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Highlights
Gamma oscillations may coordinate pre-
and postsynaptic neuronal firing to en-
hance plasticity within the hippocampus.

Cross-regional gamma synchronisation
may communicate sensory information
to the hippocampus during memory for-
mation, and hippocampal representa-
tions to the cortex during retrieval.

Gamma oscillations nested within ongo-
ing theta oscillationsmay encode and re-
call sequences of stimuli.
Enhanced gamma oscillatory activity (30–80 Hz) accompanies the successful
formation and retrieval of episodic memories. While this co-occurrence is well
documented, the mechanistic contributions of gamma oscillatory activity to
episodic memory remain unclear. Here, we review how gamma oscillatory activity
may facilitate spike timing-dependent plasticity, neural communication, and
sequence encoding/retrieval, thereby ensuring the successful formation and/or
retrieval of an episodic memory. Based on the evidence reviewed, we propose
thatmultiple, distinct forms of gamma oscillation can be foundwithin the canonical
gamma band, each of which has a complementary role in the neural processes
listed above. Further exploration of these theories using causal manipulations
may be key to elucidating the relevance of gamma oscillatory activity to episodic
memory.
Multiple, distinct oscillations may exist
within the canonical gamma band
(30–80 Hz), each with complemen-
tary roles in episodic memory.
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An established correlation between gamma oscillations and episodic memory
When we talk of episodic memories (see Glossary), we mean long-term memories relating to
personally experienced events anchored to a specific moment in time and space [1]. Although
thesememories are, by definition, rich in detail and can last for decades, patterns of neural activity
lasting mere seconds will dictate whether these memories are formed or recalled [2,3]. Many
studies suggest that gamma oscillations (~30–80 Hz, although definitions can vary slightly
among researchers) have a key role in both the formation and retrieval of an episodic memory.
Supporting evidence comes from a range of species (including rodents [4–7], nonhuman
primates [8,9], and humans [10–12]), and a variety of empirical techniques (ranging from studies
of cell cultures in vitro [13,14] to behavioural responses in humans [15]). In our view, the extent of
this evidence provides firm support for a link between gamma oscillations and episodic memory,
and calls for a focus on understanding why this link exists. To address this question, we review
three distinct neural mechanisms that may link gamma oscillations to fundamental aspects of
episodic memory: (i) spike timing-dependent plasticity; (ii) neural communication; and
(iii) sequence encoding/retrieval, with the aim of elucidating how gamma oscillatory activity
supports episodic memory.

Gamma oscillations and spike timing-dependent plasticity
Our ability to form an episodic memory hinges upon long-term potentiation (LTP), a process
through which synaptic connections between two neurons are strengthened [16,17]. Gamma
oscillations have been proposed to play an important role in a type of LTP known as spike
timing-dependent plasticity (STDP), which depends on a precise temporal delay between the
firing of a presynaptic and a postsynaptic neuron. While there are numerous examples of
gamma oscillatory activity enhancing STDP in vitro [13,18], in silico [19,20], and in vivo [21,22],
the mechanistic explanation of this link is open to debate. Here, we discuss: (i) how STDP occurs;
(ii) how gamma oscillations may facilitate this process; and (iii) how the interaction between STDP
and gamma oscillations might result in the formation of complex, episodic memories.

STDP is thought to depend upon: (i) a presynaptic spike leading to the release of presynaptic gluta-
mate, which promotes the opening of postsynaptic NMDA receptors; and (ii) the backpropagation of
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Glossary
Associative binding: cornerstone of
episodic memory formation that
involves linking two previously unrelated
concepts together.
Cell assembly: collection of
interconnected neurons that are tuned
to a particular stimulus.
Episodic memory: long-term memory
relating to a unique experience,
anchored to a single point in time and
space, that can be explicitly recalled and
re-experienced in vivid detail.
Gamma oscillation: fast, rhythmic
change in the activity of a collection of
neurons, often defined to be in the range
of 30–80 Hz although definitions vary
across the literature.
Long-term potentiation (LTP): neural
phenomenon in which the strength of a
synaptic connection between two
neurons grows following repeated
co-firing of the two neurons. LTP is
thought to be key in binding distinct cell
assemblies together to form an episodic
memory.
Neural communication: process of
routing information through the brain.
Here, we use the term ‘neural
communication’ to refer to both local
(i.e., between local cells/assemblies) and
interareal (i.e., between regions)
communication.
Reinstatement: phenomenon in which
patterns of neural activity observed
duringmemory formation reoccur during
memory retrieval. This reoccurrence is
thought to allow an individual to vividly
re-experience the memory.
Sequence encoding/retrieval: act of
encoding/retrieving multiple, distinct
stimuli in the order that they were
presented. Sequence encoding/retrieval
is critical to forming and recalling the
temporal narrative of an episodic
memory.
Spike-timing-dependent plasticity
(STDP): form of LTP that relies on the
precise firing of two neurons. Typically,
STDP is thought to occur when the
presynaptic neuron fires shortly (<20ms)
before the postsynaptic neuron.
Theta–gamma coupling: oscillatory
phenomenon in which patterns of
gamma oscillatory activity fluctuate as a
function of theta oscillatory activity.
Often, this involves the amplitude of
gamma oscillations fluctuating as a
function of theta oscillatory phase.
a postsynaptic spike leading to the unblocking of theMg2+ block from the samepostsynaptic NMDA
receptors [16]. Some have suggested that the comparatively slow binding of glutamate to the NMDA
receptor relative to the rapid removal of the Mg2+ block means that the presynaptic action potential
must precede the postsynaptic action potential by ~10–20ms for STDP to occur (e.g., [23]). Indeed,
in slices of rat hippocampus, presynaptic spikes that lead postsynaptic spikes by ~15 ms result in
synaptic strengthening, whereas presynaptic spikes that follow postsynaptic spikes by ~6 ms
lead to synaptic weakening (known as long-term depression; LTD) [24]. STDP effects have been
reported across a range of species, including rodents (in vitro [24–26] and in vivo [27]), nonhuman
primates (in vitro [28] and in vivo [29]), and humans (in vitro [30]).

