
Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx

An Improved MobileNet for Disease Detection on Tomato Leaves

Hai Thanh Nguyen1,*, Huong Hoang Luong2, Long Bao Huynh2, Bao Quoc Hoang Le2,

Nhan Hieu Doan2, Duc Thien Dao Le2

1College of Information and Communication Technology, Can Tho University, Can Tho, Vietnam

2Information Technology Department, FPT University, Can Tho, Vietnam

Received 15 February 2023; received in revised form 02 April 2023; accepted 04 April 2023

DOI: https://doi.org/10.46604/aiti.2023.11568

Abstract

Tomatoes are widely grown vegetables, and farmers face challenges in caring for them, particularly regarding

plant diseases. The MobileNet architecture is renowned for its simplicity and compatibility with mobile devices.

This study introduces MobileNet as a deep learning model to enhance disease detection efficiency in tomato plants.

The model is evaluated on a dataset of 2,064 tomato leaf images, encompassing early blight, leaf spot, yellow curl,

and healthy leaves. Results demonstrate promising accuracy, exceeding 0.980 for disease classification and 0.975

for distinguishing between diseases and healthy cases. Moreover, the proposed model outperforms existing

approaches in terms of accuracy and training time for plant leaf disease detection.

Keywords: plant diseases, transfer learning, fine-tuning, MobileNet, mobile devices

1. Introduction

Nowadays, the research and application of automatic identification of plant diseases using leaves are fundamental to

agricultural needs. Moreover, Hassan et al. [1] reported that early and accurate identification of crop diseases helps farmers to

reduce some difficulties and risks and improve the productivity and quality of agricultural products. The tomato plant, one of

the easiest fruits to grow, is suitable for many soil types. Additionally, tomatoes bring very high nutritional and economic

value to human lives. Tomato contains many antioxidants and vitamins, essential for people's overall health. However,

sometimes farmers also need help checking and determining if the tomato fruit quality is up to the standard or if the tomato

plant is healthy or not because sometimes diseases of tomato plants usually manifest mainly on their leaves [2].

Moreover, insects and pests that attack tomato plants and produce numerous illnesses can stymie the production of this

well-known crop. Therefore, farmers must first understand the illness to treat diseases on tomato leaves manually. They face

many problems yearly as they try to raise their healthy harvests to keep the profits from farming and raising livestock. Bhagwat

and Dandawate [3] mentioned some countries have a gross domestic product (GDP) of up to 25%.

Insects and other harmful viruses damage production lines and slow them down to the point where they can no longer

produce as much as they can. This is a big problem for the industry, especially farmers. Even though farmers use a variety of

pesticides and insecticides to protect their tomato plants from disease, they frequently need to gain knowledge of the disease

and how to prevent it. Excessive pesticide and insecticide usage endangers human health and life. Crop damage can result

from incorrect disease diagnosis and applying too many or too few pesticides. In addition, the improper use of pesticides also

seriously affects the surrounding soil and water environment and so on.

* Corresponding author. E-mail address: nthai.cit@ctu.edu.vn

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 2

Diagnosing tomato plant diseases is very important to achieve maximum yields. On the other hand, manually detecting

disease by carefully examining the crop is time-consuming and complicated. Farmers often find it challenging to contact

specialists in remote areas and take steps to prevent unusual diseases. It is easier to detect with helpful information. That is

why images can be considered self-contained information helping the system detect diseases. Visual studies of plants without

prior information can lead to inaccurate disease diagnoses. As a result, preventive measures are used. Using machines can help

locate damaged tomato plants, determine what diseases affect them, and use that knowledge to help the rest of the crop grow

more efficiently and with less loss. MobileNet is one of the great models the authors proposed because of its low-latency, low-

power models that can be parameterized to meet the resource constraints of a wide range of use cases. It can be used to build

classification and detection systems. This study examines the leading convolutional neural network (CNN) MobileNet

architecture. They applied transfer learning and refinement to pre-trained data: tomato leaves ranging from healthy to diseases.

The goal is to maximize model accuracy and quickly set up “data augmentation” factors to help in disease categorization

and detection on tomato leaves. The following are the key contributions:

(1) This study devised the first transfer learning technique and development stage to detect diseases in tomato leaves. The

final stage is to fine-tune the parameters accordingly.

(2) Some machine learning-based architectures were leveraged during the implementation and compared the findings to the

CNN models. VGG16, VGG19, MobileNet, DenseNet201, and Xception are other examples.

(3) Three main scenarios were assessed with various metrics to present the predictions for detecting and distinguishing foliar

diseases. First, they demonstrated empirically that the author’s suggested strategy outperforms alternative CNN and

Transformer-based architectures and earlier illness detection and classification models on tomato leaves.

(4) The work obtained promising results using the multilayer classification of the CNN architecture given above, and

MobileNet delivered the best results.

The rest of the article is divided into five following sections. Section 1 begins with an introduction and explanation of the

problem. Section 2 will then present similar works. Section 3 will next demonstrate the implementation process. The outcomes

of the experiments are shown in Section 4. Finally, Section 5 is followed by the conclusion.

2. Related Work

To build automated decontamination procedures on plant detection systems, some researchers have used advanced

technology such as machine learning and neural network design including GoogleNet, AlexNet, InceptionV3, VGG16, and

SqueezeNet, etc. to perform research and classification of crops based on machine learning. As a result, they use exact methods

to detect plant diseases in tomato leaves. Furthermore, researchers have developed various deep learning-based disease

detection and classification methods.

Bhagwat and Dandawate [3] presented some ways to detect plant disease for machine learning. The authors provided the

traditional machine learning method using various evaluation metrics or the new machine learning on RGB images, which best

reported the accuracy at 91.5%.

