC]

MEM stalls
[CC]

1 200,679 117,965
2 717,538 305,801
3 1,878,336 663,386

2.3.3 Uncertain fault coverage
The experiments described in the subsection 2.3.2 confirm that the whole sys-

tem activity heavily influences an STL execution, making its behavior in terms of
execution time unpredictable. The second set of experiments focused on demon-
strating the effects of these pipeline stalls on the self-test procedures. Specifically,
these experiments involved the achievable fault coverage on the processor hazard
detection unit. For performing these experiments, a simulation environment (which
include also a fault simulator) was used with the SoC post-layout gate-level netlist.
As extensively explained in Section 2.1.1 and demonstrated with the previous ex-
periments (Table 2.1) Performance Counters (PCs) are unreliable in a multi-core
scenario. When they contribute to the self-test procedure signature, they provoke
its instability. Therefore, a straightforward solution might be removing the usage
of PCs, sacrificing fault coverage. However, as depicted in Table 2.2 this is not
enough for guaranteeing a deterministic fault coverage (referred as FC) of the for-
warding logic. To prove these claims, the algorithm [19] was modified, removing
the usage of PCs. Then, the obtained self-test procedure was executed in parallel
on the different processors considering different scenarios: number of active cores
(two or three), code position in code memory (low, mid and high Flash addresses)
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and different code alignment options (e.g., aligned at word, double-word or double
double-word).

Table 2.2: Forwarding Logic Fault Simulation Results

Core # of Faults min - max FC [%]
no caches no PCs

FC [%]
with caches no PCs

A 53,298 64.14 - 75.19 79.61
B 57,506 63.61 - 79.59 82.08
C 113,212 56.24 - 66.48 68.79

Each of these logic simulations was then fault simulated, and the results are
shown in third column of Table 2.2. As it can be observed, the fault coverage
considerably oscillates: in the worst case, it was observed a difference of about 16%.
It is important to note that the signature did not change during the logic simulations
and yet the fault coverage varied significantly. These fluctuations depend on how
many issue packets consecutively (namely in consecutive clock cycles, without any
stall in between) enter the processor pipeline, activating different forwarding paths.
On the contrary, when executing the self-test procedure embedded in proposed
cache-based approach (fourth column of Table 2.2), the fault coverage significantly
increased (about the 4% in the best case) while being stable across the different
scenarios. The fault coverage obtained for core C is lower compared to the one of
cores A and B because the multiplexers are 64-bit wide to support 64-bit operations.
However, general purpose registers are still 32-bit wide. Therefore, the signature
must be represented using 32 bits, which causes some faults effects to be masked.
Nevertheless, improvements of the already existing algorithm for the forwarding
logic would have been outside the scope of these experiments. For this reason,
increasing further the fault coverage was not considered.

2.3.4 Unstable signature
A third set of experiments (Table 2.3) concerned Interrupt Control Unit and

Hazard Detection Control Unit (ICU and HDCU respectively). For the HDCU, the
complete algorithm of [19] was used (namely with performance counters). For the
ICU, the aforementioned self-test procedure based on [86] was used. The fourth col-
umn of Table 2.3 represents the fault coverage figures when the self-test procedures
were executed in the selected MPSoC in a single-core scenario (i.e., with the other
cores switched off) without resorting to the proposed approach. In this scenario,
the signatures produced by the test programs were stable as the fault coverage.
However, when moving to a multi-core execution without using the caches the
test procedures inevitably failed in any configuration. When introducing caches,
the produced signatures become stable, and therefore the fault coverage can be
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computed correctly. It is worth mentioning that the achieved fault coverage in a
multi-core execution is higher than in the single-core scenario. This lower fault
coverage stems from the fact that the memory subsystem introduces 8 clock cycles
of latency when fetching an issue packet from the Flash even in a single-core exe-
cution. Thus, it is not possible to fully excite all the forwarding paths or trigger
correctly all the imprecise interrupts. Furthermore, while for the HDCU the cov-
erage was similar over the three processors, the coverage for the ICU is about 10%
higher in the core C. This arises from the implementation of the ICU itself. In de-
tails, the unit exposes some software-accessible registers for differentiating among
the possible sources of interrupt. In the core A and B, different interrupt events
are mapped to the same bits. As a result, even here some fault effects are masked
(unlike core C).

Table 2.3: ICU and HDCU Fault Simulation Results

Core Module # of Faults FC Sigle-Core
no caches [%]

FC Multi-Core
with caches [%]

A ICU 14,230 46.57 51.36
HDCU 16,096 62.53 70.37

B ICU 13,149 46.39 50.97
HDCU 15,783 63.84 70.12

C ICU 13,888 54.94 60.91
HDCU 19,931 65.66 68.09

2.3.5 Comparison with a TCM-based approach
This final section compares the cache-based approach to the TCM-based one

described in Subsection 2.1.2.
Table 2.4 compares the two strategies for the self-test procedure targeting the

imprecise interrupts.

Table 2.4: TCM-based versus Cache-based approaches for Imprecise Interrupts

Approach Overall Memory Overhead
[B]

Execution Time
[CC]

TCM-based 2,874 16,463
Cache-based 0 18,043

Since both approaches require few additional instructions to be implemented,
the flash overhead is negligible. The same reasoning applies also for the fault cov-
erage, which does not vary. Concerning the TCM-based one, the execution time
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consists in the time required for copying the entire self-test procedure in the Instruc-
tion TCM and then execute from there the self-test program. For the cache-based
one, it is the time required for executing as in Figure 2.2b. As it can be viewed,
the cache-based approach does not increase the overall memory footprint of the
self-test procedure (reported in Bytes, B), while it requires to be executed slightly
more than 1,500 clock cycles compared to the TCM-based approach. These further
clock cycles stem from the fact that the test program executes twice. However, it
is worth noting that this overhead originates mainly from the low read access time
of the flash memory and might be negligible when the STL is executed at-speed
(8.25µs when the considered SoC operates at its maximum frequency of 180 MHz).
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Chapter 3

Decentralized Schedulers for STLs
in automotive MPSoCs

When dealing with automotive SoCs, the adopted STL is typically composed of
two main software modules: one comprises the boot-time self-test programs, while
the other the run-time ones. While the latter are handled by the embedded oper-
ating system, the boot-time tests execute immediately after the system concludes
the power-on phase. In MPSoCs, the execution of boot-time self-test procedures
is becoming a critical aspect since it might lead to longer-than-usual boot phases.
Indeed, the STL must be executed on each processor core. In Section 2, the moti-
vations and problem statement are extensively developed. Then, the most closely
relevant existing works that address similar topics are discussed. Section 3 presents
a set of decentralized software schedulers able to manage the concurrent execution
of boot-time self-test procedures in an MPSoC. The schedulers represent a viable
solution for modern automotive MPSoCs. Indeed, they guarantee a significant re-
duction in terms of test application time when in field, while maintaining the same
fault coverage as in the single-core scenario. Simultaneously, all the schedulers yield
minimum system resources usage managing the accesses to the shared resources
(such as the system RAM). Finally, Section 4 reports experimental results on both
dual and triple-core homogeneous/heterogeneous industrial multi-core automotive
microcontrollers manufactured by STMicroelectronics.

Data and methodologies reported in this chapter were published in [35, 33].

3.1 Background

3.1.1 Problem statement
When dealing with STL for MPSoCs, a parallel testing solution is highly de-

sirable in order to avoid situations as the one depicted in Figure 3.1. The user
application might be delayed excessively due to a wrong test scheduling, decreasing
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the overall system availability. However, the parallel execution of an STL poses
several issues. While the run-time tests (due to their design) do not constitute a
problem, the same is not true for the boot-time ones.

Figure 3.1: Serial versus parallel execution of an STL in a multi-core scenario.

Indeed, the boot phase of an automotive MPSoC is critical since as already
mentioned in Chapter 1 the MPSoC is part of an ECU, which in turn is connected
in a network to several other ECUs within a modern car. Each ECU executes a
diagnostic composed of Logic and Memory BIST (Power-On Self-Test, POST in
Figure 3.1) followed by the application of the boot-time portion of the STL. Re-
ducing as much as possible the test application time of these self-test mechanisms
is the major concern since the entire diagnostic must complete within few hundreds
of milliseconds. In this context, one of the most important issues to be faced is
related to the use of the system shared resources. Indeed, it is quite common that
some of the boot-time self-test procedures require on-chip resources shared among
the available processor cores. However, as shown in Figure 3.1 the boot-time STL
is executed before the OS in place. This makes the adoption of already-existing
methodologies difficult, since they rely on complex software structures which can
be hardly implemented without an OS. In STLs, the primary shared resource is the
system RAM. Usually, the RAM is divided into two main regions: the stack memory
region (private for each core) and the shared memory region (in which the global
variables reside). When dealing with an STL, there is a further memory region
called Test Reserved Area. This memory region is available to be used by specific
boot-time test programs. For sake of deterministic fault coverage, this portion of
memory is fixed and allocated in the shared portion of the data memory [18]. When
test programs accessing these addresses are executed concurrently by two (or more)
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cores, the outcome of the test becomes unpredictable. A possible solution to over-
come this problem could consist in replication. Separate Test Reserved Areas can
be used for each core. Then, the STL source code can be replicated multiple times
in the code memory as well. However, this would increase the memory occupation
by a factor of N , being N the number of cores in the system. Therefore, this is not
feasible in real applications, since the memory resources in embedded systems are
tailored and the space for the user application would progressively reduce as the
number of cores increases. In addition, resources replication cannot be applicable
to all the shared resources: indeed, system peripherals, such as the interrupt con-
troller, cannot be replicated as there might exist exclusively one instance of a given
peripheral in the entire SoC.

Consequently, it is evident that the best solution requires to resort to a suitable
software scheduler able to manage the concurrent execution of boot-time tests in
this scenario. Such scheduler aims at:

1. reduce the test application time when the STL is executed in parallel to
comply with the ISO 26262 regulations. For achieving this, a lightweight
software module that implements the scheduler is proposed;

2. maximizing the concurrency of the tests among the different cores while min-
imizing the system resources usage;

3. maintaining the same fault coverage of the STL as when executed in a single-
core scenario;

4. not requiring additional hardware resources than the already existing ones;

5. guaranteeing a deterministic execution (i.e., predictable execution time), de-
spite the fact that software executed in a multi-core scenario suffers a non-
deterministic behavior.

3.1.2 Related works
As already discussed in Chapter 2, the embedded software executed in MPSoCs

suffers of a non-deterministic behavior from the execution time view-point. This
non-determinism originates from the higher system bus contention. One might
erroneously think that the problem addressed in this chapter might be treated as a
real-time scheduling problem. However in real-time scheduling, given a set of tasks
Λ = {λ0, . . . , λm} to be executed, and a set of processing units P = {p0, . . . , pn},
the goal of a scheduler is to assign to each processing unit pj ∈ P a set of tasks
Γ ⊆ Λ so that each task completes by its timing deadline. When dealing with an
STL, Λ corresponds to the set of self-test procedures composing the STL while P
represents the different cores to be tested. The fundamental difference lies in the
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fact that each λi ∈ Λ must be executed on each core pj ∈ P . Therefore, in this
scenario the scheduler should guarantee the execution of all the self-test procedures
while avoiding conflicts due to common shared resources (e.g., the system RAM),
so that the overall test execution time is minimized.

Other works that addressed STLs in a multi-core system are [87, 52, 59, 53, 54].
Yet, all of them assume an OS in which integrate a dedicated test scheduler. These
solutions are more appropriate for the run-time self-test procedures but cannot be
applied to boot-time self-test programs. As they execute during the system boot
before the OS is running, they require a dedicated software driver. The same prob-
lems were addressed also in [6, 5, 37], although in a quite different testing scenario.
In [6] a scheduling algorithm of self-test routines for shared-memory multi-processor
system is proposed. The algorithm is based on an optimized usage of system caches
and code replication in order to minimize the latency introduced by the memory
subsystem. Instead in [5], it is shown how to exploit thread-level parallelism to im-
prove the execution of self-test routines in each core of a multiprocessor chip. The
same research group then presented in [37] an effective strategy for multi-threaded
multi-core systems oriented at maximizing the execution parallelism of the self-test
routines without affecting the fault coverage. All of these techniques are applicable
exclusively to end-of-manufacturing testing, since it is assumed the availability of
an external tester and full control over the system under test (clearly this is not
the case in the in-field testing).

3.2 The boot-time tests schedulers
From the results presented in Chapter 2, it emerged that for STLs the flash

memory represents the main bottleneck of an efficient parallel execution. Indeed, all
the processors in the system eventually execute the same test programs, referencing
the same addresses (when not using code replication). Conversely, in traditional
multi-core application there is the opposite trend (i.e., distribute the workload
among the different processing units). Therefore, the performances of a multi-
core scheduler inevitably depend on the underlying architecture of the MPSoC
(e.g., memory hierarchy, system interconnection network, available peripherals).
Which means that it is hard to find a general solution that perfectly fits all the
possible systems. In the following, it is assumed that the interconnection network
is implemented using a crossbar switch (being widely adopted for multi-core SoCs
[91]).

Concerning the memory hierarchy, it is not assumed any particular scheme.
When dealing with boot-time test programs, cache memories are in most of the
cases disabled, since they could alter the behavior of some test programs leading to
unpredictable results (unless used with precautions as described always in Chapter
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2). Moreover, cache memories are advantageous for test programs executed period-
ically, as is the case of the run-time programs. In contrast, boot-time test programs
are executed exclusively during the power-on (and sometimes also at power-off). It
is important to notice that this is not true for all the test programs executed in
field. Indeed, as demonstrated in [87], the run-time ones can actually benefit from
the caches.

This section is organized as follows: initially, the essential terminology used
throughout the chapter is introduced. Then, the different decentralized architec-
tures are described: starting from (for sake of a better comprehension) the descrip-
tion of an heterogeneous multi-resource scheduler, possible variants are analyzed
(namely single-resource heterogeneous and multi-resource homogeneous).

3.2.1 Terminology and definitions
The smallest software unit considered in this paper is a Test Program. This

term can be interchanged with self-test procedure or routine. From the scheduler
perspective, each test program is seen as an indivisible block. This means that
it cannot be interrupted (i.e., preemption not supported). A given test program
might or might not require one or more shared resource for its execution.

A shared resource is an on-chip hardware resource (e.g., a peripheral, or a
portion of memory) that offers some services to the test program in order to test
the processor core. Considering again the system RAM, the memory is used to
address fixed memory locations to better test specific portion of the processor (e.g.,
the address calculation unit, the branch prediction unit). In order to regulate
the usage of shared resources and avoid race conditions, the proposed schedulers
implement a synchronization mechanism based on semaphores.

Semaphores are one of the existing methods for achieving synchronization of
software executed on different processors. A semaphore is an abstract data type
(in most of the cases a shared variable) that regulates the access to a common
resource by multiple processors. Depending on the number of processors allowed
to access the common resource, the semaphores are distinguished in counting and
binary semaphores. The latter are also called mutex, since exclusively one processor
at a time can access the shared resource. When the processor is accessing the shared
resource is said to be executing the code of the critical section. The basic idea is
that the accesses to a shared resource are guarded by a suitable semaphore. Before
entering the critical section, the processor checks the status of the semaphore.
If the semaphore is available (i.e., unlocked), the processor tries to acquire the
semaphore, locking the access to the shared resource. Independently from the
low-level implementation, the mechanism used for checking and then acquiring the
semaphore must guarantee that the two operations are executed atomically.

Considering an STL, the critical sections the mutexes are guarding correspond
to the portion of code that invokes those self-test routines accessing the shared
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resources.

3.2.2 The common decentralized architecture
When implementing a multi-core execution of an STL, the major limitation is

represented by the boot-time tests. Indeed, some of them require hardware re-
sources which are shared by the different processors. One of the most fundamental
observation of this research, is that very few test programs actually require such re-
sources. On average, when considering an industrial STL, less than the 12% of the
tests composing the STL require the usage of shared resources. The remaining tests
exclusively use the the flash memory for fetching the instructions and accessing the
stack region of the system RAM (private for each core). From this observation it
is possible to conclude that only a minor portion of the tests cannot be executed
in parallel. It means that, if one of the objectives is to improve the execution time,
it is necessary to exploit better the parallelism offered by a multi-core system. Fol-
lowing this reasoning, it is possible to conceptually imagine a multi-core SoC as a
distributed system, in which different modules communicate via a shared medium
(i.e., the system bus). In the field of distributed systems, a popular scheduling
approach is based on decentralized schedulers [24]. These solutions are valuable
because they overcome the limitations of centralized approaches. In the latter,
there is a high degree of control over the scheduling process, since all the requests
are processed by a unique scheduler. Although it is conceptually easier to reason
and design according to this paradigm, the drawback is that the scheduling is not
so efficient in terms of performances. Instead, decentralized schedulers represent a
more efficient solution, since they have an intrinsic distributed nature which takes
full advantage of the underlying system. Typically, they are composed of a set of
local schedulers (built upon a first come, first served policy) interacting each other.
Therefore, there is less control over the scheduling itself. The proposed architecture
for the scheduler falls into this category: specifically for an STL, each scheduler
is local to each processor core. During the in-field execution, each local scheduler
independently executes the test programs. The interactions with other schedulers
are made when accessing a shared resource through a mutex (signalling whether
the resource is busy or free). Additionally, the devised decentralized schedulers
implement the selfish heuristic which is essential for providing deterministic execu-
tion time. Thus, they are named Decentralized Selfish Schedulers. Such heuristic,
described more in detail in the following, was derived experimentally from the ob-
servation of the behavior of several industrial STLs.

3.2.3 Multi-resource heterogeneous scheduler
Heterogeneous SoCs are characterized by having N processor cores of T different

types. Let us label each processor type with τ , τ ∈ [0, T ). Each type τ might differ
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under several aspects: Instruction Set Architecture, micro-architecture and others.
Therefore, each processor core type has a dedicated STLτ , specifically devised for
its features. Test programs composing a given STLτ might or might not access at
most Υ shared resources: each shared resource is denoted with υ, υ ∈ [0, Υ).

Thus, since each local scheduler is in charge for the execution of the STL on
the processor it targets, in this scenario there are T different Decentralized Selfish
Schedulers (hereinafter each scheduler will be referred with DSSτ ) images loaded
into the flash memory. The overall instances of DSSs are always equal to the number
of processor cores N . It is worth noting that T also represents the minimum number
of STLs allocated in the flash memory. In the following, it is described how the
proposed solution does not require more than T different STLs.

