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SUMMARY

Preconditioned Krylov subspace methods have proved to be e�cient in solving large, sparse linear systems
in many areas of scienti®c computing. The success of these methods in many cases is due to the existence of
good preconditioning techniques. In problems of structural mechanics, like the analysis of heat transfer and
deformation of solid bodies, iterative solution of the linear equation system can result in a signi®cant
reduction of computing time. Also many preconditioning techniques can be applied to these problems, thus
facilitating the choice of an optimal preconditioning on the particular computer architecture available.
However, in the analysis of thin shells the situation is not so transparent. It is well known that the

sti�ness matrices generated by the FE discretization of thin shells are very ill-conditioned. Thus, many
preconditioning techniques fail to converge or they converge too slowly to be competitive with direct solvers.
In this study, the performance of some general preconditioning techniques on shell problems is examined.
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PRECONDITIONING TECHNIQUES

In this paper, the iterative solution of the discretized equilibrium equations of shells, written as a
system of linear equations

Ax � b �1�
is considered. The sti�ness matrix A is large, sparse and symmetric. In most cases it is also
positive de®nite, but can be inde®nite at some stage in non-linear analyses. However, the number
of negative eigenvalues is usually small, mostly one, on unstable equilibrium paths which are of
practical interest. The preconditioned conjugate gradient (PCG) method is a powerful tool for
solving such a system. Even though it is foolproof only for positive de®nite matrices, in practice it
usually performs well without breakdowns.

To speed up the convergence of the conjugate gradient iteration, preconditioning of the
original system (1) is introduced:

M
ÿ1
Ax � M

ÿ1
b
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where M is the preconditioner matrix, which should be symmetric and positive de®nite. The
purpose of the preconditioner is to reduce the condition number of the problem. Even more
important is the ability to cluster the eigenvalues. A good preconditioner should have close
resemblance to A, should be easy to construct and apply, and should have low storage require-
ments. Usually these demands are in con¯ict with each other, thus leaving the possibility
to compromise. For a thorough treatment of preconditioned iterative methods, see References 1
and 2.

The most general preconditioning strategies can be grouped into classes: (a) preconditioners
based on classical iterations like Jacobi, SSOR; (b) sparse incomplete Cholesky decompositions
(IC); (c) polynomial preconditioners; (d) sparse approximate inverse preconditioners; (e)
multigrid or multilevel preconditioners. Most preconditioning techniques can also be classi®ed as
being implicit or explicit. A preconditioner is implicit if its application requires the solution of a
linear system. For explicit methods the preconditioning operation reduces to forming matrix±
vector products.

It should be stressed that the e�ectiveness of a preconditioning strategy is highly problem- and
architecture-dependent. For instance, incomplete factorizations (implicit) are di�cult to
implement on vector and parallel computers, due to the sequential nature of the triangular
solution. On the other hand, sparse approximate inverse preconditioners (explicit) need only
matrix±vector products, which are relatively easy to vectorize and parallelize, but they often
result in slower convergence rates and are usually not as robust as IC factorization-based
strategies.

In this paper, the following preconditioning techniques are considered:

(a) Jacobi, SSOR
(b) implicit incomplete factorizations:

(i) level-®ll incomplete Cholesky IC(k), k� 0, 1, 2, . . . , no-®ll IC� IC(0)
(ii) drop tolerance-based incomplete Cholesky IC(c)

(c) explicit incomplete factorizations based on truncated Neumann expansion
(d) least-squares polynomial preconditioners
(e) explicit sparse approximate inverse preconditioners:

(i) Frobenius norm-based preconditioner FSAI3

(ii) incomplete conjugation-based preconditioner AINV.4

In this paper we do not consider multigrid or multilevel preconditioners, although in practice
these methods seem to be quite e�ective.5 Also the element-by-element approaches, which are
potentially attractive on parallel computers, are not considered.

The Jacobi, SSOR and incomplete Cholesky factorization preconditioners are well known and
will not be described here. The polynomial preconditioners considered in the present study are
based on least-squares polynomial approximation with Jacobi weight function; see Reference 2.

