356 research outputs found

    Names and their meanings: A dual-process account of proper-name encoding and retrieval

    Get PDF
    The ability to pick out a unique entity with a proper name is an important component of human language. It has been a primary focus of research in the philosophy of language since the nineteenth century. Brain-based evidence has shed new light on this capacity, and an extensive literature indicates the involvement of distinct fronto-temporal and temporo-occipito-parietal association cortices in proper-name retrieval. However, comparatively few efforts have sought to explain how memory encoding processes lead to the later recruitment of these distinct regions at retrieval. Here, we provide a unified account of proper-name encoding and retrieval, reviewing evidence that socio-emotional and unitized encoding subserve the retrieval of proper names via anterior-temporal-prefrontal activations. Meanwhile, non-unitized item-item and item-context encoding support subsequent retrieval, largely dependent on the temporo-occipito-parietal cortex. We contend that this well-established divergence in encoding systems can explain how proper names are later retrieved from distinct neural structures. Furthermore, we explore how evidence reviewed here can inform a century-and-a-half-old debate about proper names and the meanings they pick out

    Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval

    Get PDF
    Memory operations such as encoding and retrieval require the coordinated interplay of cortical regions with distinct functional contributions. The mechanistic nature of these interactions, however, remains unspecified. During the performance of a face memory task during fMRI scanning, we measured the magnitude (a measure of the strength of coupling between areas) and phase (a measure of the relative timing across areas) of coherence between regions of interest and the rest of the brain. The fusiform face area (FFA) showed robust coherence with a distributed network of subregions in the prefrontal cortex (PFC), posterior parietal cortex (PPC), precuneus, and hippocampus across both memory operations. While these findings reveal significant overlap in the cortical networks underlying mnemonic encoding and retrieval, coherence phase analyses revealed context-dependent differences in cortical dynamics. During both encoding and retrieval, PFC and PPC exhibited earlier activity than in the FFA and hippocampus. Also, during retrieval, PFC activity preceded PPC activity. These findings are consistent with prior physiology studies suggesting an early contribution of PFC and PPC in mnemonic control. Together, these findings contribute to the growing literature exploring the spatio-temporal dynamics of basic memory operations

    High resolution fMRI of hippocampal subfields and medial temporal cortex during working memory

    Full text link
    Computational models combined with electrophysiological studies have informed our understanding about the role of hippocampal subfields (dentate gyrus, DG; CA subfields, subiculum) and Medial Temporal Lobe (MTL) cortex (entorhinal, perirhinal, parahippocampal cortices) during working memory (WM) tasks. Only recently have functional neuroimaging studies begun to examine under which conditions the MTL are recruited for WM processing in humans, but subfield contributions have not been examined in the WM context. High-resolution fMRI is well suited to test hypotheses regarding the recruitment of MTL subregions and hippocampal subfields. This dissertation describes three experiments using high-resolution fMRI to examine the role of hippocampal subfields and MTL structures in humans during WM. Experiment 1 investigated MTL activity when participants performed a task that required encoding and maintaining overlapping and non-overlapping stimulus pairs during WM. During encoding, activity in CA3/DG and CA1 was greater for stimulus pairs with overlapping features. During delay, activity in CA1 and entorhinal cortex was greater for overlapping stimuli. These results indicate that CA3/DG and CA1 support disambiguating overlapping representations while CA1 and entorhinal cortex maintain these overlapping items. Experiment 2 investigated MTL activity when participants performed a WM task that required encoding and maintaining either low or high WM loads. The results show a load effect in entorhinal and perirhinal cortex during the delay period and suggest that these regions act as a buffer for WM by actively maintaining novel information in a capacity-dependent manner. Experiment 3 investigated MTL activity when participants performed a WM task that required maintaining similar and dissimilar items at different loads. Analysis of a load by similarity interaction effect revealed areas of activity localized to the CA1 subfield. CA1 showed greater activity for higher WM loads for dissimilar, but not similar stimuli. Our findings help identify hippocampal and MTL regions that contribute to disambiguation in a WM context and regions that are active in a capacity-dependent manner which may support long-term memory formation. These results help inform our understanding of the contributions of hippocampal subfields and MTL subregions during WM and help translate findings from animal work to the cognitive domain of WM in humans

    Inter-individual differences in associative memory : structural and functional brain correlates and genetic modulators

