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Abstract 

Radiofrequency ablation (RFA) is commonly used to treat cardiac arrhythmias, 

by generating a series of discrete RFA lesions in the myocardium to isolate 

arrhythmogenic conduction pathways. The size of each lesion is controlled by the 

temperature of the tissue at the surface or the duration of RF power delivery, but 

feedback on the extent and transmurality of the generated lesion are unavailable with 

current technology. Intracardiac Echocardiography (ICE) may provide a solution 

through Acoustic Radiation Force Impulse (ARFI) imaging or Shear Wave Imaging 

(SWI), which each generate images of local mechanical compliance from very small 

ultrasonically-induced waves. This work compares ARFI and SWI in an ex-vivo 

experiment for lesion boundary assessment and lesion gap resolution. 
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1. Introduction  

1.1 Cardiac Arrhythmias  

Intrinsically, the heart is an electrically conducting muscle which is capable of 

initiating its own sinus rhythm. The sinoatrial (SA) node, a tight bundle of tissue in the 

right atrium of the heart, behaves as an independent cardiac pacemaker. Cardiac 

arrhythmias arise from irregularities in cardiac function, and are characterized by 

abnormalities in heart rhythm and electrical conduction. 

During a normal heart beat, an electrical impulse is initiated in the SA node, 

where the impulse travels through conducting tissue in the form of cardiac action 

potentials throughout the right and left atria to the atrioventricular (AV) node, located at 

the interatrial septum. From the AV node, the electrical impulse is transmitted down 

through the septum of the heart, via a bundle of highly conductive fibers known as the 

bundle of His. The branches extending from the bundle of His are Purkinje fibers. The 

electrical activity travels through the Purkinje fibers, which extend from the septum 

through the apex of the heart, up through the ventricular walls of the heart.1 

These timed, electrically propagating stimuli in the heart activate the myocytes, 

causing different sections of myocardium to contract rhythmically. A normal sinus 

rhythm allows the heart to contract so that the chambers of the heart are able to pump 

blood through the circulatory system efficiently. As irregularities in the sinus rhythm 

                                                      

1 (Dubin 2000) 
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arise due to pathophysiologies and anatomical defects, myocardial contraction becomes 

abnormal and the heart fails to function properly.  

Generally, cardiac arrhythmias can be grouped into a few anatomical categories: 

supraventricular tacchyarrhythmias, ventricular arrhythmias, and bradyarrhythmias. 2 

Tachycardias like atrial, multifocal atrial, and junctional ectopic, and ventricular 

tachycardia are characterized by abnormally fast heart rates with focal origins, while 

bradyarrhythmic events like atrioventricular block manifest in such a way that heart rate 

becomes abnormally slow. Atrial fibrillation and atrial flutter are arrhythmic conditions 

where irregularities in conduction cause uncoordinated atrial contraction, leading to 

inefficient pumping to the ventricles, diminishing effective circulation. The severity of 

an arrhythmia depends on its origin and physical manifestation; while ventricular 

fibrillation describes irregular and uncoordinated phenomena related to atrial 

fibrillation, ventricular fibrillation is a more fatal arrhythmia because ventricular failure 

causes circulation to halt almost entirely. 

The most commonly sustained cardiac arrhythmia is atrial fibrillation (AF).3 

Often asymptomatic and undiagnosed, atrial fibrillation is caused by a number of 

conditions, the most prevalent being: mitral valve disease, coronary heart disease (with 

myocardial infarct or angina onset), congenital heart disease, Wolff-Parkinson-White 

                                                      

2 (Kastor 2000) 
3 (Kastor 2000) 



 

3 

syndrome, rheumatic heart disease, pericarditis, and cardiomyopathy. To fully 

appreciate the prevalence of atrial fibrillation among patients with the above conditions, 

the percent of patients that develop AF for some listed conditions can be seen in Table 1. 

Table 1: Patients’ existing cardiac conditions with atrial fibrillation (AF).4 

Existing condition AF occurrence (%) 

Mitral valve stenosis 40-50% 

Myocardial infarction 11% 

Congenital heart disease 20% 

Wolff-Parkinson-White 

syndrome 

35% 

Pericarditis 35-70% 

Cardiomyopathy 15-25% 

 

These structural defects and disease states prevent the myocardium from 

contracting properly. Though often asymptomatic, patients who have AF may present 

with palpitations, shortness of breath, sudden onset of stroke or transient ischemic 

attack. AF is often diagnosed by examination of an electrocardiogram (ECG), where the 

P wave may be absent, and R-R intervals are irregular overall. 

The broad range of atrial fibrillation causes result in varying levels of fibrillation 

permanence. Paroxysmal, or sudden onset, atrial fibrillation is characterized by 

recurring episodes that spontaneously revert back to normal sinus rhythm. Persistent 

atrial fibrillation, on the other hand, can be characterized by a longer lasting (several 

                                                      

4 (Kastor 2000) 



 

4 

days) attack that can be corrected with cardioversion therapy, which will be discussed in 

Section 1.2. Permanent atrial fibrillation is defined as an on-going long term (year or 

more) episode of fibrillation, generally untreatable by a single session of cardioversion. 