Fazari et al. [4] proposed a method to detect anthracnose disease on olives using the ResNet101 model. The proposed

method was successfully tested, which resulted in an accuracy of 91.8%. This method promises to be one of the proposals to

ensure the quality of olives and olive oil is improved and meets the required standards. About the dataset, images were shot

on several days and with different lighting to create a dataset with distinct phases of error growth, the data set must satisfy the

condition that there must be enough light, and the leaves must see the characteristic manifestations of that disease and the

image must not be blurred. On the ground, each image includes a particular leaf object.

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 3

Lu et al. [5] introduced and clarified the use of the deep learning (DL) method and suggested that the image set needs to

go through the preprocessing stage (increasing contrast, slightly blurring, reducing brightness, etc.) For picture categorization,

the majority of these approaches employ ordinary neural networks. For example, using the PlantVillage dataset, Brahimi et al.

[6] employed GoogleNet and AlexNet to pinpoint disease zones in the Tomato plant. As a result, they classified nine illnesses

with 99.18% accuracy. However, because their model was one of the first proposed, it is gradually becoming obsolete due to

processing speed and model size, resulting in a limitation that the research team mentioned that the model could not be applied

on mobile devices.

Alruwaili et al. [7] proposed a new method, known as the real-time faster region convolutional neural network (RTF-

RCNN) model, for trained & tested with other models using each different parameters such as precision, accuracy, and recall.

The final result was 97.42% accuracy. With new technology and support for real-time disease detection, the proposed model

outperforms other models and holds great promise for the future. However, learning and acclimating to it can be challenging.

Durmus et al. [8] employed and compared AlexNet and SqueezeNet to classify diseases in real-time. Using the

PlantVillage dataset, the authors categorized ten illnesses and a healthy leaf with 95.65% accuracy for AlexNet and 94.3% for

SqueezeNet. The SqueezeNet model has shown its strengths due to the AlexNet model in approximate prediction results.

However, it is very light and convenient, promising applications with mobile electronic devices.

Saeed et al. [9] and Adhikari et al. [10] presented a pre-trained network model for detecting and categorizing tomato

illness has been presented. The authors used ResNetV2 model and increased the dropout coefficient from 5% to 10% to 50%.

Each batch of changes demonstrates that these parameters contributed to better model training and fewer errors. Zhang et al.

[11] discussed using a DL CNN to identify tomato leaf disease. With an accuracy of 97.19%, the paper used many pre-trained

networks such as AlexNet, GoogleNet, and ResNet.

Ishak et al. [12] discussed a method for analyzing plant leaf quality, beginning with image acquisition, image processing,

and classification. The images were collected using an 8-megapixel intelligent phone era, and the samples were divided into

fifty for healthy and fifty for unhealthy. The image processing method is divided into three steps: contrast enhancement,

segmentation, and feature extraction. The classification method was performed using an artificial neural network, which employs

a multi-layer feed-forward neural network, followed by a comparison of two network structures, Multilayer perceptron (MLP)

and radial basis function (RBF). The RBF network outperformed the MLP network in terms of performance. However, the

search only distinguishes between healthy and unhealthy plant leaf images. It cannot determine the type of disease.

A basic CNN model with eight hidden layers was used to identify a tomato plant's circumstances. Compared to other

classical models [13-17], the proposed strategies produce the best results. DL approaches are used in the image processing

methodology to identify and categorize tomato plant illnesses [13]. The author constructed a comprehensive system using the

segmentation technique and CNN. A variant in the CNN model was adopted and used to improve accuracy. In research about

the application of disease identification on tomato leaves, the author introduced and used a CNN model developed by Tm et

al. [14] called LeNet. This process follows three steps: data collection, preprocessing, and classification. With outstanding and

promising results with an accuracy of 94-95%. Trivedi et al. [15] presented this article discussing standard profound learning

models and variants. This article discussed biotic diseases caused by fungal and bacterial pathogens, specifically tomato leaf

blight, blast, and browning. The proposed model detection rate was 98.49% correct. The proposed model was compared to

VGG and ResNet versions using the same dataset.

In another work, Suryanarayana et al. [16] reviewed all CNN variants for plant disease classification. The authors also

briefed all DL principles employed for leaf disease diagnosis and classification. The authors concentrated on the most recent

CNN models and evaluated their performance. In this paper, the authors summarize several CNN versions, such as VGG16,

VGG19, and ResNet, while also examining their benefits, drawbacks, and prospects for use in various applications. Bhagwat

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 4

and Dandawate [17] conducted a study on disease identification on crops, the authors applied hand-crafter features (HCF)

together with CNN in the form of fusion. The author also mentioned fine-tuning the central coefficient. As a result, the accuracy

for the entire leaf dataset is 99.93%, which is impressive. This result is auspicious, demonstrating improved results based on

the prominence of feature fusion in crop disease detection. Coulibaly et al. [18] used CNN VGG16 to perform state

classification detection of millet crop. The machine learning process is fast, with promising results such as an accuracy of

95.00%, precision of 90.50%, recall of 94.50%, and an F1-score of 91.75%.

Ashwinkumar et al. [19] proposed using MobileNet as a base CNN model and built a new automated model for detecting

and classifying plant leaf diseases based on an optimal mobile network-based convolutional neural network (OMNCNN). The

proposed OMNCNN model goes through several stages, including preprocessing, segmentation, feature extraction, and

classification. With a higher accuracy of 98.7%, the proposed OMNCNN methodology achieved maximum performance. As

a result, the CNN model is an effective real-time tool for detecting and classifying plant leaf diseases. Kaya and Gursoy [20]

proposed a novel approach based on DL for plant disease detection. The authors fused RGB images with segmentation images,

then considered them with a multi-headed DenseNet-based architecture that the authors developed. The accuracy result was

98.17%, which is also promising because the authors mentioned that we could apply this model to the early prediction of

diseases on the leaves of plants and reduce costs and losses, which affect the quality of agricultural products.

