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 Tomato is one of many horticulture crops in Indonesia which plays a vital 

role in supplying public food needs. However, tomato is a very susceptible 

plant to pests and diseases caused by bacteria and fungus. The infected 

diseases should be isolated as soon as it was detected. Therefore, developing 

a reliable and fast system is essential for controlling tomato pests and 

diseases. The deep learning-based application can help to speed up the 

identification of tomato disease as it can perform direct identification from 

the image. In this research, EfficientNetB0 was implemented to perform 

multi-class tomato plant disease classification. The model was then deployed 

to an android-based application using machine learning (ML) kit library. The 

proposed system obtained satisfactory results, reaching an average accuracy 

of 91.4%. 
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1. INTRODUCTION 

Tomato (Solanum Lycopersicon) is one of Indonesia's horticultural commodities with high 

economic value and great export potential [1]. Tomato plants also play a vital role in meeting the needs of the 

Indonesian people, both in the food processing industry, daily consumption, and the manufacture of a mixture 

of processed ingredients [2]. In Indonesia, tomato has become an important crop and part of the nation's 

economy. However, cultivating tomato plants are prone to disease caused by pests, viruses, and fungi [3]. 

Infected tomato plants cause harvest losses, making their production unprofitable [4], [5]. Early diagnosis can 

be carried out by monitoring tomato leaves, as diseases and pests can affect the whole of the plants, including 

the leaves [6]. Identification from the leaves faster the diagnosis process as it is the visible part of the plants. 

When the tomato plants are infected, the chlorophyll in the leaves will also be affected [7]. Observing the 

physical change on the leaves, such as spots, damage, necrosis, and discoloration can indicate that the tomato 

plants were diseased [6]. However, it is vital to know the specific infection as each requires specific 

treatment [8]. Therefore, a portable, fast, and reliable system for early detection and diagnosis are required to 

further prevent the spread of the diseases and minimize production losses. 

Recent developments in advanced imaging techniques made it possible to perform those tasks 

reliably [9]–[13]. Those techniques were carried out by retrieving features of the images, such as size, shape, 

and color [14]. The techniques were implemented both using image processing or machine learning-based 

methods. In the past few years, deep learning has had tremendous applications for recognizing and 

classifying plant diseases. In some experiments, deep learning-based methods performed superior to humans 
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in large-scale tasks. Several recent studies [15]–[20] showed that convolutional neural networks (CNN), a 

deep learning based method, can be implemented for disease classification in several crops such as mangoes, 

apples, maize, rice, corn, melons, and wheat.  

Deep learning can also be applied in tomato plants related tasks, such as tomato classification, 

tomato detection, tomato disease identification, and tomato pests detection, as surveyed in [21]. The 

application of deep learning in identifying tomato plant diseases was proven to provide satisfactory results. 

CNN method using the SqueezeNet architecture applied to 1,400 tomato plant diseases consisting of seven 

classes. The applied method produces an accuracy of 86.92% [22]. A CNN-based method was implemented 

using 4,923 controlled conditions images of diseased and healthy tomato plant leaves. The CNN 

classification model obtains an accuracy of 95.75 percent, while the F-RCNN detection model produced a 

confidence score of 80% [23]. Agarwal et al. [24] implemented a proposed method along with three different 

models of pre-trained CNN. The accuracy ranges from 76% to 100%, and the model's average accuracy for 

the nine disease classes and one healthy class is 91.2%. Pre-trained AlexNet and VGG-16 models were also 

applied to perform tomato crop disease classification in [25]. The AlexNet and VGG16 models provided an 

accuracy of 97.49% and 97.23%, respectively. 

