42,584 research outputs found

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge

    Dissipative Stabilization of Linear Systems with Time-Varying General Distributed Delays (Complete Version)

    Full text link
    New methods are developed for the stabilization of a linear system with general time-varying distributed delays existing at the system's states, inputs and outputs. In contrast to most existing literature where the function of time-varying delay is continuous and bounded, we assume it to be bounded and measurable. Furthermore, the distributed delay kernels can be any square-integrable function over a bounded interval, where the kernels are handled directly by using a decomposition scenario without using approximations. By constructing a Krasovski\u{i} functional via the application of a novel integral inequality, sufficient conditions for the existence of a dissipative state feedback controller are derived in terms of matrix inequalities without utilizing the existing reciprocally convex combination lemmas. The proposed synthesis (stability) conditions, which take dissipativity into account, can be either solved directly by a standard numerical solver of semidefinite programming if they are convex, or reshaped into linear matrix inequalities, or solved via a proposed iterative algorithm. To the best of our knowledge, no existing methods can handle the synthesis problem investigated in this paper. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed methodologies.Comment: Accepted by Automatic

    Distributed finite-time stabilization of entangled quantum states on tree-like hypergraphs

    Full text link
    Preparation of pure states on networks of quantum systems by controlled dissipative dynamics offers important advantages with respect to circuit-based schemes. Unlike in continuous-time scenarios, when discrete-time dynamics are considered, dead-beat stabilization becomes possible in principle. Here, we focus on pure states that can be stabilized by distributed, unsupervised dynamics in finite time on a network of quantum systems subject to realistic quasi-locality constraints. In particular, we define a class of quasi-locality notions, that we name "tree-like hypergraphs," and show that the states that are robustly stabilizable in finite time are then unique ground states of a frustration-free, commuting quasi-local Hamiltonian. A structural characterization of such states is also provided, building on a simple yet relevant example.Comment: 6 pages, 3 figure

    A step towards holistic discretisation of stochastic partial differential equations

    Get PDF
    The long term aim is to use modern dynamical systems theory to derive discretisations of noisy, dissipative partial differential equations. As a first step we here consider a small domain and apply stochastic centre manifold techniques to derive a model. The approach automatically parametrises subgrid scale processes induced by spatially distributed stochastic noise. It is important to discretise stochastic partial differential equations carefully, as we do here, because of the sometimes subtle effects of noise processes. In particular we see how stochastic resonance effectively extracts new noise processes for the model which in this example helps stabilise the zero solution.Comment: presented at the 5th ICIAM conferenc

    An application of maximal dissipative sets in control theory

    Get PDF
    AbstractA model of a distributed-boundary control system is considered. Assume the uncontrolled system possesses an exponential asymptotically stable zero solution. We then construct suboptimal feedback controls for the distributed and boundary control problems via the direct method of Liapunov. Furthermore, existence-uniqueness of the synthesized control systems is proven by applying the theory of nonlinear semigroups and maximal dissipative sets. Applications to diffusion equations are given

    Temporal dissipative solitons in time-delay feedback systems

    Get PDF
    Localized states are a universal phenomenon observed in spatially distributed dissipative nonlinear systems. Known as dissipative solitons, auto-solitons, spot or pulse solitons, these states play an important role in data transmission using optical pulses, neural signal propagation, and other processes. While this phenomenon was thoroughly studied in spatially extended systems, temporally localized states are gaining attention only recently, driven primarily by applications from fiber or semiconductor lasers. Here we present a theory for temporal dissipative solitons (TDS) in systems with time-delayed feedback. In particular, we derive a system with an advanced argument, which determines the profile of the TDS. We also provide a complete classification of the spectrum of TDS into interface and pseudo-continuous spectrum. We illustrate our theory with two examples: a generic delayed phase oscillator, which is a reduced model for an injected laser with feedback, and the FitzHugh--Nagumo neuron with delayed feedback. Finally, we discuss possible destabilization mechanisms of TDS and show an example where the TDS delocalizes and its pseudo-continuous spectrum develops a modulational instability
    • …
    corecore