753 research outputs found

    Anomaly Handling in Visual Analytics

    Get PDF
    Visual analytics is an emerging field which uses visual techniques to interact with users in the analytical reasoning process. Users can choose the most appropriate representation that conveys the important content of their data by acting upon different visual displays. The data itself has many features of interest, including clusters, trends (commonalities) and anomalies. Most visualization techniques currently focus on the discovery of trends and other relations, where uncommon phenomena are treated as outliers and are either removed from the datasets or de-emphasized on the visual displays. Much less work has been done on the visual analysis of outliers, or anomalies. In this thesis, I will introduce a method to identify the different levels of “outlierness†by using interactive selection and other approaches to process outliers after detection. In one approach, the values of these outliers will be estimated from the values of their k-Nearest Neighbors and replaced to increase the consistency of the whole dataset. Other approaches will leave users with the choice of removing the outliers from the graphs or highlighting the unusual patterns on the graphs if points of interest lie in these anomalous regions. I will develop and test these anomaly handling methods within the XMDV Tool

    Unsupervised Machine Learning for Networking:Techniques, Applications and Research Challenges

    Get PDF
    While machine learning and artificial intelligence have long been applied in networking research, the bulk of such works has focused on supervised learning. Recently there has been a rising trend of employing unsupervised machine learning using unstructured raw network data to improve network performance and provide services such as traffic engineering, anomaly detection, Internet traffic classification, and quality of service optimization. The interest in applying unsupervised learning techniques in networking emerges from their great success in other fields such as computer vision, natural language processing, speech recognition, and optimal control (e.g., for developing autonomous self-driving cars). Unsupervised learning is interesting since it can unconstrain us from the need of labeled data and manual handcrafted feature engineering thereby facilitating flexible, general, and automated methods of machine learning. The focus of this survey paper is to provide an overview of the applications of unsupervised learning in the domain of networking. We provide a comprehensive survey highlighting the recent advancements in unsupervised learning techniques and describe their applications for various learning tasks in the context of networking. We also provide a discussion on future directions and open research issues, while also identifying potential pitfalls. While a few survey papers focusing on the applications of machine learning in networking have previously been published, a survey of similar scope and breadth is missing in literature. Through this paper, we advance the state of knowledge by carefully synthesizing the insights from these survey papers while also providing contemporary coverage of recent advances

    Unsupervised Machine Learning for Networking:Techniques, Applications and Research Challenges

    Get PDF
    While machine learning and artificial intelligence have long been applied in networking research, the bulk of such works has focused on supervised learning. Recently, there has been a rising trend of employing unsupervised machine learning using unstructured raw network data to improve network performance and provide services such as traffic engineering, anomaly detection, Internet traffic classification, and quality of service optimization. The interest in applying unsupervised learning techniques in networking emerges from their great success in other fields such as computer vision, natural language processing, speech recognition, and optimal control (e.g., for developing autonomous self-driving cars). Unsupervised learning is interesting since it can unconstrain us from the need of labeled data and manual handcrafted feature engineering thereby facilitating flexible, general, and automated methods of machine learning. The focus of this survey paper is to provide an overview of the applications of unsupervised learning in the domain of networking. We provide a comprehensive survey highlighting the recent advancements in unsupervised learning techniques and describe their applications in various learning tasks in the context of networking. We also provide a discussion on future directions and open research issues, while also identifying potential pitfalls. While a few survey papers focusing on the applications of machine learning in networking have previously been published, a survey of similar scope and breadth is missing in literature. Through this paper, we advance the state of knowledge by carefully synthesizing the insights from these survey papers while also providing contemporary coverage of recent advances

    The DCA:SOMe comparison: a comparative study between two biologically-inspired algorithms

    Get PDF
    The dendritic cell algorithm (DCA) is an immune-inspired algorithm, developed for the purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which results in a ‘context aware’ detection system. Previous applications of the DCA have included the detection of potentially malicious port scanning activity, where it has produced high rates of true positives and low rates of false positives. In this work we aim to compare the performance of the DCA and of a self-organizing map (SOM) when applied to the detection of SYN port scans, through experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the DCA in terms of the data fusion method employed. It is shown that the results of the two systems are comparable, and both produce false positives for the same processes. This shows that the DCA can produce anomaly detection results to the same standard as an established technique

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates

    Enhanced clustering analysis pipeline for performance analysis of parallel applications