Although STDP depends upon correlated pre- and postsynaptic spiking, a solitary presynaptic
spike is unlikely to induce postsynaptic spiking [16]. Instead, convergent input is required.
Gamma oscillations may provide this convergent input in two ways. First, gamma oscillations
can synchronise the firing of multiple presynaptic neurons so that they exert a stronger
depolarising effect on the target postsynaptic neuron than if they were to fire in isolation
[13,14]. Indeed, computational models show that the oscillation-driven synchrony of presynaptic
activity increases the likelihood of a postsynaptic spike [31,32] (see also [33]). Moreover, in vitro
studies show that synchronising multiple inputs to a postsynaptic neuron enhances the likelihood
of LTP [13]. While an oscillation of any frequency could, in theory, synchronise neuronal firing,
gamma oscillations are perhaps ideal because they provide a comparatively short window of
excitability that ensures all neurons fire in near-perfect unison [34], while having oscillatory cycles
that are long enough to ensure that neurons return to their resting potential before the next excit-
atory part of the oscillation. In support of the former claim, LTP has been demonstrated to be
most effective when pre- and postsynaptic firing is coupled to a 50-Hz rhythm (relative to slower
rhythms) [13], although it remains to be seen how LTP is affected when pre- and postsynaptic
firing is coupled to a frequency greater than 50 Hz.

In addition to facilitating synchronised neuronal firing, gamma oscillations may also aid the post-
synaptic depolarisation necessary for STDP by inducing subthreshold oscillatory fluctuations in
postsynaptic membrane potential. For example, in vitro work has shown that pairing presynaptic
spikes to the peak of a 40-Hz oscillation led to greater LTP than when spikes were paired to the
trough of the oscillation [35], purportedly because the change in potential at the oscillatory peak
adds an additional drive for depolarising the postsynaptic neuron. This may explain why, in
humans and nonhuman primates, successful memory formation occurs when neuronal firing is
coupled to particular phases of the ongoing gamma oscillation [9,36]. Considering all the
above, it appears plausible that gamma oscillations can facilitate LTP by increasing the likelihood
of postsynaptic spiking.

Gamma oscillations may also provide a spike-timing delay between the pre- and postsynaptic
neurons that is optimal for STDP (~10–20 ms) [37]. However, little work has been conducted at
the cellular level to demonstrate that observed links between gamma oscillatory activity and
STDP are specifically due to gamma oscillations matching the optimal timing constraints of
STDP. This may be because the spiking delays necessary for STDP can vary across brain
regions, cell types, and even between individual cells (Box 1). Consequently, a gamma oscillation
of a precise frequency cannot match the timing delay of every cell in a network. However, it
remains possible that gamma oscillations match the average preferred delay of the network,
meaning that STDP-like phenomena could be reliable on a macroscopic (e.g., behavioural)
level. In line with this idea, humans are better able to learn pairings between stimuli that rhythmi-
cally fluctuate in intensity (at 37.5 Hz) when, during the initial pairing, the cue preceded the target
by ~7 ms (matching traditional STDP delays) relative to when the cue and target are presented
2 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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Box 1. Variations on the traditional STDP curve

The textbook STDP curve depicts pre-to-postsynaptic firing inducing LTP, post-to-presynaptic firing inducing LTD, and
the strength of the effects diminishing as the delay between the firing of the two neurons increases. Depictions of this curve
are based onNMDA receptor-dependent STDP in slices of the rat hippocampus (e.g., [24]), with the assumption that these
curves generalise to other cells, brain regions, and even species. However, this may not be the case (Figure I).

For example, GABAergic neurons fail to display LTP [24] (and can even display LTD [134]) following pre-to-postsynaptic
firing, suggesting that STDP curves vary based on cell type. In spiny stellate cells of the barrel cortex of rodents, pre-to-
postsynaptic firing also induces LTD [135], hinting that STDP curves vary based on both brain regions and cell types. In
human hippocampal tissue, LTP can be observed regardless of whether the presynaptic spike precedes or follows the
postsynaptic spike, with LTD only being observed when the postsynaptic spike precedes the presynaptic spike by
~100ms [30], suggesting variation across species. Even in cells of the same type and region, STDP curves can vary simply
because of variation in the distance between the soma and the location where input arrives on the dendrite: short dis-
tances produce the stereotypical curves, while greater distances invert the curve [136]. Lastly, STDP curves of a single
neuronal pair can vary based on the time difference between glutamate arriving at the NMDA receptor and the occurrence
of a depolarising potential [137]. In short, STDP curves can take many forms, and one should exercise caution when
generalising STDP curves to other cells, brain regions, and species.