Ideally, when dealing with shared resources, the most immediate solution is to
serialize the access to the resource with a mutex. This solution works well when
considering a single shared resource. However, it might become inefficient when
considering multiple resources. Indeed, the system bus (when it is based on a
crossbar switch) of a multi-core system normally allows multiple masters to access
different slaves, given that there are not any conflicts. Namely, if a processor core
requests to access a given resource (e.g., a portion of memory), it is allowed to
access without being blocked by the activity of other processor cores (if it is the
only one requesting that resource). Yet, as mentioned earlier, the flash memory
represents the major issue to address when considering multi-core STL schedulers.
Actually, the flash memory can be thought as a further shared resource, since only
a limited number of reads can be performed in parallel. Although conceptually
the same reasoning is applicable also to the RAM memory, it has been observed in
the experiments in the next sections and in Chapter 2 that the impact of the flash
memory is considerably higher than the one of the RAM. This stems from the fact
that the vast majority of the test programs uses the system RAM most of the time
for accessing the stack region. Furthermore, the amount of time spent in accessing
the stack is limited compared to the overall activity of a generic test procedure. As
an example, considering the test programs of the STLs used, less than the 2% of
the total execution time is spent in stack-related operations (mainly for saving and
restoring the context). For the remaining time, the computations are performed
internally to the processor core.

Therefore, when considering a multi-resource scheduler, the maximum number
of read ports available on the on-chip flash becomes a crucial aspect in order to
achieve the best performances. Indeed, if there are enough read ports for each pro-
cessor core, then it is possible for the test programs to access the shared resources in
parallel. Otherwise, as it is detailed next in the experimental section, the overhead
introduced by the flash memory worsens the performances.

Under the assumption of having enough read ports on the flash memory, each
DSSτ requires globally an array of Υ mutexes (one for each shared resource). Since
the mutexes are the only way for the schedulers to communicate each others, they
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are allocated in the shared portion of the system RAM so that they are accessible
by any DSS. Instead, locally (i.e., for each instance of the DSS) Υ + 2 internal data
structures are required: one Test Table, one Pending List and Υ Share Resource
sets.

Considering a generic STLτ : the Test Table is an ordered set Λτ , containing
the list of test programs (the i-th test program is denoted with λτ,i). It defines the
execution order for the test programs composing a given STLτ . It is important to
note that the order specified in Λτ is identical for each processor core type τ .

The test programs of the STLτ that cannot be executed in parallel due to
conflicting accesses to a system shared resource υ are also present in the respective
Share Resource set δτ,υ. In general, for a given core τ there could be at most
Υ Share Resource sets. The actual number of shared resources (and thus Share
Resource sets) used by the test programs of a processor STLτ is Υτ , Υτ ∈ [0, Υ).
Let us denote with ∆τ the class formed by the union of the Share Resource sets,
namely:

∆τ =
Υτ⋃︂
υ=0

δτ,υ ⊆ Λτ

The sets composing ∆τ are assumed to be disjointed, i.e., a given test program
can use only one shared resource. This assumption should not be considered as
restrictive, since the scheduling logic is oriented to promote the most frequent case.
Indeed, from the observation of several industrial STLs this is actually the most
common situation.

In the following, it is assumed that Λτ is ordered according to the selfish heuristic
introduced beforehand. According to this heuristic, the test programs composing
∆τ are the first ones in the Λτ sequence. The order of the different δτ,υ within
∆τ does not affect the performances of the scheduler. The actual number of test
programs executed is tracked by a different set, the Pending List Φτ . Differently
than in Λτ , the order of the elements composing Φτ and the various δτ,υ is irrelevant.

Given these definitions, each processor core invokes one of the T different DSSτ

(whose pseudo-code is listed in Algorithm 1) depending on the processor type τ .
Initially, |Φτ | = |Λτ |.

The scheduler sequentially selects one test program λτ at a time from Test Table
Λτ (coherently with the specified order, line 6), and it checks whether the selected
test program is still present in Pending List Φτ (that is, not yet executed, see line
7). If so and at the same time the selected test program does not belong to any of
the Υτ Share Resource sets (line 8), it can be executed. Once executed (line 24),
it is also removed from the Pending List (line 25), reducing the cardinality of the
set. Contrarily, if the test program is also present in one of the Share Resource
sets (line 8), the test program can be executed given that the shared resource υ
is not busy. This is achieved through a suitable mutex (line 10), which signals
to each local scheduler whether another scheduler is currently executing another
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test program belonging to the same Share Resource set δτ,υ. Therefore, the critical
section corresponds to the portion of code executing tests belonging to ∆τ (lines
10 to 18). If the resource υ is not free, the test program is skipped. Instead of
performing busy waiting (i.e., waiting for the resource υ to be freed), the scheduler
tries to execute another test program (line 20). If the resource is free, the test
program is executed (line 11) and removed from Pending List (line 12). The STL
execution completes when there are no more test programs to be executed, that is
the pending list is empty (line 4).

As it can be noticed, the scheduler does not release the mutex (lines 14 to 18) as
long as the next sequential test program still uses the same shared resource υ. This
is the second feature of the selfish heuristic. In practice, the first local scheduler
that acquires the mutex for a given shared resource υ, executes consecutively all the
test programs within the same Shared Resource set δτ,υ. It is noteworthy that this is
done without freeing the shared resource υ. The experimental observations leading
to this heuristic are discussed in the next section. The intent was the reduction of
the number of conflicts (namely clock cycles of stalls) during the parallel execution
of the library. Indeed, the faster software programs in a multi-core scenario are
those with fewer number of clock cycles of stalls [71].

Actually, not releasing the mutex along with the Test Table ordering mentioned
at the beginning assumes a crucial aspect for achieving determinism and efficiency.
At the same time, it considerably reduces the clock cycles of stalls while executing
the STL.

The scheduler falls into the category of the non-preemptive schedulers, as test
programs are not interrupted during their execution. Instead, a given test program
can be skipped. This means that the proposed scheduler does not alter the fault
coverage of the boot-time tests. As stated in [13], as long as boot-time tests are
not interrupted the fault coverage is not altered.

It is important to notice that, from the moment the test begins, each core
is completely independent. This is one of the main characteristics of decentral-
ized schedulers, which avoids complex centralized control mechanisms that would
downgrade the overall efficiency. Moreover, in multi-core SoC such complex control
mechanisms would be further counterproductive due to the high non-determinism
of the system itself and the fact that the test is performed autonomously in field
(without external testing facilities). Actually, the proposed decentralized scheduler
is highly scalable while guaranteeing minimum resources overhead. This property
stems from the fact that each instance of DSSτ exclusively uses the private stack
memory of each core (making the local scheduler itself reentrant). In embedded
systems, the size of the stack region is determined in advance and it is large enough
to accommodate the requests of the different functions invoked during the system
lifetime. The most important aspect is that once a given function terminates its
execution and returns to the caller, the stack memory reserved for that function is
deallocated.
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Algorithm 1: Heterogeneous Multi-resource DSS
// Λτ is the Test Table
// Φτ is the Pending List
// δτ,υ is a generic Share Resource set
// ∆τ is the union of Share Resource sets

1 Function DSSτ () is
2 Φτ ← Λτ ;
3 MaintainMutexτ [Υτ ] ← false;
4 while |Φτ | /= |∅| do
5 i ← 0;
6 for λτ,i ∈ Λτ do
7 if λτ,i ∈ Φτ then
8 if λτ,i ∈ ∆τ then
9 υ ← GetSharedResIndex(λτ,i);

10 if Acquire(Mutex[υ]) is successful ∨ MaintainMutexτ [υ] is
true then

11 Execute λτ,i;
12 Φτ ← Φτ\ {λτ,i};
13 i ← i +1;
14 if λτ,i ∈ δτ,υ then
15 MaintainMutexτ [υ] ← true;
16 else
17 MaintainMutexτ [υ] ← false;
18 Release(Mutex[υ]);
19 end
20 else
21 i ← i +1;
22 end
23 else
24 Execute λτ,i;
25 Φτ ← Φτ\ {λτ,i};
26 i ← i +1;
27 end
28 end
29 end
30 end
31 return;
32 end
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This means that all the data structures required by each local scheduler no
longer exists after the scheduler completes. The only data enduring after the end
of the test are the global variables for implementing the mutexes, which requires a
limited portion of the global memory region only. Finally, the scheduling solution
presented above requires exactly T STLs memory images in the flash memory. The
very same number of STLs is required for a single-core execution (i.e., each core
not tested in parallel).

In the following subsection, the single-resource multi-core scheduler is first ad-
dressed. This case is particularly interesting since (as it is demonstrated in the ex-
perimental section) it can be useful even for implementing a multi-resource sched-
uler. When the on-chip flash memory has not enough read ports, the overhead
generated by the parallel access to shared resources becomes unsustainable. Hence,
it is worth to resort to a single-resource approach. The remaining cases for homo-
geneous systems are discussed as they can be derived from the heterogeneous one
above by relieving some parameters.

3.2.4 Single-resource heterogeneous scheduler
A single-resource multi-core heterogeneous scheduler can be derived from the

one in Algorithm 1. In this case, as there is a unique shared resource, the number
of shared resources is Υ = 1. Given that, there is also a unique shared resource set:

∆τ = δτ,0 ⊆ Λτ

Thus, all the vectored data variables (i.e., MaintainMutexτ and Mutex) become
a vector of one element (namely, scalar data variables). As already anticipated,
this single-resource scheduler might be used also when dealing with multiple shared
resources. In this case, all the shared resources present in the system can be ideally
grouped in a single resource. It means that, even though the resources are physically
separated, they are treated logically as a unique resource. The rationale is the
same used for deriving the selfish heuristic: those test programs that generate more
activity on the system bus are executed on only one core at a time. As demonstrated
in the experimental section, in some cases this yield significant improvements when
there are not enough read ports in the flash memory.

3.2.5 Multi/Single-resource homogeneous scheduler
Unlike the heterogeneous ones, the homogeneous SoCs have N processor cores

but all of them belong to the same type (T = 1). The multi-resource scheduler is
derived from Algorithm 1 by imposing τ = 0. In this case, all the N processors
execute the same STL0 by invoking the same scheduler DDS0. The same reasoning
concerning the multi and single-resource scenario is also applicable to these systems
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(i.e., number of read ports on the flash memory). Finally, when T = 1 and Υ = 1
the Algorithm 1 becomes a single-resource homogeneous scheduler.

3.2.6 Summary
Throughout this section different decentralized schedulers for STLs were intro-

duced. The functional safety engineers can select the most appropriate scheduling
solution depending on:

1. SoC type (i.e., heterogeneous or homogeneous);

2. the number of system shared resources accessed by the STLs;

3. the level of parallelism offered by the flash memory (i.e., number of read
ports).

It is worth noting that the proposed solutions allow for a seamlessly integration
of multi-resource and single-resource schedulers together. Indeed, as each data
structure required by the scheduler is private, they do not influence each others. In
practical terms, STLs with different number of accessed shared resources are fully
supported.

For concluding this section, Figure 3.2 depicts a practical example.

Figure 3.2: Temporal evolution of the execution of the two heterogeneous schedulers
across the processor cores. The test programs in light gray indicates those accessing
a shared resource.
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Figure 3.2 considers a simplified scenario of an heterogeneous multi-core system
with two cores (CORE A and CORE B) and with a dual-port flash memory. Thus,
it is possible to use the scheduler discussed in subsection 3.2.3. As there are two
different processor cores T = 2, CORE A is of type 0 (i.e., τ = 0) and CORE
B is of type 1 (i.e., τ = 1). For CORE A the STL0 (managed by the scheduler
DDS0) is composed by four test programs (λ0,0, . . . , λ0,3). Whereas, for CORE B,
the STL1 (managed by the scheduler DDS1) is composed by three test programs
(λ1,0, λ1,1, λ1,2). Test programs belonging to both STLs access two shared resources,
thus Υ = Υ0 = Υ1 = 2 (guarded by Mutex 0 and 1 respectively). For each STLτ

there are two shared resource sets δτ,0 and δτ,1. For the STL0, λ0,2 accesses the
shared resource υ = 0, while λ0,1 the shared resource with υ = 1. Instead, for the
STL1 the two programs are λ1,1 and λ1,0 respectively. Given these characteristics,
the required data structure for each scheduler are filled as depicted in Figure 3.2.
It is noteworthy that the test table Λ0 and Λ1 are ordered so that the test programs
accessing the shared resource 0 are the first ones. Then, the test programs accessing
the shared resource 1 followed by those not requiring any shared resource. At the
beginning, both mutexes are free. Then, assuming that CORE B is the first one
able to lock the Mutex 0, it can execute λ1,1. At this point the other CORE A is
not able to execute λ0,2 (Mutex 0 is still locked) which is eventually executed later.
Hence, it tries to lock Mutex 1 for executing λ0,1 (the second program in its test
table). As the shared resource 1 is not used by any processor core, the Mutex 1
is free and successfully locked by CORE A. After λ0,1 completes, the Mutex 1 is
released. Concurrently, CORE B frees the Mutex 0 since it is no longer required.
CORE A proceeds with the sequential order specified in its test table executing
those test programs not requiring any shared resource. CORE B does the same by
locking successfully Mutex 1 and executing λ1,0. Once this test program terminates,
CORE B begins the execution of the last test. On the other hand, CORE A before
completing has still a test program not executed, namely λ0,2, which was previously
skipped. Therefore, before terminating it locks Mutex 0 (now free) and it executes
its last test program. After the execution of this test program, both schedulers
have their Pending Lists empty. Thus, the execution can proceed with the normal
boot sequence.

3.3 Experimental results
This section is organized as follows: initially, the two industrial designs (and its

STLs) adopted for the experiments are described. Then the experiments considering
the single-resource multi-core scheduler for homogeneous MPSoCs are reported. It
is also reported the experimental evidences behind the selfish heuristic. In the
successive subsection, the single-resource multi-core scheduler for heterogeneous
MPSoCs is validated. Finally, the multi-resource scheduler for both homogeneous
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and heterogeneous MPSoC is discussed.

3.3.1 Case study and experimental setup
The two devices used to prove experimentally the effectiveness of the proposed

schedulers are two triple-core (each core labeled with A, B and C) SoCs manufac-
tured by STMicroelectronics, designed to meet automotive applications ranked as
ASIL D. Hereinafter, these two designs are named D1 and D2. The former is an
heterogeneous SoC, while the latter is homogeneous. The high-level architecture of
these two devices is depicted in Figure 3.3. As it can be viewed, the global system
interconnect is based on an AMBA® interconnect implemented as a crossbar switch,
that connects the masters to the slaves (i.e., memories and peripherals). In case
two masters compete for the same slave, the arbitration policy is the classical round
robin. Nevertheless, the crossbar can be optionally configured to support schemes
based on fixed priority (for hard real-time tasks). For both devices the memory hi-
erarchy is composed as follows (from the innermost up to the outermost level): the
closest (to each processor core) level of memories is represented by tightly-coupled
SRAMs and private instruction and data caches. Then, there are the system RAM
(608 KBytes for D1, 128 KBytes for D2) and the Flash memory (6 MBytes for
both). The flash memory is organized so that there are two different read ports.
Moreover, in the experiments, each core was allowed to use exactly no more than
2KBytes of system RAM as private stack memory. Focusing on D1, core A and B
implement the same 32-bit instruction set, while core C implements an extended
instruction set able to deal with 64-bit operands. For this device, the operating
frequency ranges from 16MHz up to a maximum frequency of 180MHz.

For the design D2, being homogeneous, each processor core implements the
same instruction set with 64-bit operands and additional instructions to implement
signal processing features. Concerning the operating frequency, the minimum is
16MHz (as for D1), while the maximum is 200MHz.

Given these two devices, three STLs are required (two for D1, the other for
D2). The most relevant characteristics of these STLs are reported in Table 3.1.
All the three STLs require two shared resources: the system RAM and the Inter-
rupt Controller (INTC). The latter is a clear example in which replication is not
feasible, since each design has only one INTC. Such resource handles the external
interrupts since the internal interrupts (i.e., exceptions) are handled by specific
modules within each processor cores. Therefore, it is used by a specific test pro-
gram that tests the capability of the processor core to react to external interrupts.
For both D1 and D2 the execution time has been derived by using an operating fre-
quency of 16MHz. This frequency was used also for all the performed experiments
and gathered directly on the manufactured devices exploiting the available on-chip
hardware timers. In general, the term Execution Time includes both initialization
phase and the boot-time test phase. During the former, the processor internal
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Figure 3.3: Internal architecture of the considered multi-core System-on-Chips.

state is initialized for the test (namely registers, interrupt service routines). In the
latter, the STL is actually executed. In order to obtain the highest possible fault
coverage, it is common practice to execute the entire library at the device startup
(i.e., both boot-time and run-time tests). Then, the run-time tests are executed
periodically when the system is on-line. To obtain a realistic use case of an STL in
the automotive field, the STLs were configured in this way.

Table 3.1: Single-core characteristics of the three STLs for the designs D1 and D2.

Design Target Core Ex. Time
@16MHz[ms]

Flash
Occupation [KB]

# Boot-time Tests
# Run-time Tests # Tot TestsNot sharing resources Sharing resources

RAM INTC

D1 A, B 18.34 377 41 16 1 25 83
C 24.1 403 58 17 1 47 123

D2 A, B, C 29.7 430 57 13 1 34 105

Moreover, when considering the multi-core scenario, the following setup was
used:

1. to reproduce the worst scenario from the contention point of view, the mea-
surements were gathered aligning the execution of the processor cores;

2. during the dual-core experiments, the third core was completely switched off
for avoiding influencing the outcome of the measurement itself;

3. the execution time is computed from the moment all the processor cores are
aligned to the moment the last processor core completes the test.

For the sake of experiments reproducibility, the following setup was used, avoid-
ing features that would be too specific for the considered cases: for the crossbar,
the default arbitration was adopted (round robin). The tightly-coupled SRAMs
were not used, as they are not always available. Also the caches were disabled and
possibly activated exclusively by those test programs that actually require them.
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3.3.2 Single-resource homogeneous multi-core scheduler: se-
rial scheduling

In the following exclusively the design D2 is considered. Since the analysis is
for single-resource schedulers, the self-test program requiring the INTC is excluded
(it is discussed later in the chapter when considering the multi-resource scheduler).