The explicit methods based on truncated Neumann expansions are similar to the methods
proposed in Reference 6; see also Reference 7. The SSOR and incomplete Cholesky pre-
conditioners require, at each step of the PCG method, the solution of triangular linear systems of
the form (I7L)y� d, where L is a strictly lower triangular matrix. The solution can be written
explicitly as

y � �I ÿ L�ÿ1d � �I � L � L
2 � � � � � L

nÿ1�d
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where n is the dimension of the system. This suggests that an approximate solution yÃ � y
be computed as

ŷ � �I � L � L
2 � � � � � L

m�d
where the integer m is much smaller than n. The advantage of this approach is that the highly
recursive back-substitution process is now replaced by sparse matrix±vector products, which are
relatively straightforward to vectorize and parallelize. For this approach to be cost-e�ective, it is
important that m be kept small, say m� 3 or less. Thus, unless the Neumann expansion
converges rapidly to (I7L)71, the approximation may be a poor one and a degradation of the
rate of convergence, as compared with the one obtained with an exact solution of (I7L)y� d, is
to be expected. In other terms, these explicit variants of SSOR and IC preconditioning can be
expected to work well only if L is relatively small in norm. This is typically the case when A is
strictly diagonally dominant. Unfortunately, ®nite element discretizations do not usually result in
diagonally dominant sti�ness matrices.

Sparse approximate inverse preconditioners have recently received considerable attention,
mainly because of their good vectorization and parallelization properties. These techniques are
based on the explicit construction of a sparse matrixM71 which directly approximates A71. This
is in contrast with more traditional implicit techniques where the matrix M, rather than M71, is
explicitly available. The preconditioning step with an approximate inverse preconditioner M71

only requires matrix±vector products, and is easily implemented on vector and parallel archi-
tectures. On the other hand, the construction of the preconditioner itself can be time-consuming,
and the convergence rates obtained are often not as good as those obtained with implicit
techniques.

For use with the PCG method, it is imperative that the preconditioner M71 be a symmetric
positive-de®nite matrix. One way to ensure this is to express the preconditioner as the product of
a triangular matrix and its transpose. To this end, factorized sparse approximate inverse
preconditioners were proposed in Reference 3. With this approach, commonly referred to as the
FSAI method, a lower triangular matrix G is computed as the (unique) solution of the
constrained minimization problem

minimize kI ÿ GLk subject to G 2 L
where L now denotes the Cholesky factor of A and L is a set of lower triangular matrices with a
prescribed non-zero pattern (which must include the main diagonal). Here the matrix norm is the
Frobenius norm or some weighted variant of it. Remarkably, it is possible to solve the above
minimization problem without any knowledge of L, just working with the original matrix A; see
Reference 3. The minimization problem decouples in n independent linear systems of relatively
small size which can be solved in parallel. The approximate inverse preconditioner is then
M71� GTG. The main di�culty associated with this approach is the choice of the sparsity
pattern of G, i.e. the determination of the constraint set L. A simple solution is to restrict G to
have the same sparsity pattern as the lower triangular part of A, but this choice works well only
for simple problems. Non-zero patterns associated with higher powers of A could also be used,
but then the costs associated with the preconditioner construction and application increase.
Moreover, for di�cult problems even this more expensive approach may be ine�ective.

Another approach to factorized approximate inverse preconditioning was proposed in
Reference 4. This approach, which does not require that the sparsity pattern be known in

# 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 897±906 (1998)

PRECONDITIONING TECHNIQUES IN SHELL PROBLEMS 899



advance, is based on an A-orthogonalization process Ð that is, a Gram±Schmidt process with
respect to the energy inner product hx, yi � xTAy. Given A and an arbitrary set of n linearly
independent vectors, this algorithm computes a set of n vectors fzigni�1 which are conjugate with
respect to A, i.e. A-orthogonal. If we introduce the matrix Z� [z1 , z2 , . . . , zn], then

Z
T
AZ � D � diag� p1; p2; . . . ; pn�

where pi� zTi Azi 6� 0. It follows that

A
ÿ1 � ZD

ÿ1
Z

T �
Xn
i�1

ziz
T
i

pi

and a factorized form of A71 is obtained.
When the A-orthogonalization process is applied to the standard basis vectors e1 , . . . , en , it is

easy to see that Z is unit upper triangular, and indeed Z� L7T, where A� LDLT is the root-free
Cholesky factorization of A. If aTi denotes the ith row of A, the A-orthogonalization process for
computing Z and D can be written as follows:

