179 research outputs found

    Design, Development and Force Control of a Tendon-driven Steerable Catheter with a Learning-based Approach

    Get PDF
    In this research, a learning-based force control schema for tendon-driven steerable catheters with the application in robot-assisted tissue ablation procedures was proposed and validated. To this end, initially a displacement-based model for estimating the contact force between the catheter and tissue was developed. Afterward, a tendon-driven catheter was designed and developed. Next, a software-hardware-integrated robotic system for controlling and monitoring the pose of the catheter was designed and developed. Also, a force control schema was developed based on the developed contact force model as a priori knowledge. Furthermore, the position control of the tip of the catheter was performed using a learning-based inverse kinematic approach. By combining the position control and the contact model, the force control schema was developed and validated. Validation studies were performed on phantom tissue as well as excised porcine tissue. Results of the validation studies showed that the proposed displacement-based model was 91.5% accurate in contact force prediction. Also, the system was capable of following a set of desired trajectories with an average root-mean-square error of less than 5%. Further validation studies revealed that the system could fairly generate desired static and dynamic force profiles on the phantom tissue. In summary, the proposed force control system did not necessitate the utilization of force sensors and could fairly contribute in automatizing the ablation task for robotic tissue ablation procedures

    Modeling and Force Estimation of Cardiac Catheters for Haptics-enabled Tele-intervention

    Get PDF
    Robot-assisted cardiovascular intervention (RCI) systems have shown success in reducing the x-ray exposure to surgeons and patients during cardiovascular interventional procedures. RCI systems typically are teleoperated systems with leader-follower architecture. With such system architecture, the surgeon is placed out of the x-ray exposure zone and uses a console to control the robot remotely. Despite its success in reducing x-ray exposure, clinicians have identified the lack of force feedback as to its main technological limitation that can lead to vascular perforation of the patient’s vessels and even their death. The objective of this thesis was to develop, verify, and validate mechatronics technology for real-time accurate and robust haptic feedback rendering for RCI systems. To attain the thesis objective, first, a thorough review of the state-of-the-art clinical requirements, modeling approaches and methods, and current knowledge gaps for the provision of force feedback for RCI systems was performed. Afterward, a real-time tip force estimation method based on image-based shape-sensing and learning-from-simulation was developed and validated. The learning-based model was fairly accurate but required a large database for training which was computationally expensive. Next, a new mechanistic model, i.e., finite arc method (FAM) for soft robots was proposed, formulated, solved, and validated that allowed for fast and accurate modeling of catheter deformation. With FAM, the required training database for the proposed learning-from-simulation method would be generated with high speed and accuracy. In the end, to robustly relay the estimated forces from real-time imaging from the follower robot to the leader haptic device, a novel impedance-based force feedback rendering modality was proposed and implemented on a representative teleoperated RCI system for experimental validation. The proposed method was compared with the classical direct force reflection method and showed enhanced stability, robustness, and accuracy in the presence of communication disruption. The results of this thesis showed that the performance of the proposed integrated force feedback rendering system was in fair compliance with the clinical requirements and had superior robustness compared to the classical direct force reflection method

    Acoustic Radiation Force Impulse Imaging of Radiofrequency Ablation Lesions for Cardiac Ablation Procedures