    Get PDF
    Clustering analysis is widely used to stratify data in the same cluster when they are similar according to the specific metrics. We can use the cluster analysis to group the CPU burst of a parallel application, and the regions on each process in-between communication calls or calls to the parallel runtime. The resulting clusters obtained are the different computational trends or phases that appear in the application. These clusters are useful to understand the behavior of the computation part of the application and focus the analyses on those that present performance issues. Although density-based clustering algorithms are a powerful and efficient tool to summarize this type of information, their traditional user-guided clustering methodology has many shortcomings and deficiencies in dealing with the complexity of data, the diversity of data structures, high-dimensionality of data, and the dramatic increase in the amount of data. Consequently, the majority of DBSCAN-like algorithms have weaknesses to handle high-dimensionality and/or Multi-density data, and they are sensitive to their hyper-parameter configuration. Furthermore, extracting insight from the obtained clusters is an intuitive and manual task. To mitigate these weaknesses, we have proposed a new unified approach to replace the user-guided clustering with an automated clustering analysis pipeline, called Enhanced Cluster Identification and Interpretation (ECII) pipeline. To build the pipeline, we propose novel techniques including Robust Independent Feature Selection, Feature Space Curvature Map, Organization Component Analysis, and hyper-parameters tuning to feature selection, density homogenization, cluster interpretation, and model selection which are the main components of our machine learning pipeline. This thesis contributes four new techniques to the Machine Learning field with a particular use case in Performance Analytics field. The first contribution is a novel unsupervised approach for feature selection on noisy data, called Robust Independent Feature Selection (RIFS). Specifically, we choose a feature subset that contains most of the underlying information, using the same criteria as the Independent component analysis. Simultaneously, the noise is separated as an independent component. The second contribution of the thesis is a parametric multilinear transformation method to homogenize cluster densities while preserving the topological structure of the dataset, called Feature Space Curvature Map (FSCM). We present a new Gravitational Self-organizing Map to model the feature space curvature by plugging the concepts of gravity and fabric of space into the Self-organizing Map algorithm to mathematically describe the density structure of the data. To homogenize the cluster density, we introduce a novel mapping mechanism to project the data from the non-Euclidean curved space to a new Euclidean flat space. The third contribution is a novel topological-based method to study potentially complex high-dimensional categorized data by quantifying their shapes and extracting fine-grain insights from them to interpret the clustering result. We introduce our Organization Component Analysis (OCA) method for the automatic arbitrary cluster-shape study without an assumption about the data distribution. Finally, to tune the DBSCAN hyper-parameters, we propose a new tuning mechanism by combining techniques from machine learning and optimization domains, and we embed it in the ECII pipeline. Using this cluster analysis pipeline with the CPU burst data of a parallel application, we provide the developer/analyst with a high-quality SPMD computation structure detection with the added value that reflects the fine grain of the computation regions.El análisis de conglomerados se usa ampliamente para estratificar datos en el mismo conglomerado cuando son similares según las métricas específicas. Nosotros puede usar el análisis de clúster para agrupar la ráfaga de CPU de una aplicación paralela y las regiones en cada proceso intermedio llamadas de comunicación o llamadas al tiempo de ejecución paralelo. Los clusters resultantes obtenidos son las diferentes tendencias computacionales o fases que aparecen en la solicitud. Estos clusters son útiles para entender el comportamiento de la parte de computación del aplicación y centrar los análisis en aquellos que presenten problemas de rendimiento. Aunque los algoritmos de agrupamiento basados en la densidad son una herramienta poderosa y eficiente para resumir este tipo de información, su La metodología tradicional de agrupación en clústeres guiada por el usuario tiene muchas deficiencias y deficiencias al tratar con la complejidad de los datos, la diversidad de estructuras de datos, la alta dimensionalidad de los datos y el aumento dramático en la cantidad de datos. En consecuencia, el La mayoría de los algoritmos similares a DBSCAN tienen debilidades para manejar datos de alta dimensionalidad y/o densidad múltiple, y son sensibles a su configuración de hiperparámetros. Además, extraer información de los clústeres obtenidos es una forma intuitiva y tarea manual Para mitigar estas debilidades, hemos propuesto un nuevo enfoque unificado para reemplazar el agrupamiento guiado por el usuario con un canalización de análisis de agrupamiento automatizado, llamada canalización de identificación e interpretación de clúster mejorada (ECII). para construir el tubería, proponemos técnicas novedosas que incluyen la selección robusta de características independientes, el mapa de curvatura del espacio de características, Análisis de componentes de la organización y ajuste de hiperparámetros para la selección de características, homogeneización de densidad, agrupación interpretación y selección de modelos, que son los componentes principales de nuestra canalización de aprendizaje automático. Esta tesis aporta cuatro nuevas técnicas al campo de Machine Learning con un caso de uso particular en el campo de Performance Analytics. La primera contribución es un enfoque novedoso no supervisado para la selección de características en datos ruidosos, llamado Robust Independent Feature. Selección (RIFS).Específicamente, elegimos un subconjunto de funciones que contiene la mayor parte de la información subyacente, utilizando el mismo criterios como el análisis de componentes independientes. Simultáneamente, el ruido se separa como un componente independiente. La segunda contribución de la tesis es un método de transformación multilineal paramétrica para homogeneizar densidades de clústeres mientras preservando la estructura topológica del conjunto de datos, llamado Mapa de Curvatura del Espacio de Características (FSCM). Presentamos un nuevo Gravitacional Mapa autoorganizado para modelar la curvatura del espacio característico conectando los conceptos de gravedad y estructura del espacio en el Algoritmo de mapa autoorganizado para describir matemáticamente la estructura de densidad de los datos. Para homogeneizar la densidad del racimo, introducimos un mecanismo de mapeo novedoso para proyectar los datos del espacio curvo no euclidiano a un nuevo plano euclidiano espacio. La tercera contribución es un nuevo método basado en topología para estudiar datos categorizados de alta dimensión potencialmente complejos mediante cuantificando sus formas y extrayendo información detallada de ellas para interpretar el resultado de la agrupación. presentamos nuestro Método de análisis de componentes de organización (OCA) para el estudio automático de forma arbitraria de conglomerados sin una suposición sobre el distribución de datos.Postprint (published version