1.2 Overview of Arrhythmia Treatments 

1.2.1 Chemical Cardioversion 

The primary method of controlling chronic AF is with pharmacological 

treatment. Different forms of drugs can be used to reduce ventricular rate and sustain 

sinus rhythm. These drugs are considered chemical cardioversion medications that can 

be administered orally or intravenously. The most commonly used chemical 

cardioversion drugs are: β-adrenergic blockers, calcium-channel blocking agents, 

sodium channel blockers (like quinidine), and re-polarization prolonging agents (like 

amiodarone). These medications help to block influences on heart rate at the AV node 

level, slowing atrial fibrillation to a rate closer to sinus rhythm. Pharmacological 

treatment can often only decrease heart rate to around 90 beats per minute; because of 

the rate controlling properties, accessibility, and cost of drugs, chemical cardioversion is 

the most commonly used form of long term AF treatment.5 However, with its relatively 

low conversion success rate (average of 21 – 71% success), chemical cardioversion can 

result in a more costly overall treatment with dosage failures.6 

                                                      

5 (Kastor 2000) 
6 (Naccarelli, et al. 2000) 
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1.2.2 Electrical Cardioversion 

Electrical cardioversion is a conditionally effective way to convert chronic AF to 

normal sinus rhythm (NSR). NSR is restored in 70- 90% of patients with AF who 

undergo electrical cardioversion therapy.7 Depending on the causes and circumstances 

surrounding the AF, electrical cardioversion provides immediate NSR conversion. In 

this generally hospital-administered method of treatment, two electrode pads are placed 

on the patient’s chest – one placed right parasternally in an anterior position, and the 

other placed along the midaxillary line in a lateral position. Around 50 Joules of energy 

are delivered via defibrillator; the procedure ends with restoration of NSR, or with a few 

attempts at the highest level of stored energy.8 Patients with chronic or persistent AF 

receive electrical cardioversion concurrent with pharmacological treatment, while 

patients who present with the first paroxysm of AF are not given antiarrhythmic 

treatment prior to electrical cardioversion. Certain patient populations respond more 

effectively to electrical cardioversion than others. For example, treatment works better 

for patients who have shorter-appearing atrial fibrillation compared to patients who 

have permanent AF; stenotic mitral valve disease caused AF is more susceptible to 

electrical cardioversion therapy than AF caused by regurgitant mitral valve diseases. In 

patients who have undergone cardiac surgery, electrical cardioversion is not a preferred 

method of cardioversion treatment. 

                                                      

7 (Van Gelder, et al. 1991) 
8 (Van Gelder, et al. 1991) 
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While electrical cardioversion is highly effective at the time of delivery, 

arrhythmia often re-develops within 1 year of the successful cardioversion treatment. As 

shown in Table 2, a high percentage of patients experience a re-occurrence of AF 

immediately following successful electrical cardioversion therapy. Unless other therapy 

(pharmacological or otherwise) is introduced after cardioversion, the arrhythmia will 

most likely return. 

Table 2: Percentage of patients experiencing re-occurrence of atrial fibrillation 

or other forms of cardiac arrhythmia following successful electrical cardioversion 

therapy9 

Time after therapy AF re-occurrence 

< 1 Hr 90% 

< 24 Hrs 70% 

< 1 month 60% 

< 3 months 50% 

< 1 year 20 - 35% 

 

While electrical cardioversion is safe and effective for most patients, its high re-

occurrence and non-permanence are major drawbacks. Particularly for patients with 

permanent AF, electrical and chemical cardioversion are not sustained, effective 

treatments.  

1.2.3 Radiofrequency Ablation 

Radiofrequency ablation (RFA) is a permanent treatment used to treat the 

malfunctioning electrophysiology of the heart; its purpose is to block errant electrical 

                                                      

9 (Kastor 2000) 
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conductivity in the myocardium. Lesions, which are no longer electrically conductive, 

are created in pre-determined locations to block unwanted electrical automaticity and 

specific paths of re-entrant electrical activity that cause arrhythmias. In atrial fibrillation, 

paths of micro-re-entry occur throughout the atria; RFA procedures for treatment of AF 

involve atria-localized electrical isolation around pulmonary veins. In pulmonary vein 

isolation procedures, linear ablation is achieved by re-positioning the ablation catheter 

every 15-20 seconds during ablation.10 A typical set of lesion set in AF ablation 

procedures can be seen in Figure 1. 

 

 

Figure 1: A schematic of common lesion sets used during atrial fibrillation RFA 

treatments can be seen here. The figure shows the posterior view of the atria. As can be 

seen, the pulmonary veins, which branch off the posterior end of the left atria on both 

the right and left sides. Pulmonary vein isolation uses linear ablation around the entirety 

of the pulmonary vein branches in each case (a, b, c), and includes an isolation of the 

superior vena cava, branching off the anterior right atrium. This figure is borrowed from 

Dewire & Calkins (2010). 11 

 

                                                      

10  (Wilber, Packer and Stevenson 2008) 
11 (Dewire and Calkins 2010) 
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RFA is performed using an ablation catheter, which delivers radiofrequency (RF) 

energy, with an alternating current (AC) at approximately 500 Hz delivery frequency; 

the mechanism through which this procedure works is via myocardial heating.12 During 

a procedure, the ablation catheter is brought into contact with myocardial tissue while a 

skin electrode serves as electrical ground. At the blood/tissue interface where the 

ablation catheter tip is, there is an impedance increase and voltage drop when RF energy 

is applied. The tissue heating that occurs as a result causes local myocardial tissue 

necrosis through protein denaturation. The size of the lesion formed will depend on the 

temperature, power delivery, size and force of catheter tip contact, and duration of the 

ablation procedure.13  

Due to the slight variations in myocardial anatomy, ablation catheter 

specifications, and physician procedure nuances, lesion growth and procedure 

complications are somewhat variable.14 Particularly in linear ablation procedures, this 

variability can be highly limiting. There are significant trade-offs when optimizing lesion 

sizes; while small lesions would limit collateral damage, they may result in insufficient 

necrosis and elimination of arrhythmia. Creating large lesions could result in oversize 

and unwanted conduction blocks. Very high temperatures could cause blood boiling, 

                                                      