The previous research mainly focuses on finding the best deep learning model to detect and classify 

tomato plant diseases. However, they do not include application deployment for real-time detection and 

classification. This research deploys a lightweight CNN model into a mobile application for real-time early 

diagnosis of tomato plant disease. The pre-trained EfficientNet B0 model was chosen to be implemented due 

to its smaller size, outstanding performance, and satisfactory inference time [26]. The applied model will 

classify images of diseased tomato leaves taken from the PlantVillage datasets [27] with nine tomato plant 

disease classes. The trained model was then deployed to an Android application to be easily accessible to 

users, especially farmers, for tomato disease classification. The mobile application will take an image via a 

smartphone camera and provide classification results with brief information about tomato plant disease. 

 

 

2. RESEARCH METHOD 

2.1.   Research workflow 

Figure 1 shows an overview of the research workflow for developing a deep learning-based mobile 

application for tomato plant disease classification. Initially, the PlantVillage datasets were arranged using 

dataset balancing and were divided into a train, validation, and test datasets. Image rotation, brightness, flip, 

shifting, shear, and zoom were then applied for augmentation. The datasets are then used as input to train the 

EfficientNet B0 model. The trained model was then deployed into an android-based application. The 

evaluation method was conducted on the model results and application performance. The EfficientNet B0 

classification results were recorded and evaluated using four metric evaluations. The performance of the deep 

learning-based mobile application is measured using the processing time the model makes predictions and the 

time the endpoint processes an incoming request. 

 

2.2.  Dataset arrangements 

The deep learning model will classify images of diseased tomato leaves taken from The PlantVillage 

datasets [27], an open-source dataset that can be accessed publicly through the website www.plantvillage.org. 

This dataset has more than 50,000 data consisting of 14 classes of food plant diseases. Food crops in this 

dataset include apples, blueberries, cherries, corn, grapes, oranges, peaches, peppers, potatoes, raspberries, 

soybeans, pumpkins, strawberries, and tomatoes. For tomato plants, there are nine types of diseases 

consisting of Alternaria solani (early blight), Septoria Lycopersicon (Septoria), Corynespora cassiicola 

(target spot), Fulvia fulva (leaf mold), Xanthomonas campetris pv Vesicatoria (bacterial spot), Phytophthora 

Infestans (late blight), Tomato Yellow Leaf Curl Virus, Tomato Mosaic Virus (mosaic virus), and 

Tetranychus urticae (spider mites). There is a total of 18,162 images, including healthy tomatoes, which have 

been researched and validated by the plant pathologist. Figures 2(a) to 2(i) presents the sample of tomato 

disease images from the dataset late blight, early blight, target spot, bacterial spot, yellow leaf curl virus, leaf 

mold, Septoria, mosaic virus, and spider mites. Table 1 shows some statistics on tomato plant disease from 

the PlantVillage dataset. 

In this study, ten classes from the PlantVillage dataset and the CIFAR 100 dataset (for representing 

the unknown images) are used. There is a total of eleven classes implemented in the model. The dataset 

balancing was then applied to equalize the number of images per class. The image limit per class used in this 

model was 700 images. After performing dataset balancing, the dataset will be divided into three sets: train, 

validation, and test with the ratio of 80:10:10. To summarize, the dataset consists of 6,160, 770, and 770 for 

training, validation, and test, respectively. 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 6992-7004 

6994 

 
 

Figure 1. Research workflow 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 2. Sample of tomato plant disease from PlantVillage datasets (a) late blight, (b) early blight, (c) target 

spot, (d) bacterial spot, (e) yellow leaf curl virus, (f) leaf mold, (g) Septoria, (h) mosaic virus, and (i) spider 

mites [26] 

 

 

Table 1. Class distribution in the dataset [26] 
Class No. of image 

Yellow leaf curl virus 5,357 
Bacterial spot 2,127 

Late blight 1,910 

Septoria leaf spot 1,771 
Spider mites 1,676 

Healthy 1,592 

Target spot 1,404 
Early blight 1,000 

Leaf mold 952 

Mosaic virus 373 

 

 

2.3.  Data augmentation 

Data augmentation uses image manipulation to increase the diversity and quantity of datasets. The 

performance of models can be enhanced with the proper augmentation techniques. This research applied 

augmentation to the train set using several augmentations described below. The sample result of image 

augmentation is presented in Figure 3.  
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− Image rotation was applied randomly from 0 to 90 degrees. 