This conclusion is also pertinent to the discussion of STDP and gamma oscillations: given that no two neurons are iden-
tical, it appears unlikely that there is a single oscillatory frequency that is optimal for enhancing STDP in all neurons. Indeed,
variations in gamma oscillatory frequency across regions/species may well align with the differences in STDP curves that
neurons in these regions/species exhibit.
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Figure I. Variations on the traditional spike timing-dependent plasticity (STDP) curve. (A) Depiction of perhaps
the most common STDP curve, in which long-term potentiation (LTP) occurs when the presynaptic spike precedes the
postsynaptic spike, and long-term depression (LTD) occurs when the presynaptic spike follows the postsynaptic spike.
This curve was derived from observations made on slices of rat hippocampus [24]. (B) Depiction of an alternative STDP
curve, observed in slices of human hippocampal tissue [30]. (C) Depiction of how STDP curves vary as a function of
dendrite input location. When input is proximal to the postsynaptic soma, typical STDP patterns are observed, but
when input is distal, the effect inverts [136]. (D) Depiction of how STDP effects differ as a function of cell type in the
rodent barrel cortex. Pyramidal cells show the typical LTP effect when presynaptic spikes precede postsynaptic spikes,
but LTD is observed in spiny stellate cells following the same pattern of firing [135].
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simultaneously during encoding [15]. Based on this finding, perhaps it is not a matter of ensuring
that synapses of every neuron pair undergo STDP, but rather that sufficient pairs undergo STDP
to ensure that a memory can be reliably formed.

While the explanations explored in the preceding text suggest gamma oscillatory activity
enhances STDP, they introduce an issue of firing order ambiguity. Specifically, if two neurons
repeatedly and reliably fire as a function of gamma oscillatory phase, it becomes unclear which
neuron leads which and, consequently, whether LTP or LTD will occur. In these instances,
evidence suggests that LTP and LTD do not sum linearly [13,38,39], with LTP possibly
Trends in Neurosciences, Month 2023, Vol. xx, No. xx 3
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supplanting LTD [13]. This suggests that the relevant timing of pre- and postsynaptic spikes
becomes irrelevant so long as both neurons fire regularly and in quick succession. Consequently,
ambiguity in firing order does not undermine the idea that gamma oscillations can enhance STDP.

There is also the question of how gamma-facilitated plasticity scales up to the formation of fully
fledged episodic memories. Unfortunately, linking gamma oscillations to both STDP and
behavioural expressions of episodic memory in a single experiment is a troublesome endeavour:
STDP is most easily observed in small cultures of cells and slice preparations, whereas behav-
ioural expressions of episodic memory can only be observed in active individuals. That said,
progress has been made. For example, in rodents, an increase in gamma oscillatory activity
correlated with both an enhanced fear response to an auditory tone (i.e., a learned response)
and a change in A1 receptive fields (a proxy for plasticity) [7]. Indirect links also exist in humans.
For example, successful memory formation occurs when two conditions are met: (i) when the
latency of firing between two neurons is ~20 ms (approximating the delay required for STDP);
and (ii) when the co-firing neurons couple to an ongoing gamma oscillation [36]. This suggests
that episodic memory formation is most probable when STDP-like delays in neuronal firing are
coupled to an ongoing gamma oscillation. Together, these studies support the idea that gamma-
facilitated STDP can lead to the formation of complex and highly detailed episodic memories.

In sum, STDP is intimately tied to gamma oscillatory activity, although themechanistic explanation
of this link is open to debate. Moreover, it remains an open question whether gamma oscillations
are necessary for STDP to occur. These questions may benefit from causal interventions that
quantify the relevance of gamma oscillatory activity to STDP.

Gamma oscillations and neural communication
Neural communication refers to the process of relaying information across the brain, be that
between local cell assemblies or across large portions of the cortex. Neural communication is
relevant to almost all aspects of cognition, from perception to action, but we focus here on its
relevance to episodic memory. Effective neural communication ensures that, during memory
formation, incoming information in sensory cortices activates the relevant cell assemblies in the
hippocampus to ensure associative binding. Similarly, during retrieval, neural communication
ensures that reactivated hippocampal cell assemblies induce neocortical activity to allow for the
reinstatement of an episode. Here, we review key theories that link gamma oscillations to neural
communication and assess whether they may, as a result, explain the link between gamma
oscillatory activity and episodic memory.