12 (Wilber, Packer and Stevenson 2008) 
13 (Jain and Wolf 1999) 
14 (Ho, et al. 2007) 
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resulting in coagulation, or steam bubble formation, which could rupture through 

endocardial and epicardial surfaces.15 

RFA procedures are guided by Intracardiac Echocardiography (ICE), 

fluoroscopy, and/or electroanatomical mapping (EAM). Currently, ICE is used to image 

the contact of the ablation catheter and the surface of the myocardium, but it is unable to 

show contrast of lesions for assessment following the RFA procedure.16 

1.3 Radiofrequency Ablation Assessment 

The myocardium must be assessed before and after the RFA procedure to ensure 

its full effectiveness. Prior to ablating, anatomical and electrical mapping is often used 

for successful treatment planning. Initial planning allows a physician to precisely target 

regions in the myocardium to effectively block the arrhythmic pathway. Because of 

variability among patients and procedures, RFA often results in lesions with varying 

sizes and shapes. After-ablation assessment is crucial in determining the effective extent 

of electrical conduction blocking to evaluate the procedure completeness. 

1.3.1 Target Localization Electrical Mapping 

Activation sequence mapping is used to visualize tachycardias with focal 

regions. This target localization map superimposes tissue conduction velocities onto an 

anatomical model so that the focal origin can be identified. Using electrogram 

                                                      

15 (Wilber, Packer and Stevenson 2008) 
16 (Marrouche, et al. 2003) 
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recordings from different locations throughout the myocardium, fiducial points on the 

electrocardiogram (ECG) like the P wave or QRS onset are chosen. The relation between 

time delays in the ECGs and distance from chosen focus are used in calculating the 

tissue conduction velocity.17  

Activation sequence mapping does not have high resolution sensitivity when 

mapping regions of anisotropic conduction. In cases of re-entrant arrhythmia, an 

activation sequence map shows continuous activity, where the “early” and the “late” 

designations are directly adjacent.  

Because activation sequence mapping cannot always capture the entire 

tachycardic cycle length, other methods of mapping are required to accurately map re-

entrant arrhythmias. Entrainment mapping charts the continuous resetting of re-entry 

circuits. In entrainment mapping, the pacing of the excitation is studied – excitable gaps 

in the circuits correspond to re-entrant pathways. Entrainment mapping is limited by 

stable re-entrant pathways; paroxysmal and episodic tachycardias may be difficult to 

characterize without continuous circuits. 

Because electrical mapping measures electrical activity only on the endocardial 

surface, it assumes a level of homogeneous and transmural damage to the tissue. This 

regionally-specific limitation does not account for the complex and heterogenous 

characteristics that may underlie the effective extent of RFA treatment. 

                                                      

17 (Wilber, Packer and Stevenson 2008) 
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1.3.2 Electroanatomical Mapping 

Electroanatomical mapping (EAM) techniques provide a three-dimensional 

anatomic model with overlaying electrical function. Underlying anatomy is modeled by 

imaging with mapping systems like the BioSense Webster Carto; the electrical map is 

superimposed on the 3D anatomical model. 

In RFA procedures, EAM systems are used to guide ablation catheter placement, 

catheter position tracking and annotation during ablation, and post-ablation substrate 

conduction mapping.18 The major drawback of EAM following ablation is that while 

mapping systems provide information about intended lesion placement after treatment, 

EAM is unable to directly visualize the resulting lesion formation, and as such, the 

treated myocardium cannot be fully and accurately assessed with EAM.  

Conduction block is rarely seen in lesion gaps measuring greater than 5 mm, but 

is variable in gaps measuring between 2-5 mm, and gap sizes as small as 0.1 mm have 

been found to conduct electrical activity.19 These discontinuities created in linear 

ablations are unlikely to be characterized by EAM, which is unable to map electrical 

conductivity away from the endocardial surface, or identify electrically stunned 

myocardium.20  

                                                      

18 (Pappone, et al. 2001) 
19 (Melby, et al. 2008) 
20 (Nademanee, et al. 2010) 
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1.3.3 Ultrasonic Elasticity Imaging 

Ultrasonic elasticity imaging is used to visualize the differences in tissue 

elasticity. By mechanically exciting the tissue, tissue response can be imaged to 

ultrasonically visualize structures that share similar ultrasonic echogenicities, but have 

different mechanical properties.21 In this way, ultrasonic elasticity imaging provides 

structural information that otherwise cannot be visualized in clinical ultrasound.22  

1.3.3.1 Acoustic Radiation Force Impulse (ARFI)  

ARFI imaging is a qualitative ultrasound-based technique that is used to create 

2D images of relative tissue elasticity. The acoustic radiation force applied transiently 

deforms soft tissue; this local dynamic displacement response of the tissue can be 

tracked ultrasonically.23 Relative tissue displacement measurements can be attributed to 

the underlying tissue compliance: assuming a simple linear, elastic model, soft tissue is 

more displaceable than stiff tissue.24  

When a rapid ultrasonic pulse (10-100 µs) pulse is focused at a target region 

within the tissue, the energy is absorbed and tissue is briefly displaced away from the 

ultrasound transducer before recovering within a few milliseconds. High speed 

ultrasound captures the motion in the target region during displacement, and the 

process is repeated across a number of locations in the field of view. 

                                                      

21 (Palmeri and Nightingale 2011) 
22 (Wells and Liang 2011) 
23 (Fahey, et al. 2005) 
24 (Nightingale, Soo, et al. 2002) 
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Eyerly, et al., have shown the viability of intracardiac ARFI imaging in 

visualizing myocardial lesions following RFA procedures.25  

1.3.3.2 Shear Wave Imaging (SWI) 

Shear wave elasticity imaging (SWEI or SWI) uses acoustic excitation similar to 

ARFI, but tracks the propagation of shear waves away from the transducer, created by 

the excitation.26 The local group velocity of the shear wave is proportional to tissue 

elasticity, such that: 

      
 
   

Where:    is the shear wave speed [m/s],   is the shear modulus [kPa], and   is the 

density [g/cm2]. 