    Get PDF
    Our memory for personal experiences (e.g., the first day at school) is termed episodic memory. This form of memory involves the recollection of single information as well as the connection between these pieces of information (e.g., what happened when, and where), referred to as associative memory. Associative memory declines markedly in aging; however, some individuals have proficient associative memory even until late life. These individual differences in associative-memory performance are also observable at younger ages. The underlying sources of these individual differences remain unclear. In this thesis, we aimed to identify the neural underpinnings of individual differences in associative memory, with special regard to brain structure, function, and neurochemistry. In the first part of the thesis, we investigated structural brain correlates of and dopaminergic contributions to associative memory in healthy older adults (studies I and II). In study I, we examined the relationship between regional gray-matter volume and associative memory. Individuals with better associative memory had larger gray-matter volume in dorsolateral and ventrolateral prefrontal cortex, suggesting that organizational and strategic processes distinguish older adults with good from those with poor associative memory. In study II, we examined the influence of dopamine (DA) receptor genes on item and associative memory. Individuals with less beneficial DA genotypes performed worse in the associative-memory task compared with carriers of more beneficial genotypes. Because no such group differences were found with regard to item memory, this suggests that dopaminergic neuromodulation is particularly important for associative memory in older adults. In the second part of the thesis, we examined in a sample of younger adults how different task instructions influence associative encoding, as well as the structural-functional coupling between task-relevant brain regions during associative-memory formation (studies III and IV). In study III, we investigated the effect of encoding instruction on associative memory. Specifically, we examined functional brain correlates of intentional and incidental encoding and demonstrated differential involvement of anterior hippocampus in intentional relative to incidental associative encoding. This suggests that the intent to remember associative information triggers a binding process accomplished by this brain region. Finally, in study IV we explored how gray-matter volume is associated with brain activity during associative-memory formation. We observed a relationship between gray-matter volume in the medial-temporal lobe (MTL) and functional brain activity in the inferior frontal gyrus (IFG). Importantly, this structure-function coupling correlated with performance, such that younger individuals with a stronger MTL-IFG coupling had better associative memory. Collectively, these four studies show that the neural underpinnings of individual differences in associative memory are many-faceted, interacting with each other and vary with regard to age and specific features of the associative task

    A novel paradigm for testing the initial coding of hierarchical relationships within the medial temporal lobe in a circuit specific manner

    Get PDF
    The Medial Temporal Lobe (MTL) is central to spatial navigation and to the processing of conceptual associations, functions which can be implemented via the grid cell system. Evidence exists that also hierarchical processing - an integral part of cognitive capacities such as language, motor action and sequential planning - draws on the MTL. This raises the question of whether hierarchical processing shares the same cellular substrate with spatial navigation and concept association formation. Here we present two novel tasks (hierarchy and control) specifically designed to test (using fMRI) whether grid cells also support the representation of hierarchical relations. We present the first results of their behavioral validation with respect to specificity, and show that our hierarchical task, but not the control task, correlates well with other tasks that necessitate hierarchical processing (Tower of Hanoi and a Visual Recursion Task). Furthermore, we show that some of these effects remain even when removing the shared variance that can be explained by a range of unspecific factors. This gives reason to believe that our task is a valid method for probing the relationship between grid cells and hierarchical processing

    Functional Investigations into the Recognition Memory Network, its Association with Genetic Polymorphisms and Implications for Disorders of Emotional Memory

    Get PDF
    Recent research, that has been focused on recognition memory, has revealed that two processes contribute to recognition of previously encountered items: recollection and familiarity (Aggleton & Brown, 1999; Eichenbaum, 2006; Eichenbaum, Yonelinas, & Ranganath, 2007; Rugg & Yonelinas, 2003; Skinner & Fernandes, 2007; Squire, Stark, & Clark, 2004; Wixted, 2007a; Yonelinas, 2001a; Yonelinas, 2002). The findings of neural correlates of recollection and familiarity lead to the assumption that there are different brain regions activated in either process, but there are, to the best of my knowledge, no studies assessing how these brain regions are working together in a recollection or a familiarity network, respectively. Additionally, there are almost no studies to date, which directly searched for overlapping regions. Therefore, in study I of the current thesis, brain regions associated to both recognition processes are searched investigated. Additionally, a connectivity analysis will search for functional correlated brain activations that either build a recollection or a familiarity network. It is undoubtable that the Brain Derived Neurotrophic Factor (BDNF) is strongly involved in synaptic plasticity in the hippocampus (Bramham & Messaoudi, 2005) and there is evidence that a genetic variant of this neurotrophin (BDNF 66Met) is related to poorer memory performance (Egan, et al., 2003). Therefore, in study II of the current thesis, the effect of BDNF Val66Met on recollection and familiarity performance and related brain activations is investigated. Finally, one could summarize, that serotonin, like BDNF, is strongly involved in brain development and plasticity as well as in learning and memory processes (Vizi, 2008). More precisely, there is evidence for alterations in the structure of brain regions, which are known to be involved in emotional memory formation and retrieval, like amygdala and hippocampus (Frodl, et al., 2008; Munafo, Brown, & Hariri, 2008; Pezawas, et al., 2005). One study found an slight epistatic effect of BDNF and 5-HTTLPR on the grey matter volume of the amygdala (Pezawas, et al., 2008). Therefore, in study III, it is investigated if such an interaction effect could be substantiated for the amygdala and additionally revealed for the hippocampus. The results of the current thesis allow further comprehension of recollection, hence episodic memory, and point to a special role of the BDNF in temporal and prefrontal brain regions. Additionally, the finding of an epistatic effect between BDNF and serotonin transporter function point to the need of analyzing interactions between genes and also between genes and environmental factors which reveals more information than the study of main effects alone. In conclusion, analyzing behavioral and neural correlates of episodic memory reveal allowed insights in brain functions that may serve as guideline for future studies in clinical populations with memory deficits, including susceptibility factors such as good or bad environment, as well as promising gene variants that influence episodic memory
    corecore