    Get PDF
    <p>This dissertation investigates the use of intraprocedure acoustic radiation force impulse (ARFI) imaging for visualization of radiofrequency ablation (RFA) lesions during cardiac transcatheter ablation (TCA) procedures. Tens of thousands of TCA procedures are performed annually to treat atrial fibrillation (AF) and other cardiac arrhythmias. Despite the use of sophisticated electroanatomical mapping (EAM) techniques to validate the modification of the electrical substrate, post-procedure arrhythmia recurrence is common due to incomplete lesion delivery and electrical conduction through lesion line discontinuities. The clinical demand for an imaging modality that can visually confirm the presence and completeness of RFA lesion lines motivated this research.</p><p>ARFI imaging is an ultrasound-based technique that transmits radiation force impulses to locally displace tissue and uses the tissue deformation response to generate images of relative tissue stiffness. RF-induced heating causes irreversible tissue necrosis and contractile protein denaturation that increases the stiffness of the ablated region. Preliminary in vitro and in vivo feasibility studies determined RF ablated myocardium appears stiffer in ARFI images.</p><p>This thesis describes results for ARFI imaging of RFA lesions for three research milestones: 1) an in vivo experimental verification model, 2) a clinically translative animal study, and 3) a preliminary clinical feasibility trial in human patients. In all studies, 2-D ARFI images were acquired in normal sinus rhythm and during diastole to maximize the stiffness contrast between the ablated and unablated myocardium and to minimize the bulk cardiac motion during the acquisition time.</p><p>The first in vivo experiment confirmed there was a significant decrease in the measured ARFI-induced displacement at ablation sites during and after focal RFA; the displacements in the lesion border zone and the detected lesion area stabilized over the first several minutes post-ablation. The implications of these results for ARFI imaging methods and the clinical relevance of the findings are discussed.</p><p>The second and third research chapters of this thesis describe the system integration and implementation of a multi-modality intracardiac ARFI imaging-EAM system for intraprocedure lesion evaluation. EAM was used to guide the 2-D ARFI imaging plane to targeted ablation sites in the canine right atrium (RA); the presence of EAM lesions markers and conduction disturbances in the local activation time (LAT) maps were used to find the sensitivity and specificity of predicting the presence of RFA lesion with ARFI imaging. The contrast and contrast-to-noise ratio between RFA lesion and unablated myocardium were calculated for ARFI and conventional ICE images. The opportunities and potential developments for clinical translation are discussed. </p><p>The last research chapter in this thesis describes a feasibility study of intracardiac ARFI imaging of RFA lesions in clinical patients. ARFI images of clinically relevant ablation sites were acquired, and this pilot study determined ARFI-induced displacements in human myocardium decreased at targeted ablation sites after RF-delivery. The challenges and successes of this pilot study are discussed.</p><p>This work provides evidence that intraprocedure ARFI imaging is a promising technology for the visualization of RFA lesions during cardiac TCA procedures. The clinical significance of this research is discussed, as well as challenges and considerations for future iterations of this technology aiming for clinical translation.</p>Dissertatio

    Comparison of Acoustic Radiation Force Impulse (ARFI) Imaging and Shear Wave Imaging (SWI) in Evaluation of Myocardial Ablation Lesions

    Get PDF
    <p>Radiofrequency ablation (RFA) is commonly used to treat cardiac arrhythmias, by generating a series of discrete RFA lesions in the myocardium to isolate arrhythmogenic conduction pathways. The size of each lesion is controlled by the temperature of the tissue at the surface or the duration of RF power delivery, but feedback on the extent and transmurality of the generated lesion are unavailable with current technology. Intracardiac Echocardiography (ICE) may provide a solution through Acoustic Radiation Force Impulse (ARFI) imaging or Shear Wave Imaging (SWI), which each generate images of local mechanical compliance from very small ultrasonically-induced waves. This work compares ARFI and SWI in an ex-vivo experiment for lesion boundary assessment and lesion gap resolution.</p>Thesi

    Mapping Myocardial Elasticity with Intracardiac Acoustic Radiation Force Impulse Methods

