330 research outputs found

    Constraint interface preconditioning for topology optimization problems

    Get PDF
    The discretization of constrained nonlinear optimization problems arising in the field of topology optimization yields algebraic systems which are challenging to solve in practice, due to pathological ill-conditioning, strong nonlinearity and size. In this work we propose a methodology which brings together existing fast algorithms, namely, interior-point for the optimization problem and a novel substructuring domain decomposition method for the ensuing large-scale linear systems. The main contribution is the choice of interface preconditioner which allows for the acceleration of the domain decomposition method, leading to performance independent of problem size.Comment: To be published in SIAM J. Sci. Com

    Iterative methods for elliptic finite element equations on general meshes

    Get PDF
    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included

    Optimal-complexity and robust multigrid methods for high-order FEM

    Get PDF
    The numerical solution of elliptic PDEs is often the most computationally intensive task in large-scale continuum mechanics simulations. High-order finite element methods can efficiently exploit modern parallel hardware while offering very rapid convergence properties. As the polynomial degree is increased, the efficient solution of such PDEs becomes difficult. This thesis develops preconditioners for high-order discretizations. We build upon the pioneering work of Pavarino, who proved in 1993 that the additive Schwarz method with vertex patches and a low-order coarse space gives a solver for symmetric and coercive problems that is robust to the polynomial degree. However, for very high polynomial degrees it is not feasible to assemble or factorize the matrices for each vertex patch, as the patch matrices contain dense blocks, which couple together all degrees of freedom within a cell. The central novelty of the preconditioners we develop is that they have optimal time and space complexity on unstructured meshes of tensor-product cells. Our solver relies on new finite elements for the de Rham complex that enable the blocks in the stiffness matrix corresponding to the cell interiors to become diagonal for scalar PDEs or block diagonal for vector-valued PDEs. With these new elements, the patch problems are as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate. Through the careful use of incomplete factorizations and choice of space decomposition we achieve optimal fill-in in the patch factors, ultimately allowing for optimal-complexity storage and computational cost across the setup and solution stages. We demonstrate the approach by solving a variety of symmetric and coercive problems, including the Poisson equation, the Riesz maps of H(curl) and H(div), and a H(div)-conforming interior penalty discretization of linear elasticity in three dimensions at p = 15

    Symbolic preconditioning techniques for linear systems of partial differential equations

    Get PDF
    Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means of symbolic computation techniques. This is very important since numerical simulations heavily rely on solving systems of PDEs. For the large-scale problems we deal with in today's standard applications, it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent on the number of degrees on freedom and number of subdomains) and have limited memory requirements. They are preconditioned by domain decomposition methods, incomplete factorizations and multigrid preconditioners. These techniques are well understood and efficient for scalar symmetric equations (e.g., Laplacian, biLaplacian) and to some extent for non-symmetric equations (e.g., convection-diffusion). But they have poor performances and lack robustness when used for symmetric systems of PDEs, and even more so for non-symmetric complex systems (fluid mechanics, porous media ...). As a general rule, the study of iterative solvers for systems of PDEs as opposed to scalar PDEs is an underdeveloped subject. We aim at building new robust and efficient solvers, such as domain decomposition methods and preconditioners for some linear and well-known systems of PDEs

    The INTERNODES method for applications in contact mechanics and dedicated preconditioning techniques

    Get PDF
    The mortar finite element method is a well-established method for the numerical solution of partial differential equations on domains displaying non-conforming interfaces. The method is known for its application in computational contact mechanics. However, its implementation remains challenging as it relies on geometrical projections and unconventional quadrature rules. The INTERNODES (INTERpolation for NOn-conforming DEcompositionS) method, instead, could overcome the implementation difficulties thanks to flexible interpolation techniques. Moreover, it was shown to be at least as accurate as the mortar method making it a very promising alternative for solving problems in contact mechanics. Unfortunately, in such situations the method requires solving a sequence of ill-conditioned linear systems. In this paper, preconditioning techniques are designed and implemented for the efficient solution of those linear systems

    A scalable and robust vertex-star relaxation for high-order FEM

    Full text link
    Pavarino proved that the additive Schwarz method with vertex patches and a low-order coarse space gives a pp-robust solver for symmetric and coercive problems. However, for very high polynomial degree it is not feasible to assemble or factorize the matrices for each patch. In this work we introduce a direct solver for separable patch problems that scales to very high polynomial degree on tensor product cells. The solver constructs a tensor product basis that diagonalizes the blocks in the stiffness matrix for the internal degrees of freedom of each individual cell. As a result, the non-zero structure of the cell matrices is that of the graph connecting internal degrees of freedom to their projection onto the facets. In the new basis, the patch problem is as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. We can thus afford to assemble and factorize the matrices for the vertex-patch problems, even for very high polynomial degree. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate. We demonstrate the approach by solving the Poisson equation and a H(div)H(\mathrm{div})-conforming interior penalty discretization of linear elasticity in three dimensions at p=15p = 15
    corecore