(1) Let z
�0�
1 � e1; p

�0�
1 � a11

(2) for i� 2, . . . , n
z
�0�
i � ei
for j� 1, . . . , i7 1

p
� jÿ1�
i :� aTj z

�jÿ1�
i

z
� j�
i :� z

� jÿ1�
i ÿ p� jÿ1�

i

p
� jÿ1�
j

� �
z
� jÿ1�
j

end
p
�iÿ1�
i :� aTi z

�iÿ1�
i

end

To get a sparse preconditioner, Z is computed incompletely, by dropping entries in the vector
update operations. This can be done either on the basis of position, whereby non-zero entries
outside a prescribed non-zero pattern are dropped, or on the basis of magnitude, whereby non-
zeros are dropped if smaller than a prescribed drop tolerance in absolute value. This leads to
approximate factors �Z � Z and �D � D, and a factorized approximate inverse is obtained as
M71� �Z �D

ÿ1 �ZT. The stability of this procedure for certain classes of matrices, including
diagonally dominant ones, was proved in Reference 4. In addition, numerical experiments in
References 4, 8 and 9 showed that this approach performs well on linear systems arising from
various applications, such as the discretization by ®nite di�erences of elliptic partial di�erential
equations and the ®nite element analysis of simple structures. In particular, the experiments in
References 8 and 9 showed that on vector computers this technique can be superior to IC
methods because of good vectorization properties.

To our knowledge, until now there have been no reports of the application of explicit
preconditioners to shell problems.
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NUMERICAL EXPERIMENTS

In this Section, the results of computations with one commonly used `simple' shell problem
are presented. The shell elements used in this study are facet-type 3-node triangular or 4-node
quadrilateral elements using the Hughes±Brezzi formulation10 for drilling rotations. The plate
bending part of the element is based on the stabilized MITC theory11 or the discrete Kirchho�
condensation. In the MITC formulation the stabilization parameter has been 0.4 for both
triangular and quadrilater elements.

The value of the regularizing penalty parameter g used in the formulation of Hughes and
Brezzi a�ects the condition number of the sti�ness matrix and thus the convergence of the PCG
iteration. The e�ect of the parameter g on the spectral condition number as well as the con-
vergence of the PCG iteration is demonstrated in Reference 12. Here the value g� G/1000
is chosen, where G is the shear modulus. Adding an Allman-type displacement ®eld13 to the
in-plane interpolation also has an e�ect on the convergence; however, there seems to be no
de®nite trend in that dependency.12

A well-known shell element test is the pinched cylinder; see, for example, Reference 14. The
cylinder is loaded by two normal and equal point loads applied centrally at the opposite sides of
the cylindrical surface. The length of the shell is chosen to be equal to its diameter (L� 2R) and
the Poisson ratio is 0.3. In the computations the following dimensions are chosen: R� 1 unit and
Young's modulus� 106 units. The performance of the preconditioning techniques is studied with
respect to the relative thickness and some relevant parameters in the ®nite element model. As
expected, the problem gets harder when the thickness to radius ratio, i.e. the characteristic
thickness, gets smaller. Three cases, R/t� 10, 102 and 103, are examined, but only the results from
the extreme ones are presented. One octant of the shell is discretized by uniform 30� 30 (see
Figure 1) or 150� 100 triangular or quadrilateral meshes resulting in 5489 or 90499 unknowns,
respectively. The corresponding matrices can be obtained from the Matrix Market under the
set CYLSHELL; (http://math.nist.gov/MatrixMarket/data/misc/cylshell/cylshell.html).
The examples shown correspond to the matrices S1RMQ4M1, S3RMQ4M1 and S3DKQ4M2 in the
CYLSHELL set.

Some characteristics of the sti�ness matrices are recorded in Table I, including the problem
size n, the number of non-zeros nz(A), and the spectral condition number. Results of the

Figure 1. Uniform 30� 30 mesh for an octant of a pinched cylindrical shell
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computations are shown in Table II. The reported computing times are obtained with a Cray
C-90 vector processor (MeÂ teÂ o France, Toulouse), an SGI Power Challenge and a DEC
AlphaServer 8400 (Center for Scienti®c Computing, Espoo, Finland). Only converged results are
shown and the list is presented for increasing total solution times on the Cray. The maximum
number of allowed iterations is 2000.