Assuming an elastic model with semi-infinite, incompressible, linear elastic 

medium, the shear wave velocity can be calculated and attributed to the quantitative 

shear modulus of the tissue.27 

In shear wave speed estimation of SWI, shear wave arrival time differences can 

be tracked at a single location or at multiple locations. In SWI – Single-Track Location 

(SWI-STL), adjacent excitation locations are calculated at a single receive location; SWI – 

Multiple-Track Location (SWI-MTL) uses multiple adjacent receive locations to measure 

time differences between different shear waves. While both track methods provide a 

                                                      

25 (Eyerly, et al. 2012) 
26 (Sarvazyan, et al. 1998) 
27 (Nightingale, et al.  2003) 
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quantitative shear wave velocity estimate, SWI-STL is similar to the spatially modulated 

ultrasound radiation force (SMURF) imaging method developed by McAleavey, et al 

(2007).28 

  

                                                      

28 (McAleavey, Menon and Orszulak 2007) 
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2. Methodology 

2.1 Beam Sequences 

To create large, uniform ARFI/SWI images, the AcuNav was operated in linear 

mode. Excitation pulses with 6 MHz, 750-cycles were used to mechanically excite the 

tissue and induce ARFI displacements and shear wave propagation. Each plane wave 

transmit excitation was generated with a 32 element sub-aperture, measuring 3.54 mm, 

focused at 15 mm depth. To image the mechanical response of the excitation, 32 parallel 

receive lines were beamformed about the excitation, extending 2.25 mm to either side of 

the excitation. The data was acquired rapidly at 10,000 frames per second following the 

excitation for a total of 5 ms at each location, using 40% bandwidth tracking. Transmit 

and tracking voltage was set to 90 V. This entire sequence was electronically translated 

across the aperture in 16 steps, so that each excitation was spaced apart by 0.15 mm 

distance. This limited transducer edge effects on the excitation, while receive was 

captured across the full aperture. 

For the clinical scan beam sequences used in the linear ablation procedure, 32 

ARF transmit locations imaged a 45° field of view.  

2.2 Ex-vivo Experimental Set-Up  

The experimental set-up is shown in Figure 2. A custom water tank was placed 

on the translation stage and filled with saline solution with impedance measuring 
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approximately 115-130 Ω and temperature ranging between 35-37° C. 

 

Figure 2: The entire experimental set-up is shown here. The tissue sample is 

mounted in a box that has been secured to the translation stage, which is remote 

control translated in the x, y, and z directions.  

The custom tissue box containing the heart tissue sample was mounted on the 

translation stage and lowered into the saline filled water tank. A custom LabView VI 

concurrently remote controlled the translation stage and triggered ARFI/SWI data 

acquisition at each position in the sampling grid during imaging.  

During the ablation procedure, the BioSense Webster ThermoCool irrigated tip 

ablation catheter was inserted through the front of the water tank to come into contact 

with the endocardial side of the tissue sample.  
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Prior to imaging and ablation, the ablation catheter and ICE imaging catheter 

were aligned in elevation using a point target. 

2.3 Experimental Procedure 

Heart samples were obtained from healthy porcine subjects. Sections of right 

ventricular tissue basal to the papillary muscles. The tissue sample was then degassed in 

a Varian DS202 Vacuum degassing chamber for 30 minutes at -25 inHg. The degassed 

tissue was mounted in a custom box on anechoic rubber and oriented so that visible 

muscle striations ran parallel to the z-direction (elevational imaging plane) of the set-up. 

2.3.1 Ablation 

Prior to performing the Radiofrequency Ablation (RFA) procedure, three pre-

scans of the unperturbed myocardial samples were obtained as control comparison. 

Post-ablation imaging was performed five minutes after RF ablation to prevent 

discrepant imaging of conductive lesion growth immediately following ablation. 

2.3.1.1 Lesion Pairs 

Two radiofrequency (RF) ablation lesions were created along the center lateral 

line following the pre-scan. The BioSense Webster ThermoCool irrigated tip ablation 

catheter was manually brought into full contact with the endocardial surface of the 

tissue. Controlled by the BioSense Webster Stockert 70 RF generator, 22 W of power was 

applied for 60 seconds while the BioSense Webster CoolFlow system irrigated the 

catheter tip with 0.9% NaCl saline at 30 mL/min. Lesion locations were pre-determined 
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and distance between the centers ranged from 10 to 12 mm, limiting gap sizes between 

0.5 to 3 mm.  

2.3.1.2 Line of lesions 

Following the ablation procedure specifications detailed in Section 2.3.1.1, lines of RFA 

lesions were created along the elevational imaging plane (along the basal-apical axis of 

the myocardium) across an entire sample of tissue. Ablation locations varied from 8 to 

12 mm in distance.  

2.3.2 Imaging 

Using a Siemens Acuson AcuNav 10-French ICE imaging catheter and a Siemens 

SC2000 Ultrasound scanner, custom linear and clinical beam sequences were used in 

imaging the tissue. By translating the tissue laterally and elevationally, a grid of evenly 

spaced data was sampled and constructed into three-dimensional volumes.  

Table 3: Imaging grid spacing 

Configuration Lateral extent 

(mm) 

Lateral 

increments (mm) 

Elevational 

extent (mm) 

Elevational 

increments (mm) 

Linear 28.8 2.4 14.4 0.3 

Clinical (phased) 56 7 14.4 0.3 

 

The phased array beam sequences were designed for clinical use; limitations of 

phased array imaging include non-uniform sampling, angular sensitivity and post-

process scan conversion inaccuracies. ARFI/SWI data were acquired before and after 

ablation; two sets of 3D volumetric data was acquired each tissue sample. 
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2.4 Histological Preparation 

Following post-ablation imaging, the tissue was sliced along the center axis of 

the ablation lesions and frozen between 5 and 12 hours. The frozen tissue was then 

sliced in the elevational plane with 5 and 10 mm spacing to either side of the center axis. 