A preliminary set of experiments consisted in measuring the execution time of
the STL when using a serial scheduler (i.e., the STL is executed serially on each
core). These measurements are used as a reference point, being the upper bound
of any multi-core scheduler. The measurements are shown in Table 3.2 and were
gathered considering the STL executed on 2 and 3 cores.

Table 3.2: Performances of the serial scheduler @16MHz for D2

# Active Cores Execution Time [ms]
2 57.15
3 88.01

3.3.3 Single-resource homogeneous multi-core scheduler: non-
selfish decentralized schedulers

To prove that the proposed decentralized scheduler is valid, this set of experi-
ments focused on analyzing the performances of different decentralized scheduling
algorithms. They differ from the proposed one since they cannot be considered
selfish (that is, the mutex is released even though the next sequential self-test pro-
cedures still belong to the Share Resource set). The considered schedulers are listed
in Table 3.3.

Table 3.3: Performances of different decentralized schedulers @16MHz for D2

Decentralized Scheduler Execution Time [ms]
2 Active Cores 3 Active Cores

DS1 40.18 71.93
DS2 49.31 79.89
DS3 39.87 66.80
DS4 41.12 71.42
DS5 41.81 79.80

Each of these decentralized schedulers considers different formats of Test Table:
in DS1 the order of the self-test procedures is random. A total of 30 random or-
ders were generated, and DS1 represents the best random ordering. It is worth to
underline that the differences between the generated random orders were minimal.
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Table 3.4: Performance counters values for the triple-core scenario for D2

Decentralized Scheduler
Flash Memory

Stalls
[CC]

System RAM
Stalls
[CC]

DS1 1,878,336 663,386
DS2 1,932,409 791,922
DS3 1,589,729 478,264
DS4 1,738,412 525,011
DS5 1,929,209 788,668

Therefore, for sake of conciseness, exclusively 30 random orders were generated
and the best order is reported. DS2 orders the self-test procedures so that those
included in Share Resource are executed first. The order of the self-test procedures
within Share Resource is random. Differently, in DS3 the self-test procedures within
Share Resource are ordered according to the duration of the self-test procedures
themselves (with a descending order). For both DS2 and DS3 the remaining self-
test procedures (i.e., those not included in Share Resource) are ordered randomly.
Finally, DS4 and DS5 considers the self-test procedures still ordered according to
their duration (descending and ascending order respectively), but independently
from the fact that they could also belong to the Share Resource set. As it can be
viewed in Table 3.3, DS3 is the decentralized scheduler yielding the best perfor-
mances. This is justified by the fact that it is the scheduler that better reduces the
memory access contention, as shown in Table 3.4.

Table 3.4 reports the values of the on-chip performance counters for the triple-
core scenario (being the worst case from the access contention viewpoint). The first
column reports the schedulers names. In the second column, the number of clock
cycles corresponding to stalls due to the access contention for the Flash memory
is reported. The third column shows the clock cycles corresponding to stalls due
to access contention for the system RAM. It is worth noting that any multi-core
scheduler is limited by the shared memory architecture: as an example, considering
exclusively the Flash memory, when moving from a single-core implementation to
a multi-core one, the total number of clock cycles stalls increased from 200,679 to
1,589,729 (with the DS3 scheduler). Hence, as confirmed by the values present in
the second column of Table 3.4, the Flash memory represents the real bottleneck.
The scheduler DS3 may seem the most promising one, since it reduces substantially
the execution time in both dual-core and triple-core scenarios. However, further
experiments showed that it could hardly be used in an industrial context. Although
it meets some of the requirements (minimum system resources usage), it suffers from
a non-deterministic execution time when the number of tests composing the Share
Resource set varies.
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The results of the third set of experiments are shown in the charts of Figures
3.4 and 3.5, for the dual and triple-core scenarios, respectively. In both cases, it
was increased progressively the number of self-test procedures composing the Share
Resource set, that is the set of procedures requiring the use of a shared resource.
This was done adding one self-test procedure at a time, which was not originally
part of the Share Resource set. It is noteworthy that this does not mean altering
the total number of programs composing the STL.
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Figure 3.4: For design D2, the DS3 execution time (y-axis) at 16MHz when in-
creasing the number (x-axis) of self-test procedures in the Share Resource set in a
dual-core scenario.

For both figures, the orange line represents the execution time when increasing
the size of the Share Resource set, inserting in a descending order the self-test pro-
cedures starting with the longest test programs in terms of duration (their duration
is in the range 10,000 to 23,000 clock cycles). The blue one instead represents the
behavior of the scheduler when increasing the size of the set, inserting in an ascend-
ing order the self-test procedures starting with the shortest test programs (duration
ranging from 500 to 1,000 clock cycles). The red line represents the threshold im-
posed by the serial execution. Since the purpose is to show the indeterminacy of
these approaches, it was decided not to consider more than 25 self-test procedure
composing Share Resource.

It can be noticed comparing the two charts that the execution time is not
predictable and it presents non-negligible oscillations. By monitoring the STL exe-
cution on each processor core using an external debugger, it was observed a higher
memory access contention. In particular, it emerged that these fluctuations are
caused by the alternated execution of the test programs composing the Share Re-
source set with test programs not belonging to this set. Clearly, these fluctuations
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Figure 3.5: For design D2, the DS3 execution time (y-axis) at 16MHz when in-
creasing the number (x-axis) of self-test procedures in the Share Resource set in a
triple-core scenario.

are not acceptable. Indeed, it is worth mentioning that industrial STLs are designed
to be configurable: the final customer (i.e., the system company) decides whether
some self-test routines are required or not. As an example, if the floating-point
unit is not used, the customer may decide to not execute the self-test procedures
targeting that unit.

Considering Figure 3.5, an example of fluctuations is when moving from 19 to
18 self-test procedures in the Share Resource set. This may well be the typical
scenario in which a customer, using the STL, decides to disable one test program.
With 19 tests the execution time is below the threshold of the serial execution,
but when reducing the tests the execution time actually increases above the serial
execution.

3.3.4 Single-resource homogeneous multi-core scheduler: the
Decentralized Selfish Scheduler

The experiments of this subsection involves the proposed decentralized selfish
scheduler described in the previous section. From the results presented in Table 3.4,
it appears that DS3 outperforms the other schedulers since it reduces the memory
access contention. The reason for this reduction (confirmed again by monitoring the
schedulers execution) originates from the fact that if the longest tests are executed
first, it is likely that they will keep the shared resource busy for a considerable
amount of time. This forces the other local schedulers to execute the self-test
procedures not included in Share Resource and then wait for the shared resource
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to be freed. This significantly reduces the bus activity, but as the experiments of
Figure 3.4 and 3.5 confirmed, it depends on the actual duration of the self-test
procedures composing the Share Resource set.

The proposed DSS enforces this condition with the devised order for Test Table
and maintaining the resource busy until all the test programs in Share Resource
are executed. The latter in particular avoids the alternated execution mentioned
above, that causes the oscillations present in the scheduler DS3. Table 3.5 reports
the comparisons among the serial scheduler, the DS3 scheduler and the proposed
selfish scheduler when executing the STL with the original number of test programs
in the Share Resource set (namely 13).

Table 3.5: Performances of the Decentralized Selfish Scheduler @16MHz for D2

# Active Cores Execution Time [ms]
Serial Scheduler DS3 DSS

2 57.15 39.87 38.27
3 88.01 66.80 57.18

Table 3.6: Overhead of the Decentralized Selfish Scheduler for D2

Overhead Single-Core STL Triple-Core STL
Memory Footprint [KB] 429 489

Execution Time [ms] 29.01 29.51

As it can be observed by comparing the second and the fourth column of Table
3.5, the proposed solution reduces considerably the execution time of about 33% and
35% (for the dual-core and triple-core scenarios respectively). This is significant,
since especially in the triple-core scenario the execution time improves with respect
to DS3 of about the 14% and it is comparable with a serial execution but in a
dual-core scenario. It is worth noting that the order of the self-test procedures
within Share Resource is now irrelevant: the test programs within Share Resource
are executed as an unique block.

Clearly, having multiple copies of the STL in the code memory would be ben-
eficial for any multi-core scheduler. However, this is normally not possible when
dealing with in-field test of embedded systems since this means a flash memory oc-
cupation two to three times higher than in a single-core scenario. As an example,
considering the STL under analysis, the single-core version of the library occupies
429 KBytes while the triple-core version is 489 KBytes. Therefore, having indepen-
dent copies of the single-core version is not acceptable since it leads to an excessive
memory usage. On the other hand, the overhead from a timing point of view of
the proposed scheduler is also modest, since it accounts for about 0.5ms. Table 3.6
summarizes the main characteristics of the proposed scheduler from a timing and
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memory footprint viewpoint for the triple-core scenario (being the worst possible
in the considered case study).

The same experiments performed with DS3 were repeated and the results are
shown in Figure 3.6 and 3.7 for the dual and triple-core scenario, respectively. The
behavior illustrated in Figure 3.6 and 3.7 is now much more predictable compared
to the charts depicted in Figure 3.4 and 3.5. Furthermore, it can be seen that the
execution time in the dual-core scenario (Figure 3.6) is always lower than the serial
execution, unlike the behavior of DS3 (Figure 3.4). It is important to note that
in the triple-core scenario (Figure 3.7), the orange line after 21 self-test procedures
in Share Resource crosses the red line. In more practical terms, it means that
the execution time of the decentralized scheduler exceeded the serial scheduler.
However, this represents an exaggerated case since the added test programs have
a duration between 23,000 and 10,000 clock cycles (which is quite unrealistic in
practical applications).
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Figure 3.6: For design D2, the proposed DSS execution time (y-axis) at 16MHz
when increasing the number (x-axis) of self-test procedures in the Share Resource
set in a dual-core scenario.

In order to asses the maximum achievable performances of the proposed sched-
uler, a further set of experiments focused on increasing the size of the Share Re-
source set, including progressively self-test procedures from Test Table not present
originally in Share Resource. As in the experiments described in Figure 3.4, 3.5,
3.6 and 3.7, the self-test procedures were included starting from the shortest ones
(in terms of duration) to the longest ones. However, the substantial difference with
respect to the previous experiments is the fact that the aim is to increase the size
of the Share Resource set as much as possible, well beyond the 25 self-test pro-
cedures of the aforementioned experiments. Figure 3.8 depicts the results of the
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Figure 3.7: For design D2, the proposed DSS execution time (y-axis) at 16MHz
when increasing the number (x-axis) of self-test procedures in the Share Resource
set in a triple-core scenario.

experiments for two and three cores.
For sake of generality, it is more convenient to express the results of Figure 3.8

using as x-axis the percent ratio between the duration of the Share Resource set
and the total duration of the boot-time tests. It is important to underline that, in
the considered STL, the tests labeled as boot-time are 70 out of 104. Therefore, 70
is also the maximum number of tests that can be included in the Share Resource
set since the remaining 34 are run-time tests that are always present and by defi-
nition cannot be included in the Share Resource set. Figure 3.8 shows that up to
a duration equal to 67% of the total duration of the boot-time tests, the execution
time of the proposed decentralized scheduler is lower compared to a serial scheduler
(for both dual-core and triple-core scenarios). It is noteworthy that a 67% figure
corresponds to include in the Share Resource set 65 out of 70 self-test procedures.
This means that it was possible to execute the vast majority of the test programs
that can be labeled as boot-time tests. For completeness, the measurements cor-
responding to 90% and 100% of the boot-time duration were also gathered. In
this case the execution time exceeded the one of the serial scheduler, since the
last 5 test programs are the longest that can be included (each one requiring more
than 15,000 clock cycles to execute). However, it is uncommon having such long
programs accessing the system RAM for testing purpose. Typically, only few test
programs require a shared portion of the system RAM for test purposes. There-
fore, when considering a reasonable percent ratio of duration of the Share Resource
set (namely 30-50%), the performances of the proposed decentralized scheduler are
always superior compared to a serial scheduler.
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Figure 3.8: For design D2, the proposed DSS execution time (y-axis) at 16MHz
when increasing the duration (x-axis) of the Share Resource set. The blue and red
dotted lines represent the serial scheduler for dual-core and triple-core scenarios,
respectively.

By comparing the results shown in Figure 3.6, 3.7 and 3.8 it can be observed
that as the size of the Share Resource set increases, the execution time of the de-
centralized scheduler degrades faster in a triple-core scenario than in the dual-core.
This depends mainly from the fact that three active processors generate consider-
ably more activity in the system bus than two processors (taking into account also
the parallelism of the flash memory).

3.3.5 Single-resource multi-core heterogeneous scheduler:
the serial scheduler

The set of experiments described in the following considered the heterogeneous
design D1. Again, the test programs using the INTC were momentarily excluded
from the STLs since the focus is a single-resource scenario. Given this setup, the
obtained results when using a serial scheduler are summarized in Table 3.7. The first
two rows report the single-core execution time of the two libraries when executed
without the test using the INTC. It is worth noting that the first row indicates the
single-core execution of both core A and B (since they are of the same type, they
execute they same STL).
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Table 3.7: The single-resource serial scheduler @16MHz for D1.

Active Cores Execution Time [ms]
A (or B) 17.5

C 23.63
A (or B), C 41.52

A, B, C 61.68

3.3.6 Single-resource multi-core heterogeneous scheduler:
the Decentralized Selfish Scheduler

To prove that the decentralized selfish scheduler is valid also in the heteroge-
neous scenario, the experiments described in the following focused on analyzing the
performances of different decentralized schedulers. They differ from the proposed
one since they cannot be considered selfish. For sake of conciseness, the two sched-
ulers that achieve similar performances when compared to the proposed one were
exclusively considered. Hereinafter, these schedulers are referred as DS1 and DS2.
The proposed one is still named DSS. The scheduler DS1 is a non-selfish decentral-
ized scheduler, and its test table is ordered randomly. Instead, DS2 maintains the
same ordering as DSS, but it still does not implement the selfish heuristic. Although
these two schedulers represent a valid alternative to the proposed one, again they
all suffer of a non-deterministic execution time when the number of test programs
using the shared resource varies. In these experiments multi-core configurations
with 2 and 3 active cores were considered. For both scenarios, similarly to what
was done in previous experiments, it was increased progressively (considering both
a ascending and descending order) the number of test programs needing the shared
resource (in this case, only the system RAM) of both STLs. Figures 3.9 and 3.10
depict the evolution of the four scheduling alternatives (the three decentralized with
the serial scheduler) in the four aforementioned configurations (i.e, dual/triple-core
and ascending/descending). The y-axis reports the execution time in milliseconds
(always measured at 16MHz), while the x-axis the number of test programs using
the system RAM in the two STLs (thus, represented by a pair of values). The
dual-core scenario is analyzed in Figures 3.9a and 3.10a (ascending and descending
order respectively), while the triple-core in 3.9b, 3.10b. When considering a dual-
core execution (Figure 3.9a, 3.10a), all the three decentralized schedulers represent
a valid solution as they considerably reduce the execution time compared to a serial
approach. Notably, on average there was observed a execution time reduction with
respect to a serial approach of the 36% when considering the ascending order, while
a 28% with the descending order.

However, the situation radically changes when dealing with a triple-core system
(Figure 3.9b, 3.10b). Concerning the ascending order in Figure 3.9b, there was
observed a similar trend to the cases described beforehand with an execution time
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Figure 3.9: For D1, evolution of the execution time at 16MHz of different single-
resource decentralized schedulers with respect to the serial scheduler when consid-
ering an ascending order. The dual-core scenario is shown in (a), the triple-core
one in (b).

reduction of the 38%. Nevertheless, the same is not true when considering larger
test programs (i.e., the descending order of Figure 3.10b). Coherently with the pre-
vious experiments, a parallel (i.e., decentralized) execution does not always yield
an improvement in the execution time as one would expect. Specifically, the two
non-selfish schedulers DS2 and DS1 eventually exceed the threshold imposed by
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Figure 3.10: For D1, evolution of the execution time at 16MHz of different single-
resource decentralized schedulers with respect to the serial scheduler when consid-
ering a descending order. The dual-core scenario is shown in (a), the triple-core
one in (b).

the serial scheduler (in the worst case by 12%). Also in this scenario, the proposed
one (DSS) always yield better performances than the other considered solutions.
The only exception is Figure 3.9a in which DSS and DS2 have approximately the
same behavior. Additionally, the DSS remains always below the threshold given by

50



3.3 – Experimental results

the serial solution, represented by the red straight line. Finally, also in these ex-
periments the proposed selfish scheduler exhibits a predictable (i.e., deterministic)
behavior compared to other decentralized solutions.

3.3.7 Multi-resource multi-core scheduler
In this last set of experiments, the full set of test programs were considered for

both designs. The most relevant characteristics of the multi-resource scheduler in
terms of memory footprint are reported in Table 3.8. It is important to notice that
the figures reported in Table 3.8 are indicative as they might vary depending on
the actual implementation. In this chapter, the scheduler was implemented in C,
while the synchronization primitives were written in assembly. The data structures
described in required by the scheduler were implemented as static arrays, since
dynamic memory allocation is not allowed in safety-critical applications. As it
can be noticed, the overhead of the shared portion of system RAM is negligible.
Actually, most of the data structures resides in the stack memory region. The
only data required by the scheduler to be allocated in shared portion of memory
are the mutexes, which can be easily encoded in 1 byte each. Concerning the
stack overhead, this has to be intended as the additional amount of stack memory
required for each processor core with respect to a single-core STL. However, it is
worth noting once again that when the test completes, these regions are completely
de-allocated and can be fully used by the user application. Concerning the flash
overhead, compared to a single-core implementation or serial implementation, each
scheduler accounts for about 64KBytes. Considering D1, the fourth row indicates
cumulative overhead of the two schedulers in memory. As the scheduler is written
in C, the overhead of a single scheduler does not change with the design. Although,
it is also important to say that in case of D1 the two schedulers share some parts of
the code (e.g., synchronization primitives and other utility functions). As a result,
the final overhead is less than the sum of the two libraries.

Table 3.8: Multi-resource scheduler overhead for D1 and D2.

