181 research outputs found

    Enhancing Online Security with Image-based Captchas

    Get PDF
    Given the data loss, productivity, and financial risks posed by security breaches, there is a great need to protect online systems from automated attacks. Completely Automated Public Turing Tests to Tell Computers and Humans Apart, known as CAPTCHAs, are commonly used as one layer in providing online security. These tests are intended to be easily solvable by legitimate human users while being challenging for automated attackers to successfully complete. Traditionally, CAPTCHAs have asked users to perform tasks based on text recognition or categorization of discrete images to prove whether or not they are legitimate human users. Over time, the efficacy of these CAPTCHAs has been eroded by improved optical character recognition, image classification, and machine learning techniques that can accurately solve many CAPTCHAs at rates approaching those of humans. These CAPTCHAs can also be difficult to complete using the touch-based input methods found on widely used tablets and smartphones.;This research proposes the design of CAPTCHAs that address the shortcomings of existing implementations. These CAPTCHAs require users to perform different image-based tasks including face detection, face recognition, multimodal biometrics recognition, and object recognition to prove they are human. These are tasks that humans excel at but which remain difficult for computers to complete successfully. They can also be readily performed using click- or touch-based input methods, facilitating their use on both traditional computers and mobile devices.;Several strategies are utilized by the CAPTCHAs developed in this research to enable high human success rates while ensuring negligible automated attack success rates. One such technique, used by fgCAPTCHA, employs image quality metrics and face detection algorithms to calculate a fitness value representing the simulated performance of human users and automated attackers, respectively, at solving each generated CAPTCHA image. A genetic learning algorithm uses these fitness values to determine customized generation parameters for each CAPTCHA image. Other approaches, including gradient descent learning, artificial immune systems, and multi-stage performance-based filtering processes, are also proposed in this research to optimize the generated CAPTCHA images.;An extensive RESTful web service-based evaluation platform was developed to facilitate the testing and analysis of the CAPTCHAs developed in this research. Users recorded over 180,000 attempts at solving these CAPTCHAs using a variety of devices. The results show the designs created in this research offer high human success rates, up to 94.6\% in the case of aiCAPTCHA, while ensuring resilience against automated attacks

    Mothers\u27 Adaptation to Caring for a New Baby

    Get PDF
    To date, most research on parents\u27 adjustment after adding a new baby to their family unit has focused on mothers\u27 initial transition to parenthood. This past research has examined changes in mothers\u27 marital satisfaction and perceived well-being across the transition, and has compared their prenatal expectations to their postnatal experiences. This project assessed first-time and experienced mothers\u27 stress and satisfaction associated with parenting, their adjustment to competing demands, and their perceived well-being longitudinally before and after the birth of a baby. Additionally, how maternal and child-related variables influenced the trajectory of mothers\u27 postnatal adaptation was assessed. These variables included mothers\u27 age, their education level, their prenatal expectations and postnatal experiences concerning shared infant care, their satisfaction with the division of infant caregiving, and their perceptions of their infant\u27s temperament. Mothers (N = 136) completed an online survey during their third trimester and additional online surveys when their baby was approximately 2, 4, 6, and 8 weeks old.;First-time mothers prenatally expected a more equal division of infant caregiving between themselves and their partners than did experienced mothers. Both first-time and experienced mothers reported less assistance from their partners than they had prenatally expected. Additionally, they experienced almost twice as many violated expectations than met expectations. Growth curve modeling revealed that a cubic function of time best fit the trajectory of mothers\u27 postnatal parenting satisfaction. Mothers reported less parenting satisfaction at 4 weeks, compared to 2 and 6 weeks, and reported stability in their satisfaction between 6 and 8 weeks. A quadratic function of time best fit the trajectories of mothers\u27 postnatal parenting stress and adjustment to the demands of their baby. Mothers reported more stress and difficulty adjusting to their baby\u27s demands at 4 and 6 weeks, compared to 2 and 8 weeks. A linear function of time best fit the trajectories of mothers\u27 adjustment to home demands, generalized state anxiety, and depressive symptoms. Mothers reported less difficulty meeting home demands, less generalized anxiety, and fewer depressive symptoms across the postnatal period. Mothers\u27 violated expectations were associated with level differences in all aspects of mothers\u27 postnatal adaptation except their adjustment to home demands. Specifically, more violated expectations, in number or in magnitude, were associated with poorer postnatal adaptation. Mothers\u27 violated expectations were not associated with the slope of mothers\u27 postnatal adaptation trajectories. Exploratory models revealed that other maternal and child-related variables also impacted the level and slope of mothers\u27 postnatal adaptation.;Overall, first-time and experienced mothers were more similar than different in regards to their postnatal adaptation. This study suggests that prior findings concerning adults\u27 initial transition to parenthood may also apply to adults during each addition of a new baby into the family unit. Additionally, mothers who reported less of a mismatch between their expectations and experiences concerning shared infant care had fewer issues adapting the postnatal period. Thus, methods to increase the assistance mothers receive from their partner should be sought. Limitations of this study and suggestions for future research are also discussed