− Image brightness was applied with a random brightness parameter varying from 0.4 to 1. 

− Image flip was applied using random vertical and horizontal flip. 

− Shifting was applied using a random parameter of 0.2 for vertical and horizontal part. 

− Shear was applied randomly from 0 to 40 degrees. 

− Zoom was applied with a parameter varying from 0 to 0.15. 

 

 

 
 

Figure 3. Sample of augmented image using the combination of rotation, brightness, flip, shifting, shear,  

and zoom 

 

 

2.4.  Training the model 

2.4.1. Convolutional neural networks 

 One of the most well-known and widely utilized deep learning networks is the CNN [28]. The 

primary advantage of CNN over its forerunners is that it recognizes the pertinent features automatically 

without human intervention [29]. CNNs consist of connected neurons, similar to a multi-layer perceptron 

(MLP) structure. Each neuron and the connections between neurons have a weight, bias, and activation 

function. The natural structure of neurons inspired by the structure of neurons in human and animal brains. 

CNN works by performing 2-dimensional convolution using a convolution kernel to an image. CNN does not 

require as much dataset processing as other algorithms. Feature extraction is done automatically [30]. CNN's 

ability to perform feature extraction results in a high classification capability. CNN consist of three primary 

layers [31] described below: 

− Convolutional layer: The input image's feature extraction process, such as colors, gradients, and edges, is 

carried out on a convolutional layer. This extraction process uses a convolution operation using a kernel 

in the form of a matrix. 

− Pooling layer: The pooling layer is a layer that aims to extract information from features that have been 

taken in the previous layer. Extracting this information uses the portion of the image that the kernel has 

skipped. In this layer, there are two types of pooling: max pooling, which takes the most significant value, 

and average pooling, which takes the average value. 

− Fully connected layer: The fully connected layer collects the results from the previous layer to determine 

the input image class. The data in the previous layer will be transformed first so that the model can 

classify linearly. 
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2.4.2. EfficientNet B0 architecture 

The general CNN model is developed with limited resources (computation and memory), and if 

resources are available, the model is enlarged by repeating blocks at a specific layer. A study in [32], was 

proposed a new model capacity enhancement method: changing the model's width, depth, and resolution 

scale with a combined coefficient. Neural architecture search (NAS) [33], was based on these observations to 

design a new family model called EfficientNet. One variation of EfficientNet (EfficientNet-B7) achieves 

state-of-the-art performance on ImageNet datasets with a much smaller model size than the other model. The 

inference speed is also much faster. This model uses a convolution block named MBConv [32]. 

EfficientNet has eight models starting from EfficientNet B0 to EfficientNet B7. The difference 

between each model is the total number of their parameters. The smaller version has smaller parameters 

compared to the bigger version. For example, The EfficientNet B0 has a total of 5.3 million parameters, 

while EfficientNet B7 has 66 million parameters. In this study, EfficientNet B0 was chosen because the size 

is the smallest among the other versions. Despite the small size and parameters, EfficientNet B0 still has 

satisfactory performance, as it has a top-1 accuracy of 77.1% and top-5 accuracy of 93.3%, which refers to 

the model's performance on the ImageNet validation dataset [26]. The EfficientNet architecture proposed by 

[32] is given in Table 2. 