A prominent theory tying gamma activity to information exchange is ‘communication through
coherence’ [40,41]. Communication through coherence proposes that information from one
neural population can be relayed to another population when: (i) gamma oscillations in the two
regions synchronise; and (ii) input from the ‘sender’ cell assembly arrives at the ‘receiver’
assembly when the ‘receiver’ assembly is at its most excitable oscillatory phase (Figure 1A).
Similar to STDP, gamma oscillations are well suited for facilitating communication because they
ensure tighter synchrony between neurons of the ‘sender’ cell assembly compared with slower
oscillations [34], while also ensuring that neurons can return to their resting potential before the
next excitatory phase of the oscillation. This may explain numerous findings linking gamma-
band coherence to episodic memory. For example, when learning object–reward associations,
primates display enhanced gamma-band coherence between inferotemporal areas (which
represent the object) and prefrontal sites (which are thought to link the object to the reward) [8]
(for similar effects in humans, see [12,42]). Moreover, when humans successfully recall a memory,
gamma-band coherence between the hippocampus and lateral temporal cortex predicts the
4 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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Figure 1. Theories of gamma-based neural communication. (A) Depiction of ‘communication through coherence’
[41]. Two brain regions can communicate when: (i) gamma oscillations in the two regions become coherent; and (ii) the
transmission delay from sender to receiver ensures that the sender spike arrives at the moment when the receiver is most
excitable. (B) Depiction of how two hippocampal gamma oscillations may coexist [45,46]. A ‘fast’ gamma oscillation,
generated by the medial entorhinal cortex, can entrain cells in CA1. This allows to-be-encoded information to flow into the
hippocampus. A ‘slow’ gamma oscillation, generated by CA3, can also entrain cells in CA1. This allows reactivated
memory traces to be reinstated in CA1 (C) Depiction of how distinct oscillations allow information to be fed forward and
backward [55]. Bottom-up, sensory information is passed forward by gamma oscillatory coherence present in superficial
cortical layers (i.e., layer 2/3). Top-down influence is exerted via beta oscillatory coherence present in deeper cortical layers
(i.e., layer 5/6).
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degree of reinstatement observed in the lateral temporal cortex [43], with such retrieval-related
coherence being absent in those with autobiographical amnesia [44]. Taken together, these
empirical reports demonstrate a correlative link between gamma coherence and the ability to
relay to-be-encoded and to-be-recalled information across the brain.

If gamma-band connectivity is involved in relaying both to-be-encoded and recalled information,
how can interference between the two streams of information be avoided? One suggestion,
based on observations from the rodent hippocampus, is that distinct gamma oscillations support
the two processes: a fast gamma oscillation (~60–100 Hz; slightly above the canonical gamma
band) facilitates encoding by allowing information to flow from the entorhinal cortex to the
hippocampus, while a slow gamma oscillation (~25–50 Hz; slightly beneath the canonical
gamma band) supports retrieval by allowing reinstated traces to propagate from CA3 to CA1
[45,46] (Figure 1B). These ideas have received empirical support from studies of rodents
(e.g., [4,5,47,48]) and humans [10,49,50]. While contradictions exist in the rodent literature
(e.g., [51,52]), these are often seen in studies in which encoding and retrieval overlap (e.g., at a
decision point in a maze: a rat may either be retrieving a past trajectory or encoding the current
trajectory for future reference), making it difficult to isolate encoding-/retrieval-specific neural
processes. However, studies in humans sidestep this issue by explicitly directing participants
to either encode or retrieve and then contrasting the resulting neural correlates. In these
instances, the typical pattern of ‘fast and ‘slow’ gamma activity is observed, with the former
favouring encoding and the latter favouring retrieval [10]. That said, in both rodent and human
studies, measurements of ‘slow’ gamma oscillations may be susceptible to distortion by theta
harmonics [53], meaning open questions remain about what can be attributed to ‘slow’

gamma oscillations and what is attributable to theta. Taken together, ‘fast’ and ‘slow’ gamma
oscillations may have separable roles in episodic memory, with the former biased toward
encoding and the latter toward retrieval.

The spectral separation of encoding and retrieval may also arise in the cortex [54–57], with
gamma oscillations feeding information forward to associative hubs (e.g., the hippocampus) for
memory formation [58], while beta oscillations (15–30 Hz) exert top-down inhibitory influence
over the same pathways to restrict activity to regions relevant to the processing of reactivated
memory traces [59] (Figure 1C). While these frequency-specific cortical routes have been
observed in low-level perceptual processes (e.g., [55–57]), these concepts are more difficult to
Trends in Neurosciences, Month 2023, Vol. xx, No. xx 5
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reconcile with episodic memory. For example, as described in the preceding text, gamma-band
coherence between the hippocampus and lateral temporal cortex supports memory retrieval
[43], suggesting that gamma oscillations are not the exclusively feedforward phenomenon that
the cortical routing hypothesis would suggest (see also [60,61]). However, this concern could
be addressed by hypothesising that hippocampal slow gamma oscillations and top-down
cortical beta oscillations reflect the same rhythm. Oscillations tend to propagate from areas
with faster intrinsic rhythms to areas with slower intrinsic rhythms [62]; thus, speculatively, a prop-
agating hippocampal slow ‘gamma’ oscillation could slow to a beta-like rhythm in cortical areas
as the reactivatedmemory trace propagates across the brain. Exploring the interactions between
hippocampal ‘slow’ gamma and cortical beta oscillations using simultaneous recordings would
allow for empirical testing of this idea.

While the theories outlined in the preceding text propose that coherence causes communication,
some have questioned how general these causal mechanisms may be [63–65] (Box 2). For
example, in macaques, coherence can be a product of communication if a ‘sender’ region
projects to both itself and a ‘receiver’ region in a rhythmic fashion [64]. Moreover, computational
modelling shows that two networks can communicate with one another without coherence,
and such communication can, in fact, produce coherence [63]. These findings suggest that
coherence is not necessary for communication but, nonetheless, could reflect instances when
successful communication occurred.