    Denial-of-service attack modelling and detection for HTTP/2 services

    Get PDF
    Businesses and society alike have been heavily dependent on Internet-based services, albeit with experiences of constant and annoying disruptions caused by the adversary class. A malicious attack that can prevent establishment of Internet connections to web servers, initiated from legitimate client machines, is termed as a Denial of Service (DoS) attack; volume and intensity of which is rapidly growing thanks to the readily available attack tools and the ever-increasing network bandwidths. A majority of contemporary web servers are built on the HTTP/1.1 communication protocol. As a consequence, all literature found on DoS attack modelling and appertaining detection techniques, addresses only HTTP/1.x network traffic. This thesis presents a model of DoS attack traffic against servers employing the new communication protocol, namely HTTP/2. The HTTP/2 protocol significantly differs from its predecessor and introduces new messaging formats and data exchange mechanisms. This creates an urgent need to understand how malicious attacks including Denial of Service, can be launched against HTTP/2 services. Moreover, the ability of attackers to vary the network traffic models to stealthy affects web services, thereby requires extensive research and modelling. This research work not only provides a novel model for DoS attacks against HTTP/2 services, but also provides a model of stealthy variants of such attacks, that can disrupt routine web services. Specifically, HTTP/2 traffic patterns that consume computing resources of a server, such as CPU utilisation and memory consumption, were thoroughly explored and examined. The study presents four HTTP/2 attack models. The first being a flooding-based attack model, the second being a distributed model, the third and fourth are variant DoS attack models. The attack traffic analysis conducted in this study employed four machine learning techniques, namely Naïve Bayes, Decision Tree, JRip and Support Vector Machines. The HTTP/2 normal traffic model portrays online activities of human users. The model thus formulated was employed to also generate flash-crowd traffic, i.e. a large volume of normal traffic that incapacitates a web server, similar in fashion to a DoS attack, albeit with non-malicious intent. Flash-crowd traffic generated based on the defined model was used to populate the dataset of legitimate network traffic, to fuzz the machine learning-based attack detection process. The two variants of DoS attack traffic differed in terms of the traffic intensities and the inter-packet arrival delays introduced to better analyse the type and quality of DoS attacks that can be launched against HTTP/2 services. A detailed analysis of HTTP/2 features is also presented to rank relevant network traffic features for all four traffic models presented. These features were ranked based on legitimate as well as attack traffic observations conducted in this study. The study shows that machine learning-based analysis yields better classification performance, i.e. lower percentage of incorrectly classified instances, when the proposed HTTP/2 features are employed compared to when HTTP/1.1 features alone are used. The study shows how HTTP/2 DoS attack can be modelled, and how future work can extend the proposed model to create variant attack traffic models that can bypass intrusion-detection systems. Likewise, as the Internet traffic and the heterogeneity of Internet-connected devices are projected to increase significantly, legitimate traffic can yield varying traffic patterns, demanding further analysis. The significance of having current legitimate traffic datasets, together with the scope to extend the DoS attack models presented herewith, suggest that research in the DoS attack analysis and detection area will benefit from the work presented in this thesis