Target Design D1 D2
Target Core A, B C A, B, C

Stack Overhead [B] 249 369 315
Flash Occupation [KB] 752 494

Shared RAM Overhead [B] 2 2

Concerning the performances, using a multi-resource scheduler does not always
produce the desired results. Because of the limited parallelism of the flash memory,
in some cases the single-resource selfish scheduler should be preferred. In order to
use a single-resource scheduler, all the shared resources are logically grouped into
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Figure 3.11: Multi-resource scenario: schedulers performances in dual and triple-
core configuration. Picture (a) reports the figures for the design D1, whereas (b)
for D2. The light blue bars represent the multi-resource scheduler. The red ones
represent the single-resource alternative, with the shared resources logically grouped
into a unique shared resource. In (b) the y-axis was split in different ranges to allow
a better observation.

a single shared resource. Figure 3.11 shows the performances of the multi-resource
scheduler against the single-resource one used for multiple shared resources. For
both designs, the dual and triple-core configurations are reported. As it can be seen,
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when considering a dual-core configuration, the multi-resource scheduler performs
better than the single-resource one. Indeed, the same trend was observed in both
D1 and D2. This is due to the parallelism of the flash memory, which is able
to sustain the concurrent access of the two active cores. The improvement of a
multi-resource scheduler is not so evident because in the selected case study there
exist exclusively two shared resources, which represents the most common situation
that is found in modern industrial STLs. Moreover, the INTC is used by one
test program only which limits the maximum achievable improvement. When the
number of active cores increases, the multi-resource tend to be outperformed by
the single-resource scheduler. This is shown in homogeneous designs as D2 (Figure
3.11b), when compared to heterogeneous D1 (Figure 3.11a). In D2 the system bus
activity is higher because the three cores reference exactly the same addresses. As
a consequence, they provoke more conflicts when accessing the memory subsystem.

3.3.8 Final Considerations
One important assumption of the proposed decentralized selfish schedulers is

the fact that all the share resource sets δτ,υ are disjointed. In practical terms, a
given test program can access exclusively one shared resource. It should not be
considered a limitation, as test programs are devised to test a precise portion of
the processor core. Notwithstanding, in case of a test program accessing two shared
resources, the following solutions might be adopted:

1. If applicable, the test engineer should consider to split the test programs in
two or more sub-programs;

2. Exclude the test programs from the STL, which is executed in parallel with the
most appropriate scheduler. The excluded test programs are then executed
serially on each core. By doing so, most of the library is executed in parallel,
while only a few test programs are not.

In any case, the basic idea behind the effectiveness of these decentralized selfish
schedulers is to make the common and most frequent case faster. Therefore, the
proposed architecture was preferred to those general solutions (that adds complexity
to the software) that accommodates all the possible existing scenarios but inevitably
downgrade the achievable performances.

Additionally, according to the development flow presented in [13], test pro-
grams are independently developed and then fault graded. Their cumulative effect
is later considered for computing the final fault coverage figures. As it is exten-
sively discussed in the above-mentioned paper and also in Chapter 2, adopting
the described development flow reduces the computational effort during the fault
simulation process. Furthermore, another positive side effect stems from the fact

53



Decentralized Schedulers for STLs in automotive MPSoCs

that the computed fault coverage does not depend on the actual test program or-
der. In particular, as long as the boot-time tests are not interrupted during their
execution, the fault coverage is not altered. Therefore, since the proposed decen-
tralized scheduler does not preempt the self-test procedures, the fault coverage is
not altered.
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Chapter 4

Hybrid on-line self-test
mechanism for comparators of a
DCLS processor

The Dual-Core Lockstep (DCLS) configuration is largely employed in safety-
critical MPSoCs for the sake of compliance with ISO26262 to detect single-point
faults. Such configuration includes two processor cores paired together, always fed
with the same identical inputs and their outputs are continuously compared by a set
of comparators. However, permanent latent faults affecting the comparators may
invalidate the system functionalities, thus in-field self-test mechanisms are manda-
tory. This chapter is organized in three main section. In the background section,
motivations, related works and other possible self-test solutions (with advantages
and limitations) are discussed. Then, a hybrid hardware-software scheme for the
on-line self-test of the lockstep logic is proposed. Such a solution leverages self-test
programs developed according to the Software-Based Self-Test (SBST) approach,
used in conjunction with a specialized hardware module. Finally in the third sec-
tion the effectiveness of this approach was assessed on a modified version of the
OpenRISC 1200 processor. Exhaustive experiments demonstrated that it is pos-
sible to achieve a fault coverage of stuck-at faults greater than 99%, while at the
same time significantly reduce the area overhead of the hardware approaches.

This chapter is based on the results presented in [36, 31].

4.1 Background

4.1.1 Problem statement
The DCLS is the de-facto solution against single-point faults in processor cores

of automotive MPSoCs when targeting the highest ASILs (namely C and D). Briefly,
a system including DCLS consists of two identical processor cores, both initialized
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to the same initial state and fed with identical inputs. As a consequence, identical
outputs should always be produced. A logic failure (due to permanent or transient
faults) reaching the output in one of the two cores can be detected by continuously
comparing their output. Once a failure is detected, the system reacts depending on
the application requirements. One of the two cores is named the main core, which
interacts with the SoC. The other is the checker core. The only purpose of the
checker core is to confirm the correctness of the main core outputs, being fed with
the very same instructions and data of the main core.

While extremely efficient to detect single-point faults, The DCLS configuration
described above cannot detect failures that occur at the same point in both cores.
These failures are normally called common mode failures, which cause comparators
to produce a false match. A common technique for reducing such risk of failure is
to provide temporal diversity to the two cores composing the system. This strategy
consists of delaying the inputs fed to the checker core by means of a bank of shift
registers. The outputs must be re-synchronized before being compared. This is
achieved by delaying the main core outputs by the same amount of clock cycles of
the checker core inputs. It is worth noting that the whole architecture is completely
transparent from the application code perspective: indeed, the checker core does
not have any direct access to the system resources.

The overall DCLS architecture is shown in Figure 4.1. For the sake of better
comprehension, all the bits belonging to the same signal are grouped in a unique
comparator (e.g., DATA RAM wires). The control signals (i.e., the system bus
interface) are also grouped in a single comparator (CTRL CMP). All the compara-
tors are then organized in a cluster, whom output is comparators’ outputs OR-ed
each other’s.

Figure 4.1: Typical delayed DCLS architecture.

However, this safety mechanism is exposed to latent faults accumulation. These
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must be detected during the power-on and during the on-line phase. STLs are
adopted to mitigate this risk in both main and checker core at run time. It is
important to highlight that the software approaches can produce pure functional
stimuli, only. However, from the lockstep comparators standpoint, it means that
some critical faults cannot be addressed with the support of this method only. In-
deed, some latent faults might escape the test. Specifically permanent hardware
faults in the comparators (Figure 4.2) could either cause a false alarm or an unde-
tected critical failure. In the former, the ALARM signal is fired even though the
two inputs match, while in the latter the signal is not fired even though the two
inputs differ. Clearly, a false alarm is positive since it means that the hardware
fault is detected. Instead, the second effect is potentially dangerous since a failure
of the main core is not reported correctly, inhibiting the lockstep functionalities.
Therefore, it is evident that in order to obtain complete system dependability, it
is necessary to devise a suitable self-test mechanism for latent faults to be applied
when on-line. While most of the latent faults are detected during the POST with
the application of the LBIST, when on-line usually a specific circuitry is added to
the comparators for implementing the self-test. This additional hardware has the
penalty of additional system area to be devoted exclusively for test purposes.

Figure 4.2: Example of latent fault causing a failure of the main core being masked.

4.1.2 Limitations of hardware and software self-test mech-
anisms

The basic elements composing a DCLS system are the two processor cores and
a set of comparators. Authors of [44] already proposed an effective test strategy
for the comparators. To fully test an m-bit wide comparator (i.e., two m-bit wide
inputs), 2m+2 test patterns are required. As stated by the authors, the effectiveness
of such patterns is independent on the low-level implementation of the comparators.
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The 2m patterns generate a mismatch in only one bit at a time, and in practice this
correspond to a walking 0 (or 1), starting from the MSB (or LSB) up to the LSB (or
MSB). The last two patterns correspond to the case in which the two comparator
inputs are equal, namely both inputs with all bits at 1 and then at 0. An example
of the test patterns applied by this algorithm to a set of 4-bit comparators is shown
in Table 4.1.

Table 4.1: Test algorithm for a 4-bit wide comparator

# pattern Input A Input B
1 0111 1111
2 1011 1111
3 1101 1111
4 1110 1111
5 1111 0111
6 1111 1011
7 1111 1101
8 1111 1110
9 1111 1111
10 0000 0000

Intuitively, when considering a pure software approach (e.g., execution of self-
test procedures belonging to an STL), the aforementioned test stimuli can be hardly
generated in the system under analysis. As the reported experimental results con-
firm, the structure of a DCLS configuration imposes a constraint on the generation
of those test patterns. In particular, both the checker and the main cores are fed
with the very same inputs and always produce the same outputs (unless a fault is
present). As a consequence, it is not possible to create the difference needed by
the 2m patterns. Moreover, a further challenge stems from the fact that the DCLS
comparators do not only check for the integrity of data, but also all the processors’
outputs. These include several control signals and addresses. Therefore, the pre-
vious algorithm must be translated in a proper sequence of instructions that force
the processor to generate those values (which is not feasible with a pure software
approach). On the other hand, a pure hardware self-test (e.g., [1]) guarantees the
completeness of the test in terms of generated test patterns. Nevertheless, it suf-
fers the problem of excessive additional hardware devoted exclusively for testing
purposes.

4.1.3 Related works
Hybrid solutions for self-testing purposes are not new. In [15], a memory core

storing an SBST-like test sequence is inserted in the system and connected to
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the system bus. During the test phase, the processor is forced to execute the
instructions provided by this module. Also the authors of [47] proposed a solution
which consists of a software-hardware-cooperated BIST as an attempt to reduce the
test time for DRAM memories. Another hybrid solution that leverages the already-
existing on-chip programmable resources was presented in [11]. That approach
suggests the usage of the embedded DMA for RAM memory testing. It is also
worth to mention that hybrid approaches have been extensively adopted also as
hardening mechanism against transient faults [22, 12].

In [90] additional instructions are added to the ISA for testing purposes only
(e.g., accessing to particular flip-flops within the processor), whereas in [72], ob-
servation points are inserted within the processor for increasing the effectiveness of
self-test programs. As an attempt to mitigate the cost and performances penalties
introduced by the safety mechanisms, in [64] the authors proposed a cooperation
between hardware and software modules. In order to achieve the targeted safety
level for a given SoC: for the main computational units (e.g., the CPU), they sug-
gest the usage of hardware-based application-independent safety mechanisms. For
the remaining of the system (e.g., peripherals) a combination of hardware-software
mechanisms (application-specific).

4.2 Proposed hybrid self-test mechanism

4.2.1 The overall architecture
During the in-field test of the DCLS, a pure functional-based approach is only

able to produce 2 out of the required 2m+2 test patterns, reaching in this way an
insufficient fault coverage. Thus, in order to overcome this problem, the proposed
test strategy is composed of two main elements: a set of self-test programs and
a hardware module. The latter, called the Lockstep Self-test Management Unit
(LSMU), supports the self-test programs during their execution. Figure 4.3 depicts
the overall architecture.

The LSMU is composed of two parts, a control unit (CU) and a datapath
(DP). The CU includes the bus interface logic, an FSM and a set of registers. The
DP is made of a comparator, the Instruction Substitution Module (ISM) and the
Control Signals Substitution Module (CSSM). The LSMU is directly connected to
the system bus and it exclusively intercepts all the instructions that the checker core
receives as input. At each clock cycle, it monitors whether a particular instruction
(hereinafter target instruction) is going to be fed to the checker core. Whenever
the instruction going to be fed to the checker core is the target instruction, the
ISM replaces such instruction with a so-called substituted instruction. Similarly,
the LSMU receives as input the output control signals of both the checker and main
cores. When the CSSM is active and the target instruction is fed to the cores, the
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Figure 4.3: Architecture of the system including the LSMU. For simplicity, the
main core is not depicted in this picture.

value of the control signals is substituted with a specific test pattern intended for
testing the control comparators. As it is demonstrated later in this section, while
for address and data comparators the ISM is enough for generating the required
test patterns, the CSSM is required for control comparators since controlling the
value of control signals is not always feasible via software. Relying exclusively on
the ISM would yield a lower fault coverage, since the control comparators would
not be correctly targeted. Moreover, it is worth noting that the output control
signals are substituted right before being fed to the comparators. Thus, the SoC
is transparent to this substitution, since the real output directed to the system
(namely the main core outputs) are left unchanged.

Instructions, test patterns and other functionalities can be programmed by the
main core via a set of registers at run time, as a standard memory-mapped periph-
eral. As mentioned before, testing the comparators requires to create a difference
in just one of the bits fed to the DCLS comparators. This is not always possible
since normally the comparators are grouped into a single cluster and the execution
of different instructions by the two cores could lead to different control signals acti-
vated contemporary. More than one comparator active at the same time may cause
masking problems, since their outputs are OR-ed together. For this reason, during
the test phase, the main core can program the LSMU to disable the comparators
that should not be tested (VALID signals in Figure 4.3) during the current self-test
session so that they do not influence the targeted comparator. For example, let us
assume that both the main and the checker cores execute a store byte but accessing
to different addresses. As a consequence, a different byte should be selected which
means that different control signals are activated, hence two different comparators
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are fired (CTRL CMP and ADDR RAM CMP in Figure 4.1).
For implementing the behavior described above, three registers are required:

• COMPARE REGISTER (CMP REG): containing the target instruction. The
instruction written in this register must be encoded as in the program mem-
ory;

• SUBSTITUTE REGISTER (SUB REG): containing the substituted instruc-
tion or the test pattern to be applied to the control comparators;

• CONTROL REGISTER (CTRL REG): this register drives the behavior of
the FSM and DCLS comparators to be disabled.

The bit-width of the first register depends on the considered processor archi-
tecture (i.e., 32/64-bit architecture), the second one should have a bit-width at
least equal to the CMP REG (for fitting the substituted instruction). Possibly, if
the number of control signals is higher, additional bits should be comprised in this
register. The CTRL REG depends on the number of comparators. The first three
bits of CTRL REG are dedicated to the substitution mode. To provide as much
flexibility as possible, without bounding the self-test programs to any particular
implementation, two substitution modes are provided:

• ONE-SHOT SUBSTITUTION: it substitutes the target instruction only once,
and then the LSMU disables itself;

• CONTINUOUS SUBSTITUTION: the ISM continuously substitutes the tar-
get instruction, until the LSMU is disabled by the main core.

The remaining bits are dedicated to the TEST MODE, which allows disabling
the comparators. The fourth bit specifies whether TEST MODE should be entered
or not, while there are as many bits as the number of comparators to be disabled.
During the normal operational phase, all the comparators are enabled. If the TEST
MODE bit is set, then only those comparators for which the corresponding bit is set
are enabled. Finally, one bit should be reserved for enabling the ISM or the CSSM.
As an example, let us consider again the architecture of Figure 4.1. Given such
architecture (once again, all the control signals are grouped in a single comparator),
the CTRL REG has the structure shown in Figure 4.4. In the aforementioned figure,
it is assumed that the ADDRESS FLASH comparators are enabled when the test
mode is entered. Thus, it is not necessary to have a further dedicated bit within
the CTRL REG.
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Figure 4.4: Control register (CTRL REG) description. The ADDRESS FLASH
CMP are automatically enabled when the TEST MODE bit is set.

4.2.2 The on-line self-test flow
In order to test the DCLS comparators, it is necessary to execute a suitable self-

test program while enabling the LSMU, providing in this way, the desired stimuli
to the targeted hardware. Let us consider firs the case in which the test of DATA
RAM comparator (each input is 32-bit wide) is performed. The self-test program
structure is the one reported in Figure 4.5. For sake of compactness, it was assumed
that the mov instructions support the sign-extension (as it happens with many
modern RISC-based processors). Testing that comparator can be achieved by the
execution of a sequence of store operations to a fixed address, each of these providing
one of the 2m patterns. The first two store operations (lines 1 to 4 in Figure 4.5)
correspond to apply the hexadecimal patterns 0xFFFFFFFF, 0x00000000. Since
the same values should be applied to both inputs, the ISM is not active.

In the next step, since it is required to apply a difference to the comparator,
the ISM must be activated. Clearly, the three registers are programmed depending
on how the test patterns are generated by the self-test program. Assuming that
the continuous substitution mode is enabled, the CTRL REG is programmed with
the value 001001011. Considering the example, the CMP and SUB registers are
programmed to replace the store operation with the store of a different value (i.e.,
register R7 instead of R6 as in line 7, 10, 13, 16). Then, the patterns are generated
with a loop that implements the walking 0 followed by a store operation of the
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Figure 4.5: A possible self-test program that leverages the ISM for testing the DATA
RAM CMP. Before ISM activation, both cores execute the same instructions. After
its activation, the instructions underlined in red are those substituted in the checker
core.

newly generated pattern (lines 5 to 10). It is worth noting that one input must
vary while the other one must be maintained unchanged; thus, the generation loop
must be applied twice: first on R6, then on R7 (lines 11 to 16). Given the presence
of the ISM, the final effect is to have the main core producing the first m patterns
(walking 0 on the first input) and then the checker core producing the remaining
m patterns (walking 0 on the second input). Once all the patterns are applied, the
module is disabled, and the test routine terminates. The same reasoning applies
to the ADDRESS RAM comparators. The self-test program structure is similar
to the one discussed before, but the value stored is fixed while the addresses are
generated resorting to a walking 0 strategy. In most of the cases, the two patterns
0xFFFFFFFF, 0x00000000 cannot be applied as the accessibility to these addresses
depends on the particular memory map of the system under analysis. Indeed,
normally RAM addresses are restricted to a particular range. Thus, to maximize
the fault coverage, the two patterns correspond to storing data at the lowest possible
address (with as many 0 as possible) and at the highest possible address (with as
many 1 as possible). Then, starting from the highest address, walking 0 is applied.
The same strategy pertains also for ADDRESS FLASH, but instead of a sequence
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of store operations, function calls are required. As depicted in Figure 4.6, each
jump forces a different address (at each generated address, a valid function or piece
of code must be present) so that all the required patterns are generated (clearly,
within the address range of the program memory).

Figure 4.6: Fragment of self-test program testing the ADDRESS FLASH CMP.