Others have questioned how gamma-band coherence can support communication over
distances of >1 cm, given factors such as variable axonal conduction delays [66]. Indeed, com-
putational models suggest that this ‘long-range’ communication is better supported by slower
Box 2. The pros and cons of communication through coherence

Communication through coherence (CTC) has been an influential theory of neural communication over the past 20 years,
but the generality of the mechanism has recently been questioned. Here, we consider some key critiques and enduring
strengths of CTC.

Some critics of CTC propose that coherence may be a consequence, rather than the cause, of communication. Indeed,
rhythmic spiking in the sender can produce postsynaptic potentials in both the sender and receiver area, which in turn pro-
duce gamma-band coherence in the local field potential between the two regions [64]. Computational models support this
idea, showing that coherence follows, rather than causes, communication [63]. Others have demonstrated that excitatory
neurons in the receiving region do not couple to the phase of the gamma oscillation despite the two regions becoming co-
herent [138], suggesting that coherence is not essential for neuronal communication. Lastly, the frequency and strength of
gamma oscillations depend on stimulus properties (e.g., contrast) [139,140], resulting in multiple frequencies of gamma
oscillation which may struggle to become coherent with one another. Altogether, these findings suggest that gamma os-
cillatory coherence may not be a prerequisite for neural communication.

That said, several aspects of CTC appear robust. For example, gamma coherence relates to performance in a range of
cognitive tasks, including attention (e.g., [141]) memory (e.g., [8,42,43]), and navigation (e.g., [142]), with suboptimal phase
delays between gamma oscillations in the sender and receiver regions impairing behavioural responses [143], all of which
support the idea that coherence with optimised phase delays aids communication and its behavioural consequences.
Moreover, while many investigations of CTC focus on the visual system of nonhuman primates, congruent findings can
be found in the rodent hippocampus (e.g., [46,142]), suggesting that the principles of CTC generalise across brain regions
and species. Lastly, while stimulus properties modulate gamma frequency and this frequency mismatch may hinder com-
munication [139], this can be beneficial: following a phase reset, highly excited networks produce fast gamma oscillations
that can quickly excite a connected region, with the resulting wave of inhibition suppressing inputs from less excited sender
regions (which exhibit slower gamma oscillations). In other words, variation in oscillatory frequency allows selective com-
munication, a key feature of CTC [41].

Given the evidence presented in the preceding text, it may be suggested that gamma-band coherence can support com-
munication, although it may not be the only means of coherence within the brain. Consequently, investigating the specific
conditions under which gamma coherence supports communication may prove fruitful.

6 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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(e.g., beta) oscillations [67]. However, these concerns may be addressed by cross-frequency
coupling, a phenomenon in which gamma oscillations nest within a slower rhythm [68]. When
the low-frequency oscillations of two distant regions become coherent, and local gamma oscilla-
tions phase lock to the coherent low-frequency oscillations, gamma-band coupling becomes
more precise than what would occur based on long-range gamma-band interactions alone.
In line with this idea, computational models [69], rodent hippocampal recordings [46], and
nonhuman primate visual cortical/thalamic recordings [70] all suggest a link between neural
communication and cross-frequency interactions. Consequently, future explorations into
communication through cross-frequency coupling may prove prosperous.

In sum, distinct gamma oscillations may track the flow of to-be-encoded and to-be-retrieved
information across the cortex. However, it remains to be seen whether gamma oscillatory
activity has a causal role in such communication or is simply a by-product. Of course, even if
it becomes apparent that gamma oscillations do not have a causal role in communication,
this does not preclude the potential role of gamma oscillations in other subprocesses of
episodic memory.

Gamma oscillations and sequence encoding/retrieval
Thus far, we have discussed episodic memories as though all information relevant to the memory
was presented and processed simultaneously. This is not the case, however: episodic memories
have an inherent temporal narrative, a property that gamma oscillations, nested in ongoing
hippocampal theta rhythms (~3–7 Hz), may facilitate [46,71–75]. In this partnership, the theta
oscillation defines the overarching episode (e.g., a birthday party), while nested gamma cycles
represent and separate distinct elements of the sequence (e.g., the birthday cake, the
presents). Here, we review how a theta–gamma code encodes and retrieves episodic memory
sequences.

Hippocampal theta–gammacouplingmay support episodicmemory by iteratively representing
elements of an episode in a manner optimal for LTP [73,76]. This process begins with a hippo-
campal cell assembly (i.e., a collection of cells tuned to an element of an event) firing in response
to a combination of external and theta phase-dependent excitation [77]. This results in feedback
inhibition that suppresses network activity momentarily (~20 ms). Once inhibition dissipates, the
next assembly in the sequence fires. The back-and-forth between excitation and inhibition
produces a gamma oscillation that helps segment elements of an event from one another [71]
(Figure 2A) and facilitates STDP. STDP allows the temporal order of an event to be encoded in
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Figure 2. Depiction of the contribution of theta–gamma coupling to episodicmemory. (A) Individual elements of an
event are represented on individual gamma cycles, which are nested within an ongoing theta oscillation. Given the inhibitory
nature of theta, individual elements of an event occur at the trough of the theta cycle. Given that early elements always
precede later elements, unidirectional synaptic links can form between elements via asymmetric long-term potentiation
(LTP). (B) Sequential learning establishes synaptic links between elements, such that early elements can induce firing in
later elements, but not vice versa. Adapted from [88].
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the asymmetric synaptic links between the neuronal representations of the event [78] (Figure 2B).
The alternation between cell assembly excitation and feedback inhibition continues until theta
reaches its inhibitory phase. This results in a gamma oscillation nested within the ongoing theta
oscillation, which supports the formation of a temporally coherent memory.