    Novel neural approaches to data topology analysis and telemedicine

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen676. INGEGNERIA ELETTRICAnoopenRandazzo, Vincenz

    Deep Clustering and Deep Network Compression

    Get PDF
    The use of deep learning has grown increasingly in recent years, thereby becoming a much-discussed topic across a diverse range of fields, especially in computer vision, text mining, and speech recognition. Deep learning methods have proven to be robust in representation learning and attained extraordinary achievement. Their success is primarily due to the ability of deep learning to discover and automatically learn feature representations by mapping input data into abstract and composite representations in a latent space. Deep learning’s ability to deal with high-level representations from data has inspired us to make use of learned representations, aiming to enhance unsupervised clustering and evaluate the characteristic strength of internal representations to compress and accelerate deep neural networks.Traditional clustering algorithms attain a limited performance as the dimensionality in-creases. Therefore, the ability to extract high-level representations provides beneficial components that can support such clustering algorithms. In this work, we first present DeepCluster, a clustering approach embedded in a deep convolutional auto-encoder. We introduce two clustering methods, namely DCAE-Kmeans and DCAE-GMM. The DeepCluster allows for data points to be grouped into their identical cluster, in the latent space, in a joint-cost function by simultaneously optimizing the clustering objective and the DCAE objective, producing stable representations, which is appropriate for the clustering process. Both qualitative and quantitative evaluations of proposed methods are reported, showing the efficiency of deep clustering on several public datasets in comparison to the previous state-of-the-art methods.Following this, we propose a new version of the DeepCluster model to include varying degrees of discriminative power. This introduces a mechanism which enables the imposition of regularization techniques and the involvement of a supervision component. The key idea of our approach is to distinguish the discriminatory power of numerous structures when searching for a compact structure to form robust clusters. The effectiveness of injecting various levels of discriminatory powers into the learning process is investigated alongside the exploration and analytical study of the discriminatory power obtained through the use of two discriminative attributes: data-driven discriminative attributes with the support of regularization techniques, and supervision discriminative attributes with the support of the supervision component. An evaluation is provided on four different datasets.The use of neural networks in various applications is accompanied by a dramatic increase in computational costs and memory requirements. Making use of the characteristic strength of learned representations, we propose an iterative pruning method that simultaneously identifies the critical neurons and prunes the model during training without involving any pre-training or fine-tuning procedures. We introduce a majority voting technique to compare the activation values among neurons and assign a voting score to evaluate their importance quantitatively. This mechanism effectively reduces model complexity by eliminating the less influential neurons and aims to determine a subset of the whole model that can represent the reference model with much fewer parameters within the training process. Empirically, we demonstrate that our pruning method is robust across various scenarios, including fully-connected networks (FCNs), sparsely-connected networks (SCNs), and Convolutional neural networks (CNNs), using two public datasets.Moreover, we also propose a novel framework to measure the importance of individual hidden units by computing a measure of relevance to identify the most critical filters and prune them to compress and accelerate CNNs. Unlike existing methods, we introduce the use of the activation of feature maps to detect valuable information and the essential semantic parts, with the aim of evaluating the importance of feature maps, inspired by novel neural network interpretability. A majority voting technique based on the degree of alignment between a se-mantic concept and individual hidden unit representations is utilized to evaluate feature maps’ importance quantitatively. We also propose a simple yet effective method to estimate new convolution kernels based on the remaining crucial channels to accomplish effective CNN compression. Experimental results show the effectiveness of our filter selection criteria, which outperforms the state-of-the-art baselines.To conclude, we present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a founding contribution to the area of applying deep clustering to time-series data by presenting the first case study in the context of movement behavior clustering utilizing the DeepCluster method. The results are promising, showing that the latent space encodes sufficient patterns to facilitate accurate clustering of movement behaviors. Finally, we identify state-of-the-art and present an outlook on this important field of DTSC from five important perspectives
    • …
    corecore