    An efficient method for stamps recognition using Haar wavelet sub-bands

    Get PDF
    The problem facing certain organizations such as insurance companies and government institutions where a huge amount of documents is handled every day, hence an automated stamp recognition system is required. The image of the stamp may be on a different background, with different sizes, and suffers from rotating in different directions, also, the appearance of soft areas (patches) or small points as noise. Thus, the main objective of this paper is to extract and recognize the color stamp image. This paper proposed a method to recognize stamps, by using a technique named Haar wavelet sub-bands. The devised method has four stages: 1) extracts the stamp image; 2) preprocessing the image; 3) feature extraction; and 4) matching. This paper is implemented using C sharp (Microsoft Visual Studio 2012) programming language. The experiments conducted on a stamp dataset showed that the proposed method has a great capability to recognize stamps when using Haar wavelet transform with two sets of features (i.e., 100% recognition rate for energy features and 99.93% recognition rate for low order moment)

    Understanding User Intentions in Vertical Image Search

    Get PDF
    With the development of Internet and Web 2.0, large volume of multimedia contents have been made online. It is highly desired to provide easy accessibility to such contents, i.e. efficient and precise retrieval of images that satisfies users' needs. Towards this goal, content-based image retrieval (CBIR) has been intensively studied in the research community, while text-based search is better adopted in the industry. Both approaches have inherent disadvantages and limitations. Therefore, unlike the great success of text search, Web image search engines are still premature. In this thesis, we present iLike, a vertical image search engine which integrates both textual and visual features to improve retrieval performance. We bridge the semantic gap by capturing the meaning of each text term in the visual feature space, and re-weight visual features according to their significance to the query terms. We also bridge the user intention gap since we are able to infer the "visual meanings" behind the textual queries. Last but not least, we provide a visual thesaurus, which is generated from the statistical similarity between the visual space representation of textual terms. Experimental results show that our approach improves both precision and recall, compared with content-based or text-based image retrieval techniques. More importantly, search results from iLike are more consistent with users' perception of the query terms

    Automatic target recognition based on cross-plot

    Get PDF
    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository.Kelvin Kian Loong Wong and Derek Abbot

    Training deep retrieval models with noisy datasets

    Get PDF
    In this thesis we study loss functions that allow to train Convolutional Neural Networks (CNNs) under noisy datasets for the particular task of Content- Based Image Retrieval (CBIR). In particular, we propose two novel losses to fit models that generate global image representations. First, a Soft-Matching (SM) loss, exploiting both image content and meta data, is used to specialized general CNNs to particular cities or regions using weakly annotated datasets. Second, a Bag Exponential (BE) loss inspired by the Multiple Instance Learning (MIL) framework is employed to train CNNs for CBIR under noisy datasets. The first part of the thesis introduces a novel training framework that, relying on image content and meta data, learns location-adapted deep models that provide fine-tuned image descriptors for specific visual contents. Our networks, which start from a baseline model originally learned for a different task, are specialized using a custom pairwise loss function, our proposed SM loss, that uses weak labels based on image content and meta data. The experimental results show that the proposed location-adapted CNNs achieve an improvement of up to a 55% over the baseline networks on a landmark discovery task. This implies that the models successfully learn the visual clues and peculiarities of the region for which they are trained, and generate image descriptors that are better location-adapted. In addition, for those landmarks that are not present on the training set or even other cities, our proposed models perform at least as well as the baseline network, which indicates a good resilience against overfitting. The second part of the thesis introduces the BE Loss function to train CNNs for image retrieval borrowing inspiration from the MIL framework. The loss combines the use of an exponential function acting as a soft margin, and a MILbased mechanism working with bags of positive and negative pairs of images. The method allows to train deep retrieval networks under noisy datasets, by weighing the influence of the different samples at loss level, which increases the performance of the generated global descriptors. The rationale behind the improvement is that we are handling noise in an end-to-end manner and, therefore, avoiding its negative influence as well as the unintentional biases due to fixed pre-processing cleaning procedures. In addition, our method is general enough to suit other scenarios requiring different weights for the training instances (e.g. boosting the influence of hard positives during training). The proposed bag exponential function can bee seen as a back door to guide the learning process according to a certain objective in a end-to-end manner, allowing the model to approach such an objective smoothly and progressively. Our results show that our loss allows CNN-based retrieval systems to be trained with noisy training sets and achieve state-of-the-art performance. Furthermore, we have found that it is better to use training sets that are highly correlated with the final task, even if they are noisy, than training with a clean set that is only weakly related with the topic at hand. From our point of view, this result represents a big leap in the applicability of retrieval systems and help to reduce the effort needed to set-up new CBIR applications: e.g. by allowing a fast automatic generation of noisy training datasets and then using our bag exponential loss to deal with noise. Moreover, we also consider that this result opens a new line of research for CNN-based image retrieval: let the models decide not only on the best features to solve the task but also on the most relevant samples to do it.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Salgado Álvarez de Sotomayor.- Secretario: Pablos Martínez Olmos.- Vocal: Ernest Valveny Llobe

