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A step towards holistic discretisation of
stochastic partial differential equations

A. J. Roberts∗

(Received 8 August 2003)

Abstract

The long term aim is to use modern dynamical systems theory to
derive discretisations of noisy, dissipative partial differential equations.
As a first step we here consider a small domain and apply stochastic
centre manifold techniques to derive a model. The approach automat-
ically parametrises the subgrid scale processes induced by spatially
distributed stochastic noise. It is important to discretise stochastic
partial differential equations carefully, as we do here, because of the
sometimes subtle effects of noise processes. In particular we see how
stochastic resonance effectively extracts new noise processes for the
model which in this example helps stabilise the zero solution.
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1 Introduction

The ultimate aim is to accurately and efficiently model numerically the evo-
lution of stochastic partial differential equations (spdes). An example solu-
tion field u(x, t), see Figure 1, shows the intricate spatio-temporal dynamics
typically generated in a spde. Numerical methods to integrate stochastic
ordinary differential equations are known to be delicate and subtle [9, e.g.].
We surely need to take considerable care for spdes as well [8, 20, e.g.].

An issue is that the stochastic forcing generates high wavenumber, steep
variations, in structures seen in Figure 1. Stable implicit integration in time
generally damps far too fast such decaying modes, yet through stochastic res-
onance an accurate resolution of the life-time of these modes may be impor-
tant on the large scale dynamics. For example, stochastic resonance causes
a high wavenumber noise to restabilise the trivial solution field u = 0 in the
simulations summarised in Figure 2. Thus we should resolve reasonably sub-
grid structures so that numerical discretisation with large space-time grids
achieve efficiency, without sacrificing the subtle interactions that take place
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Figure 1: numerical solution over time 0 < t < 3 of the spde (1) on the
domain 0 < x < π with stochastic forcing (2) truncated to the first seven
spatial modes. Parameters: γ = 0 so u ∝ sin x is linearly neutral although
nonlinearly stable; σ = 1 for large forcing; numerically ∆x = π/16 and
∆t = 0.01 .
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Figure 2: numerical solution of the sde model (6) with small, σ = 0.5, and
large, σ = 2, noise. The amplitude a of the sinx mode decays for large noise,
but not for small. Parameters: γ = −0.03 to promote linear growth of a,
and ∆t = 0.1 .

between the subgrid scale structures.

The methods of centre manifold theory are used here to begin to develop
good methods for the discretisation of spdes. There is supporting centre
manifold theory by Boxler [3, 4, 2] for the modelling of sdes; the centre
manifold approach appears a better foundation than heuristic arguments for
sdes [12, e.g.]. Further, a centre manifold approach seems to improve the
discretisation of deterministic partial differential equations [15, 17, 10, 16,
18, 11]. The first step, taken here, is to demonstrate the effective modelling
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of subgrid scale stochastic structures.

2 Directly seek a one element model

The simplest case, and that developed here, is the modelling of a spde on just
one finite size element. Consider the stochastically forced nonlinear partial
differential equation

∂u

∂t
= −u∂u

∂x
+
∂2u

∂x2
+ (1− γ)u+ σφ(x, t) s.t. u = 0 at x = 0, π , (1)

which involves advection uux, diffusion uxx, reaction (1 − γ)u, and noise φ.
In general, the forcing by φ(x, t), of strength σ, is assumed to be white noise
that is delta correlated in both space and time as used in Figure 1; however,
here we consider only the case

φ = φ2(t) sin 2x , (2)

where the φ2(t) is a white noise that is delta correlated in time. Note that the
mode u ∝ sinx, when γ = 0 , is linearly neutral and will form the basis of the
model we seek. Thus this example of noise forcing the orthogonal sin 2xmode
is expected to be representative of the case of subgrid stochastic forcing and
consequent resolution of higher wavenumber modes. Many simple numerical
methods, such as Galerkin projection (remembering that the domain here
represents just one finite element), would completely obliterate such “high
wavenumber” modes and hence completely miss subtle but important subgrid
effects. An example numerical solution, Figure 3, displays that relatively
weak noise only perturbs the deterministic dynamics. However, when the
noise is large enough, then stochastic resonance restabilises the zero solution
and the sinx mode decays as seen in Figure 4. The success of our approach
is seen by it modelling this induced restabilisation.