Slice increments were chosen to optimize efficacy of the stain within the tissue; 

endocardial and epicardial surfaces are somewhat resistant to TTC stain.   

2.4.1 TTC Stain 

A standard triphenyltetrazolium chloride (TTC) staining protocol was used to 

visualize the contrast between the ablation lesions and the surrounding healthy tissue.

1 The 200 mL buffer solution contained 542.4 mg of NaH2PO4 dissolved in 45.2 

mL H2O and 2198.15 mg of Na2HPO4 dissolved in 154.8 mL H2O. 2g of TTC was added 

and dissolved into the buffer solution and kept at a temperature of 37°C in a water bath. 

The defrosted tissue slices were then put into the TTC staining solution and stirred 

every minute for a total of 15 minutes. 

2.4.2 Cryoslicing 

Immediately after staining, the tissue slices were placed in a Peel-A-Way 22 x 40 

mm x 20 mm deep embedding mold and frozen in Tissue-Tek O.C.T. Compound at -

20°C. After at least 5 hours of freezing time, the O.C.T. embedded tissue was sliced in 

the elevational plane using a Microm HM 505 E Cryptome. The tissue was 

                                                      

1 (Fishbein, et al. 1981) 
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photographed after each 0.15 mm slice; the slicing increment size was chosen to 

correspond to half the elevational increments of the acquired ARFI/SWI data for 

comparable constructed 3D ultrasound and histology volumes. 

2.5 Image Post-processing 

After data acquisition, images were created during post-processing to compare 

the different imaging methods. Brightness-mode (B-Mode), ARFI, shear wave imaging– 

single track location (SWI-STL), and shear wave imaging – multiple track location (SWI-

MTL) images were generated and compared.  

2.5.1 Shear Wave Speed Estimation 

Axial tissue displacement between successive frames was measured with a 

phase-root seeking algorithm. The ARFI images were formed through displacement 

averaging about the center 4 imaging lines through 0.2 ms after excitation.  

Displacement estimates away from the center lines were used to generate shear 

wave estimates using arrival-time estimators. For each excitation, displacement curves 

were filtered with a 100 Hz to 1 kHz bandpass filter and a directional filter. The arrival 

time at each pixel was found using time-to-peak estimation. To calculate the shear wave 

velocity estimate, the reciprocal of the time difference between adjacent receive locations 

was used. Because the receive locations overlap from several excitation pushes, arrival 

time differences from times of arrival from each push excitation were averaged together; 

these estimates were used in SWI- Multiple-Track Location (SWI-MTL). Alternatively, 
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the arrival time differences at a single receive location for adjacent excitation locations 

were calculated and averaged across spatial locations for estimates used in SWI- Single-

Track Location (SWI-STL). 
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3. Results 

Images from the ARFI/SWI scan sequences, B-Mode acquisition, and histology 

were stitched together to create three-dimensional volumes and cross-sectional scans. 

3.1 Ablation Lesion Imaging 

Pre- and post- ablation scans were acquired for each sample to identify inherent 

anatomical structural anomalies and confirm ablation lesion growth. The Brightness-

Mode (B-Mode), Acoustic Radiation Force Impulse (ARFI), Shear Wave Imaging – Single 

Track Location (SWI-STL), Shear Wave Imaging – Multiple Track Location (SWI-MTL) 

images were created and aligned for comparison. In the post-ablation scan set, TTC-stain 

(histology) images were also included to confirm the lesion sizes and gap spacing 

between lesions. Histology images are taken from photographs of the corresponding 

slice; for the cross-sectional scans, an axial plane slice corresponding to the axial depth of 

the ARFI/SWI generated image is stitched together. The images appear as green channel 

RGB data, because the lesions appear white relative to the red-stained myocardial tissue. 
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3.1.1 Cross-sectional Imaging Modality Comparison 

 

Figure 3: A comparison between all imaging modalities can be seen in this pre- and 

post-ablation set. (A): re-constructed TTC-stain 3D volume showing the cross-

sectional area depth in relation to the volume. (B) B-Mode pre-ablation; (C) ARFI pre-

ablation; (D) SWI-STL pre-ablation; (E) SWI-MTL pre-ablation; (F) TTC-stained cross-

section; (G) B-Mode post-ablation; (H) ARFI post-ablation; (I) SWI-STL post-ablation; 

(J) SWI-MTL post-ablation 
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3.1.2 Cross-sectional Gap Variation Comparison 

3.1.2.1 ARFI Images 

 

Figure 4: Cross-sectional pre- and post- ablation ARFI scans were constructed from 

the 3D imaging volume to compare the lesion sizes and gap spacing between 

different samples. Distance is measured between lesion centers. ARFI displacements 

are shown as dynamic ranges between 2 and 5 µm. 
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3.1.2.2 SWI-STL 

 

Figure 5: Cross-sectional pre- and post- ablation SWI-STL scans were constructed 

from the 3D imaging volume. Distance is measured between lesion centers. Shear 

wave velocity estimates are shown as a dynamic range between 0 and 10 m/s. 
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3.1.2.3 SWI-MTL 

 

Figure 6: Cross-sectional pre- and post- ablation SWI-MTL scans were constructed 

from the 3D imaging volume. Distance is measured between lesion centers. Shear 

wave velocity estimates are shown as a dynamic range between 0 and 10 m/s. 
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3.1.2.4 Histology (TTC) Stain 

 