It is important to note that forcing the main and the checker cores to jump
at two different addresses in the program memory is totally safe, since in a DCLS
system (Figure 4.1), the checker outputs are directed to the comparators only, while
its inputs are driven by the main core. Therefore, it is always the main core that
drives the execution flow in both cores. When dealing with the control comparators
(CTRL CMP in Figure 4.1), the CSSM is required to be active. In this case, the
self-test routine should:

1. setup the LSMU so that CSSM is active and all the other comparators but
the CTRL CMP disabled;

2. configure the CMP REG with the target instruction;

3. configure SUB REG with the test pattern to be applied;

4. Execute the target instruction, which in this case behaves as a trigger for the
substitution.

If the CONTINUOUS SUBSTITUTION mode is used, step 3 and 4 are repeated
until all test patterns are applied. The LSMU allows for any test pattern to be
applied, without any particular restriction. For obtaining a short and efficient test,
they can be generated internally to the self-test routine following the walking bit
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strategy presented so far (e.g., as in Figure 4.5). Clearly, patterns can be stored in
the memory Flash as constants. However, this would require additional space for
the testing routine.

Finally, the adoption of the LSMU requires the insertion of the VALID signal
(which acts as an enable) within the comparators. To achieve a complete fault cov-
erage, it is required to test the hardware introduced for implementing such signals.
For each comparator, the self-test routine should maintain the other comparators
disabled and:

1. enable the target comparator and force the inputs such that they differ and
then correspond;

2. disable the target comparator and force the inputs such that they differ and
then correspond once again.

In the fault-free scenario, the outcome of step 2 should be independent from the
value of the inputs. Step 1 is intrinsically implemented in the self-test algorithms
presented in this section. Step 2 would instead require a custom routine.

4.2.3 Faults detection mechanism
Alarms raised by DCLS comparators are normally handled by a specific module

integrated within the MPSoC, that reacts depending on the application require-
ments. Clearly, in order to adopt the strategy described above, such module must
include a configuration setup that keeps track of the DCLS alarms raised during the
on-line testing procedure and report any unexpected misbehavior. It is interesting
to note that the hardware described in this chapter can be partially exploited in
order to test the reaction capabilities of the top-level module handling the alarms.
Although this is not the goal of this chapter, this can be achieved by adding suitable
hardware to implement fault injection logic.

4.3 Experimental results
This section is organized as follows: the selected case study is first detailed.

Then, the software and hardware self-test approaches are compared. Finally, the
hybrid self-test mechanism is validated. Both overhead and achievable fault cov-
erage are reported. Additionally, a detailed FMEDA is performed to asses the
consequences of failure of the LSMU on the normal behavior of the SoC.
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4.3.1 Case study
Experiments were conducted on an in-house modified version of the OpenRISC

1200 (OR1200) soft-core processor. It consists of a 32-bit pipelined RISC microar-
chitecture, with MMU and basic DSP functionalities. It includes also data and
instruction caches. For the purpose of this work, caches and MMU were not in-
cluded in the final synthesized version. The RTL source files are described in Verilog
and are available from GitHub [2, 3]. Finally, the system includes also a behavioral
description of a Flash and RAM memory. All the logic simulations were performed
using Synopsys VCS, whereas Synopsys Design Compiler as logic synthesis tool.
The effectiveness was assessed by means of fault simulation campaigns, using Z01X
by Synopsys. Z01X is used widely for functional safety verification, providing an
extremely flexible environment for the fault simulation. All the experiments were
performed on a workstation with an Intel Xeon CPU running at 2.5 GHz, equipped
with 12 cores, and 256 GBytes of RAM. A delayed DCLS configuration was imple-
mented at the CPU level (i.e., all the logic within the CPU was duplicated), with
a temporal diversity of two clock cycles between the two cores. A further bank of
flip-flops was added for main and checker outputs to isolate any critical path from
the comparators. Concerning the fault simulation campaigns, stuck-at faults were
exclusively considered (1,374 faults), being the one used fault model for this kind
of analyses in the ISO 26262 context. Nevertheless, the method is easily extensible
to other fault models. Although the set of considered faults is relatively small,
from the safety viewpoint they are extremely relevant. Indeed, the processor core
is one of the main components of modern SoC and any failure of this unit is likely
to affect the main application.

4.3.2 Evaluation of software self-test mechanisms
In the following, the fault coverage results of a set of software programs are

analyzed. The programs used during the experiments fall into two categories:

• Application programs;

• Self-test programs of an STL targeting latent stuck-at faults within the CPU
core.

For these experiments, stuck-at faults located within DATA RAM, ADDRESS
RAM and ADDRESS FLASH comparators were considered. These three modules
account for 936 stuck-at faults. In order to show the ineffectiveness of a software
approach when addressing the type of faults mentioned above, four application pro-
grams were initially considered (Table 4.2). They implement simple applications:
vector sorting (bubble_sort, quick_sort), minimum path identification in a graph
(dijk) and random number generation (lfsr_32).
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Table 4.2: Characteristics of applications programs

Programs Duration [CC] Size [B] FC [%]
dijk 5,170 604 71.34

bubble_sort 1,184 192 70.84
quick_sort 3,278 932 71.34

lfsr_32 3,304 388 71.09

The DCLS modules are hard to be tested even when targeting latent faults
within the CPU core via STL. Indeed, it was considered also a set of eight hand-
crafted self-test programs (Table 4.3), each of them was developed to test a specific
part of the processor core. The fault coverage of the entire test suite against the
whole processor stuck-at faults is 80.79%. For each program in Table 4.2 and 4.3
the duration (in clock cycles, CC), the size (expressed in Bytes) and the achievable
fault coverage (FC) are reported. By comparing these two tables, one could im-
mediately observe that for both sets, the fault coverage saturates at around 71%.
The only self-test program that reaches a fault coverage of 72% is the one address-
ing processor Load Store Unit (LSU). Such test program generates a considerable
activity on the memory interface. Thus, it is reasonable that the fault coverage is
higher than any other program in the two sets.

Table 4.3: STL characteristics

Test Program Duration [CC] Size [B] FC [%]
rf_test 1,502 3,508 71.84
cu_test 538 808 71.34

opmux_test 308 484 71.09
alu_test 10,820 3,448 71.84
mac_test 3,248 2,596 71.84
lsu_test 2,108 4,216 72.08

genpc_test 24,914 2,960 71.84
wbmux_test 538 808 71.34

4.3.3 Evaluation of hardware self-test mechanisms
As hardware self-test mechanism for the test of the comparators, the architec-

ture described in [1] was implemented. For sake of a fair comparison, the hardware
module was designed in order to generate the whole set of test patterns described
in [44]. It is important to notice that the architecture described in [1] does not
specify any test sequence to be used. The post-synthesis results are shown in Table
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4.4. When applying patterns generated with this method, the overall fault cov-
erage is 99.7% (obtained in about 500 clock cycles). The major drawback of this
approach stems from the fact that the area overhead is directly proportional to the
bit-width of the lockstep comparators (i.e., number of signals to be compared). The
remaining faults not covered by this approach are related to the reset circuitry and
as further explained in the next sub-section, they never produce a failure when in
mission mode.

Table 4.4: Hardware Self-Test [1] Synthesis: Area Breakdown

Module Area [µm2] Total Area [%]
DCLS CPU 140,891.39 100.0

Self-Test Module [1] 6,293.68 4.47

4.3.4 Evaluation of the hybrid self-test mechanism
The LSMU was designed in Verilog and included in the final RTL version. The

overall system architecture is the same described in the previous section in Figure
4.3 and Figure 4.1, with all the control signals grouped in a single comparator. The
entire system was synthesized and mapped to a 65nm CMOS technology library.
The post-synthesis results are shown in Table 4.5.

Table 4.5: LSMU Synthesis: Area Breakdown

Module Area [µm2] Total Area [%]
DCLS CPU 140,891.39 100.0
LSMU(ISM) 335.40 0.2

LSMU(CSSM) 204.36 0.1
LSMU(CU) 2,107.55 1.5

As it can be noticed, the LSMU accounts for the 1.88% of the of the entire
DCLS CPU. The controller (CU) contains the CMP, SUB, CTRL registers and the
FSM. The latter accounts for the 0.2%. It includes also the system bus interface,
which represents the most expensive part (in terms of logic gates) of the block. It is
worth noting that the ISM includes also the comparator for the target instruction
shown in Figure 4.3. For avoiding performance degradation, the ISM was placed in
between the two banks of flip-flops that delay the checker inputs.

In the following, the effectiveness of self-test programs leveraging the LSMU are
analyzed. Four self-test programs were developed, each of them targets a specific
comparator (including the test of the VALID signal). Table 4.6 summarizes the
achieved fault coverage. While the data_ram achieves quite high fault coverage,
the remaining programs were not so effective. Indeed, they are mainly limited from
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the fact that some fault locations are not accessible due to the system memory
map. Therefore, an analysis of the fault list was performed in order to identify
possible Safe Faults. This category of faults of the ISO 26262 can be seen as on-line
functionally untestable faults, that do not produce any failure due to the application
program, inputs data or in-field constraints [23]. Following the guidelines presented
in [17], it was possible to remove faults due to the system memory map. It is
important to notice that these are on-line functionally untestable faults which are
application independent (i.e., they are not related to the application program) and
therefore they can be individuated in any device. In the system under analysis, the
following valid addresses exist:

• RAM from 0x0000_2000 to 0x001F_FFFF;

• Flash from 0x0400_0000 to 0x0400_FFFC.

Table 4.6: Characteristics of the self-test programs exploiting the LSMU

Test Program Duration [CC] Size [B] FC [%] Safe FC [%]
data_ram 1,392 818 99.03 100.0
addr_ram 1,626 1,038 91.35 100.0
addr_flash 1,132 1,738 75.32 99.12
ctrl_cmp 1,820 706 91.22 100.0

The reasoning behind this procedure stems from the fact that the processor
is able to access only a portion of the available address space. As an example,
according to the specifications mentioned above, when dealing with flash addresses
the upper part of the address holds exclusively the value 0x0400. This causes having
logic gates stuck to fixed value during the whole in-field behavior: as a consequence,
it is not possible to change the value of some bits by executing any software. Such
faults were identified resorting to TetraMax by Synopsys. The comparators inputs
were connected to Vdd or ground. Then, given these constraints, the tool was
instructed to perform a structural untestability analysis on the modified netlist.
After this process, it was possible to remove about 20% of faults from ADDRESS
RAM and ADDRESS FLASH comparators fault list. Then, further analyses were
conducted on the remaining faults. Specifically, by using Inspect by Synopsys, it
was possible to link the remaining faults to the reset signal of the comparators (that
include flip-flops for breaking critical paths). Such faults would prevent the flip-flops
from being initialized during the reset phase. However, when designing lockstep
systems, it is common practice to invalidate comparators outputs for a certain
number of clock cycles after the system leaves the power-on reset. This prevents
receiving bogus data from both checker and main. As a consequence, those faults
never provoke a failure (thus can be considered as safe) of the lockstep because when
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the comparators become active, they receive initialized data. The total percentage
of safe faults removed is around 13% of the initial fault list. The final fault coverage
after this pruning process is shown in the fifth column of Table 4.6. Using the hybrid
test strategy described in previous section it was possible to achieve an overall fault
coverage of 99.5% for all the cluster, with reasonable test duration and program
size. Considering a clock period of 40ns (as in the performed experiments), the
test programs were executed in 198.8µs, while their overall memory footprint is
about 4KB. Lastly, it is noteworthy that the test program address_flash has a
memory footprint almost double with respect to the other two test programs due
to the additional portions of code needed by the test strategy for testing those
comparators.

4.3.5 Failure Mode Effect and Diagnostic Analysis results
Normally, a complete FMEDA analysis involves also the computation of the

failure rate. However, this depends on the technology used for the final implemen-
tation. Clearly, since the goal of the paper is to introduce a new architecture, these
data are missing. For this reason, the focus of this analysis is mainly centered in
determining the possible failure modes of the LSMU (and the related critical faults
causing the failure), assessing their impact (i.e., whether they lead to a critical fail-
ure) and possible countermeasures against these faults. The possible failure modes
(denoted as FM) affecting the LSMU (and its submodules) due to permanent faults
are:

• FM1: the ISM is active, but is not able to correctly substitute the target
instruction with the substituted instruction;

• FM2: The ISM is active, but is not able to recognize the target instruction
(namely it does not perform the substitution at all);

• FM3: The CSSM is active, but is not able to substitute the control signals
with the test pattern at all;

• FM4: The CSSM is active, but is not able to correctly substitute the control
signals with the test pattern;

• FM5: The LSMU is not active, but the CU disables the lockstep comparators;

• FM6: The ISM is not active, but it performs a substitution of the instruction;

• FM7: The CSSM is not active, but it performs a substitution of the control
signals.
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Failure modes FM1-4 do not impact the safety of the application, since they
become relevant during the test mode only. Thus, the only inconvenient is a lower
fault coverage. FM7 is likely to be detected by the lockstep comparators and do
not cause any critical failure since CSSM outputs are directly connected to those
comparators. To further eases the detection of these faults, the reset value of the
SUB REG could be set to a value such that only 1 bit differ (e.g., all zeros and a
bit at one only). By doing so, it is possible to immediately detect the occurrence
of faults causing this specific failure mode.

Failure modes FM5 and FM6 are quite critical instead, since directly impact the
normal execution of any user application. For identifying critical faults that cause
these failures, it was built a functional safety verification environment with Z01X.
For increasing the truthfulness of the experiments, functional fault simulations
(that is fault simulation of the entire SoC including the memories) were performed.
The chosen fault model was still the single stuck-at, and fault were injected in the
LSMU logic only (3,286 faults). When performing these evaluations, it is important
to specify observation points and diagnostic points. The former are points of the
design (namely, ports or internal wires) where to observe the effect of the faults.
The latter instead are points of the design where to observe the reaction of the
safety mechanism. Faults detected in both observation and diagnostic points can
be labeled as dangerous detected. All the faults detected in an observation point
but not in a diagnostic one are labeled as dangerous undetected. The remaining
faults can be considered as safe faults.

For both failure modes, the same application programs used for the previous
experiments were adopted. For FM6, using as reference Figure 4.3, the observation
point was placed on the checker inputs. The FM6 causes a wrong instruction to be
fed to checker, thus by observing its inputs, it is possible to identify faults leading
to that failure mode. After running the fault simulations, the 5.17% of the total
faults cause a wrong instruction to be fed to the checker. As safety mechanism
(i.e., countermeasure) for these faults, it is possible to use the already existing
comparators of the DCLS configuration. This can be done since it is assumed a
single stuck-at fault only. The fault simulations were repeated, and the diagnostic
point was placed on the ALARM signal. At the end of this campaign, all the 5.17%
critical faults were detected also at the diagnostic point. Thus, they can be labeled
as dangerous detected whereas the remaining 94.83% as safe since they do not cause
this specific failure. The same procedure was performed for FM5 as well. Since
this failure mode causes lockstep comparators to be disabled, the observation point
was situated on the VALID signal, output of the LSMU. In this case, 5.42% of the
total faults lead to this failure and they all belong to the FSM within the CU. As
countermeasures, two options are possible: leverage the self-test routines of Table
4.6 or use a Triple Module Redundancy (TMR) configuration for the FSM within
the LSMU

Considering the first option, by placing the diagnostic point on ALARM (namely

71



Hybrid on-line self-test mechanism for comparators of a DCLS processor

the same when testing the lockstep comparators) 97.25% of the critical faults results
being detected. This means that most of the faults are actually detected during
the test of the DCLS comparators. Concerning the second option, using FSM
in a TMR configuration on one hand increases the fault coverage, the detection
time, but also silicon area of the LSMU. As already shown at the beginning of this
section, the FSM accounts for the 0.2% of the total design. By using a lockstep
variant, the overhead of this module increases up to the 0.66%. Although a TMR
configuration is adopted, it is important to notice that few faults in the majority
voter logic might still lead to a failure. However, such faults are less than the
0.2% and thus there is still compliance with the ISO 26262 standard. Table 4.7
summarizes the possible failure modes and the countermeasures, along with the
achievable Diagnostic Coverage (indicated with DC, being the number of critical
faults detected by the safety mechanism).

Table 4.7: FMEDA LSMU: Failure Modes and Countermeasures

Sub-Module Failure Mode Critical Safety Mechanism DC [%]
ISM FM1 NO NONE -
ISM FM2 NO NONE -

CSSM FM3 NO NONE -
CSSM FM4 NO NONE -

CU FM5 YES Self-Test Programs 97.25
CU FM5 YES TMR-FSM 99.99

ISSM FM6 YES DCLS 100.0
CSSM FM7 YES DCLS + SUB reg safe reset 100.0

4.3.6 Comparison of the hardware, software and hybrid
self-test mechanisms

Table 4.8 summarizes the three self-test alternatives described in this section.
The first important observation is that the STL solely does not detect all the
possible latent faults within this safety machanism. Therefore, the STL must be
necessarily complemented with either a pure hardware self-test module (e.g., [1]) or
the proposed hybrid architecture. The former yields a complete fault coverage with
a short test application time. Instead, the proposed one is still able to generate
the required test stimuli, while mitigating the area overhead introduced by a pure
hardware self-test approach (halving the area overhead). On the other hand, since
now part of the stimuli are generated via software, the test duration is higher.

Unlike pure hardware strategies, in which the test patterns are hardwired, the
test performed with the proposed approach is much more flexible: test patterns are
not anymore fixed and can be updated on-the-fly. Finally, it is worth mentioning
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Table 4.8: Area, fault coverage and test duration for the three approaches consid-
ered

Self-Test Approach Area w.r.t. DCLS [%] FC [%] Duration [CC]
Hardware [1] 4.47 99.7 500

STL 0.00 72.0 43,976
LSMU 2.10 99.5 5,970

that the area reported in Table 4.8 for the proposed approach includes also the
additional circuitry that mitigates the critical failures.