Table II. Cylindrical shell: P� preconditioner evaluation time, I� iteration time

(a) R/t� 10, stab. MITC4 elements, 30� 30 mesh, problem S1RMQ4M1

Preconditioner Iter.
Cray SGI Power Challenge

P I P � I P I P � I nz(M)

expl IC(0.04) 467 0.33 2.50 2.83 0.35 20.46 20.81 19989
IC(0) 102 1.40 1.94 3.36 1.00 8.35 9.35 143300
Jacobi 796 0.05 4.08 4.13 0.11 32.59 32.70 5489
IC(0.04) 322 0.33 4.17 4.50 0.33 15.94 16.27 19989
FSAI(0) 285 3.50 2.89 6.39 4.80 23.10 27.90 143300
IC(1) 55 5.88 1.18 7.06 4.71 5.42 10.13 202514
AINV(0) 314 4.95 3.38 8.33 6.27 25.72 31.99 143300
IC(2) 36 9.28 0.81 10.09 7.62 4.17 11.78 259613
IC(3) 27 13.28 0.63 13.85 10.98 3.46 14.44 314597

(b) R/t� 103, stab. MITC4 elements, 30� 30 mesh, problem S3RMQ4M1

Preconditioner Iter. DEC AlphaServer SGI Power Challenge nz(M)

IC(0) 177 0.33 6.61 6.94 1.00 14.78 15.78 143400
IC(1) 61 0.93 3.34 4.27 4.71 6.24 10.95 202514
IC(2) 57 1.00 2.98 3.98 7.62 6.62 14.24 259613
IC(3) 44 1.41 2.81 4.22 10.98 6.04 17.02 314597
FSAI(0) 523 0.87 22.79 23.36 4.80 44.85 49.65 143400

(c) R/t� 103, DKQ elements, 150� 100 mesh, problem S3DKQ4M2

Preconditioner Iter.
DEC AlphaServer

P I P � I nz(M)

IC(1) 1563 16 1883 1899 3513260
IC(2) 549 19 549 568 4560113
IC(3) 347 27 468 495 5596229
IC(4) 380 27 490 517 5616203

Table I. Cylindrical shells

Case R/t Mesh Element n nz(A) cond(A)

S1RMQ4M1 10 30� 30 stab. MITC4 5489 143300 1.81� 106

S3RMQ4M1 1000 30� 30 stab. MITC4 5489 143300 1.77� 1010

S3DKQ4M2 1000 150� 100 DKQ 90499 2455670 1.90� 1011
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It should be noted that all tested preconditioners could be built. Two strategies for shifting small
or negative pivots have been used: a local strategy in which small pivots are shifted whenever they
occur during the decomposition phase4 and Manteu�el's shifting method15 in which the
decomposition is carried out for the shifted matrix A � adiag(A), where a is a parameter. From
the numerical experiments it can be concluded thatManteu�el's diagonal shifting strategy is more
robust; however, it should be kept in mind that ®nding a good value for the shift a is a non-trivial
task. In practice, several incomplete factorizations with di�erent trial values of a may be needed
before a satisfactory preconditioner is obtained. This makes Manteu�el's shifting strategy costly
to use in many cases.

We have also tested the robust preconditioner by Ajiz and Jennings,16 which is referred to as
corrected IC (CIC) by Saint-Georges et al.17 These authors concluded that CIC performs
satisfactorily in thin shell problems. However, our conclusions are more concordant with the
observations by Dickinson and Forsyth:18 this method, although reliable, results in too large
modi®cations to the diagonal, thus slowing down the convergence. Dickinson and Forsyth18

analysed the behaviour of di�erent IC preconditioners in three-dimensional elasticity problems.
Their conclusions regarding the drop tolerance and level-of-®ll based preconditioners are
consistent with other reports dealing with second-order elliptic problems. However, it should be
remembered that shell problems are much more di�cult for preconditioned iterations than two-
or three-dimensional elasticity problems. One reason for that is the more rapid growth of the
spectral condition number, which is of order n2 � h74 as compared to second-order problems:
cond(A) � n2/d � h72, where d is the space dimension, n the dimension of A and h is the mesh
parameter, i.e. the width of the largest element.