Figure 7: Cross-sectional post-ablation histology (TTC) stain images were constructed 

from the 3D volume of histology photographs, where imaging slices were taken in the 

elevational imaging plane. In each case, the axial depth was chosen to correspond to 

the depth used in the ARFI/SWI result images.  
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3.1.2.5 Imaging Comparison for Non-Discernible Boundary, Gap Spacing 

 

Figure 8: A comparison between all imaging modalities can be seen in this pre- and 

post-ablation set, where the distance between ablations is 10 mm. Gap spacing in the 

(F) TTC-stained tissue is indiscernible.  
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3.1.3 Axial-Lateral Planar Imaging Modality Comparison 

 

Figure 9: An axial-lateral planar pre- and post- ablation image set was constructed 

from the 3D data volume through a slice along the approximate center of the ablation 

lesions. (A): Re-constructed TTC-stain 3D volume showing the axial-lateral plane in 

relation to the volume. (B) B-Mode pre-ablation; (C) ARFI pre-ablation; (D) SWI-STL 

pre-ablation; (E) SWI-MTL pre-ablation; (F) TTC-stained cross-section; (G) B-Mode 

post-ablation; (H) ARFI post-ablation; (I) SWI-STL post-ablation; (J) SWI-MTL post-

ablation 
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3.1.4 Axial-Lateral Planar Gap Variation Comparison 

3.1.4.1 ARFI 

 

Figure 10: Sets of pre- and post- ablation ARFI images down the center axial-lateral 

plane of the lesions are shown for each sample. Distance is measured between lesion 

centers. The measured ARFI displacements are shown as a dynamic range between 2 

and 5 µm. 



 

31 

3.1.4.2 SWI-STL 

 

Figure 11: Sets of pre- and post- ablation SWI-STL images down the center axial-

lateral plane of the lesions are shown for each sample. Distance is measured between 

lesion centers. The shear wave velocity estimates are displayed as a dynamic range 

between 0 and 10 m/s. 
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3.1.4.3 SWI-MTL 

 

Figure 12: Sets of pre- and post- ablation SWI-MTL images down the center axial-

lateral plane of the lesions are shown for each sample. Distance is measured between 

lesion centers. The shear wave velocity estimates are displayed as a dynamic range 

between 0 and 10 m/s. 
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3.1.5 Linear Ablation: Cross-sectional Imaging Modality Comparison 

 

Figure 13: The pre- and post- ablation data was synthesized to show a cross-sectional 

line of ablation lesions measuring 10 mm apart between lesion centers. The red dots 

are superimposed on the images at the locations where ablation was performed. 

(A&B): Pre- and post- ablation cross-sectional B-Mode scans of the entire sample, 

showing normalized brightness. (C&D): ARFI images where the dynamic range 

shows ARFI displacement ranging from 0 to 2 µm. (E&F): SWI-STL images where the 

shear wave velocity estimates range 2 to 10 m/s. (G&H): SWI-MTL images where the 

shear wave velocity estimates range 2-10 m/s. 
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3.1.6 Linear Ablation: Gap Variation Comparison 

3.1.6.1 ARFI 

 

Figure 14: Cross-sectional ARFI images were constructed for pre- and post- ablation 

data. ARFI displacement ranged from 0 to 2 µm; distances between ablation location 

ranged 8 to 12 mm. Superimposed red dots appear where ablation was performed.  

3.1.6.2 SWI-STL 

 

Figure 15: Cross-sectional SWI-STL images were. Shear wave velocity estimates 

ranged 2-10 m/s. Superimposed red dots appear where ablation was performed. 
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3.1.6.3 SWI-MTL 

 

Figure 16: Cross-sectional SWI-MTL images were. Shear wave velocity estimates 

ranged 2-10 m/s. Superimposed red dots appear where ablation was performed. 
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3.2 Analysis of methods 

3.2.1 Gap Spacing 

 

Figure 17: Manually segmented lesions from c-scan images were created for each 

imaging modality. Gap spacing was measured at closest distance between lesions. 
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Figure 18: The gap size difference between each imaging modality and the 

comparable gold-standard TTC-stained c-scan was measured for each sample. 

 

Figure 19: The gap difference between modality and TTC-stain was averaged to 

demonstrate the over- and under-estimation of gap sizes across modalities. Values 

that measure closer to 0 have better gap size resolution. 
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3.2.2 Contrast and Contrast-to-Noise Ratio – Entire Lesion 

3.2.2.1 Percent Difference 

 

Figure 20: Contrast difference was measured after manual segmentation of the 

lesions. The experiment numbers refer to samples from different test dates. To 

reference distance between ablation: (1) 11.5 mm (a), (2) 10.5 mm, (3) 11 mm, (4) 10.25 

mm, (5) 10 mm, (6) 11.5 (b), and (7) 10.75 mm. 

 

Figure 21: Contrast difference was averaged across the samples and compared with 

values across different imaging modalities. 
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3.2.2.2 Contrast-to-Noise Ratio 

 

Figure 22: Contrast-to-noise ratio (CNR) was measured after manual segmentation of 

the lesions. The experiment numbers refer to samples from different test dates. To 

reference distance between ablation: (1) 11.5 mm (a), (2) 10.5 mm, (3) 11 mm, (4) 10.25 

mm, (5) 10 mm, (6) 11.5 (b), and (7) 10.75 mm. 

 

Figure 23: CNR values were averaged across the samples and compared with average 

CNR values across different imaging modalities. 
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3.2.3 Contrast and Contrast-to-Noise Ratio – 1/3 Lesion 

3.2.3.1 Percent Contrast 

 

Figure 24: Percentage contrast for a one-third area defined region within the 

segmented lesion 1 was calculated.  