73



74



Part II

Improvements of functional fault
grading methodologies
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Chapter 5

Improved fault grading techniques
for STLs

In order to assess the effectiveness of the STLs, functional fault simulation is
performed, so that the achieved fault coverage (e.g., in terms of stuck-at faults)
can be computed. This chapter explains the reasons why the functional fault sim-
ulation of the STLs represents a different problem with respect to the classical
fault simulation of test stimuli (for which very effective algorithms and tools are
available). Then, it provides evidences that this kind of fault simulation can be
highly computationally expensive. Finally some solutions are proposed to reduce
the computational cost taking into account the final usage of the STL (i.e., for
single-point faults or for latent faults in a DCLS system) and possibly trade-off be-
tween results accuracy and cost. Motivations and the basic differences of functional
fault simulation with respect to classical approaches are presented in Section 5.1.
Then, Sections 5.2 and 5.3 describe the different fault grading approaches. All the
proposed solutions are based on the usage of commercially available EDA tools,
thus being easily adoptable by professionals in the field. With respect to similar
works [14, 80], it is also provided a comprehensive and commented overview about
the techniques that can be adopted to effectively perform the fault grading of STLs.
Finally, all these techniques are experimentally validated in Section 5.4

The material found in this chapter was published in [32].

5.1 Background

5.1.1 Motivations
Computing the fault coverage achieved by a given test sequence is typically

done resorting to fault simulation. In the past, a wide research effort led to the
development of effective and highly optimized algorithms for fault simulation as
for example [75]. Such algorithms have been widely adopted in commercial tools
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(e.g., stand-alone fault simulators and those integrated in ATPG tools) which are
used in different commercial environments for generating and grading test patterns
for digital circuits. Hereinafter, these techniques are called sequential circuit fault
simulation (SC-FSIM) approaches. However, those tools and methodologies tar-
geted a rather different problem than the one considered in fault simulation of
STLs (hereinafter, self-test procedures fault simulation or STP-FSIM approaches).
In fact, traditional SC-FSIM approaches are intended to compute the fault cover-
age provided by a sequence of input vectors applied to a generic sequential circuit.
It is assumed that all the output signals can be continuously observed. This sce-
nario is very similar to the one that can be found during the end-of-manufacturing
testing. However, it is very different to the one related to in-field testing. When
considering the effects stemming from the execution of a self-test procedure, there
is a processor executing a program stored in a memory and producing some output
results. These are also written in memory and observed at the end of the proce-
dure execution (most often compacted in a unique test signature). This scenario
is quite different than the previous one. For example, the sequence of inputs for
the processor (e.g., the sequence of executed instructions) often changes due to the
effects of faults. This frequently happens for example when a fault affects the logic
implementing the instruction fetch mechanism. Moreover, the observability mech-
anism is completely different: a fault can be labeled as detected when it produces
a wrong result in memory at the end of the self-test procedure execution.

The fault grading of STLs becomes relevant during FMEDA whenever they are
used as self-test mechanism for the processor cores. To better fit in this scenario,
EDA tool vendors introduced so-called functional fault simulators (e.g., Z01X by
Synopsys, or as new features in the Incisive platform by Cadence). Such tools
allow fault simulation of circuits at different abstraction levels (i.e., from RT to
gate level), as often done during functional safety analyses.

5.1.2 Sequential circuit fault simulation (SC-FSIM)
With SC-FSIM the goal is to compute the fault coverage achieved when a given

test sequence is applied to the Circuit Under Test (CUT). Normally it corresponds
to a combinational or sequential digital circuit (Figure 5.1). Generally, this kind
of test takes place at the end of the device manufacturing. In this scenario, the
CUT is mounted on an ATE and the test sequence is applied. In most of the cases,
the test of the CUT resorts to Design for Test (DfT) structures. The sequence
of test patterns (i.e., values) applied to the CUT is fixed and does not depend
on: the sequence of output values produced by the CUT itself during the test;
nor on the effects of the faults. Moreover, the output signals are continuously
monitored to detect possible fault effects. As soon as a difference on any output
signal is produced by a fault, the fault can be labeled as detected. The fault
simulation should accurately reproduce this scenario. However, the goal of the fault
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simulation is only to compute the number of detected faults. Since fault simulation
is computationally intensive, once the fault is detected, it is not necessary anymore
to simulate its effects in the following. This mechanism (known as fault dropping
[39]) significantly reduces the computational cost of the fault simulation, since most
of the faults are only simulated for a relatively limited period of time.

Figure 5.1: Test vectors-based end-of-manufacturing test scenario for a generic
sequential CUT.

5.1.3 Self-test procedures fault simulation (STP-FSIM)
When the goal is to compute the fault coverage achieved by running one or more

self-test procedures on a CPU, the scenario is rather different. This process is also
known as fault grading [14] of self-test procedures. In particular, in this case the
scenario to be considered is more complex than the previous one. Since the typical
application of STLs is for in-field test (which is performed when the device is already
in the operational phase) the self test does not rely on any external ATE. In this
scenario the CPU is not fed with test patterns but with processor instructions and
data read from the memory (or coming from input peripherals, if any). Actually,
during the test the CPU executes a piece of code, and thus continuously interacts
with the memory modules for instruction fetch and for data read/write operations.
The CPU may also interact with peripheral modules, too. Therefore, the CUT to
be fault simulated cannot be the CPU only, but all the modules it interacts with
(Figure 5.2).

For the sake of simplicity, and since I/O operations are conceptually similar
to memory operation, in the following I/O operations are neglected. During the
in-field execution, to create the test signature, the self-test routines accumulate
the produced results in a single register. The content of this signature register is
then checked by the self-test code itself against a golden one (computed off-line in
a fault-free scenario): a fault is considered as detected if the execution of the test
code produced some wrong signature values in the signature register. At the end
of the test, the self-test code itself performs the check on the signature. It then
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Figure 5.2: STL-based in-field test scenario for a CPU-based system.

returns to the caller by storing a flag in the memory. Such flag (i.e., a go/no-go
binary value) states whether a fault was detected. Along with with this go/no-go
flag, the self-test procedure can possibly return also the computer signature. It is
worth noting that this flow is only one of the possible alternatives for checking the
signature. Alternatively, the software invoking the self-test procedure might check
the signature value (which is returned by the self-test procedure to the caller via a
register or memory location).

In general, the following statements on STP-FSIM are true:

1. The CPU is stimulated with an input sequence corresponding to:

• values coming from the code memory, corresponding to the codes of the
instructions that the CPU execute;

• values coming from the data memory, corresponding to the values of the
accessed memory locations;

In both cases, the input sequence corresponds to the content of the memory
locations accessed by the CPU by outputting an address. Hence, the input
sequence may change if a fault modifies any of the addresses generated by
the CPU. SC-FSIM techniques (and tools) are hardly able to manage such a
scenario.

2. A fault is detected when a specific condition is met at the end of the test
code execution (e.g., a given memory location stores a given value, or a given
value is returned by the self-test procedure). Again, SC-FSIM techniques
(and tools) are hardly able to manage such a scenario too;

3. Since a fault can be labeled as detected only at the end of the test code
execution, fault dropping cannot be performed. All faults must be simulated
until the end of the test code execution, thus resulting in a significant increase
of the computational cost.
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As a conclusion, the fault simulation of self-test procedures composing an STL
differs from the SC-FSIM, since it requires methodologies and tools able to:

1. efficiently fault simulate a CPU while executing a piece of code (i.e., inter-
acting with the memories);

2. support more sophisticated fault detection strategies than simply detecting a
difference on the output signals;

3. limit the computational cost, by taming the extra effort required by the ab-
sence of the fault dropping mechanism.

It is worth noting that the specifications for STP-FSIM maybe more complex
than those outlined in this section. As an example, a fault may provoke effects
which are different than simply producing a wrong value in memory at the end of
the test procedure. Indeed, it is quite common that faults trigger an exception or
force the processor to enter an endless loop. In both cases, the fault is typically
categorized as detected, forcing the fault simulation tool to support fault detection
mechanisms that can hardly be implemented by SC-FSIM techniques.

5.2 Basic fault grading techniques
In the following, possible approaches for STP-FSIM are described. The different

approaches differ in terms of:

• fault detection mechanism;

• input stimuli.

In the context of this chapter, the fault detection mechanism defines which
output signals (i.e., observation points) of the design to observe and when to observe
them in order to determine whether a fault can be labeled as detected or not. The
input stimuli instead refers how the instructions and data are fed to the CPU. In
the following, without loss of generality, it is assumed that each self-test procedure
stores the computed signature at the end of its execution in the data memory (as
it often happens).

The analysis is focused initially on the fault grading of a single self-test proce-
dure. Then, the reasoning is extended to the fault grading of the whole Software
Test Library. This case requires a dedicated discussion since more than one self-test
procedure must be evaluated, considerably increasing the computation effort. For
each approach, advantages and drawbacks are presented. These are then validated
in Section 5.4.
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5.2.1 Fault grading of a single self-test procedure
For performing the fault grading of a single self-test procedure three main al-

ternatives are possible.

1. STP-FSIM0: this approach is based on the traditional SC-FSIM. Techniques
and tools belonging to that category can be adopted in this case, although
being originally conceived for a rather different purpose. However, as dis-
cussed in the following, this may become quite inadequate and may not yield
correct results. When dealing with this type of fault simulation, the CUT is
the CPU only. Its inputs are fed with test patterns. In this case, test patterns
correspond from one side to the sequence of encoded instructions composing
the self-test procedure. These are fed sequentially to the CPU each time it
performs a fetch operation. From the other side, to the data values the CPU
reads from the memory each time it performs a read memory access. Since
a traditional SC-FSIM method is considered, the input sequence is fixed.
Hence, independently from the fact that a fault might change or delay the
sequence of instruction/data addresses produced by the CPU, the sequence
of fetched and executed instructions/data remains the same during the whole
fault simulation. Moreover, during the fault simulation experiment, all CPU
outputs are observed clock cycle per clock cycle. As soon as a difference is
detected, the corresponding fault is labeled as detected (and dropped from
the simulation). In this way, this approach could lead to wrong (i.e., larger
than real) figures in terms of fault coverage. Indeed, faults might provoke
a difference in one or more output signals, but in the real execution such a
difference could later be masked. Thus, it could not be reflected in the final
self-test procedure signature.

2. STP-FSIM1: The procedure described above can be improved to increase the
correctness of the fault simulation results. In order to mimic the real-case
scenario (that is, when the test is performed in field), the observability is
limited to the signals directed to the Data Memory (signals on which the
signature is supposed to transit when being stored). Moreover, the fault
simulator should be instructed to observe such signals exclusively at the time
the result is going to be written in memory. This situation is represented in
Figure 5.3, where the offset time represents the initial period of time where
the test program executes its instructions without writing the results into the
memory. The main limitation of this approach remains the fact that it is not
possible to reproduce the effects of faults that lead to a different execution
flow of the test code. Additionally, fault dropping is not exploited: outputs
are observed exclusively at the end of the self-test procedure. Thus, all faults
must be simulated during the whole experiment, and the computational cost
grows significantly.
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3. STP-FSIM2: The limitations of the methodologies described above partly
stem from the fact that the CUT is exclusively the CPU. In this model, the
interactions with memories cannot be suitably modelled, especially in the
faulty circuits. However, when resorting to a functional fault simulator these
limitations can be overcome by simulating the entire system in which the
CPU is integrated, including data and code memories (possibly with the pe-
ripherals). In this way, the exact Fault Coverage figure achieved by a self-test
procedure can be computed. Normally, the CPU is described as a gate-level
netlist as in the SPT-FSIM0 and STP-FSIM1 approaches. The other compo-
nents (in which faults should not be injected) resorting to behavioral descrip-
tions. The instructions (which represent the input stimuli for the CPU) are
directly fetched from the instruction memory which is now part of the simu-
lated model. Thus, it is possible to model the effect in which a fault forces
a different execution flow. Moreover, it is also possible to model also the
scenario in which different data (due to the effects of a fault) are retrieved or
stored to or from the data memory throughout the program execution. Con-
cerning the observability, the final content of the memory is directly observed,
once the self-test procedure terminates. Clearly, it makes sense to check only
those addresses in which the test program is supposed to write; otherwise,
it becomes unfeasible to check the entire memory for a large design. How-
ever, since the simulated model is now much larger, the computational cost
required with respect to the previous two approaches is significantly higher.
Indeed, simulation of memories is computationally expensive. Additionally,
since fault dropping is not performed, the fault simulation tends to be slow
and memory intensive from the host (i.e., the computer in which the fault
simulation is run) point of view.

Figure 5.3: Graphical representation of the fault detection mechanism for STP-
FSIM1.

5.2.2 Fault grading of a Software Test Library
Normally, the self-test procedures are developed according to a divide and con-

quer strategy. When the target module is a CPU, this is partitioned into sub-
modules. For each sub-module, a specific self-test procedure is developed [13].
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The methodologies described in the previous sub-section represent an acceptable
solution for performing the fault grading of a single test procedure. During the
development of the self-test procedure for the targeted module, only the faults it
contains are considered. Nevertheless, during the global development flow it is
quite common that a fault simulation of a set of self-test procedures on the entire
CPU fault list is required. This step is essential to assess the overall fault coverage
achieved up to that point and (during the STL development) to better guide the
development to reach the target fault coverage. The rationale behind this relies on
the fact that it is likely that a test program developed for a given sub-module can
also detect faults present in different sub-modules. The most efficient strategy is
the so-called incremental fault grading. The fault simulation of the whole STL is
divided into different passes. At each pass, a different self-test procedure is fault
simulated. Initially, all the faults present in the fault list are labeled as not de-
tected. After the first pass, another test program is fault simulated. This second
pass inherits from the initial one all the faults that are labeled as not detect. This
process is repeated until all the self-test procedures are fault simulated. The main
advantage of this approach relies in the fact that only the first self-test procedure
is fault simulated against the full fault list. As passes are executed, the number of
faults to be simulated progressively reduces and thus also the effort for the fault
simulation itself. It is worth noting that the strategy described above can be applied
to any fault simulation methodology without any loss in accuracy concerning the
fault coverage. Besides, those that benefit the most from this approach are the fault
simulation methodologies more computationally intensive, such as STP-FSIM2.

5.3 Optimized fault grading techniques
With this section the aim is to further extend the set of available techniques

considering two additional strategies. They are built on the top of the STP-FSIM2,
but they enable a faster fault simulation at the expenses of a limited loss in accuracy
concerning the final fault coverage figure. The common observation behind both
techniques is that, in STP-FSIM2 the fault dropping is not exploited at all. Hence,
in the following it is discussed a suitable way to include such a mechanism.

5.3.1 STP-FSIM3
The main difference of this method (Figure 5.4) compared to basic STP-FSIM2

concerns the observability. Instead of observing exclusively the data memory at the
end of the test program execution, the address signals towards the code memory are
monitored at each clock cycle. The rationale for this choice originates from the fact
that some faults can cause a different sequence of instructions to be fetched from
the code memory. In most of the cases, this leads to a different execution flow of
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the test program, and thus to a different signature produced by the test procedure
itself. In order to save fault simulation time, the idea is to quickly identify faults
that force a different execution flow, by discarding them from the fault simulation
as soon as possible (hence enabling the fault dropping). Obviously, not all the faults
that cause a different execution flow finally produce a different memory content.
As a consequence, a slightly different fault coverage is expected, higher than STP-
FSIM2. On the other side, the experimental results show that the difference is
normally small, while the savings in computational cost may be relevant.

Figure 5.4: STP-FSIM3 scenario: the observability locations are marked in red.

5.3.2 STP-FSIM4
A further optimization (Figure 5.5), which can provide additional speed-up

with respect to STP-FSIM2, consists in observing the CPU signals connected to
the data memory (namely data and address signals) when the CPU performs a
write operation to memory. A fault is marked as detected (and hence immediately
dropped) if the address value produced by the CPU when a memory write operation
performed is different than the expected, or when the data value written to memory
at the same time is different. This strategy is clearly the most aggressive one since
it leverages as much as possible the fault dropping. Once again, on one side this
method allows for fault simulation time reduction, while sacrificing accuracy of the
fault coverage. Theoretically, this method may lead to optimistic results since faults
affecting memory operations could not be reflected in the signature. In practice,
few memory operations are normally performed during the execution of the self-test
procedures. These operations involve saving/restoring the previous context prior
to the self-test program invocation and store/load operations to specific addresses
for testing specific units. In the former case, any corruption of the stack frame due
to faults irreversibly leads to the test failure. In the latter case, since normally the
entire test is built upon these memory operations, any variation is reflected in the
final signature.
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Figure 5.5: STP-FSIM4 scenario: the observability locations are marked in red.

5.3.3 Summary of the different techniques
Table 5.1 summarizes the fault simulation methodologies presented in this pa-

per. For each method, all the relevant characteristics are reported. For STP-
FSIM2-based approaches it is not required any input sequence since the stimuli
required for the CPU are directly taken from the memories and they may vary
depending on the fault effects.

Table 5.1: Fault simulation techniques comparison
Fault simulation

technique
Simulated

System
Input

Sequence
Observed
Outputs

Observation
Instants

Fault
Dropping Accuracy

STP-FSIM0 CPU Fixed All CUT outputs All Clock Cycles Yes Low
STP-FSIM1 CPU Fixed Data Memory Signals When results are written to memory No Low
STP-FSIM2 CPU and Memories None Final Memory Content End of Test Program No Complete

STP-FSIM3 CPU and Memories None Final Memory Content End of Test Program Yes HighInstruction Address Signals All Clock Cycles

STP-FSIM4 CPU and Memories None Data Memory Signals Memory Write Operations Yes HighInstruction Signals All Clock Cycles

5.4 Case study and experimental results
In this section, the following topics are covered:

• a brief overview of the flow used for assessing the fault coverage of a Software
Test Library;

• the relevant characteristics of the self-test procedures;

• the fault simulation environment used to quantitatively evaluate the effec-
tiveness of the different techniques.

The gathered experimental results are also presented and discussed.
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5.4.1 Experimental setup and case study
Experiments were conducted on the same open source OpenRisc1200 (OR1200)

processor already described in Chapter 4. The overall architecture of the processor
is depicted in Figure 5.6. The OR1200 gate-level netlist (synthesized with Syn-
opsys Design Compiler with a 65nm CMOS library) was inserted in a SoC, which
comprises a WishBone interconnect, a Flash memory and a RAM. The Flash and
RAM memories are 2MBytes each.

Figure 5.6: The OR1200 architecture.

The Software Test Library used for the experiments described in this Chapter
is based on the one described in Chapter 4. However, with respect to that STL the
one used in the following includes some minor modifications. The main features of
these modified self-test programs are listed in Table 5.2. Each self-test procedure
addresses stuck-at faults of a specific CPU sub-module. The self-test procedure
also computes internally the result of the test (i.e., the test signature) and then
this is written to a known memory location in the system RAM.