    Get PDF
    <p>Implemented on an intracardiac echocardiography transducer, acoustic radiation force methods may provide a useful means of characterizing the heart's elastic properties. Elasticity imaging may be of benefit for diagnosis and characterization of infarction and heart failure, as well as for guidance of ablation therapy for the treatment of arrhythmias. This thesis tests the hypothesis that with appropriately designed imaging sequences, intracardiac acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) are viable tools for quantification of myocardial elasticity, both temporally and spatially. Multiple track location SWEI (MTL-SWEI) is used to show that, in healthy in vivo porcine ventricles, shear wave speeds follow the elasticity changes with contraction and relaxation of the myocardium, varying between 0.9 and 2.2 m/s in diastole and 2.6 and 5.1 m/s in systole. Infarcted tissue is less contractile following infarction, though not unilaterally stiffer. Single-track-location SWEI (STL-SWEI) is proven to provide suppression of speckle noise and enable improved resolution of structures smaller than 2 mm in diameter compared to ARFI and MTL-SWEI. Contrast to noise ratio and lateral edge resolution are shown to vary with selection of time step for ARFI and arrival time regression filter size for STL-SWEI and MTL-SWEI. </p><p>In 1.5 mm targets, STL-SWEI achieves alternately the tightest resolution (0.3 mm at CNR = 3.5 for a 0.17 mm filter) and highest CNR (8.5 with edge width = 0.7 mm for a 0.66 mm filter) of the modalities, followed by ARFI and then MTL-SWEI.</p><p>In larger, 6 mm targets, the CNR-resolution tradeoff curves for ARFI and STL-SWEI overlap for ARFI time steps up to 0.5 ms and kernels \leq1 mm for STL-SWEI. STL-SWEI can operate either with a 25 dB improvement over MTL-SWEI in CNR at the same resolution, or with edge widths 5×\times as narrow at equivalent CNR values, depending on the selection of regression filter size. Ex vivo ablations are used to demonstrate that ARFI, STL-SWEI and MTL-SWEI each resolve ablation lesions between 0.5 and 1 cm in diameter and gaps between lesions smaller than 5 mm in 3-D scans. Differences in contrast, noise, and resolution between the modalities are discussed. All three modalities are also shown to resolve ``x''-shaped ablations up to 22 mm in depth with good visual fidelity and correspondence to surface photographs, with STL-SWEI providing the highest quality images. Series of each type of image, registered using 3-D data from an electroanatomical mapping system, are used to build volumes that show ablations in in vivo canine atria. In vivo images are shown to be subject to increased noise due to tissue and transducer motion, and the challenges facing the proposed system are discussed. Ultimately, intracardiac acoustic radiation force methods are demonstrated to be promising tools for characterizing dynamic myocardial elasticity and imaging radiofrequency ablation lesions.</p>Dissertatio

    Thérapies ultrasonores cardiaques guidées par élastographie et échographie ultrarapides

    Get PDF
    Atrial fibrillation (AF) affects 2-3% of the European and North-American population, whereas ventricular tachyarrhythmia (VT) is related to an important risk of sudden death. AF and VT originate from dysfunctional electrical activity in cardiac tissues. Minimally-invasive approaches such as Radio-Frequency Catheter Ablation (RFCA) have revolutionized the treatment of these diseases; however the success rate of RFCA is currently limited by the lack of monitoring techniques to precisely control the extent of thermally ablated tissue.The aim of this thesis is to propose novel ultrasound-based approaches for minimally invasive cardiac ablation under guidance of ultrasound imaging. For this, first, we validated the accuracy and clinical viability of Shear-Wave Elastography (SWE) as a real-time quantitative imaging modality for thermal ablation monitoring in vivo. Second we implemented SWE on an intracardiac transducer and validated the feasibility of evaluating thermal ablation in vitro and in vivo on beating hearts of a large animal model. Third, a dual-mode intracardiac transducer was developed to perform both ultrasound therapy and imaging with the same elements, on the same device. SWE-controlled High-Intensity-Focused-Ultrasound thermal lesions were successfully performed in vivo in the atria and the ventricles of a large animal model. At last, SWE was implemented on a transesophageal ultrasound imaging and therapy device and the feasibility of transesophageal approach was demonstrated in vitro and in vivo. These novel approaches may lead to new clinical devices for a safer and controlled treatment of a wide variety of cardiac arrhythmias and diseases.La fibrillation atriale affecte 2-3% des européens et nord-américains, les tachycardies ventriculaires sont liées à un risque important de mort subite. Les approches minimalement invasives comme l’Ablation par Cathéter Radiofréquence (RFCA) ont révolutionné le traitement de ces maladies, mais le taux de réussite de la RFCA est limité par le manque de techniques d’imagerie pour contrôler cette ablation thermique.Le but de cette thèse est de proposer de nouvelles approches ultrasonores pour des traitements cardiaques minimalement invasifs guidés par échographie.Pour cela nous avons d’abord validé la précision et la viabilité clinique de l’Élastographie par Ondes de Cisaillement (SWE) en tant que modalité d’imagerie quantitative et temps réel pour l’ablation thermique in vivo. Ensuite nous avons implémenté la SWE sur un transducteur intracardiaque et validé la faisabilité d’évaluer l’ablation thermique in vitro et in vivo sur cœur battant de gros animal. Puis nous avons développé un transducteur intracardiaque dual-mode pour effectuer l’ablation et l’imagerie ultrasonores avec les mêmes éléments, sur le même dispositif. Les lésions thermiques induites par Ultrasons Focalisés de Haute Intensité (HIFU) et contrôlées par la SWE ont été réalisées avec succès in vivo dans les oreillettes et les ventricules chez le gros animal. Finalement la SWE a été implémentée sur un dispositif d’imagerie et thérapie ultrasonores transœsophagien et la faisabilité de cette approche a été démontrée in vitro et in vivo. Ces approches originales pourraient conduire à de nouveaux dispositifs cliniques pour des traitements plus sûrs et contrôlés d’un large éventail d’arythmies et maladies cardiaques