Thakur et al. [21] introduced a lightweight CNN model called “VGG-ICNN”. VGG-ICNN has approximately 6 million

parameters, much fewer than most high-performing DL models. The model’s performance is evaluated using five public

datasets, including various crop kinds. This model produces compelling results with up to 99.16% accuracy. However, because

this is the model used to classify crop diversity, it can be inappropriate to compare it with the proposed model.

3. Method

Convolutional neural networks (CNNs) with fine-tuning have shown great promise in the classification of plant diseases.

CNN models can efficiently analyze and classify various types of plant diseases, assisting in early detection and efficient

management. This is made possible by utilizing the strength of deep learning and transfer learning techniques. First, data collection

is important because it ensures clear, bright, and visible images, which leads to better training results. Next, the reference and

selection of suitable CNN models are equally important, depending on the degree of accuracy that the model performs, along with

the amount of storage that the model occupies in the system. Then comes the stage of decomposing and fine-tuning the

hyperparameters. Finally, apply comparison, evaluation, and validation. Remember to periodically update and retrain the model

as new data becomes available to ensure its continued accuracy and relevance in classifying tomato leaf diseases.

3.1. Overall workflow

Fig. 1 shows the process of performing machine learning and leaf classification in tomato plants in 8 steps. The following

steps will be shown in the order of arrows from the “Start” button to the sequential steps from 1 to 8, and finally the end of the

flow. The machine learning model uses a data file containing four picture files of tomato leaves categorized by name to prepare

and perform training.

1. The first stage in this process is to gather data. This information was gathered from the PlantVillage dataset
†
 file submitted

by the author Charu, who is a user of the Kaggle application. This data set was gathered from a group of tomato plants

cultivated together. The data set contains 14,529 JPG photos with a pixel size of 256 px. The authors collected three disease

samples and one healthy sample for 2,064 pictures split into four categories: early blight, Septoria, yellow curl, and healthy.

† PlantVillage tomato leaf dataset: https://www.kaggle.com/datasets/charuchaudhry/plantvillage-tomato-leaf-dataset

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 5

2. Researchers started to perform image discrimination of tomato leaves, in which there can be three diseases and one healthy

type. One of the members used five well-known CNN architectures (MobileNet, DenseNet, VGG16, VGG19, and Xception)

to analyze and compare training and testing outcomes for four types of image recognition, as described above. The authors

involve partitioning the data set. The obtained data is separated into training, validation, and testing. Specifically, this

division is done in the ratio of 60% of the photos used for training, 20% for evaluating, and 20% to test the model’s

correctness.

3. In the following stage, the authors use several MobileNet models and other CNNs to detect and classify each tomato plant

leaf illness as transfer learning models.

4. The authors improve the hyperparameters (including epoch, learning rate, batch size, patch size, weight decay, etc.), volume,

project opacity, numeric header, and transform layers and add specific layers to optimize for DL models and get the best

prediction results.

5. The authors retrain using the proposed MobileNet and CNN samples from the previous stage’s refinement. Following

retraining, the next stage is to compute and assess the model’s accuracy against the test set.

6. Validation and metric computation: They count how many images were correctly classified and compute metrics to

compare the proposed model to other CNN architectures, most notably test accuracy and F1-score results.

7. The authors need to compare the outcomes of the CNN models with the suggested model. Therefore, after training,

validating, and testing the proposed model, they compared the results to original CNN architectures like VGG16 [22],

VGG19, DenseNet, Xception, and MobileNet [23].

8. The final step is showing the result. After the data has been compared, tables and graphs will be displayed for comparison.

Fig. 1 Implementation process flow

Table 1 shows CNN Models which are used to prepare for the training. There are many CNN models provided, but the

models are selected because of the high results in the training process. The table reveals the pros and cons of each model. In

addition, the parameter part shows the popularity and usage of that model based on Keras’s statistics.

Table 1 List of deep learning models

Deep learning model #Parameters Key features with pros and cons

VGG16 138.4 M Popular, lightweight, and easy to use with high accuracy.

VGG19 143.7 M
Similarity to VGG16 but with 19 layers deep.

High accuracy and great understanding of shape, color, and structure.

MobileNet 4.3 M
Consider the depth-wise separable convolution concept.

Reduced parameters significantly.

Xception 22.9 M A depth-wise separable convolution approach.

DenseNet201 20.2 M
Dense connections between the layers.

Reduced number of parameters with better accuracy.

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 6

3.2. Dataset

The tomato leaf disease dataset is collected from the open source Kaggle platform, the folder named PlantVillage,

including 2,064 images taken corresponding to 3 diseases and one healthy, including (early blight, yellow curl, Septoria, and

healthy). The data set is divided into three sets with a ratio of 60-20-20 corresponding to the training set-validation set-test set.

The dataset has an individual image size of 256 × 256 pixels, as MobileNet takes the form of static square images [21]. A list

of image numbers is described in Table 2, and the illustration of the leaf image stands for the leaf status in Fig. 2.

(a) Healthy (b) Early blight (c) Septoria (d) Yellow curl

Fig. 2 Some samples of each status of the tomato leaf

Before implementing section training, the authors pre-processed the image by visualizing, dividing the image size by 255,

and then applying the data augmentation method to generate more new images. Data augmentation has seven techniques

applied to generate new images, including rotation, zoom, shear, width shift, height shift, horizontal flip, and vertical flip.

After generating images, the datasets increase significantly, twice as much as the original dataset, and the difference between

datasets is low. Eligible to apply to model and fine-tuning.