Supporting these ideas, computational modelling demonstrates that elements represented in a
biologically plausible theta–gamma code do indeed produce asymmetric synaptic connections
that later predict successful retrieval [79,80]. While a direct demonstration is lacking in biological
organisms, pairwise links between theta–gamma coupling, asymmetric LTP, and sequence
encoding have been observed. First, as discussed earlier, gamma oscillatory activity can facilitate
LTP [13,14], and LTP could be further enhanced if gamma couples to the phase of theta optimal
for LTP [81–84], suggesting that theta gamma coupling can enhance LTP. Second, sequences of
place cells representing a familiar path have been shown to fire more readily with each traversal
[85], an effect attributed to enhanced asymmetric synaptic connectivity between sequentially fir-
ing place cells, linking sequence learning to LTP (for similar evidence in humans, see [86]). Lastly,
in humans, themagnitude of theta–gamma coupling during object sequence learning predicts the
accuracy of temporal judgements about the objects presented in the sequence [11], explicitly
linking theta–gamma coupling to sequence memory. Weaving the strands together, it appears
that theta gamma coupling helps encode temporally coherent episodic memories through asym-
metric LTP.

With the sequence encoded through asymmetric synaptic connections, sequential recall is simply
a matter of cuing one element in a sequence and allowing the asymmetric synaptic links to
reactivate each remaining element in turn [72]. Given that memory reactivation is thought to
preferentially arise at the peak of the hippocampal theta cycle [82], sequence recall will inherently
be tied to this phase of theta. When this phase is reached, the cued assembly fires and excites
connected assemblies. As with encoding, feedback inhibition prevents immediate activation of
the connected assemblies, but as inhibition subsides, the most excited assembly (i.e., the one
that shares the strongest synaptic links) can fire [87]. This process repeats for each element of
the memory, resulting in theta–gamma-coupled activity that reflects the readout of sequential
information from episodic memory.

Several empirical studies support this explanatory link between theta–gamma coupling and
retrieval. For example, retrieval occurs at a preferred phase of theta in both rats (e.g., [88,89])
and humans (e.g., [90,91]), suggesting that recall is theta-phase dependent. Critically, disrupting
theta by injecting muscimol impairs both memory retrieval and theta–gamma coupling [6], while
optogenetically enhancing gamma boosts both memory retrieval and theta–gamma coupling
[92], suggesting a causal role for both theta and gamma in sequence retrieval (although this
may not be the only route to sequence retrieval; Box 3).

With evidence to suggest that theta–gamma coupling can carry codes related to both the past
and the present, we must once again address how the brain separates to-be-encoded and to-
be-retrieved information. This may be achieved by distinct hippocampal gamma rhythms nested
in differing phases of theta [45,46,82,93,94]. In rats, indirect support for this idea has come
from the observation that ‘fast’ gamma coupled to theta carries spatial sequences about where
the rat currently is (which is thought to be pertinent to forming new memories based on current
experience), while ‘slow’ gamma, coupled to a different phase of theta, represents sequences
of where rats are planning to go (which is thought to reflect the reactivation of past sequences
to aid navigation) [4,5]. Similar evidence has been reported in humans, with the two frequencies
coupling to different phases of theta [49]. Taken together, one could speculate that sequential
8 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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Box 3. Sharp-wave ripples as an alternate route to sequence retrieval

Similar to theta-gamma coupling, sharp-wave ripples have also been linked to the retrieval of sequences [144,145], al-
though it is unclear whether these two mechanisms are complementary or adversarial. Here, we briefly summarise the link
between sharp-wave ripples and sequences, and then discuss how the nature of LTP and theta–gamma coupling may
dictate which sequences sharp-wave ripples can retrieve.

By replaying previously experienced sequences, sharp-wave ripples are thought to facilitate processes such as systems
consolidation (e.g., [144]), reward learning (e.g., [146]), and creative planning (e.g., [147]). Intriguingly, this replay can occur
in a forward, backward, or novel order [146,148,149]. However, the observation of replay in any other direction than
forward is difficult to explain with any neural mechanism that implements asymmetric LTP because the latter does not
provide the synaptic connections necessary for traversing a sequence in any order other than the original. A possible
resolution to this problem comes from recent work indicating that, within CA3, symmetric STDP can occur [150]. Symmetric
STDP is ambivalent about which cell fired first, meaning it forms reciprocal connections between two cells. When applied to
theta–gamma coupling, this would see a sequence build both forward and backward connections. Importantly, synaptic
connections would still be moderated by temporal distance; thus, element C will have stronger connections to B and D than
to A and E, meaning that some degree of temporal order is retained. While symmetric LTP, relative to asymmetric LTP, may
make it more difficult to recall the exact order in which a sequence unfolded, it would provide additional flexibility for mentally
navigating elements of a sequence to understand unexpected rewards or exploring unexperienced sequences of events
[146,147]. It remains an open question whether theta–gamma coupling makes preferential use of either asymmetric or
symmetric LTP and, consequently, whether theta–gamma coupling principally creates memory traces with a strict temporal
narrative or traces that can be flexibly replayed and rearranged by sharp-wave ripples. Addressing this question will help
elucidate whether theta–gamma coupling and sharp-wave ripples reflect two complementary learning mechanisms or a
single cooperative mnemonic phenomenon [151].
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information relating to the to-be-encoded present and to-be-remembered past is segregated by
nesting distinct gamma oscillations at different phases of ongoing theta activity.