 

Figure 25: The one-way analysis of variance (ANOVA) statistical test was used to 

compare the percent contrast values for lesion 1. 
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Figure 26: Percentage contrast for a one-third area defined region within the 

segmented lesion 2 was calculated. 

 

Figure 27: The one-way analysis of variance (ANOVA) statistical test was used to 

compare the percent contrast values for lesion 2. 
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3.2.3.2 Contrast-to-Noise Ratio 

 

Figure 28: CNR for a one-third area defined region within the segmented lesion 1 was 

calculated. 

 

Figure 29: The ANOVA statistical test was used to compare the CNR values  

for lesion 1. 
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Figure 30: CNR for a one-third area defined region within the segmented lesion 1 was 

calculated.  

 

Figure 31: The ANOVA statistical test was used to compare the CNR values  

for lesion 2. 
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3.2.3.3 Contrast Difference 

 

Figure 32: ANOVA for contrast difference between inside 1/3 of the lesion and 

outside the lesion was calculated for Lesion 1. 

 

Figure 33: ANOVA for contrast difference between inside 1/3 of the lesion and 

outside the lesion was calculated for Lesion 2. 
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4. Discussion 

4.1 Ablation Lesion Imaging 

In each sample of the ablation pair experiments, both cross-sectional scan images 

and axial-lateral planar images were synthesized to compare axial, lateral, and 

elevational resolution in ARFI and SWI images. In both ARFI and SWI data acquisition, 

the same ARFI excitation and time-to-peak displacement tracking sequences were used.  

4.1.1 Cross-sectional Imaging Modality Comparison 

The side-by-side comparison of images generated from each modality in both 

pre-ablation and post-ablation states demonstrates viability for visualization and 

identification of a pair of lesions and the gap spacing between lesions. Increased 

echogenecity of the post-ablation B-Mode image (Figure 3(G)) is unexpected. It has been 

reported that RF lesions are hypoechoic following treatment in some patients; this 

explanation may hold true in this experimental set-up. 1 

Myocardial structures are visible in the pre-ablation images. While the tissue 

samples were chosen for endocardial surface smoothness, underlying muscular 

structures (papillary muscles originating under the endocardium) were not accounted 

for. Because RFA lesion growth relies on thermal conduction, muscular structures may 

have influenced the thermal conduction pathway and resulting lesion growth. In the 

RFA treatment of ventricular fibrillation, it has been shown that ablation in the vicinity 

                                                      

1 (Lorentzen, et al. 1997) 
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of papillary muscles have affected the transmurality and linear ablation completeness of 

RFA lesions.2 

The cross-sectional scan (c-scan) depth of each imaging modality (B-Mode, ARFI, 

SWI-STL, and SWI-MTL) is highly comparable because the data from which images 

were synthesized is over the same 3D volume, with no variation in overall size or 

position. The 3D volume of tissue histology is synthesized from images taken of the 

tissue sample after freezing, slicing, staining, embedding and freezing, and cryoslicing. 

While the geometry of the tissue sample was kept as close to imaging geometry as 

possible, slight deformation of the tissue volume was inevitable. Deformation could 

have been caused by tissue dehydration or embedding, where bent corners or crinkled 

epicardial surfaces of the sliced tissue would have slightly altered the geometric 

configuration of the tissue. The histology c-scan (Figure 3(F)) was chosen at a depth that 

most closely matched to the imaging depth slice of the imaging data set based on 

measurement from the endocardial surface. The most accurate mode of comparison 

would be a 3D imaging volume overlaid on the 3D reconstructed histology for lesion 

boundary and gap size measurement comparison. 

4.1.2 Cross-sectional Gap Variation Comparison 

Because a point of interest in this study was to understand the ability of 

ARFI/SWI in resolving lesions and their small (     ) gap spacing, the distance 

                                                      

2 (Pak, et al. 2006) 



 

47 

between lesions was varied from 11.5 mm and incremental decreases in each sample to 

10 mm ablation distance. The ARFI, SWI-STL, and SWI-MTL pre- and post- ablation 

image sets show the variability in lesion size and gap size even with RFA procedural 

controls, such as power delivery, catheter tip irrigation, temperature of surrounding 

fluid, and duration of RF delivery. Across figures 4, 5, and 6, we are able to show how 

inherent myocardial structures affect lesion growth. In pre-ablation figures 4(G), 5(G), 

and 6(G), a relatively stiff underlying structure is visible on the upper left corner of the 

c-scan. The structure appears to affect the lesion boundary in figures 4(H), 5(H), and 

6(H). Using current ablation assessment methods like EAM, this extended lesion 

boundary would not have been identified, and in linear ablation, could have resulted in 

unexpected necrosis discontinuity. 

As the distance between ablation decreases, the gap size appears smaller as 

expected (Figures 4(N), 5(N), and 6(N)). However, the boundaries between the lesions 

become less clear, and the histology c-scan does not show a clear gap between the pair of 

lesions, as in Figure 6(F). Gaps measuring less than 1 mm were not achieved with 

decreasing ablation distance; a possible explanation for this behavior may relate to 

thermal conduction in the tissue. Lesions were created with clinically relevant timing in 

mind – time between subsequent ablations was less than 2 minutes. During this time, the 

tissue may not have had time to cool to physiologic temperature, and thermal 

conduction would have easily crossed into recently ablated tissue. 
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4.1.3 Linear ablation: Cross-sectional Imaging and Gap Variation 

 To demonstrate the robustness of ARFI/SWI in a more clinically relevant 

experiment, the line of lesions were imaged using the clinical ARFI/SWI sequence. The 

distance between ablations ranged from 8 mm to 12 mm, for a total of three different 

tissue samples. A distance of 8 mm was chosen because we had hypothesized that 8 mm 

spacing between ablations would result in lesion overlap and no conduction gaps 

between lesions through the center elevational axis.  This lesion boundary overlap can 

be seen clearly in Figures 15(F) and 16(F), the SWI-STL and SWI-MTL images, 

respectively. On the other hand, the ARFI image in Figure 14(F) shows identifiable gaps, 

although the lesion boundaries appear unclear. That ARFI was able to show gap spacing 

between lesions while SWI modalities were not able to show spacing is very clinically 

relevant; this is particularly important because the cross-sectional scan was synthesized 

from the same imaging data set at the same depth across all modalities.  