Table 2 Classes of Tomato’s leaf image and its usage in learning

Class category
Number of

images

Images after data

augmentation

Images used for the

training set (60%)

Images used for

validating set (20%)

Images used for the

testing set (20%)

Early blight 504 1008 605 201 202

Septoria 528 1056 633 212 211

Yellow curl 507 1014 608 202 204

Healthy 525 1050 630 210 210

Total 2064 4128 2476 825 827

3.3. The proposed MobileNet

This study used MobileNet transfer learning techniques and fine-tuning methodologies to categorize color photos under

ideal lighting circumstances, including early blight, Septoria, yellow curl, and healthy leaves. As revealed in Fig. 3, the

MobileNet employs depthwise separable convolution (DSC) to reduce the number of computations, the number of parameters,

and the ability to perform feature extraction on different channels independently.

Five popular DL models, namely VGG16 [22], VGG19, DenseNet, MobileNet [23], and Xception, were used to build an

accurate automated model for general purpose and trained on a diverse set of examples, such as ImageNet with 1000 classes.

In addition, in some studies, for example, Coulibaly et al. [18] proposed to use VGG16 to classify and identify many individual

plants together on a dataset, PlantVillage dataset for these dilated CNN networks to improve accuracy. Therefore, those models

are expected to provide promising performance in disease detection on tomato leaves.

The dilated convolution expands the kernel’s field of view while maintaining the same computational complexities by

inserting “holes” or zeros between the kernels of each convolutional layer. As a result, it can be used for applications that

require a wide field of vision but cannot support larger kernels or many convolutions.

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 7

Fig. 3 Transfer learning model to classify diseases

When working with sparse data, dilated convolution can be advantageous because it allows for more expansive receptive

fields without introducing extra parameters. In addition, dilated convolution can reduce overfitting in a neural network by

reducing the number of parameters that need to be learned. However, dilated convolution can be slower to train than traditional

convolution because it requires more computation. Furthermore, dilated convolution may be less effective for small kernel

sizes because it decreases the number of parameters learned in a given layer.

The scenario of dilated convolution in the 1D field is as:

[] [] []
1

.
h

h
m i x i r h w h

=
= + (1)

For explanation, in every location, the output is �. Moreover, ���� is the input signal where x is also referred to as a feature

map. Besides, ��ℎ� spatial dimensions were filtered with the length ℎ, � corresponding to the dilation rate with which the

authors sample the input signal ����. In the standard convolution, � 	 1. The dilated convolution rate is always bigger than 1.

An intuitive and straightforward method to comprehend dilated convolution is that push �� � 1 zeros between every two

consecutive filters in the standard convolution.

In a standard convolution, the kernel or filter size is � � �, then in the resulting dilated convolution, the filter or kernel

size is �� � �� where the value can be found by empirical estimation �� 	 � � �� � 1 � �� � 1. One of the main reasons

to use this method is that 1-dilated convolutions allow for exponentially expanding receptive fields without sacrificing

coverage or resolution. Dilated convolutions can be used to adjust the effective receptive field of a convolutional layer without

changing the kernel size. On the other hand, modify the spacing between the filter’s sampling positions within the input. By

introducing gaps or skips between the filter elements, dilated convolutions increase the effective receptive field without

changing the kernel size.

Fig. 4 depicts the architecture, the first of the pre-trained MobileNet model in a workflow for disease recognition on the

tomato tree. MobileNet was designed to provide a small, low-latency, computationally sound model for embedded mobile

vision applications. Convolutional operations in MobileNet are classified into three types: standard convolution, pointwise

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 8

convolution, and depthwise convolution. To implement the dilated convolution. The authors use five depthwise layers, each

with its stride rate (2,2). The first two depthwise layers have a dilation rate of (1,1); however, the third and fourth layers have

a dilation rate of (2,1) or (2,2). Furthermore, the authors concatenate three parallel depthwise 2D convolution layers with

dilation rates of 4, 8, and 16 for the final depthwise layer. The process continues concatenating these three depthwise

convolutional 2D layers to create the fifth depthwise convolutional 2D layer. Initially, every depthwise layer of MobileNet

had a dilation rate = 1, but implementing different dilation rates in distinct depthwise layers of MobileNet architecture is novel.

Now it is time to start proposing this approach.

Fig. 4 An illustration of MobileNet architecture to identify and classify diseases

Transformational learning applies past model knowledge to the current situation. The authors apply transformational

learning when the provided dataset does not contain enough data to train a full-scale model from the start. Instead, previously

trained MobileNet model parameters are utilized in the training procedure. As a result, transfer learning uses the model’s

existing classes rather than retraining it from the start, boosting its accuracy. The MobileNet model is now enhanced with a

new fully connected layer and an output layer with a softmax classification function for diseases in tomato leaf classification.

Fine-tuning: The process continues to refine after using transfer learning, and the results will improve. Fine-tuning uses

a trained network model to perform a comparable task for a specific task. Usually, the model’s initial layers are frozen (i.e.,

default and unchanged). The weights of these classes are not changed during training. These layers can perform low-level

information extraction; This skill is acquired through prior training. The solution is to continue to tweak the hyperparameters

during the fine-tuning phase to help the model achieve the highest accuracy while avoiding overfitting or underfitting.

In this fine-tuning section, the authors have fine-tuned the following hyperparameters:

(i) Dropout: Dropout is a regularization technique used in DL to prevent a model from overfitting. During training, a specific

percentage of the nodes in a neural network are randomly dropped out (recommend from 0.2 to 0.5).

(ii) Learning rate: The learning rate is a hyperparameter that controls how quickly the model’s parameters are updated during

training iterations. It is an essential hyperparameter since it considerably impacts model performance (Should be from

0.00001 to 0.0001).

(iii) Hidden layer: A hidden neural network layer is neurons not directly connected to the input or output layers. Because its

values are not directly visible in the input or output data, it is referred to as a “hidden” layer. (The study evaluates the

number of units in the hidden layer from 1024 down to 512, 256, 128, etc.)

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 9

(iv) Batch size: The batch size is the number of samples used to update the model’s parameters during each round of training.

