4,895 research outputs found

    Comparison of Accuracy in Detecting Tomato Leaf Disease with GoogleNet VS EfficientNetB3

    Get PDF
    Tomato diseases vary greatly, one of which is tomato leaf disease. Some variants of leaf diseases include late blight, septoria leaf, yellow leaf curl virus, bacteria, mosaic virus, leaf fungus, two-spotted spider mite, and powdery mildew. By knowing the disease on tomato leaves, you can find medicine for the disease. So that it can increase the production of tomatoes with good quality and a lot of quantity. The problem that often occurs is that farmers cannot determine the disease in plants, they try to find suitable herbal medicines for their plants. After being given the drug, many plants actually died due to the pesticides given to the tomato plants. This is detrimental to tomato farmers. This problem is caused by incorrect disease detection. Therefore, this study aims to solve the problem of disease detection in tomato plants, in a more specific case, namely tomato leaves. Detection in this study uses a deep learning algorithm that uses a Convolutional Neural Network, specifically GoogleNet and EfficientNetB3. The dataset used comes from kaggle and google image. Both data sets have been pre-processed to match the data set class. Image preprocessing is performed to produce appropriate image datasets and improve performance accuracy. The dataset is trained to get the model. The training using GoogleNet resulted in an accuracy of 98.10%, loss of 0.0602 and using EfficientNetB3 resulted in an accuracy of 99.94%, loss: 0.1966

    A Review on Tomato Leaf Disease Detection using Deep Learning Approaches

    Get PDF
    Agriculture is one of the major sectors that influence the India economy due to the huge population and ever-growing food demand. Identification of diseases that affect the low yield in food crops plays a major role to improve the yield of a crop. India holds the world's second-largest share of tomato production. Unfortunately, tomato plants are vulnerable to various diseases due to factors such as climate change, heavy rainfall, soil conditions, pesticides, and animals. A significant number of studies have examined the potential of deep learning techniques to combat the leaf disease in tomatoes in the last decade. However, despite the range of applications, several gaps within tomato leaf disease detection are yet to be addressed to support the tomato leaf disease diagnosis. Thus, there is a need to create an information base of existing approaches and identify the challenges and opportunities to help advance the development of tools that address the needs of tomato farmers. The review is focussed on providing a detailed assessment and considerations for developing deep learning-based Convolutional Neural Networks (CNNs) architectures like Dense Net, ResNet, VGG Net, Google Net, Alex Net, and LeNet that are applied to detect the disease in tomato leaves to identify 10 classes of diseases affecting tomato plant leaves, with distinct trained disease datasets. The performance of architecture studies using the data from plantvillage dataset, which includes healthy and diseased classes, with the assistance of several different architectural designs. This paper helps to address the existing research gaps by guiding further development and application of tools to support tomato leaves disease diagnosis and provide disease management support to farmers in improving the crop

    Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease

    Get PDF
    Plants contribute significantly to the global food supply. Various Plant diseases can result in production losses, which can be avoided by maintaining vigilance. However, manually monitoring plant diseases by agriculture experts and botanists is time-consuming, challenging and error-prone. To reduce the risk of disease severity, machine vision technology (i.e., artificial intelligence) can play a significant role. In the alternative method, the severity of the disease can be diminished through computer technologies and the cooperation of humans. These methods can also eliminate the disadvantages of manual observation. In this work, we proposed a solution to detect tomato plant disease using a deep leaning-based system utilizing the plant leaves image data. We utilized an architecture for deep learning based on a recently developed convolutional neural network that is trained over 18,161 segmented and non-segmented tomato leaf images—using a supervised learning approach to detect and recognize various tomato diseases using the Inception Net model in the research work. For the detection and segmentation of disease-affected regions, two state-of-the-art semantic segmentation models, i.e., U-Net and Modified U-Net, are utilized in this work. The plant leaf pixels are binary and classified by the model as Region of Interest (ROI) and background. There is also an examination of the presentation of binary arrangement (healthy and diseased leaves), six-level classification (healthy and other ailing leaf groups), and ten-level classification (healthy and other types of ailing leaves) models. The Modified U-net segmentation model outperforms the simple U-net segmentation model by 98.66 percent, 98.5 IoU score, and 98.73 percent on the dice. InceptionNet1 achieves 99.95% accuracy for binary classification problems and 99.12% for classifying six segmented class images; InceptionNet outperformed the Modified U-net model to achieve higher accuracy. The experimental results of our proposed method for classifying plant diseases demonstrate that it outperforms the methods currently available in the literature

    High-Performance Deep learning to Detection and Tracking Tomato Plant Leaf Predict Disease and Expert Systems

    Get PDF
    Nowadays, technology and computer science are rapidly developing many tools and algorithms, especially in the field of artificial intelligence. Machine learning is involved in the development of new methodologies and models that have become a novel machine learning area of applications for artificial intelligence. In addition to the architectures of conventional neural network methodologies, deep learning refers to the use of artificial neural network architectures which include multiple processing layers./nIn this paper, models of the Convolutional neural network were designed to detect (diagnose) plant disorders by applying samples of healthy and unhealthy plant images analyzed by means of methods of deep learning. The models were trained using an open data set containing (18,000) images of ten different plants, including healthy plants. Several model architectures have been trained to achieve the best performance of (97 percent) when the respectively [plant, disease] paired are detected. This is a very useful information or early warning technique and a method that can be further improved with the substantially high-performance rate to support an automated plant disease detection system to work in actual farm conditions