    GG-Mapper: Learning a Cover in the Mapper Construction

    Full text link
    The Mapper algorithm is a visualization technique in topological data analysis (TDA) that outputs a graph reflecting the structure of a given dataset. The Mapper algorithm requires tuning several parameters in order to generate a "nice" Mapper graph. The paper focuses on selecting the cover parameter. We present an algorithm that optimizes the cover of a Mapper graph by splitting a cover repeatedly according to a statistical test for normality. Our algorithm is based on GG-means clustering which searches for the optimal number of clusters in kk-means by conducting iteratively the Anderson-Darling test. Our splitting procedure employs a Gaussian mixture model in order to choose carefully the cover based on the distribution of a given data. Experiments for synthetic and real-world datasets demonstrate that our algorithm generates covers so that the Mapper graphs retain the essence of the datasets

    Learning coupled conditional random field for image decomposition : theory and application in object categorization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 171-180).The goal of this thesis is to build a computational system that is able to identify object categories within images. To this end, this thesis proposes a computational model of "recognition-through-decomposition-and-fusion" based on the psychophysical theories of information dissociation and integration in human visual perception. At the lowest level, contour and texture processes are defined and measured. In the mid-level, a novel coupled Conditional Random Field model is proposed to model and decompose the contour and texture processes in natural images. Various matching schemes are introduced to match the decomposed contour and texture channels in a dissociative manner. As a counterpart to the integrative process in the human visual system, adaptive combination is applied to fuse the perception in the decomposed contour and texture channels. The proposed coupled Conditional Random Field model is shown to be an important extension of popular single-layer Random Field models for modeling image processes, by dedicating a separate layer of random field grid to each individual image process and capturing the distinct properties of multiple visual processes. The decomposition enables the system to fully leverage each decomposed visual stimulus to its full potential in discriminating different object classes. Adaptive combination of multiple visual cues well mirrors the fact that different visual cues play different roles in distinguishing various object classes. Experimental results demonstrate that the proposed computational model of "recognition-through-decomposition-and-fusion" achieves better performance than most of the state-of-the-art methods in recognizing the objects in Caltech-101, especially when only a limited number of training samples are available, which conforms with the capability of learning to recognize a class of objects from a few sample images in the human visual system.by Xiaoxu Ma.Ph.D

    Novel Texture-based Probabilistic Object Recognition and Tracking Techniques for Food Intake Analysis and Traffic Monitoring

    Get PDF
    More complex image understanding algorithms are increasingly practical in a host of emerging applications. Object tracking has value in surveillance and data farming; and object recognition has applications in surveillance, data management, and industrial automation. In this work we introduce an object recognition application in automated nutritional intake analysis and a tracking application intended for surveillance in low quality videos. Automated food recognition is useful for personal health applications as well as nutritional studies used to improve public health or inform lawmakers. We introduce a complete, end-to-end system for automated food intake measurement. Images taken by a digital camera are analyzed, plates and food are located, food type is determined by neural network, distance and angle of food is determined and 3D volume estimated, the results are cross referenced with a nutritional database, and before and after meal photos are compared to determine nutritional intake. We compare against contemporary systems and provide detailed experimental results of our system\u27s performance. Our tracking systems consider the problem of car and human tracking on potentially very low quality surveillance videos, from fixed camera or high flying \acrfull{uav}. Our agile framework switches among different simple trackers to find the most applicable tracker based on the object and video properties. Our MAPTrack is an evolution of the agile tracker that uses soft switching to optimize between multiple pertinent trackers, and tracks objects based on motion, appearance, and positional data. In both cases we provide comparisons against trackers intended for similar applications i.e., trackers that stress robustness in bad conditions, with competitive results

    Wild, Wearable, and Seaworthy

    Get PDF
    corecore