It is a crucial hyperparameter that can affect the training speed and the model’s performance. (It should be 8, 16, 32, or 64).

(v) Epoch: An epoch is a complete pass of the entire training dataset during the training process. It is a critical hyperparameter

that can affect model correctness and training time. (Epochs can be 10 times or 20, or 30 times depending on how long

the training is).

The following hyperparameters are used during tuning: First, the number of training intervals is evaluated with a value

of 20-25-30 to determine the appropriate time threshold. Next, the batch number size is tested with values ranging from 16-

32-64, with the default batch number being 32. Finally, the hidden layer is tested with [1024, 512, 256], [512, 128], and the

learning rate is tested with [0.001], [0.0001], and [0.00001]. Each model training implementation will only change one of the

hyperparameters described above to avoid overfitting and make them easy to manipulate. Members of the group are working

to refine those hyperparameters further. Adjusting the batch size is to use how much data each time has been calculated and

update the coefficient. The larger the batch size, the more vectorization the application can be calculated.

When fine-tuning the number of epochs, it only performs more or less traversal in a single train. In case the result is

underfitting, which leads to the need to increase the complexity of the model (increase the number of hidden layers and the

number of nodes of that layer) along with increasing the number of epochs. If the result is overfitting, the solution is to insert

more datasets, perform data augmentation, and refine the dropout coefficient to remove a few percent.

4. Experiments

4.1. Environmental settings

The experiments were implemented on Google Colab with 12 GB of RAM and an NVIDIA K80 GPU with 12 GB of

GDDR5 VRAM. The proposed model was trained using 30 epochs and a batch size of 32. The specifications of the Google

Colab are shown in Table 3.

Table 3 Google Colab proposed specification

Parameters Google Colab

CPU model name Intel(R) Xeon(R)

CPU frequency 2.30 GHz

No. CPU Cores 2

CPU family Haswell

Available RAM 12 GB

Disk space 25 GB

4.2. Overall evaluation

This study divided the data set into three sets for model evaluation, using a ratio of 60-20-20 for training, validation, and

testing, respectively, with accuracy, loss, and F1-score metrics. The authors show that the validation set aims to select the best

model to apply to the test set. First, the authors compare the proposed model - MobileNet, with well-known CNNs to compare

the results with MobileNet, VGG16, VGG19, DenseNet, and Xception. The research conducted three experiments in this study.

Scenario 1 used data from two categories: 1 of tomato leaf diseases (examples below are an early blight, yellow curl, or Septoria

with healthy leaves). The proposed model was then trained, evaluated, and tested. Next, compare the results of the proposed

model with the results of other MobileNet and CNN models. Then, continue to alternately compare healthy leaves with each

other disease, including yellow curl and Septoria. Scenario 2 was performed similarly but with three data types: early blight,

Septoria, and yellow curl, and the last thing is to compare the proposed model with the most advanced methods. Finally, the

data set is trained using the MobileNet model in two stages: transfer learning and fine-tuning.

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 10

Scenario 1 includes the following sequences: First, the study collects data from a pair of types present in the dataset, early

blight/Septoria/yellow curl and healthy leaves. Then, the training is performed, analyzed, and tested with the provided model.

Finally, the study compares the results of the proposed model to those of different CNN designs. The goal of presenting

Scenario 1 aims to evaluate how the proposed model differentiates between healthy leaves and those displaying indications of

early blight, Septoria, or yellow curl. The accuracy, F1-score, and confusion matrix metrics are used to evaluate the test results.

Scenario 2 includes the following sequences: The scenario collects four disease types of early blight, Septoria, yellow

curl, and healthy leaf classes for multi-class classification tasks. First, the proposed model is modified with the number of

outputs to be trained, evaluated, and tested on multi-class classification tasks. Then, the proposed model's results are compared

to other CNN designs. The aim of performing this scenario is to predict and classify classes against each other accurately.

Therefore, the authors want to test the classification capacity of the proposed model between early blight, Septoria, yellow

curl, and healthy leaf.

4.3. Scenario 1 – Discriminate each disease with healthy

(1) Discriminate early blight and healthy leaves

In this experiment, the study used the same hyperparameters used for all models, including an epoch value of 30, a

learning rate value of 0.0001, a batch size of 32, and a weight decay of 0.01. The hidden layer includes 1024 neurons. In

addition, four layers, including platten, batch normalization, dense classes with activation Gaussian error linear unit (GELU),

and softmax are added. Scenario 1, including training and testing results, is shown in Table 4.

Table 4 The classification results of early blight and healthy leaves

 Training set Validation set Test set

Model Accuracy Loss Accuracy Loss Accuracy F1-score

Proposed model 0.9951 0.0434 1.0000 0.0097 0.9868 0.9873

DenseNet 0.9570 0.0945 0.9516 0.3832 0.9517 0.9516

VGG16 0.9282 0.0227 0.9234 0.1175 0.9287 0.9282

VGG19 0.9145 0.0684 0.9154 0.1542 0.9133 0.9182

Xception 0.8661 0.0807 0.8934 0.1023 0.8662 0.8660

MobileNet 0.7885 0.0354 0.8124 0.0416 0.8647 0.8434

The training and validation curves for accuracy and loss are shown in Fig. 5. Transfer-learning machine-learning

techniques provide training accuracy of up to 95 percent, compared to 98 percent for fine-tuning techniques. Following training,

it is evaluated with the previously indicated split test set, yielding the confusion matrix model shown in Fig. 6.