    A Survey on the State of Art Approaches for Disease Detection in Plants

    Get PDF
    Agriculture is the main factor for economy and contributes to GDP. The growth of the economy of many countries is based on agriculture. As a result, the yield factor, quality and volume of agricultural products, play a critical role in economic development. Plant diseases and pests have become a major determinant of crop yields throughout the years, as such illnesses in plants offer a serious threat and impediment to higher yields or production in the agriculture industry. As a result, From the outset, it becomes the major duty to correctly monitor the plants, to detect diseases thoroughly, and to determine methods of controlling or monitoring these plant diseases pests in order to achieve a higher rate of production growth and minimal crop damage. Using machine vision, deep learning methods and tools for extracting and classifying features, It could be possible to build a reliable disease detection system. Numerous researchers have created and deployed various ways for detecting plant diseases and pests. The potential of these methods has been examined in this work

    Development of a Mobile Application for Plant Disease Detection using Parameter Optimization Method in Convolutional Neural Networks Algorithm

    Get PDF
    Plant diseases are a serious problem in agriculture that affects both the quantity and quality of the harvest. To address this issue, authors developed a mobile software capable of detecting diseases in plants by analyzing their leaves using a smartphone camera. This research used the Convolutional Neural Networks (CNN) method for this purpose. In the initial experiments, authors compared the performance of four deep learning architectures: VGG-19, Xception, ResNet-50, and InceptionV3. Based on the results of the experiments, authors decided to use the CNN Xception as it yielded good performance. However, the CNN algorithm does not attain its maximum potential when using default parameters. Hence, authors goal is to enhance its performance by implementing parameter optimization using the grid search algorithm to determine the optimal combination of learning rate and epoch values. The experimental results demonstrated that the implementation of parameter optimization in CNN significantly improved accuracy in potato plants from 96.3% to 97.9% and in maize plants from 87.6% to 93.4%

    An Improved MobileNet for Disease Detection on Tomato Leaves

    Get PDF
    Tomatoes are widely grown vegetables, and farmers face challenges in caring for them, particularly regarding plant diseases. The MobileNet architecture is renowned for its simplicity and compatibility with mobile devices. This study introduces MobileNet as a deep learning model to enhance disease detection efficiency in tomato plants. The model is evaluated on a dataset of 2,064 tomato leaf images, encompassing early blight, leaf spot, yellow curl, and healthy leaves. Results demonstrate promising accuracy, exceeding 0.980 for disease classification and 0.975 for distinguishing between diseases and healthy cases. Moreover, the proposed model outperforms existing approaches in terms of accuracy and training time for plant leaf disease detection

    A deep learning-based mobile app system for visual identification of tomato plant disease

    Get PDF
    Tomato is one of many horticulture crops in Indonesia which plays a vital role in supplying public food needs. However, tomato is a very susceptible plant to pests and diseases caused by bacteria and fungus. The infected diseases should be isolated as soon as it was detected. Therefore, developing a reliable and fast system is essential for controlling tomato pests and diseases. The deep learning-based application can help to speed up the identification of tomato disease as it can perform direct identification from the image. In this research, EfficientNetB0 was implemented to perform multi-class tomato plant disease classification. The model was then deployed to an android-based application using machine learning (ML) kit library. The proposed system obtained satisfactory results, reaching an average accuracy of 91.4%

    TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING

    Get PDF
    Plant diseases are a foremost risk to the safety of food. They have the potential to significantly reduce agricultural products quality and quantity. In agriculture sectors, it is the most prominent challenge to recognize plant diseases. In computer vision, the Convolutional Neural Network (CNN) produces good results when solving image classification tasks. For plant disease diagnosis, many deep learning architectures have been applied. This paper introduces a transfer learning based model for detecting tomato leaf diseases. This study proposes a model of DenseNet201 as a transfer learning-based model and CNN classifier. A comparison study between four deep learning models (VGG16, Inception V3, ResNet152V2 and DenseNet201) done in order to determine the best accuracy in using transfer learning in plant disease detection. The used images dataset contains 22930 photos of tomato leaves in 10 different classes, 9 disorders and one healthy class. In our experimental, the results shows that the proposed model achieves the highest training accuracy of 99.84% and validation accuracy of 99.30%

    Classification Models for Plant Diseases Diagnosis: A Review

    Get PDF
    Plants are important source of our life. Crop production in a good figure and good quality is important to us. The diagnosis of a disease in a plant can be manual or automatic. But manual detection of disease in a plant is not always correct as sometimes it can be not be seen by naked eyes so an automatic method of detection of plant diseases should be there. It can make use of various artificial intelligence based or machine learning based methods. It is a tedious task as it needs to be identified in earlier stage so that it will not affect the entire crop. Disease affects all species of plant, both cultivated and wild. Plant disease occurrence and infection severity vary seasonally, regarding the environmental circumstances, the kinds of crops cultivated, and the existence of the pathogen. This review attempts to provide an exhaustive review of various plant diseases and its types, various methods to diagnose plant diseases and various classification models used so as to help researchers to identify the areas of scope where plant pathology can be improved
    corecore