Notably, the links made between theta–gamma coupling and sequence encoding/retrieval and
those made to neural communication may be complementary. For example, following the
theta–gamma-coupled reactivation of a sequence in CA3, theta-band coupling between the
CA3 and CA1 could ensure that gamma oscillations within the two regions become coherent
and, consequently, help the reactivated sequence propagate toward the cortex for reinstatement.
This highlights how theta–gamma coupling need not be thought of as solely aiding either commu-
nication or sequence representation, but may indeed facilitate both.

In sum, theta–gamma coupling provides the temporal scaffolding necessary for episodic
memory. This may be achieved by distinct gamma oscillations, nested in differing phases of
theta, supporting the encoding and retrieval of sequences. That said, much of the supporting
evidence for this latter claim comes from studies of rodent navigation. Therefore, it will be of
interest to see how these findings generalise to humans and nonhuman primates, which depend
less on locomotion to build representations of space (relative to rodents) and instead explore
space using different means (e.g., saccades; [95,96]).

From fundamental mechanisms to fully fledged episodic memories
So far, we have explored how gamma oscillations support low-level neural phenomena
(i.e., plasticity, communication, and sequence representation), which, in turn, can facilitate epi-
sodic memory. However, because much of this work relies on the study of single cells in vitro
or anthropomorphising the behaviour of rodents navigating a maze, it is unclear how well these
concepts generalise to the behavioural expression of episodic memories that we, as humans,
experience. Here, we explore recent work conducted in humans that directly links gamma
oscillations to the behavioural expression of episodic memories.

Fortunately, there is no shortage of studies linking gamma-band activity to human episodic
memory formation (e.g., [10,11,15,36,42,97–108]) or retrieval (e.g., [10,43,49,58,61,106,109–117]).
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Many of these studies involve studying a series of stimuli and later recalling them on cue. These
stimuli are then split based on whether they were recalled and the associated neural activity is
contrasted. In doing so, these approaches isolate memory-related activity by minimising contribu-
tions from other cognitive phenomena (e.g., stimulus perception, motor response) that arise
regardless of whether encoding/retrieval was successful. Indeed, lab-based studies utilising
these approaches have demonstrated that inter-regional gamma-band coherence aids both
memory formation [42] and retrieval [43,116], while theta–gamma coupling predicts episodic
sequence encoding [11,98,106] and retrieval [106]. Moreover, the retrieval of real-life autobio-
graphical memories has been linked to enhanced gamma coherence [44] and theta–gamma cou-
pling [114,115], suggesting that gamma oscillations and themechanisms they support have critical
and specific roles in life-like episodic memories.

While these studies have an advantage over cell- and animal-based studies in quantifying the
behavioural expression of episodic memory, they are at a disadvantage when quantifying
gamma oscillations. Specifically, there is difficulty in delineating oscillations from arrhythmic sig-
nals [118] that also correlate with episodic memory (e.g., [119]). Therefore, an analysis of spectral
power that does not attempt to separate out the contributions of gamma oscillatory activity from
broadband aperiodic activity will struggle to provide informative insights into the oscillatory under-
pinnings of episodic memory. However, analytical advances have been developed to tackle this
issue [118,120] and studies implementing these methods continue to suggest that narrowband
gamma oscillations relate to episodic memory formation/retrieval (and also highlight separable
contributions from lower-frequency oscillations; Box 4) [10,98,121].

Taken together, numerous human studies demonstrate that gamma oscillatory activity specifi-
cally maps onto the formation and retrieval of life-like episodic memories, further strengthening
the link between the two phenomena.

Future directions
While there are numerous threads that relate gamma oscillatory activity to synaptic plasticity,
neural communication, and sequence representation, further research is required to fully
elucidate these links. Here, we discuss how investigating multiple oscillations, causality, and
neuropathology may help address such open questions.