    Finite element simulations: computations and applications to aerodynamics and biomedicine.

    Get PDF
    171 p.Las ecuaciones en derivadas parciales describen muchos fenómenos de interés práctico y sus solucionessuelen necesitar correr simulaciones muy costosas en clústers de cálculo.En el ámbito de los flujos turbulentos, en particular, el coste de las simulaciones es demasiado grande sise utilizan métodos básicos, por eso es necesario modelizar el sistema.Esta tesis doctoral trata principalmente de dos temas en Cálculo Científico.Por un lado, estudiamos nuevos desarrollos en la modelización y simulación de flujos turbulentos;utilizamos un Método de Elementos Finitos adaptativo y un modelo de ¿número de Reynolds infinito¿para reducir el coste computacional de simulaciones que, sin estas modificaciones, serían demasiadocostosas.De esta manera conseguimos lograr simulaciones evolutivas de flujos turbulentos con número deReynolds muy grande, lo cual se considera uno de los mayores retos en aerodinámica.El otro pilar de esta tesis es una aplicación biomédica.Desarrollamos un modelo computacional de Ablación (Cardiaca) por Radiofrecuencia, una terapiacomún para tratar varias enfermedades, por ejemplo algunas arritmias.Nuestro modelo mejora los modelos existentes en varias maneras, y en particular en tratar de obteneruna aproximación fiel de la geometría del sistema, lo cual se descubre ser crítico para simularcorrectamente la física del fenómeno

    Pulmonary vein isolation in treatment of atrial fibrillation using radiofrequency or cryoballoon ablation: factors associated with better clinical outcomes