 

 

Table 2. EfficientNet architecture 
Operator Resolution Channel Total layer 

Conv3×3 224×224 32 1 
MBConv1, k3×3 112×112 16 1 

MBConv6, k3×3 112×112 24 2 

MBConv6, k5×5 56×56 40 2 
MBConv6, k3×3 28×28 80 3 

MBConv6, k5×5 14×14 112 3 

MBConv6, k5×5 14×14 192 4 
MBConv6, k3×3 7×7 320 1 

Conv1×1 and Pooling and FC 7×7 1280 1 

 

 

The training and optimization of the model is a challenging and time-consuming process. The 

training needs a powerful GPU and millions of training samples. However, deep learning's use of transfer 

learning addresses all issues and provides a solution. Transfer learning uses a pre-trained CNN optimized for 

a single task and spreads information across many modes. Transfer learning uses a model trained with a 

general dataset, so that the model can specialize in smaller datasets [34]. This method can reduce training 

time and improve overall model performance. 

In this research, the model will be trained using the EfficientNet B0 model with the transfer learning 

method. The model architecture implemented in this study is shown in Figure 4. When implementing the 

transfer learning method, there are stages consisting of creating a classification layer, freezing the remaining 

layer, setting up the learning rate, and compiling the model that should be applied. The new classification 

layer uses the GlobalAveragePooling2D and dropout layers with a value of 0.5. The purpose of using this 

layer was to avoid overfitting during training. The Dense layer, a neural network layer, was used as a 

classification task based on the results of the convolutional layer. The last layer was Dense (11), a final 

classification layer for the output prediction. 

The freeze remaining layer stage aims to freeze the learning layer of the EfficientNet B0 model. 

Those layers were intended to keep the features previously studied by the EfficientNet B0 model. After 

freezing the previous layer, the learning rate, optimizer function, and loss function were set on the model. 

The learning rate of 0.001 and Adam optimizer were implemented in this research. The categorical cross 

entropy was also applied for multiclass classification. Learning rate aims to adjust the learning speed of the 

model as accuracy increases in order to avoid decreasing accuracy. The optimizer functions to manage 

attributes such as the learning rate of the model in learning.  

The model is then trained using a configuration consisting of a batch size of 32 and epochs of 30. 

The model also has a callback function that is executed every epoch. The callbacks are EarlyStopping which 

stops learning to prevent overfitting, and ReduceLROnPlateau, to reduce the learning rate value if there is no 

significant change when it has passed an epoch value. 

 

2.5.  Application deployment 

ML Kit is a machine learning library by Google that can be used openly by mobile application 

developers [35]. ML Kit provides various features such as barcode scanning, face detection, object detection, 

and tracking. Each feature can support Android and iOS operating systems. Moreover, each feature is also 
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equipped with documentation that mobile application developers can apply. In the object detection and 

tracking feature, there is a streaming mode and a single image mode, where the mode can be set by the 

developer when creating the application. 

 

 

 
 

Figure 4. EfficientNet B0 model implemented in this study 

 

 

The deep learning-based mobile application for identifying tomato plant disease developed in this 

study consists of three features: live detection, object detection, and image classification. The live detection 

feature detects tomato plant diseases in real time with the help of object detection using the ML Kit library by 

Google. This feature aims to look for diseased tomato plants. The multiple object detection feature uses 

object detection to detect objects and send images of those objects to the application programming interface 

(API). This feature aims to identify the leaves contained in an image. The image classification image feature 

performs the classification of the images captured by the camera. This mobile application will take an image 

via a smartphone camera and provide classification results with brief information about tomato plant disease. 

The proposed mobile application system consists of two modules: frontend and backend. The 

frontend module is an Android application built using the Android Studio IDE, which provides the user view. 

In the frontend module, object detection using the ML Kit library is applied to extract objects in an image. 

When an object is detected, the image of the object will be sent to the backend for prediction. The second 

module is the backend module consists of endpoint and machine learning. The endpoint is used to handle 

images sent by the frontend module. The endpoint will make predictions by processing the received image 

and sending the results to machine learning as a backend using TensorFlow Serving. When receiving an 

image from the endpoint, TensorFlow Serving will make predictions and send back the prediction results to 

the endpoint, and the results will be forwarded to the frontend. After the frontend module receives the 

prediction results, the frontend module will display the detected object page specifically for the real-time and 

multiple object detection features. Each selected object will redirect the page to a results page that displays 

predictions of tomato plant diseases and a brief of information on how to prevent them using the help of 

Google Search. When detected in the Still Image feature, the page will change directly to the prediction result 

page. The complete module flow is given in Figure 5. 