Lesion placement was controlled for by the precise motion of the translational 

stage used during experimentation, and yet the lesion centers do not appear to always 

fall at the pre-determined ablation location. This significance should be noted because 

even with an ex-vivo experiment with highly controlled ablation conditions (power, 

duration, best estimation of tip contact, temperature), lesions varied greatly in size. 

Endocardial surface variation due to muscle striations and valvular and venous 

structures make uniform ablation tip contact very difficult. Between muscle striations, 
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ablation catheters are prone to dipping further into the tissue than the expected surface; 

thermal conductivity is more potent in ablation between structures. In cross-sectional 

and axial-lateral planar images, these structures are not identifiable. Reconstructed 

three-dimensional imaging data is useful in such structural anatomy identification; this 

added structural information can help specialists to prepare for non-uniform lesion 

formation during radiofrequency ablation procedures.  

4.2 Accuracy of Modalities 

4.2.1 Gap Size Estimation 

After manual segmentation of the lesions, the smallest gap between lesions was 

measured and compared with that of the histology (TTC-stain) images. The figures 

generated by the segmentation show highly varying gap sizes. Unexpectedly, the gap 

size measured with TTC-stain images did not follow a linear relationship with the 

ablation distance. Though axial depth was chosen to reflect the myocardial c-scan at the 

focal depth, the TTC-stain images used for point-of-comparison were not perfectly 

aligned.  

The current c-scan and segmentation method does not utilize 3D volume 

rendering and re-slicing. Superimposing the entire three-dimensional volume of an 

ARFI/SWI data set onto the histology volume would provide complete size and gap 

matching. The 2D segmentation method presupposes that the axial slice through the 3D 
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data set is always along the same axis of rotation, which is not necessarily an accurate 

representation of the axial slice through the volumetric histology data. 

Overall, gap size estimation is best predicted by SWI-STL, followed by ARFI 

imaging. The estimation accuracy assumes that the histology data is a true gold 

standard, and does not account for TTC-stain inaccuracies. There may be a source of 

error in the stain data because TTC stain was found to bleed into the embedding OCT 

medium slightly. Therefore, at the endocardial surface, the contrast between 

surrounding tissue and lesion is not entirely clear. 

4.2.2 Contrast-to-Noise Ratio, Percent Contrast 

To define the regions of interest in contrast-to-noise ratio (CNR) and percent 

contrast calculations, the centroid of the overall segmented lesions were found. A 

circular area defined around the centroid equal to one-third of the original TTC-stained 

lesion size, and the mean and standard deviation of the data was found inside the 

defined areas of each lesion, across each modality. A region with the same defined area 

was chosen outside the segmented lesions in the TTC-stained image to calculate the 

mean and standard deviation of each set of modality data outside the lesions. These 

values were used to calculate the CNR and percent contrast. 

These CNR and percent contrast values were then analyzed using a one-way 

Analysis of Variance (ANOVA) statistical test to demonstrate the differences across the 

resolution of the different modalities. The TTC-stain, B-Mode, ARFI, SWI-STL, and SWI-
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MTL data were analyzed and compared with each other. The multiple-compare results 

of the ANOVA statistical test can be seen in Figures 25, 27, 29, and 31. 

Calculated CNR values in ARFI, SWI-STL, and SWI-MTL differ from the values 

calculated in the B-Mode images. In the CNR calculation for Lesion 2, SWI-STL 

demonstrated significantly different CNR values from B-Mode across the experiments. 

As the B-Mode data provides physical information about the differences in tissue 

echogenicity, the lesions are not expected to have significant contrast with the area 

outside the lesions. Except in cases of hypoechoic lesions, the B-Mode images are not 

expected to show high CNR or percent contrast. 

The calculated percent contrast values in ARFI, SWI-STL, and SWI-MTL did not 

show significant difference from the values calculated in B-Mode images. The contrast 

differences across modalities were calculated as a difference between the mean values 

inside and outside the region of interest within the defined lesion. In the analysis of 

contrast difference, ARFI demonstrated a significantly different value than the contrast 

difference value of B-Mode data. This difference can be seen upon visual inspection of 

the c-scan results, and may be explained by the small dynamic range of the ARFI data, 

which was ranged across 2-5 µm displacement.  
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5. Conclusion 

ARFI and shear wave-based methods (SWI-STL and SWI-MTL) were used to 

image pairs and lines of RFA lesions in ex vivo porcine ventricular tissue. Overall, SWI-

STL and ARFI data processing yielded the best results in identification of lesion 

boundaries and gap spacing. Both ARFI and SWI-methods appear to be viable methods 

of identifying gaps between ablation lesions. 

Differences in resolution across the modalities (ARFI, SWI-STL, and SWI-MTL) 

are not significant. Based on this conclusion, each of these elasticity imaging modalities 

are viable methods of identifying myocardial ablation lesions in a controlled, ex vivo 

setting. In further understanding the differences in resolving ability of each of the 

elasticity imaging modalities, it is important to apply these methods in in vivo 

experiments, where the bulk motion of the tissue may affect the calculation of the shear 

wave velocities and ARFI displacements. In such cases, it will be important to test the 

differences between the SWI-STL and SWI-MTL methods, which utilize different shear 

wave velocity measurements based on spatially modulated and multiple-track averaged 

ultrasonic track locations.
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