    Get PDF
    Background: Electrical pulmonary vein isolation (PVI) is still regarded as a cornerstone for treatment of paroxysmal and persistent atrial fibrillation (AF). It can be achieved by different techniques. We investigated the indications and techniques of PVI using radiofrequency ablation (RFA) and cryoballoon ablation (CBA) for AF and compared the efficacy of the two techniques for persistent AF. Methods and results: First, we conducted a prospective, randomized (1:1), open-label, multi-centre clinical trial to evaluate the effectiveness of PVI performed with CBA in comparison with contact force-sensing RFA in patients with persistent AF. A total of 101 patients (52 in CBA and 49 in RFA) were enrolled and followed up for 12 months. The CBA group showed a similar clinical outcome to RFA in terms of freedom from atrial tachyarrhythmia at 12 months (69.2% in CBA vs. 61.2% in RFA, P=0.393). In addition, CBA showed comparable complications (1 in CBA vs. 4 in RFA, P=0.353), less atrial flutter (AFL) recurrence (3.9% in RFA vs. 18.0% in CBA, P=0.020), and shorter procedure and ablation time (158.9±28.9 vs. 197.9±38.4 minutes, 35.8±6.5 vs. 55.9±16.7 minutes, respectively, both P<0.001) than RFA. Second, we conducted an observational study in an RFA population, to investigate the impacts of procedural parameters on durability of PVI. We analysed the impacts of contact force (CF), power, and application time on ablation effect indicated by impedance drop (ID) in an RFA procedure with both conventional and high-power short-duration (HPSD) settings. We found that: (i) The minimum requirement of CF for effective ablation was 5 g. (ii) With CF ≥5 g, CF, power and application time can compensate for each other within restricted ranges, while the time to reach maximal ablation effect can be shortened by increasing CF or power output. (iii) The effect of HPSD ablation with 50 W for 10 s is equivalent to conventional ablation with 25 W for 40 s and 30-35 W for 20-30 s, in terms of ID. Changes of ID with increasing ablation index were similar at 30, 35 and 50 W. At 25 W they showed the same trend, but with smaller ID at the same ablation index. Third, we analysed the predictive value of procedural and biophysical parameters for the durability of PVI in a CBA population in a retrospective case-control study that used the data from 241 pulmonary veins of 71 patients who underwent a repeat AF ablation procedure. Thawing plateau time (TimeTP, defined as the time from 0 to 10℃ inside the balloon in the thawing period) was shown to be the strongest independent predictor for the durability of PVI. The relationship between TimeTP and the durability of PVI presents in a dose-proportional manner. TimeTP 25 s predicts durable PVI. In these two studies, we provided practical data for optimizing dose strategies for RFA and CBA to improve the durability of PVI. Finally, we performed a retrospective cohort study to investigate the incidence and risk factors for AF in 117 patients who suffered mostly AFL and underwent an elective cavotricuspid isthmus (CTI) ablation. During a mean follow-up period of 68 ± 24 months, 89 patients (70%) developed AF, 53 patients (42%) underwent AF ablation procedures, and 10 patients (8%) developed non-fatal ischemic cerebral events. Independent predictors for additional AF ablation included a higher CHA2DS2-vasc score (odds ratio (OR) 0.72, 95% confidence interval (CI), 0.53–0.98), documentation of both pre- and intraprocedural AF (OR 3.81, 95% CI, 1.14–12.8), and previous use of flecainide (OR 2.43, 95% CI, 1.06–5.58). We emphasized the high risk of AF occurrence and PVI in the future for AFL patients. The findings indicate that CTI block has limited prophylactic effect for AF episodes and that prophylactic PVI may be applied in selective AFL patients. Conclusions: (i) Compared with RFA, PVI performed by CBA offers shorter ablation time and procedure duration, with less AFL recurrence and similar freedom from atrial tachyarrhythmias at 12-month follow-up. (ii) Procedural parameters have predictive value and significant impacts on durability of PVI. (iii) Patients undergoing AFL ablation are at high risk of developing AF in the future and prophylactic PVI may be applied in selective AFL patients.Doktorgradsavhandlin

    imaged-based tip force estimation on steerable intracardiac catheters using learning-based methods

    Get PDF
    Minimally invasive surgery has turned into the most commonly used approach to treat cardiovascular diseases during the surgical procedure; it is hypothesized that the absence of haptic (tactile) feedback and force presented to surgeons is a restricting factor. The use of ablation catheters with the integrated sensor at the tip results in high cost and noise complications. In this thesis, two sensor-less methods are proposed to estimate the force at the intracardiac catheter’s tip. Force estimation at the catheter tip is of great importance because insufficient force in ablation treatment may result in incomplete treatment and excessive force leads to damaging the heart chamber. Besides, adding the sensor to intracardiac catheters adds complexity to their structures. This thesis is categorized into two sensor-less approaches: 1- Learning-Based Force Estimation for Intracardiac Ablation Catheters, 2- A Deep-Learning Force Estimator System for Intracardiac Catheters. The first proposed method estimates catheter-tissue contact force by learning the deflected shape of the catheter tip section image. A regression model is developed based on predictor variables of tip curvature coefficients and knob actuation. The learning-based approach achieved force predictions in close agreement with experimental contact force measurements. The second approach proposes a deep learning method to estimate the contact forces directly from the catheter’s image tip. A convolutional neural network extracts the catheter’s deflection through input images and translates them into the corresponding forces. The ResNet graph was implemented as the architecture of the proposed model to perform a regression. The model can estimate catheter-tissue contact force based on the input images without utilizing any feature extraction or pre-processing. Thus, it can estimate the force value regardless of the tip displacement and deflection shape. The evaluation results show that the proposed method can elicit a robust model from the specified data set and approximate the force with appropriate accuracy
    corecore