The frontend module also contains image processing stages that aim to reduce the image size before 

sending it to the backend module. The process includes resizing the image to 50% of its previous size, 

formatting it to JPEG, and converting it to a Base64 String. The backend module will continue the 

preprocessing steps to change the image channel to red-green-blue (RGB). The machine learning inputs will 

also adjust the size to 224×224 pixels. 
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Figure 5. Complete module flow 

 

 

2.6.  Evaluation method 

The evaluation processes were employed in model evaluation and the android application’s 

performance. The model evaluation consists of several metrics used to determine the model's performance. 

The evaluation was applied using the test set. The accuracy was used to determine the proportion of correctly 

predicted classes in all the analyzed samples. The precision metric was used to correctly determine the 

positive patterns predicted by every other pattern in a positive class. The recall metric was utilized to 

determine the percentage of positive patterns that are classified correctly. Then the F1-score metric was 

applied to analyze the harmonic average between recall and precision. The formula for accuracy, precision, 

recall, and F1-score are given in (1)-(4), respectively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

The android application's performance was carried out by calculating the processing time between 

the model makes predictions and the time the endpoint processes an incoming request. The request 

processing time was tested by measuring when the backend TensorFlow Serving made predictions on an 

image. The provided image was 256×256, converted into a NumPy Array. 

 

2.7.  System implementation 

Machine learning code was implemented using Keras and TensorFlow Library, which offer fully 

built models with pretrained weights on the ImageNet dataset. Model training was performed using Google 

Colab Notebook Pro, which has a minimum specification of NVIDIA P100 or T4 as GPU, Xeon Processor 

2.3 GHz as the CPU, and memory up to 32 GB. The mobile application was built in Realme GT Neo2 phone 

with Android 12 OS, Chipset Snapdragon 870 5G, GPU Adreno 650, RAM of 12+7 GB extension, and 

Camera with the specification of 64, 8 and 2 MP. The frontend of the mobile application was implemented 

using IDE Android Studio with the support of library object detection by ML Kit library by Google. The live 

preview utilized the library CameraX. 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Model performance result 

The loss and accuracy progression during training is shown in Figures 6 and 7, respectively. 

Figure 6 presents the loss during each epoch (number of training cycles through the whole dataset), while the 

Figure 7 presents the model's accuracy. The model executes the "ReduceLROnPlateau" callback function on 

epochs 24 and 28. At the end of the training, the model produces a training accuracy of 92.35% and a 

validation accuracy of 92.221%. The training and validation loss obtained by the model was 0.2302 and 

0.2191, respectively. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A deep learning-based mobile app system for visual identification of … (Aurelius Ryo Wang) 

6999 

The test accuracy obtained by the model reached 91.43%. This shows that the model has satisfactory 

results compared to previous research [22], [24]. The confusion matrix for the model is given in Figure 8, 

while the complete model performance result for precision, recall, and F1-score for each class is presented in 

Table 3. The result of the performance metric shows that the model performs prominently. 

 

 

  
 

Figure 6. Model loss 
 

Figure 7. Model accuracy 

 

 

 
 

Figure 8. Confusion matrix of the model 
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Table 3. Model performance 
Class Precision Recall F1-score 

Yellow leaf curl virus 0.97 0.97 0.97 
Bacterial spot 0.97 0.83 0.89 

Late blight 0.86 0.90 0.88 

Septoria leaf spot 0.78 1.00 0.88 
Spider mites 0.86 0.88 0.87 

Healthy 0.98 0.88 1.00 

Target spot 0.81 0.90 0.86 
Early blight 0.97 0.80 0.88 

Leaf mold 0.97 0.92 0.95 

Mosaic virus 0.96 0.99 0.97 
Unknown 1.00 1.00 1.00 

 

 

3.2.  Mobile application performance 

The complete navigation graph of the mobile application is presented in Figure 9. The application's 

home page consists of three main menus, as shown in Figure 10. The sample of each menu is given in  

Figure 11, where in Figure 11(a) shows the real-time detection and Figure 11(b) shows the multiple objects 

and still images. The sample for the result page is shown in Figure 12. Figure 12 (a) shows the detected 

objects page for real-time and multiple object features, and Figure 12(b) result page of the detected object. 