The sti�ness matrix and the explicit preconditioners are stored by using the jagged diagonal
scheme in order to take advantage of vectorization in the matrix±vector products.2 In addition,
no advantage of symmetry is taken to save storage for the sti�ness matrix, as this is known to
cause a degradation of the performance on supercomputers. For the dot products and the vector
updates in the CG algorithm, standard BLAS are used. The sti�ness matrix is rescaled by
dividing its elements by the absolute value of the largest non-zero entry. With this scaling, the
drop tolerance can usually be taken to be a number between 0 and 1.

The number of iterations shown in Table II corresponds to computations where the right-hand
side is determined from the solution vector of all ones. If the point loading is used as in Reference
14, somewhat di�erent iteration counts are obtained. In Table III the number of iterations with
this loading are shown for a few choices of the preconditioner as well as the de¯ection wP under
the loaded point (the last unknown). To have a ®nite value for the limiting de¯ection for
the Kirchho� model when t! 0, the load is scaled with respect to the characteristic thickness
of the shell. The value used is P�ÿ(1/4)(E/10)(t3/R), where E is Young's modulus. For the
Reissner±Mindlin kinematical model, the point load is not allowed; that is, wP!1 when the

Table III. Pinched cylindrical shells, nP� equation number for the loaded point, wP� de¯ection under the
point load

Case R/t Mesh Element Precond. nP wP Iter.

S1RMQ4M1 10 30� 30 stab. MITC4 IC(0) 5489 ÿ4.7985� 1072 109
S3RMQ4M1 1000 30� 30 stab. MITC4 IC(0) 5489 ÿ4.0881� 1072 177
S3DKQ4M2 1000 150� 100 DKQ IC(2) 90499 ÿ4.0877� 1072 442
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mesh is re®ned, i.e. when h! 0. Therefore the ®ner models are discretized with discrete
Kirchho�-type elements.

The initial guess for the PCG iteration is the zero vector and the stopping criterion is
krkk25 1079, where rk is the unpreconditioned updated residual after k iterations. Codes are
written in standard Fortran 77 and compiled with the -Zv option on the Cray and -O3 option on
the SGI and DEC.

In Table II, expl IC(0.04) denotes the explicit preconditioner obtained from a truncated
Neumann expansion of ®rst degree (m� 1) applied to the incomplete Cholesky factorization with
drop tolerance c� 0.04. On the Cray, this was the fastest of all the methods. Notice that the loss
of convergence rate due to truncation (from 322 to 467 iterations) is more than compensated by
the faster execution of the iterations themselves, which is due to better vector performance. Using
an expansion of higher degree (m5 2) results in better convergence rates but higher computing
times.

Among the incomplete Cholesky preconditioners based on levels of ®ll, the no-®ll incomplete
factorization performed reasonably well. For the easier problem (Table II(a)), IC(0) was the
fastest among the IC(k) methods on both the Cray and the Power Challenge; on the latter
machine, this was the fastest method overall. The higher-level IC preconditioners, however,
become attractive if several problems with the same sti�ness matrix and di�erent load vectors
have to be solved, because in this case the cost of the construction of the preconditioner would
become negligible, and it would pay o� to have more rapid convergence. It should be noticed that
for IC(k), k4 0, the computation of the preconditioner is very time-consuming on the Cray. The
reason is that with high k the computation is completely dominated by integer arithmetic, which
is needed to keep track of the level count for each new ®ll-in and there are relatively few ¯oating
point operations. On Cray machines the real arithmetic is very fast, but the integer arithmetic is
relatively slow.

For the easiest of the three problems (matrix S1RMQ4M1) no pivot shifts were needed. However,
pivot shifts were used with IC(2) and IC(3) on problem S3RMQ4M1, with a� 2� 1074 and
a� 1074, respectively. Also, a shift a� 1072 was used with IC(1) on problem S3DKQ4M2.

For the problem in Table II(a) the simple Jacobi preconditioner, which is not competitive on
the Power Challenge, is the third fastest method on the Cray. Considering the ease with which this
simple technique is implemented, this is an attractive method on vector and parallel computers.
However, it is not recommended if several linear systems with the same sti�ness matrix and
di�erent load vectors have to be solved, or for di�cult problems (thin shells).