Concerning the fault simulation campaigns, it was adopted the same functional
fault simulator used for the experiments of Chapter 4. Such tool allows to imple-
ment SC-FSIM and STP-FSIM techniques. For implementing both STP-FSIM0
and STP-FSIM1, the test patterns (i.e., the instructions) are provided to the CUT
(that is, the OR1200) by means of a Value Change Dump (VCD) file, previously
generated through a logic simulation of the self-test procedure on the gate-level
netlist (for these experiments, leveraging Synopsys VCS). During the STP-FSIM0
fault simulations, the observation points were placed on all top-level ports of the
OR1200 (namely the green boxes in Figure 5.6). For STP-FSIM1, the observation
points were limited to the Data WishBone Interface (namely WB D in Figure 5.6).
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Table 5.2: STL characteristics

Self-test procedure Duration
[CC]

Size
[B]

rf_test 1,506 3,536
cu_test 542 836

opmux_test 312 512
alu_test 16,424 14,776
mac_test 3,252 2,624
lsu_test 2,112 4,244

genpc_test 24,904 2,960
wbmux_test 538 808

Moving to the STP-FSIM2, STP-FSIM3 and STP-FSIM4 experiments, the simu-
lated model is a system composed of the OR1200 core and two memory modules of
2 MBytes each. During STP-FSIM3 the RAM memory content and the Instruction
WishBone Interface (WB I in Figure 5.6) were exclusively observed. For STP-
FSIM4 Data and Instruction WishBone Interface were observed. Among the other
functionalities offered by the tool, there is also hyperfaults [40] detection. How-
ever, fault simulators do not always support this specific mechanism. Hence, for
the sake of experiments reproducibility, this feature was disabled during the fault
simulation campaigns. All the experiments were performed on a workstation with
an Intel Xeon CPU running at 2.5 GHz, equipped with 12 cores and 256 GBytes
of RAM.

Fault simulations were run leveraging just one of the available cores. For the
sake of generality, the experiments were performed on the processor stuck-at fault
list, without removing any kind of untestable faults. Finally, the fault simulations
were performed with a zero-delay mode (i.e., all combinational and sequential delays
were ignored).

Table 5.3: Fault simulation results

Fault simulation method Duration [hours] FC [%]
STP-FSIM0 0.6 83.25%
STP-FSIM1 7 75.91%
STP-FSIM2 41 81.01%
STP-FSIM3 18 81.26%
STP-FSIM4 13 80.67%

88



5.4 – Case study and experimental results

5.4.2 STP-FSIM methods
In Table 5.3 the gathered experimental results are reported for the methodolo-

gies presented in Section 5.2 and 5.3. The figures concerning the fault coverage were
computed for the entire STL against a full CPU fault list (which accounts for about
98k stuck-at faults), using the incremental fault grading strategy. It is possible to
observe that both STP-FSIM0 and STP-FSIM1 approaches are undoubtedly the
fastest, although they are the ones producing the highest discrepancies concerning
the fault coverage figures with respect to STP-FSIM2 (being the one yielding cor-
rect fault coverage results). STP-FSIM1 is slower compared to STP-FSIM0 due
to the reduced observability that inhibits the fault dropping mechanism. Moving
to the STP-FSIM2-based techniques, STP-FSIM2 yields the exact value of fault
coverage, since it reproduces the same operational conditions as the ones when the
SoC is deployed in field. The self-test procedures were designed so that their result
is written in a single memory location. Therefore, at the end of the test program
execution, only that memory location should be checked. Finally, the two opti-
mized techniques (STP-FSIM3 and STP-FSIM4) exhibit a considerable speed-up
compared to the base approach. STP-FSIM3 allows a fault simulation time re-
duction of almost 56%, while STP-FSIM4 goes even further, around 68%. This is
significant, since the loss of accuracy of fault coverage is very reduced (0.3% for
STP-FSIM3, 0.4% for STP-FSIM4, both with respect to STP-FSIM2). The reason
for this minor difference between STP-FSIM3 and STP-FSIM4 mainly stems from
the fact that in STP-FSIM4 there is a higher number of faults marked as potentially
detected by the fault simulator. If these faults were counted as detected, the two
methods would yield almost the same fault coverage figures.

Interestingly, after processing the fault lists of STP-FSIM2-3-4 with a Fault List
Analysis Tool (FLAT, [10]), it emerged that the three approaches detect slightly
different sets of faults. Such sets of faults are denoted with A, B, C, D, E, F and G
(Figure 5.7). In Table 5.4 instead, it is detailed the number of faults within each set.
As shown in Figure 5.7, the set of detected faults by each fault simulation approach
can be expressed as a composition of these sets (for sake of conciseness, since E, F
and G are empty in the considered case they are omitted in the following).

It can be observed from Table 5.4 that the set A is the largest one. Indeed, it
is the one that contains the faults covered by all the three techniques. The set B is
in common between STP-FSIM2 and STP-FSIM3, but not present in STP-FSIM4.
It should be noticed that all the faults covered by STP-FSIM2 are included in the
faults covered STP-FSIM3. The faults within the set C, that are only covered
by STP-FSIM4 and STP-FSIM3 (marked as not detected in STP-FSIM2), mainly
belong to the OR1200 modules genpc, if and ctrl. This is reasonable, since STP-
FIM3 and STP-FSIM4 differ from STP-FSIM2 in the observation of the instruction
bus: the modules genpc, if and ctrl are directly connected to that interface. The
same reasoning applies to the set D, exclusively included in STP-FSIM4. Faults in
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Figure 5.7: The detected faults by STP-FSIM2, STP-FSIM3, STP-FSIM4 and their
possible intersections. In this case, E=F=G=0.

D are mainly related to the lsu and except units, which have a connection to the
data bus, and STP-FSIM4 is the only technique that observes these signals.

Table 5.4: Size of faults sets

Set of Detected Faults Number of Faults
A 78,583
B 643
C 251
D 168
E 0
F 0
G 0

Figure 5.8 summarizes the results produced by the presented methodologies. As
it can be noticed, STP-FSIM0 and STP-FSIM1 approaches are the fastest concern-
ing fault simulation time, although they provide quite inaccurate fault coverage
metrics (with respect to the exact value, represented by the red line). On the other
hand, STP-FSIM2-based approaches are more computationally intensive but yield
the most accurate results. Specifically, given that STP-FSIM2 provides exact re-
sults, STP-FSIM0 is supposed to yield always higher values of fault coverage, since
all outputs are observed continuously. Differently, STP-FSIM1 gives lower values
of fault coverage, since it does not consider the effect of faults causing a different
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execution flow. When dealing with STP-FSIM3 and STP-FSIM4, the fault cover-
age metrics are an acceptable approximation of the real coverage (as confirmed by
the experiments).

It is noteworthy that with a careful development the self-test routines, the
difference between the exact fault coverage figure and the one given by any of the
approximate methods can be minimized.

Figure 5.8: Fault simulation methodologies: fault coverage accuracy versus fault
simulation time. The red line represents the exact fault coverage figure.

As an example, consider Table 5.5, that reports the fault coverage values on
each module targeted by the specific self-test routine when using STP-FSIM0 and
STP-FSIM2. For tests like rf_test, alu_test, and lsu_test the difference between
the two techniques can be significant (e.g., 24.62% of difference for rf_test). This
mainly stems from the fact that modules like the LSU are directly connected to
the OR1200 top-level outputs (that is, the system bus interface) thus it is easier
to detect faults effects when using STP-FSIM0 (in which all outputs are observed)
rather than with STP-FSIM2 (which leverage exclusively the produced signature).

For RF and ALU instead, the discrepancies are due to the fact that the ALU
is used for computing the effective address of load and store operation. Therefore,
the ALU output is also connected to the system bus interface and it happens that
during the test of RF (tested with a test algorithm like the one presented in [19])
and ALU some bogus data transit on that signal which are not reflected in the

91



Improved fault grading techniques for STLs

Table 5.5: STP-FSIM2 VS. STP-FSIM0 fault grading

Self-Test Routine STP-FSIM2 FC[%] STP-FSIM0 FC [%]
genpc_test 53.78 57.04

cu_test 74.58 73.90
rf_test 57.93 82.55

opmux_test 86.65 87.32
alu_test 66.15 74.36
mac_test 88.30 89.59
lsu_test 72.69 84.68

wbmux_test 66.15 70.87

final signature. On the other hand, there exist modules deeply embedded in the
processor core that do not suffer from these divergences. Indeed, MAC and Operand
multiplexers do not have a direct connection with top-level signals, hence the results
are quite similar with both approaches.

For the sake of completeness, the fault simulation time required for a monolithic
(i.e., without incremental fault simulation) fault grading of the STL was computed
for the STP-FSIM0, STP-FSIM1 and STP-FSIM2 approaches (Table 5.6). As it
can be noticed, although it is still feasible for STP-FSIM0, for the other approaches
the fault simulation time explodes, and it would become quite unfeasible for large
designs.

Table 5.6: Monolithic VS. Incremental fault grading

Fault Simulation
Method

Duration of
monolithic approach

[hours]

Speed-up with
incremental

fault simulation
[%]

STP-FSIM2 316 87
STP-FSIM0 1 40
STP-FSIM1 76 90

5.4.3 Fault grading for DCLS-oriented STLs
From the experiments described so far, it is undeniable that STP-FSIM0 and

STP-FSIM1 are not suitable for providing a final fault coverage figure that reflects
what happens in the operational field. However, when dealing with STL generation
for cores embedded in a DCLS-based SoC, the usage of the STP-FSIM0 could
significantly improve the development time and yet provide correct results. Indeed,
DCLS is normally adopted for meeting the ISO 26262 constraints of complex devices
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such as multi-core ones. In this context the STL are used for detecting latent faults
affecting checker or main core. Clearly, adopting STP-FSIM2 for such huge designs
could be problematic. However, as anticipated in the previous chapters the key idea
of the DCLS configuration is to add an exact copy (from the functional viewpoint)
of the main core, so that any fault effect that propagates up to some output signals
can be immediately detected by a set of comparators. This principle holds as long
as just one of the two replicas is affected by the faults.

For this reason, STLs are used against the latent faults, so that the possible
occurrence of faults is forced to appear as a failure at the processor output. Since
these outputs are continuously monitored by comparators, when this happens an
alarm is triggered and the SoC reacts accordingly. Thus, there could be faults that
manifest themselves before the final check of the signature by the self-test routines,
due to the lockstep comparators. The scenario described above is conceptually
similar to what happens in fault simulation, especially in STP-FSIM0, in which
the output signals are monitored and compared with the golden values of a fault-
free machine. Hence, STP-FSIM0 can be exploited (along with its advantages)
when developing and grading STLs for DCLS-based SoC. Obviously, there is not a
perfect equivalence as the experiments performed with the same DCLS version of
the OR1200 used in Chapter 4 confirmed. The lockstep was applied to the lowest
possible level, that is at the CPU level.

Table 5.7: STP-FSIM0 for DCLS-oriented STL grading

Self-Test Routine CPU STP-FSIM0
FC [%]

Comparators Output
FC [%]

cu_test 77.90 77.87
lsu_test 86.28 86.23
rf_test 90.88 90.87

Table 5.7 summarizes the results of the experiments. By observing the second
column, it is worth noting that the self-test routines have fault coverage metrics
slightly higher compared to those in Table 5.5. This is because for the results in
Table 5.5 the observation points were placed on the output signals of the OR1200
that embeds the CPU, that is, one level of hierarchy higher with respect to the
what was done in Table 5.7. This was necessary to have a fair comparison with the
results when leveraging the lockstep mechanism only. The third column reports
the fault coverage when observing the output signal of the lockstep comparators.
As it can be noticed, the differences are present but negligible (0.03% in the worst
case).
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Chapter 6

JTAG-based fault emulation
platform for processor-based
ASICs

As extensively discussed in Chapter 5, the fault simulation step is to date one
of the main bottlenecks of the STL development flow (especially when considering
functional fault simulation). However, when dealing with safety critical applications
functional fault simulation is required also for other purposes.

While in Chapter 5 the focus was on techniques to reduce the fault simulation
time when dealing with STLs, in this chapter the intent is different. Indeed, a
possible alternative to fault simulation is the fault emulation. The fault emulation
is normally implemented resorting to programmable logic devices, such as FPGAs.
These are interconnected via high-speed links in a cluster to form emulators.

Specifically, in this chapter an emulation platform based on the already-existing
JTAG infrastructure is proposed. Differently than in the existing works that focus
on the fault injection mechanism, the focus is on the fault detection mechanism
that allows to mimic (including fault dropping) the one found in fault simulators.

It is worth noting that the discussed platform is applicable in all the steps that
require fault simulation for dependability analyses (not only the FMEDA performed
in the automotive domain). Indeed, it is actually an alternative to fault simula-
tion when performing dependability analyses of processor-based ASICs intended
for safety-critical applications.

In the following the discussion is developed considering as use case the typ-
ical dependability analysis that a processor-based ASICs undergo. The stuck-at
fault models is considered, however the methodology is applicable to transient fault
models too (being the two most popular fault models adopted for these analyses).
Section 6.1 provides motivations, differences with respect to related works and then
the adopted fault injection mechanism presented in [85] for stuck at faults (which,
once again, is not the focus of this research). Section 6.2 introduces the proposed
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platform, while Section 6.3 the experimental results.
The content of this chapter was published in [30].

6.1 Background

6.1.1 Introduction
Safety-critical processor-based ASICs normally require long and expensive de-

pendability analyses before being adopted. The goal is to ensure that the system
will deliver the expected services even in presence of hardware faults. The most
popular approaches used in industry resort to fault injection campaigns, performed
with fault simulators. In these kinds of analyses, the fault simulation process con-
sists of injecting one (sometimes even multiple) faults in the design (either memory
element or logic gates) and observe the behaviour of the system while executing a
given workload (i.e., an application program that resembles the final one when in
field). Mainly stuck-at or transient fault models (SEU and SET) are considered.

The general flow consists of an initial fault simulation, which identifies the most
critical faults that exist within the design. Successively, depending on the safety
requirements, hardening mechanisms (both hardware and software) against such
critical faults are devised. Eventually, the fault simulation is repeated to verify
the effectiveness of the chosen hardening mechanisms. This process might be iter-
ated several times until the requirements are met, which implies that several fault
simulations are required. However, fault simulation slows down significantly when
performing dependability analyses. For this reason, FPGA-based emulators are an
attractive solution for overcoming such limitations. Design emulation is today part
of the standard design process of complex ASICs. Most notably, it is often used for
design verification, pre-silicon validation and early firmware development.

6.1.2 Related works and motivations
In the literature, there exist several approaches for implementing fault emu-

lation. One category of these approaches consists of directly altering the FPGA
bitstream [57, 21, 84]. These methods have the advantage that the entire FPGA
is available for the design, therefore the hardware overhead is in practice null. On
the other hand, each fault injection asks for reprogramming the device, which re-
quires several tens of seconds. Another drawback stems from the fact that FPGA
vendors do not disclose information concerning how a given design is mapped to
the FPGA blocks and translated into the bitstream. With the above-mentioned
approaches, trying to emulate the same fault models adopted for dependability
analyses in ASICs may not be feasible through FPGA emulation. Indeed, it re-
quires an additional overhead to understand how to map in the bitstream faults
that resemble the actual ones. Therefore, altering the bitstream is unfeasible for
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complex designs and large emulators (which are made by multiple FPGAs wired
together). Finally, these approaches do not allow to inject transient faults (e.g.,
SET or SEU) but only stuck-at permanent faults.

The other category is based on circuit instrumentation [85, 29, 26, 8, 28]. The
original netlist is converted into a fault-injectable netlist. All the faults of interest
are programmed at once in the FPGA: therefore, reconfiguration is not required.
These approaches allow to inject stuck-at [85], SEU [28, 8, 26] and SET [29] while
also begin compatible with the technology offered by the modern emulators.

The main drawback stemming from the adoption of these approaches is that the
fault injection mechanism implies a non-negligible hardware overhead. Additionally,
some pins are added to the design in order to control the injection.

Likewise with fault simulation, also when performing fault emulation, the fault
detection mechanism is a crucial aspect. In this context, the fault detection mech-
anism refers to the method used by the fault simulator (or emulator) to determine
whether a given fault can be labelled as detected or not.

The approaches presented in [85, 26] monitor the functional output or the in-
ternal flip-flop at each clock cycle. These approaches are not viable, since they
require a huge amount of data to be transferred and stored outside the FPGA. In
[29, 28, 8] the idea is to instrument the software executed by the processor during
the injection. At the end of execution, the results of the program are internally
checked by the system itself. There are three main problems with this approach:

1. the emulation of one fault requires the entire execution of the workload;

2. it might happen that there could be discrepancies (in terms of fault detect-
ed/not detected) with respect to the results of a fault simulator;

3. there could be a loss of accuracy since the produced data are exclusively
observed (while completely missing internal signals activity).

For overcoming the above-mentioned limitations, the goal of this chapter is
to propose a fault emulation platform to support dependability analysis of ASICs.
However, rather than on the fault injection mechanism (well addressed in the afore-
mentioned works), the focus is on the fault detection mechanism. The idea is to
resemble the one existing in the modern fault simulators, including fault dropping
capabilities described in Chapter 5. To avoid increasing the pincount of the de-
sign, the proposed fault emulation platform is based on the already-existing JTAG
infrastructure. This also makes the whole platform easily applicable with modern
emulators since it does not require dedicated hardware for the communication. The
JTAG infrastructure for performing fault injection was already exploited by the au-
thors of [79]. However, in that work the purpose was injecting transient faults (i.e.,
bit flips) in an already manufactured device exploiting the access to the internal
scan chains. In this work, the idea is to integrate the fault injection mechanism in
the JTAG infrastructure and communicate with it with the JTAG protocol.
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6.1.3 The fault injection mechanism
The fault injection mechanism used in this chapter is based on the one presented

in [85]. It is worth noting that the proposed platform is applicable to any fault in-
jection mechanisms based on netlist instrumentation. The approach [85] consists of
instrumenting the original gate-level netlist by means of Fault Injectable Elements
(FIEs). Each FIE, placed right before the logic gate inputs and output, allows to
inject one stuck-at fault at a time. The injection is controlled by the structure
depicted in Figure 6.1. To reduce the hardware overhead, several pairs of counter-
decoder and one demultiplexer are used. Each pair of counter-decoder controls
the injection of a subset of faults. As it can be seen, the whole control structure
requires two signals only, plus a separate reset line (not shown for simplicity) to
be added to the design. A pulse in the Scan_Clock signal inject one fault in the
design by activating one FIE control signal. As long as the control signal is active,
the output is forced at the logic value 1. Contrarily, when control signal is inactive,
the FIE is transparent and the input value is reflected at the output. A pulse in
the Select_Clock selects another pair counter-decoder, which controls a different
set of FIEs.