(a) The pre-trained MobileNet without fine-tuning accuracy (b) The improved MobileNet accuracy

Fig. 5 The classification results of Early Blight and Healthy Leaves: Training and validation performance in accuracy

and loss during epochs

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 11

(c) The pre-trained MobileNet without fine-tuning loss (d) The improved MobileNet loss

Fig. 5 The classification results of Early Blight and Healthy Leaves: Training and validation performance in accuracy

and loss during epochs (continued)

From the illustration of figures and confusion matrix in Scenario 1 (discriminate early blight), the result showed that the

training process of the proposed model achieves a promising result. Moreover, the predictive results of the two types in the

test kit achieved an accuracy of 98.57% for early blight and an accuracy of 99.5% for healthy leaves. These results prove that

the proposed model can classify early blight and healthy leaves. Both results achieved more than 90% accuracy.

Fig. 6 Confusion matrix of Scenario 1 (discriminate early blight)

(2) Discriminate yellow curl and healthy leaves

In this experiment, the authors used the same hyperparameters used for all models in it, including epoch’s value is 30,

learning rates value is [0.0001], batch sizes were also tested at [32], weight decay within the at [0.01] and hidden layers tested

value which are [1024]. In addition, four additional layers are included, including platten, batch normalization, dense classes

with activation GELU, and software. The training and testing results are shown in Table 5.

Table 5 The classification results of yellow curl and healthy leaves

 Training set Validation set Test set

Model Accuracy Loss Accuracy Loss Accuracy F1-score

Proposed model 0.9857 0.0024 0.9905 0.0010 0.9857 0.9905

DenseNet 0.9570 0.0945 0.9516 0.0383 0.9517 0.9516

VGG16 0.9282 0.0227 0.9234 0.1175 0.9287 0.9282

VGG19 0.9145 0.0684 0.9154 0.1542 0.9133 0.9182

Xception 0.8661 0.0807 0.8934 0.1023 0.8662 0.8660

MobileNet 1.0000 0.0101 0.7885 0.0416 0.8347 0.8654

The training and validation curves for accuracy and loss are shown in Fig. 7. Transfer-learning machine-learning

techniques provide training accuracy of up to 98 percent, compared to 99 percent for fine-tuning techniques. Following training,

it is evaluated with the previously indicated split test set, yielding the confusion matrix model shown in Fig. 8.

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 12

(a) The pre-trained MobileNet without fine-tuning accuracy (b) The improved fine-tuned MobileNet accuracy

(c) The pre-trained MobileNet without fine-tuning loss (d) The improved MobileNet loss

Fig. 7 The classification results of yellow curl and healthy leaves in accuracy and loss during epochs

From the illustration of graphs and confusion matrix in Scenario 1 (discriminate yellow curl virus), the training process

of the proposed model achieves a promising result. Furthermore, the predictive results of the two types in the test set achieved

an accuracy of 99.52% for the yellow curl virus and an accuracy of 99.05% for healthy leaves. These results prove that the

proposed model can classify early blight and healthy leaves. Both results achieved more than 90% accuracy.

Fig. 8 Confusion matrix of Scenario 1 (discriminate yellow curl virus)

(3) Discriminate Septoria and healthy leaves

In this experiment, the authors used the same hyperparameters used for all models in it, including epoch’s value is 30,

learning rates value is [0.0001], batch sizes were also tested at [32], weight decay within the at [0.01] and hidden layers tested

value which are [1024]. In addition, four additional layers are included, including platten, batch normalization, dense classes

with activation GELU, and software. The training and testing results are shown in Table 6.

The training and validation curves for accuracy and loss are shown in Fig. 9. Transfer-learning machine-learning

techniques provide training accuracy of up to 95 percent, compared to 97 percent for fine-tuning techniques. Following training,

it is evaluated with the previously indicated split test set, yielding the confusion matrix model shown in Fig. 10.

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 13

Table 6 The classification results of Septoria and healthy leaves

 Training set Validation set Test set

Model Accuracy Loss Accuracy Loss Accuracy F1-score

Proposed model 0.9422 0.0363 0.9443 0.0148 0.9818 0.9905

DenseNet 0.9372 0.0945 0.9383 0.3632 0.9335 0.9316

VGG16 0.9032 0.0227 0.9021 0.5175 0.9076 0.9057

VGG19 0.9279 0.0323 0.9164 0.4789 0.9265 0.9188

Xception 0.8366 0.0607 0.8934 0.1223 0.8536 0.8343

MobileNet 0.9452 0.011 0.9023 0.1024 0.9507 0.9576

(a) The pre-trained MobileNet without fine-tuning accuracy (b) The improved MobileNet accuracy

(c) The pre-trained MobileNet without fine-tuning loss (d) The improved MobileNet loss

Fig. 9 The classification results of Septoria and healthy leaves in accuracy and loss during epochs

From the illustration of graphs and confusion matrix in Scenario 1 (discriminate Septoria), the training process of the

proposed model achieves a promising result that archived more than 90% accuracy. In detail, the predictive results of the two

types in the test set achieved an accuracy of 99.01% for the yellow curl virus and an accuracy of 99.54% on healthy leaves.

These results prove that the proposed model can classify early blight and healthy leaves. Furthermore, both results achieved

more than 90% accuracy.

Fig. 10 Confusion matrix of Scenario 1 (discriminate Septoria)

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 14

4.4. Scenario 2 – classification of 4 classes: early blight, Septoria, yellow curl, and healthy

This scenario retains the same hyperparameters as in Scenario 1, including adding and deleting dense layers and

performing mass normalization. The study trained the model in transfer learning and fine-tuning to compare the MobileNet

results to those of other CNN models. The hyperparameters utilized in the models are the same for both stages and models

from the same group.

The outcomes of this scenario are presented in Table 7, Fig. 11 and Fig. 12. The results show that the MobileNet model

with the proposed architecture beat the other CNN architectures by around 95%. The accuracy and loss during training in

Scenario 2 are displayed in Fig. 11. Fig. 12 reveals the confusion matrix for the third case.