 

 

 
 

Figure 9. Mobile application navigation graph 

 

 

 
 

Figure 10. The home page 
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(a) (b) 

 

Figure 11. The appearance for each menu: (a) real-time detection and (b) multiple objects and still image 

 

 

  
(a) (b) 

 

Figure 12. The sample for the result page: (a) detected objects page for real-time and multiple object feature 

and (b) result page of detected object 
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The mobile application's performance was carried out by calculating the processing time between 

the model makes predictions and the time the endpoint processes an incoming request. The test was carried 

out ten times. The result is given in Table 4. 

Based on testing the TensorFlow backend prediction time, the average prediction time was  

40.3744 ms, with the longest time of 60,927 ms and the fastest time of 31,835 ms. It was shown that the time 

when the backend TensorFlow serving predicts an image was considerably fast. 

The endpoint processing time was carried out in three different formats of input: JPEG image, with 

the size of 256×256); string base 64 format, to accommodate other types of the image such as PNG but 

converted in a smaller size; and string base 64×5 format, a same type with the second format but multiplied 

by five to accommodate the multiple object detection. The result of the endpoint processing time is given in 

Table 5. 

In the jpeg image data type, the average processing time for a request was 149.289 ms, while for 

string base 64 and string base 64×5 was 103.183 and 527.875 ms, respectively. The fastest processing time 

was 91.99 ms in JPEG images, 56.72 ms in string base 64, and 348.85 ms in string base 64×5. The slowest 

processing time were 185.35, 200.61, and 738.9 ms in JPEG, string base 64, and string base 64×5, 

respectively. The string base 64×5 format gave the overall longest processing time due to its bigger image, 

which contains five images at once. 

 

 

Table 4. Result of TensorFlow serving prediction time 
Data Sent Response time (ms) 

Test 1 41.683 

Test 2 35.907 

Test 3 45.016 
Test 4 39.87 

Test 5 60.927 

Test 6 34.96 

Test 7 31.835 

Test 8 36.641 

Test 9 39.621 
Test 10 37.364 

Average time 40.3744 

 

 

Table 5. Result of endpoint processing time 
 Data type 

Data Sent JPEG image (ms) String base 64 (ms) String base 64×5 (ms) 

Test 1 104.49 108 657.82 

Test 2 185.35 58.28 671.22 

Test 3 162.04 94.98 463.61 
Test 4 154.86 113.76 738.9 

Test 5 172.71 97.27 523.34 

Test 6 170.62 200.61 393.5 

Test 7 154.09 105.55 348.85 

Test 8 152.47 97.94 509.6 

Test 9 144.27 56.72 401.3 
Test 10 91.99 98.72 570.61 

Average time 149.289 103.183 527.875 

 

 

4. CONCLUSION 

The deep learning-based mobile application implemented using EfficientNet B0 model is giving 

promising results. The implementation will support the early diagnosis of tomato plant disease identification. 

The performance of the EfficientNet B0 was outstanding as it reached an accuracy of 91.4%. The 

implementation of deep learning in the mobile application also exhibited a satisfactory result with an average 

prediction time of 40.3744 ms and the fastest average processing time of 103.183 ms. Future work is still 

necessary to improve the model accuracy and reliability along with the improvement of the mobile 

application. Future work will focus on further development using other deep learning models to improve the 

performance of classification results. 
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