Figure 6.1: The fault injection mechanism described [85]. The other design inputs
and outputs are not shown here for simplicity.

6.1.4 Terminology
In this subsection, the basic terminology already introduced in Chapter 5 is

recalled. When performing fault simulation, the fault simulator is instructed to
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observe specific design signals (strobe points) at specific simulation time instants
(strobe times). At the specified strobe times, the fault simulator compares the
actual strobe points values with the one of the fault-free design. In case of a
mismatch, the fault is no longer simulated (dropped). This method is known as
fault dropping [39]. When correctly configured, it is possible to reduce the fault
simulation time. For example, when assessing the dependability of the processor
core, the system bus signals are normally monitored. For the strobe time, several
options are possible. Ideally, the more often (e.g., at each clock cycle) the strobe
points are checked, the higher will be the speed up of the fault simulation (as
demonstrated in Chapter 5). However, this is not generally true. Indeed, checking
the strobe points values requires a non-negligible amount of CPU time. During
this time, the fault simulation is not proceeding. Therefore, unless faults manifest
themselves often, a large amount of time is potentially wasted in checking strobe
points values. In general, configuring correctly the fault dropping mechanisms
requires engineers’ expertise.

6.2 The fault emulation platform

6.2.1 The global architecture
The high-level schematic of the proposed fault emulation platform is shown

in Figure 6.2. Apart from the clock and reset generation module and the TAP
controller, it is possible to identify three main blocks. The ASIC domain is the
fault-injectable gate-level netlist of the targeted ASIC. Considering the fault injec-
tion mechanism described earlier, in this domain the design, all the control struc-
tures and FIEs depicted in Figure 6.1 are contained. It is worth noting that the
ASIC Domain is the only portion of the circuit that contains the fault injection
elements (and thus, it is the only one affected by faults). The two control signals
(Select_Clock and Scan_Clock) as well as other dedicated reset signals are driven
by the logic contained in a second domain, the Fault Injection Manager. Finally,
the third domain is the Observation Domain which is in charge for implementing
the fault detection mechanism. Internal ASIC signals (i.e., the strobe points) are
extracted and fed to this domain. As it can be seen, both ASIC and Observation
Domains have the same clock and reset grids. The Fault Injection Manager runs
on a separate (the one of the TAP controller) clock and reset grids.

Each of these domains is part of an IEEE 1149.1 JTAG network and accessible
via dedicated JTAG instructions. Within each domain, there is a JTAG register
able to receive data from the JTAG interface and interact with the internal logic.
It is worth noting that in the case of the ASIC domain, these JTAG registers
are the original ones for debugging and testing the design. Additionally, the only
pins required to be controlled externally are the system clock and reset (CLK and
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Figure 6.2: The proposed JTAG-based infrastructure. Only relevant pins are
shown.

RST pins) plus the five JTAG wires (TRS, TDO, TDI, TMS, TCK). Given this
infrastructure, the injection of faults is reduced to the programming of the JTAG
register within the Fault Injection Manager with the sequence specified by the
selected fault injection mechanisms. It is important to notice that this structure
can be adapted to any fault injection mechanism requiring signals driven from
outside the emulator.

6.2.2 The observation domain
Figure 6.3 represents the schematic of the Observation Domain. Ideally, fault

simulators have the capability of observing strobe points at each clock cycle. In
order to achieve the same behaviour, the strobe points (Observed Signals in Figure
6.3) values are compacted with a time (or infinite memory) compactor. The com-
paction is implemented with a dedicated Multiple Input Signature Register (MISR)
[92]. MISRs are normally used for compacting test responses of BIST mechanisms.
The most important feature of a MISR is the ability to compact several hundreds
of thousands of clock cycles of data into a small signature (e.g., 32-bit long). In
case a fault effect is propagated up to the observed signals, it is latched in the
compactor and will remain there until another error erase it (aliasing). However,
when properly implemented (i.e., when using primitive polynomial compactors) the
probability of aliasing is null. With this approach is possible to have a clock cycle
resolution of the circuit activity during the fault emulation but without moving
huge amount of data outside the emulator. Since an error injected in the com-
pactor will persist in the signature, it is possible to implement fault dropping with
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a Repetitive Timer and a FIFO memory. The timer is configured through the lower
portion of the internal JTAG register (which exclusively drive the internal logic) to
expire every k clock cycles.

Figure 6.3: Internal structure of the Observation Domain.

Whenever it expires, it generates the LOAD signal that captures a new partial
signature into the FIFO. It is worth noting that the partial signature reflects the
circuit status at the clock cycle in which it is captured. As it can be seen, the
LOAD signal is stored in the FIFO along with the MISR value. During the fault
emulation, the external interface continuously read the higher portion of this JTAG
register (which exclusively observe the internal logic). Whenever the LOAD bit is
set, the partial signature is valid and can be compared with the golden one. The
FIFO also maintains the correct sequence in the signatures produced and read,
avoiding losing signatures due to a slow external interface. Furthermore, in the
FIFO an additional bit is stored, the STOP bit. This bit is generated with a
comparator and it is used for signalling the end of the emulation. The end of
emulation condition is programmed via JTAG as well, and it could be any value
appearing on Compared Signals. For example, in case of a microprocessor executing
software, the Compared Signals could be the processor Program Counter. When a
specific address is produced (i.e., a specific instruction is going to be fetched) the
STOP is generated and the MISR stops recording the Observed Signals.

6.2.3 The fault emulation flow
Given this architecture described in Figure 6.2 and 6.3, the procedure for per-

forming a full fault emulation campaign is shown in Listing 6.2. Preliminary, a

101



JTAG-based fault emulation platform for processor-based ASICs

Golden Emulation is performed. It aims at recording all the partial golden signa-
tures to be used successively. The external interface performs the steps GE1-7. It
is worth mentioning that during Step GE3, the JTAG register of the Fault Injection
Manger is not altered since no injections are required. The emulation and partial
signatures recording terminate when the STOP bit is set. After having recorded
all the partial signatures, the Fault Emulation begins. The steps FE1-6 compose
the Fault Emulation. Differently than in the Golden Emulation, the JTAG infras-
tructure does not require a reset. Similarly, the JTAG register of the Observation
Domain is not altered since already configured during the Golden Emulation. As
it can be seen in Step FE6, the fault emulation proceeds until a mismatch in the
partial signature occurs (implementing in practice the fault dropping).

1 /∗ ∗∗∗∗∗∗∗ GOLDEN EMULATION ∗∗∗∗∗∗∗∗ ∗/
2 /∗ GE1 ∗/
3 Act ivateReset ( ) ;
4 ActivateResetJTAG ( ) ;
5 /∗ GE2 ∗/
6 ReleaseResetJTAG ( ) ;
7 /∗ GE3 − Program Repe t i t i v e Timer and STOP Generation ∗/
8 ProgramObservationDomain (REG_VAL) ;
9 /∗ GE4 − ASIC and Observation Domain are a c t i v e ∗/

10 ReleaseReset ( ) ;
11 /∗ GE5 − Star t r e co rd ing p a r t i a l s i g n a t u r e s ∗/
12 CurrentPointer = 0 ;
13 do
14 {
15 /∗ GE6 − Read JTAG Reg i s t e r o f Observation Domain ∗/
16 ValueRegJTAG = ReadObservationDomainJTAG ( ) ;
17 i f (ValueRegJTAG [LOAD] == 1)
18 {
19 /∗ GE7 − Retr ive the new p a r t i a l s i gna tu r e ∗/
20 S ignature s [ CurrentPointer ]=ValueRegJTAG [ S ignature ] ;
21 CurrentPointer++;
22 }
23 } whi l e (ValueRegJTAG [STOP] != 1) ;
24

25 /∗ ∗∗∗∗∗∗∗∗ FAULT EMULATION ∗∗∗∗∗∗∗∗ ∗/
26 Detected = 0 ;
27 f o r ( i = 0 ; i < TotFaults ; i++)
28 {
29 /∗ FE1 ∗/
30 Act ivateReset ( ) ;
31 /∗ FE2 − I n j e c t Fault ∗/
32 ProgramFaultInjectionManager (REG_VAL) ;
33 /∗ FE3 − ASIC and Observation Domain are a c t i v e ∗/
34 ReleaseReset ( ) ;
35 /∗ FE4 − Star t r e co rd ing p a r t i a l s i g n a t u r e s ∗/
36 CurrentPointer = 0 ;
37 do

102



6.3 – Experimental results

38 {
39 /∗ FE5 − Read JTAG Reg i s t e r o f Observation Domain ∗/
40 ValueRegJTAG = ReadObservationDomainJTAG ( ) ;
41 i f (ValueRegJTAG [LOAD] == 1)
42 {
43 /∗ FE6 − Compare the p a r t i a l s i gna tu r e ∗/
44 D i f f=S ignature s [ CurrentPointer ]−ValueRegJTAG [ S ignature ] ;
45 i f ( D i f f != 0)
46 {
47 Detected++;
48 }
49 CurrentPointer++;
50 }
51 } whi l e ( D i f f == 0 && ValueRegJTAG [STOP] == 0) ;
52 }

Listing 6.1: C-like pseudo-code of the fault injection flow.

6.3 Experimental results
The proposed emulation platform was validated with a Xilinx FPGA model

xc7z020clg4000-1. As case study, the 8051 microcontroller was selected and imple-
mented with a 65nm ASIC technology. For the experiments, stuck-at faults within
the processor were exclusively targeted (about 50k faults). The Observation Do-
main was configured as follows: as strobe points, the system bus signals. These
signals produce a 32-bit signature, which is also the MISR width. Consequently,
the FIFO memory had a depth of 32 words, each word 34-bit long (32 bits for the
MISR value, 2 bits for STOP and LOAD flags). As signals to be compared for gen-
erating the STOP signal of Figure 6.3, the program counter was selected (12 bits).
Finally, a 32-bit configuration was selected for the Repetitive Timer. In Table 6.1
the post-layout results in terms of FPGA resources utilization is reported. Most of
the resources required are for the ASIC Domain (i.e., the fault-injectable netlist).
Instead, the overhead of the proposed platform is relatively modest. It requires
1,445 LUTs and 1,459 flip-flops. The FIFO within the Observation Domain is most
demanding one. As workload for the analysis, an application program that gener-
ates the first 15 elements of the Fibonacci Series was selected (which lasts slightly
more than 2k clock cycles).

The first set of experiments compares the results produced by the proposed
fault emulator and a commercial fault simulator (Z01X) in terms of fault detected.
The only discrepancies (less than the 1%) that were found concern how unknown
(i.e., X) logic values are treated. In fault simulation, the Xs at strobe points cause
the current fault to be marked as potentially detected. In real hardware, the X
value does not exist. However, it is worth noting that this is a known limitation
[85] of fault emulation in FPGAs. For the remaining faults, there was a complete

103



JTAG-based fault emulation platform for processor-based ASICs

Table 6.1: FPGA implementation details

Module LUT FF
TAP Controller 184 75

Fault Inj. Manager 40 22
Observation Domain 1,221 1,362

ASIC Domain 27,192 3,352
Total 28,637 4,811

match between the two. The second set of experiments focused (Figure 6.4) on the
use and configuration of the fault dropping mechanism. Four different runs were
performed, each differing for the number of partial signatures produced. In the first
one, partial signatures were not used (one final signature). This can be achieved by
using an expiration time greater than the workload duration (i.e., 2k clock cycles).
The second one, only one partial signature was used (the timer expires after 1.5k
clock cycles). In the third one, two partial signatures were used (expiration set to
1k clock cycles). In the last one, the Repetitive Timer was configured to expire
every 500 clock cycles, producing 4 partial signatures.

Figure 6.4: Emulation Time vs Number of partial signatures.

As shown, it is possible to reduce the execution time (by 2 seconds) even for short
workload as the one selected for the experiments. Selecting one partial signature
did not yield appreciable advantages, since the timer expiration time is too close
to the end of the emulation. In case of four partial signatures, the experiment
produced an outcome similar to the one that can be expected with fault simulators
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(i.e., when trying to drop faults too often). Indeed, the duration of the workload is
too short to amortize the timing overhead required for shifting out and comparing
4 partial signatures plus the final one. Thus, this last case clearly shows that the
fault dropping configuration is a critical aspect that should not be overlooked.

The reasons for a better execution time with two partial signatures can be
found in the plot of Figure 6.5 derived through Z01X (which allows for a clock
cycle resolution, unlike the proposed emulator). Figure 6.5 plots the histogram of
the fault detection instants and its cumulative distribution function. Nearly the
80% of the detected faults already produces faulty effects at the strobe points after
1k clock cycles. It is also noteworthy that only 12k faults are detected. Thus, the
76% of the faults do not produce a failure. Therefore, for the 76% of the cases
comparing the partial signatures is totally useless.

Figure 6.5: Histogram and cumulative distribution function of the detection in-
stants (expressed in clock cycles).
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Chapter 7

Conclusions and future directions

In this manuscript different aspects of the self-testing for automotive MPSoCs
were addressed. Mainly, the software-based ones were considered since in the state
of the art, most of the recent research efforts were directed to the hardware-based
ones. Beside, also new possible approaches such as the hybrid one were explored.
The second part of the thesis dealt with the improvement of the methodologies for
the functional fault grading, being one of the major bottlenecks in the development
of any self-test mechanisms (not only for the automotive domain) when the device
complexity increases (as it happens with MPSoCs).

Concerning the first part, it was described a cache-based approach for achieving
a deterministic execution of self-test procedures when executed in field in a MPSoC
(Chapter 2). The proposed methodology is able to deliver stable signature and
deterministic fault coverage, most notably without requiring additional on-chip
resources. Through the experiments, it was demonstrated the applicability to any
self-test procedure without altering its overall memory footprint. On the other
hand, as the experiments confirmed it requires slightly more clock cycles to be
executed compared to other strategies (e.g., the TCM-based ones).

The problematic discussed in that chapter opens a new interesting research area.
While considering stuck-at faults, few specific test programs exhibit these issues in
a multi-core execution. Instead, it might be further emphasized with delay faults
which require test patterns applied in a timed sequence. Further research efforts
should be directed toward this end, which might be of particular interest in emerging
research areas such as the one of the System-Level Test (SLT) [78].

Different multi-core decentralized schedulers were introduced (Chapter 3). These
are intended to be applied in different scenarios (i.e, single/multi-resource and ho-
mogeneous/heterogeneous) and compatible with the modern industrial develop-
ment flow for STLs [13]. The decentralized approach has been shown to be a valid
alternative in multi-core systems, which are highly non-deterministic themselves.
Instead of controlling which test programs is executed by each core at any given
time, each core independently executes its test programs. Besides reducing the
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overall test application time when in field, the selfish decentralized scheduler also
yields a better predictability in terms of execution time when compared to other
solutions. Concurrently, the memory overhead is minimized, as most of the data
structures resides in the stack memory without replication of code and/or data.
The proposed decentralized architecture allows to embed different schedulers in
the same system, as they are completely independent. That is, it promotes also
code re-usability, which is an attractive feature to have when dealing with modern
automotive systems.

Through the experiments, it was shown that any multi-core scheduler is in-
evitably affected by the underlying system architecture (i.e., architecture of the
interconnect, memory hierarchy, parallelism of the memories). In this manuscript,
the focus was on system interconnect based on crossbar switch. Although they
are barely adopted in modern embedded multi-core systems, future research efforts
should be directed to analyze shared bus interconnects. Furthermore, more ad-
vanced interconnection schemes such as those proposed by the Network-on-Chip
philosophy should be investigated as well (even though they have not yet reached
the mainstream industrial safety-critical applications).

Several self-test mechanisms for DCLS processors were analyzed in Chapter 4.
These self-test mechanisms can be used for the on-line testing of the comparators
required for implementing a DCLS configuration. It was proven through the ex-
periments the inadequacy of an STL to address all the possible permanent faults
within the comparators. At the same time, it was shown the overhead in terms
of area of a pure hardware self-test module. An alternative self-test approach is
then introduced: it is based on the insertion into the system of a hardware mod-
ule (LSMU) that assists test programs for the generation the required test stimuli.
Therefore, the proposed strategy is hybrid, since it is based on both software and
hardware.

The proposed strategy provides several advantages:

• Low hardware overhead compared to a pure hardware approach: part of the
test patterns generator is implemented in software;

• Flexibility: as it is partially based on software, it inherits its flexibility: the
test can be split in different test sessions to fit the test time budget when on-
line. Moreover, the test patterns are not fixed anymore and can be updated
as required;

• Promotes IP re-usability: the hardware module is the least intrusive as pos-
sible. Indeed, it is not required any modification nor a detailed knowledge
of the processor core. The system designer oversees the integration of the
module in the final SoC, as it happens with a standard IP;

• Scalability: the hardware overhead minimally depends on the complexity of
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the considered processor. The ISM depends only on the considered architec-
ture (e.g. 32 or 64-bit), while the CSSM depends on the number of control
signals of the processor core.

Additionally, it was described a set of countermeasures to be used against single-
point faults that could arise within the LSMU, in order to improve the safety of
the module. Latent faults within the LSMU can be addressed following the same
approach of a pure hardware module (i.e., LBIST-based approaches).

Concerning the second part of the thesis, to alleviate the effort required for
functional fault simulation, in Chapter 5 the focus was on fault dropping strate-
gies. These are fully compatible with modern fault simulators and intended to be
integrated in the standard STL development flow.

As possible solution, fault emulation was considered in Chapter 6. This repre-
sents the most interesting future direction concerning functional fault grading for
dependability dependability analyses. Indeed, emulation might be the answer to
the growing complexity of the MPSoCs, complementing fault simulation. In par-
ticular, the integration of these methodology in the development flow of software-
based safety mechanisms (for implementing both self-testing and general hardening
mechanisms) should be the next step. Finally, considering this last topic, since the
average operational life of electronic devices increases, hardware fault injection
mechanisms enabling the injection of multiple faults should considered as well.
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