Table 7 Classification results of 4 classes: early blight, Septoria, yellow curl, and healthy

 Training set Validation set Test set

Model Accuracy Loss Accuracy Loss Accuracy F1-score

Proposed model 0.9348 0.0363 0.9443 0.0148 0.9717 0.9442

DenseNet 0.9353 0.0945 0.9383 0.3632 0.9335 0.9316

VGG16 0.9038 0.0227 0.9021 0.5175 0.9076 0.9057

VGG19 0.9279 0.0323 0.9164 0.4789 0.9265 0.9188

Xception 0.8376 0.0607 0.8934 0.1223 0.8536 0.8343

MobileNet 0.9464 0.011 0.9023 0.4404 0.7907 0.7176

(a) The pre-trained MobileNet without fine-tuning accuracy (b) The improved MobileNet accuracy

(c) The pre-trained MobileNet without fine-tuning loss (d) The improved MobileNet loss

Fig. 11 Performance of accuracy and loss training in Scenario 2

In detail, the predictive results of the four types in the test set achieved an accuracy of 95.19% for early blight, 96.78%

for yellow curl virus, 97.41% for Septoria, and the accuracy of 97.5% for healthy leaves. These results prove that the proposed

model can classify early blight and healthy leaves. Both results achieved more than 90% accuracy.

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 15

Fig. 12 Confusion matrix of the proposed method in Scenario 2

4.5. Discussion

Through the two scenarios that were run, the results revealed that every prediction case had more accurate results than

90%; this was the level of accuracy that the author desired and was surpassed by the actual outcomes. In Scenario 1, the results

of discriminating between early blight and healthy cases are close to 100%. There is almost no confusion in the machine

learning process. Furthermore, the classification between yellow curl virus and healthy cases and the tasks of discriminating

between Septoria and healthy samples also exhibits similar performance. Because two diseases, including Septoria and yellow

curl virus, are more challenging to recognize than early blight, the results are somewhat not as high as early blight.

Fig. 13 Transfer learning model results on different scenario experiments with various metrics

In Scenario 2, the implementation of training three diseases and healthy cases can be more complicated, and the

implementation time might also be longer. This is the promising result of the proposed model in distinguishing some specific

diseases on tomato leaves. All the accuracy, validation accuracy, test accuracy, and F1-score calculated of the proposed model

in two scenarios are summarized in Fig. 13.

The experimental results show promising results when training, testing, and evaluating the proposed model in two

scenarios suitable for plant disease detection. As observed in Scenario 2, the proposed model achieves 97.17% accuracy when

predicting three classifications, and the F1-score accuracy is 0.9442 on the testing set. In addition, the accuracy score achieves

higher when there is sufficient accuracy in one classification, with more than 99.68% accuracy in the first scenario (early

blight), more than 98.57% in the first (yellow curl), and more than 98.18% in the first scenario (Septoria).

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 16

The cumulative match curve (CMC) is also used to illustrate the comparison of the proposed model with other

architectures in another view with the x−axis to a constant value of rank and the y−axis for the recognition rate. The curve

getting up and then moving to the top of the right side is the best system. The CMC curve plays an essential part in evaluating.

It judges the ranking capabilities of an identification system. The results shown in Fig. 14 show that the proposed method gives

the best and most stable prediction results.

Fig. 14 The CMC in the architecture’s comparison on the test set

Based on the experimental findings above, the proposed model is appropriate for diagnosing various illnesses on tomato

leaves using color images compared to the previous study as presented in Table 8. The results show that the proposed model

(improved MobileNet) outperforms most recently published efforts on identifying disease signals in tomato plants.

Furthermore, based on the test results, the machine learning process on the CNN MobileNet model gives a positive and

promising result.

Table 8 Comparative analysis of the proposed MobileNet model with state-of-the-art methods

References Dataset Model Result accuracy result

Bhagwat et al. [3] PlantVillage dataset Support vector machine 91.5%

Durmus et al. [8] PlantVillage dataset
Fine-tuned SqueezeNet 94.30%

Fine-tuned AlexNet 95.65%

Adhikari et al. [10] ImageNet (Colored images) Insprired by AlexNet and YOLO 92.61%

Tm et al. [14] PlantVillage dataset Fine-tuned LeNet 94-95%

Coulibaly et al. [18] ImageNet (RGB) Fine-tuned VGG16 95.00%

Ashwinkumar et al. [19] PlantVillage dataset
Fine-tuned MobileNet based

with OMNCNN improved
98.7%

Kaya and Gursoy [20] PlantVillage dataset Fine-tuned DenseNet 98.17%

Proposed model PlantVillage dataset Fine-tuned MobileNet 97.17%

5. Conclusion

This study fine-tuned MobileNet to classify several common tomato leaf diseases. There are a few of the significant

repercussions of the influence of bacteria, viruses, fungi, etc., that can damage the quality and productivity of tomato plants

during the season. The results of the training model have significantly improved in comparison to previous studies. In addition,

the authors may determine which combination strategy provides the highest potential performance for the situation. Positive

results were obtained with the revised model MobileNet, achieving a result of 98%. The proposed model performs better in

both circumstances than the other models.

Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 17

In future research, the work is expected to adapt and apply different data preparation strategies to improve the prediction

model outputs further. Furthermore, research is being conducted to evaluate various preprocessing approaches to tomato leaf

pictures. By enhancing the data, the data-enhancement strategy not only improves the model’s performance but also expands

the range of diseases that the model can predict. The authors realize that this study still has shortcomings, and at the same time,

some points have yet to be exploited, in particular, the limitation is in the diversity of tomato leaves diseases dataset because

the environment provided is not enough to perform training on many types of tomato. In the future, the research plan will

continue to be carried out. This model can be applied in real-time and used on mobile devices.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of Plant-Leaf Diseases Using

CNN and Transfer-Learning Approach,” Electronics, vol. 10, no. 12, article no. 1388, June 2021.