A common theme in the research reviewed in the preceding text is that multiple distinct oscilla-
tions, with differing frequencies and distinct mechanistic functions, sit (more or less) within the
canonical gamma band. For better understanding of the role of gamma oscillations in episodic
memory, it would be beneficial to account for these different forms of oscillation. This could be
achieved analytically by distinguishing putative gamma oscillations from aperiodic components
Box 4. Synchronisation versus desynchronisation

While this review has principally focused on the relevance of gamma oscillatory synchrony in episodic memory formation
and retrieval, growing evidence suggests that a second oscillatory correlate has an equally important role: widespread
cortical power decreases, predominately in the lower frequencies (<30 Hz; e.g., [10,101–103,121,152–157]), but also
within the gamma-band itself (e.g., [116]). While one might be led to believe that gamma-band power increases and
low-frequency cortical power decreases are inversely correlated, several studies suggest that these two electrophysiolog-
ical phenomena have distinct roles in episodic memory formation and retrieval [10,98,121]. For example, these cortical
power decreases may be involved in information processing [158], decreasing inhibition [159], and/or moderating top-
down control (e.g., [55,57]). Based on these functions, one could differentiate low-frequency oscillations from gamma
oscillations by suggesting that the former support the allocation of resources (e.g., attention), while the latter reflect active
processing (e.g., plasticity, neural communication, or sequence representation) (e.g., [55,160]). Consequently, low-
frequency power decreases may complement gamma oscillations in the formation and retrieval of episodic memories.
For further discussion on this point, see [3].
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Outstanding questions
Do gamma oscillations provide any
additional benefit to plasticity above
and beyond what is provided by
arrhythmic but synchronous neural
activity?

How do NMDA antagonists
(e.g., ketamine) influence the inter-
action between gamma oscillatory
activity and STDP?

Does gamma oscillatory coherence
support the flow of information from
the cortex to the hippocampus during
memory formation? Does the phase
delay between the sender and reader
dictate whether a memory can be
formed?

Can separable ‘fast’ and ‘slow’

gamma oscillations be observed
outside of the medial temporal lobe?
How do they relate to feedforward
gamma and feedback beta rhythms
observed in the sensory cortices?

Can individual elements of an episodic
memory be decoded from human
theta–gamma sequences during mem-
ory formation and/or retrieval?

Is there a trade-off between accurate
temporal order memory and flexible
thinking? Do asymmetric synaptic links
between elements favour the former
while symmetric synaptic links favour
the latter?

Does the magnitude of theta–gamma
coupling during memory formation
predict the intensity and/or frequency
of replay events during later offline
periods (e.g., sleep)?

Can gamma-band sensory stimulation
modulate memory? Given that ‘fast’
gamma sits above the flicker fusion
threshold, does this mean that gamma-
band sensory stimulation offers an
imperceivable memory intervention?
of the power spectrum (e.g., [118,122]) or by using spatial separationmethods (e.g., independent
components analysis; ICA) to distinguish hippocampal and cortical gamma rhythms
(e.g., [43,55]). Complementing this, experimental paradigms could be finessed to better isolate
distinct gamma oscillations. For example, matching sensory input/motor output between
encoding and retrieval would ensure that only the internal state differs between encoding and
retrieval, allowing direct comparison of the distinct rhythms associated with each state (e.g., [10]).
Ultimately, these approaches may help separate the many forms of gamma oscillation that have
critical roles in episodic memory.

With numerous studies demonstrating a correlative link between gamma oscillations and
episodic memory, and mechanistic links proposing almost unanimously that gamma oscillatory
activity results in memory formation and/or retrieval, causality also needs addressing. Fortunately,
numerous promising techniques can help establish causality, including optogenetic manipulation
of gamma oscillations in rodents (e.g., [92]), and sensory stimulation in humans (e.g., [15]). Of
course, it is a challenge to determine absolute causality between gamma oscillations and episodic
memory because this requires total control over a system that can generate and recall episodic
memories. Therefore, cross-disciplinary approaches are essential. For example, combining
computational models that explore the impact of gamma oscillations in a controlled system
with behavioural experiments exploring how exogenous gamma stimulation impacts real episodic
memories will provide deeper insights into the causal role of gamma oscillations in episodic
memory compared with either approach in isolation.

Lastly, it is worth considering how cognition changes in the face of pathological gamma oscil-
lations. While fundamental research linking gamma oscillations to episodic memories has been
used to inform potential interventions for neurological disorders (e.g., Alzheimer’s disease;
[123–127]; however, see [128,129]), we propose that studies of clinical populations can also
inform fundamental research. As discussed throughout this review, the brain does not execute
a singular ‘episodic memory’ process but rather executes a whole host of processes
(e.g., plasticity, neural communication, and sequence representation) from which episodic
memory emerges. Neurological disorders are similarly ambivalent to psychological constructs
such as episodic memory: neurological disorders principally associated with memory-related
problems (e.g., dementia) often entail non-memory-related problems, while disorders that
are not typically thought of as memory-related disorders can, nonetheless, involve memory
issues (e.g., schizophrenia). Considering the commonalities and idiosyncrasies between disor-
ders may provide an alternative view into the link between memory and gamma oscillations.
For example, gamma oscillatory dysrhythmia can be observed in Alzheimer’s disease [130]
and autism [131], but memory function is markedly different between the two [132,133].
Understanding why gamma oscillatory dysrhythmia may relate to mnemonic impairment in
some instances but not others may help elucidate the mechanistic role of gamma oscillations
in episodic memory, complementing those provided by fundamental research conducted on
healthy participants.

Concluding remarks
The well-documented link between gamma oscillations and episodic memory is likely to come
from not one but many underlying mechanisms, including synaptic plasticity, neural commu-
nication, and sequence representation. However, whether gamma oscillations have a causal
role in these mechanisms remains to be seen (see Outstanding questions). Consequently,
future research that causally manipulates gamma oscillatory activity may be the best step
forward to advance our understanding of the link between gamma oscillations and episodic
memory.
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