For much of the analysis the requirement of white, delta correlated noise
is irrelevant. Where it is relevant, we interpret the stochastic differential
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Figure 3: numerical solution of the spde (1) with relatively weak noise
limited to just φ = φ2(t) sin 2x showing convergence to a nonlinearly sta-
bilised sinx mode that is perturbed by the noise. Parameters: σ = 0.5 is
small, γ = −0.03 to generate linear growth of the sinx mode, ∆t = 0.05 and
∆x = π/8 .
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Figure 4: numerical solution of the spde (1) with strong noise limited to
just φ = φ2(t) sin 2x showing the sinx mode decays. Parameters: σ = 2,
γ = −0.03 to promote linear growth of the sinx mode, ∆t = 0.05 and
∆x = π/8 .
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equations in the Stratonovich sense so that the rules of traditional calculus
apply.

The centre manifold approach identifies that the long term dynamics of
a spde such as (1) is parametrised by the amplitude a(t) of the neutral
mode sinx . Arnold et al. [1] investigated stochastic Hopf bifurcations this
way, and the approach is equivalent to the slaving principle for sdes by
Schoner and Haken [19]. Computer algebra [14] determines the solution field

u = a sinx− 1
6
a2 sin 2x

+ σH2(1− γH2)φ2 sin 2x− 3
2
σaH3H2(1− γH2)φ2 sin 3x

+ 1
3
σa2H4(1 + 9H3)H2φ2 sin 4x+O(a3 + γ2, σ2) , (3)

in which the operator Hm denotes convolution with exp[−(m2 − 1)t] . See
in this formula the resolution of the subgrid structure arising through the
interaction of the noise and the nonlinearity.

The model is the corresponding evolution equation for the amplitude:

ȧ = −γa− 1
12
a3 + σa1

2
H2(1− γH2)φ2

+ σa3( 1
64

+ 1
12
H2 − 3

4
H2H3 + 1

8
H3)H2φ2

+O(a4 + γ2, σ2) . (4)

This is an unduly messy model as it involves many convolutions over the
rapid time scales we would like to “step over.” Straightforward analyses of
forced systems often terminate at this point because of the tremendously
involved form of the repeated convolutions that occur in higher order terms,
especially higher order in the noise amplitude σ. However, some thought
leads us to the drastic simplifications discussed next.
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3 Use a normal form instead

Here we simplify the model by removing the convolutions from the evolution
equation (4). This step was originally developed for sdes by Coullet et al. [6]
and Sri Namachchivaya & Lin [13]. In computer algebra this is done in the
equation for the updates to the field and the evolution:

∂u′

∂t
− ∂2u′

∂x2
− u′ + ȧ′ sin x = residual.

When the residual of the spde (1) contains a component of the form of
the history integral HmΦ sinx , where Φ denotes some noise process, which
previously we put into ȧ′ to form (4), we instead recognise that

d

dt
HmΦ = −(m2 − 1)HmΦ + Φ

thus HmΦ =
1

m2 − 1

[
− d

dt
HmΦ + Φ

]
, (5)

and so the contribution in the residual is split into: a part that is integrated
into the update u′ for the subgrid field; and a part without the convolution
for the update ȧ′ for the evolution. Note that if the residual component has
many convolutions, then this separation is applied recursively.

Computer algebra then deduces the normal form model

ȧ = −γa− 1
12
a3 + σa(1

6
− 1

18
γ)φ2

− σ2a 1
44

(H2φ2 − 3H3H2φ2)φ2 +O(a4 + γ2, σ3) , (6)

for the amplitude a of the sin x mode, and now to quadratic terms in the
noise. See that a = 0 is always a fixed point of this sde. Numerical solu-
tions of this model (6), see Figure 2, confirm that for the linearly unstable
(deterministically) parameter γ = −0.03 large amounts of noise restabilise
the zero solution.
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4 Stochastic resonance affects deterministic

terms

The noise φ2(t) so far could have been any distributed forcing at all, random
or deterministic. The analysis and the results are generally valid. We pro-
ceed to address the specific modelling when we restrict the noise φ2(t) to be
stochastic white noise in the Stratonovich sense.

Previously, the model was a strong model in that (6) could faithfully
track given realisations of the original spde; however, now we derive the
weak model (11) which maintains fidelity to solutions of the original spde,
but we cannot know which realisation.