[2] E. Moriones and J. Navas-Castillo, “Tomato Yellow Leaf Curl Virus, an Emerging Virus Complex Causing Epidemics

Worldwide,” Virus Research, vol. 71, no. 1-2, pp. 123-134, November 2000.

[3] R. Bhagwat and Y. Dandawate, “A Review on Advances in Automated Plant Disease Detection,” International Journal

of Engineering and Technology Innovation, vol. 11, no. 4, pp. 251-264, September 2021.

[4] A. Fazari, O. J. Pellicer-Valero, J. Gómez-Sanchıs, B. Bernardi, S. Cubero, S. Benalia, et al., “Application of Deep

Convolutional Neural Networks for the Detection of Anthracnose in Olives Using VIS/NIR Hyperspectral Images,”

Computers and Electronics in Agriculture, vol. 187, article no. 106252, August 2021.

[5] J. Lu, L. Tan, and H. Jiang, “Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease

Classification,” Agriculture, vol. 11, no. 8, article no. 707, August 2021.

[6] M. Brahimi, K. Boukhalfa, and A. Moussaoui, “Deep Learning for Tomato Diseases: Classification and Symptoms

Visualization,” Applied Artificial Intelligence, vol. 31, no. 4, pp. 299-315, 2017.

[7] M. Alruwaili, M. H. Siddiqi, A. Khan, M. Azad, A. Khan, and S. Alanazi, “RTF-RCNN: An Architecture for Real-Time

Tomato Plant Leaf Diseases Detection in Video Streaming Using Faster-RCNN,” Bioengineering, vol. 9, no. 10, article

no. 565, October 2022.

[8] H. Durmuş, E. O. Gunes, and M. Kırcı, “Disease Detection on the Leaves of the Tomato Plants by Using Deep

Learning,” 6th International Conference on Agro-Geoinformatics, pp. 1-5, August 2017.

[9] A. Saeed, A. A. Abdel-Aziz, A. Mossad, M. A. Abdelhamid, A. Y. Alkhaled, and M. Mayhoub, “Smart Detection of

Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks,” Agriculture, vol. 13, no. 1,

article no. 139, January 2023.

[10] S. Adhikari, B. Shrestha, B. Baiju, and S. K. KC, “Tomato Plant Diseases Detection System Using Image Processing,”

1st KEC Conference Proceedings, vol. 1, pp. 81-86, September 2018.

[11] S. Zhang, H. Zhou, and L. Zhang, “Recent Machine Learning Progress in Image Analysis and Understanding,”

Advances in Multimedia, vol. 2018, article no. 1685890, 2018.

[12] S. Ishak, M. H. F. Rahiman, S. N. A. M. Kanafiah, and H. Saad, “Leaf Disease Classification Using Artificial Neural

Network,” Jurnal Teknologi, vol. 77, no. 17, pp. 109-114, December 2015.

[13] Y. Wu, L. Xu, and E. D. Goodman, “Tomato Leaf Disease Identification and Detection Based on Deep Convolutional

Neural Network,” Intelligent Automation & Soft Computing, vol. 28, no. 2, pp. 561-576, 2021.

[14] P. Tm, A. Pranathi, K. SaiAshritha, N. B. Chittaragi, and S. G. Koolagudi, “Tomato Leaf Disease Detection Using

Convolutional Neural Networks,” Eleventh International Conference on Contemporary Computing (IC3), pp. 1-5,

August 2018.

[15] N. K. Trivedi, V. Gautam, A. Anand, H. M. Aljahdali, S. G. Villar, D. Anand, et al., “Early Detection and Classification

of Tomato Leaf Disease Using High-Performance Deep Neural Network,” Sensors, vol. 21, no. 23, article no. 7987,

December 2021.

[16] G. Suryanarayana, K. Chandran, O. I. Khalaf, Y. Alotaibi, A. Alsufyani, and S. A. Alghamdi, “Accurate Magnetic

Resonance Image Super-Resolution Using Deep Networks and Gaussian Filtering in the Stationary Wavelet Domain,”

IEEE Access, vol. 9, pp. 71406-71417, 2021.

 Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 18

[17] R. Bhagwat and Y. Dandawate, “A Framework for Crop Disease Detection Using Feature Fusion Method,” International

Journal of Engineering and Technology Innovation, vol. 11, no. 3, pp. 216-228, June 2021.

[18] S. Coulibaly, B. Kamsu-Foguem, D. Kamissoko, and D. Traore, “Deep Neural Networks with Transfer Learning in

Millet Crop Images,” Computers in Industry, vol. 108, pp. 115-120, June 2019.

[19] S. Ashwinkumar, S. Rajagopal, V. Manimaran, and B. Jegajothi, “Automated Plant Leaf Disease Detection and

Classification Using Optimal MobileNet Based Convolutional Neural Networks,” Materials Today: Proceedings, vol.

51, no. 1, pp. 480-487, 2021.

[20] Y. Kaya and E. Gürsoy, “A Novel Multi-Head CNN Design to Identify Plant Diseases Using the Fusion of RGB

Images,” Ecological Informatics, vol. 75, article no. 101998, July 2023.

[21] P. S. Thakur, T. Sheorey, and A. Ojha, “VGG-ICNN: A Lightweight CNN Model for Crop Disease Identification,”

Multimedia Tools and Applications, vol. 82, no. 1, pp. 497-520, January 2023.

[22] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,”

https://doi.org/10.48550/arXiv.1409.1556, September 04, 2014.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al., “MobileNets: Efficient Convolutional

Neural Networks for Mobile Vision Applications,” https://doi.org/10.48550/arXiv.1704.04861, April 17, 2017.

Copyright© by the authors. Licensee TAETI, Taiwan. This article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CCBY) license

(http://creativecommons.org/licenses/by/4.0/).