In Table II, FSAI(0) and AINV(0) denote, respectively, the sparse approximate inverse
preconditioners based on Frobenius norm minimization and on incomplete A-orthogonalization
with a preset non-zero pattern equal to that of A. The computation of these preconditioners is
relatively expensive, and the convergence rates are not very good. The sti�ness matrix is far from
being diagonally dominant, and decay of the entries in A71 is slow. Thus, it is di�cult to
approximate A71 with a sparse matrix. It should be noticed that even on the Cray, in spite of
vectorization, the time for the iterative part is higher for the approximate inverse methods than
for the IC(k) methods. This is not only because the convergence rate is slower, but also because
the triangular solves with the IC preconditioner do not run at scalar speed, but at vector speed,
achieving about half the MFLOPS rate achieved by the approximate inverse preconditioners.
This is due to the fact that the incomplete factors are not very sparse, and they are well structured.
The average number of non-zeros in each row of the Cholesky factor is large enough for
vectorization to have an impact in the back-substitution phase. When the incomplete factors are
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very sparse, the approximate inverse techniques are often better than IC on vector computers
(see the experiments in References 8 and 9).

Although our aim is not to compare iterative methods with direct ones, we report that the
solution times with a standard in-core skyline solver are 1.74 s for the 30� 30 model and 530 s
for the larger one on the DECAlphaServer 8400. Thus, for this particular choice of test matrices,
computer architectures and implementation, direct solvers are competitive with preconditioned
iterative methods. However, we think that PCG would be the method of choice for very large
shell problems and di�erent types of architectures, e.g. massively parallel computers.

The di�culty of the shell problems is underscored by the high failure rate encountered in our
experiments. The least-squares polynomial preconditioner resulted in extremely slow conver-
gence, and cannot be recommended for this kind of problem. The explicit preconditioners based
on truncated Neumann expansions of the inverse SSOR and IC(c) factors also failed to give
reasonably rapid convergence. The approximate inverse preconditioners based on incomplete
A-orthogonalization computed with drop tolerances su�ered from instability and were not
useful. Pivot shifts, analogous to those used in the context of IC preconditioning, were tried but
resulted in poor preconditioners. The IC preconditioners based on drop tolerances were also
found to be prone to instability, especially when applied to thin shell models.

For these more di�cult problems, only the IC preconditioners based on levels of ®ll performed
satisfactorily. However, for problem S3DKQ4M2 the number of iterations increased when going
from level-3 to level-4 incomplete Cholesky preconditioning. This conforms with the well known
fact that adding ®ll-in does not always imply faster convergence.

In addition, some experiments were performed in which the sti�ness matrix was reordered with
the Reverse Cuthill±McKee heuristic, as it is known that such reordering can be bene®cial in
some cases (see, for example, Reference 19). Unfortunately, the reordering led to an increase in
the number of PCG iterations in all cases.

CONCLUSIONS

In spite of the excellent performance of preconditioned Krylov subspace methods in heat transfer
and stress analysis of solid bodies, shells still present preconditioner developers with a challenging
task. In the present comparison, the level-based IC factorizations with low levels k� 1,2
appeared to be the best ones and the only ones that worked for large models of thin shells.
Drop tolerance-based IC strategies, on the other hand, did not perform well. This is in con-
trast with the situation in other applications, where methods based on drop tolerances are usually
more robust and show better performance than incomplete factorizations based on levels of ®ll.
Also, explicit preconditioners based on truncated Neumann expansions and sparse approximate
inverse techniques were not competitive with IC methods, generally speaking. However, these
techniques may become competitive on parallel computers, at least for easier problems. It should
be mentioned that in the present study the sparsity pattern used was far from being optimal (the
same as for the original matrix), and better results might be achieved with a more sophisticated
choice. However, how to determine a good sparsity pattern for these inverse preconditioners
is still an open question. Also, for easier problems Jacobi (diagonal) preconditioning may
be attractive, due to its simplicity and good vector and parallel performance. However, for
large models of thin shells, ®nding a good parallelizable preconditioner appears to be a very
di�cult task.
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