The relevant feature of the large time model (6) is the inescapable and un-
desirable appearance in the model of fast time convolutions in the quadratic
noise term, namely H2φ2 = e−3t ? φ2 and H3H2φ2 = e−8t ? e−3t ? φ2. These
are undesirable because they require resolution of the fast time response of
the system to these fast time dynamics in order to maintain fidelity with the
original spde (1). However, maintaining fidelity with the full details of a
white noise source is a pyrrhic victory when all we are interested in is the
long term dynamics. Instead we should only be interested in those parts
of the quadratic noise factors, φ2H2φ2 and φ2H3H2φ2, that over long time
scales are firstly correlated with the other processes that appear and secondly
independent of the other processes: these not only introduce factors in new
independent noises into the model but also introduces a deterministic drift
due to stochastic resonance [5, 7, e.g.].

The argument by Chao & Roberts [5, §4.1] asserts that we are interested
in the long term statistics of the two quadratic noise processes y1 and y2

evolving according to

ẏ1 = z1φ2 , ẏ2 = z2φ2 , ż1 = −β1z1 + φ2 , ż2 = −β2z2 + z1 , (7)

where here the decay rates β1 = 3 and β2 = 8 so that the convolutions of
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the noise φ2 are represented by the variables z1 = H2φ2 and z2 = H3H2φ2 .
From the Fokker-Planck equation for (7) we have determined that large time
solutions have a probability distribution

pdf ∝ p(y1, y2, t) exp
[
−(β1 + β2)z

2
1 + 2β2(β1 + β2)z1z2

− β2(β1 + β2)
2z2

2

]
,

where the relatively slowly varying p evolves according to the approximate
equation

∂p

∂t
= −1

2

∂p

∂y1

+D : ∇∇p+O(∇3p) (8)

where the diffusion matrix

D =

[ 1
4β1

1
4β1(β1+β2)

1
4β1(β1+β2)

1
4β1β2(β1+β2)

]
.

Interpret (8) as a Fokker-Planck equation and see it corresponds to the sdes

ẏ1 = 1
2

+
ψ1(t)√

2β1

and ẏ2 =
1

β1 + β2

(
ψ1(t)√

2β1

+
ψ2(t)√

2β2

)
, (9)

where ψi(t) are new noises independent of φ2 over long time scales. Thus on
long time scales, and substituting for the decay rates βi, we should replace
the quadratic noises by the following:

φ2H2φ2 = 1
2

+
ψ1(t)√

6
and φ2H3H2φ2 =

ψ1(t)

11
√

6
+
ψ2(t)

44
. (10)

Thus the normal form model (6) is transformed to

ȧ = −
(
γ + σ2

88

)
a− 1

12
a3 + σa(1

6
− 1

18
γ)φ2 − σ2a( 2

121
√

6
ψ1 − 1

1936
ψ2) .

Combining the new noises into one effective new noise the model is a little
more simply written

ȧ = −
(
γ + σ2

88

)
a− 1

12
a3 + σa(1

6
− 1

18
γ)φ2 + σ2a

√
515

1936
√

3
ψ , (11)
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Figure 5: simulations of the long time model (11) for small, σ = 0.5, and
large, σ = 2, noise over long times. Parameters: ∆t = 1, γ = −0.03 .

for some white noise ψ(t) independent of φ2 over long times. Although the
nonlinearity induced stochastic resonance generates the effectively new mul-
tiplicative noise, ∝ σ2aψ , its most significant effect is the enhancement of the
stability of the equilibrium a = 0 through the σ2a/88 term. The equilibrium
is stable for parameters γ > −σ2/88 which neatly explains the differences in
the stability seen in Figure 2 because, compared to γ = −0.030, the thresh-
olds for stability are −0.003 and −0.045 for small and large noise respectively.
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5 Conclusion

A big virtue of the model (11) is that we may accurately take large time
steps as all the fast dynamics have been eliminated. Shown in Figure 5 are
simulations over a long time for small and large noise again demonstrating the
stochastic resonance induced stabilisation of the equilibrium a = 0. These
simulations are done for an order of magnitude longer times with a time step
that is ten times larger than that we could use previously.

This approach to numerical modelling is viable and effective for stochas-
tic partial differential equations. Much more development and theoretical
support is needed.
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