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Abstract The Dendritic Cell Algorithm (DCA) is an immune-inspired algorithm, developed for the
purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which
results in a ‘context aware’ detection system. Previous applications of the DCA have included the
detection of potentially malicious port scanning activity, where it has produced high rates of true
positives and low rates of false positives. In this work we aim to compare the performance of the
DCA and of a Self-Organizing Map (SOM) when applied to the detection of SYN port scans, through
experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the
DCA in terms of the data fusion method employed. It is shown that the results of the two systems are
comparable, and both produce false positives for the same processes. This shows that the DCA can
produce anomaly detection results to the same standard as an established technique.

Keywords Dendritic Cell Algorithm · Self-Organizing Map · SYN scan detection · comparison

1 Introduction

The Dendritic Cell Algorithm (DCA) is an immune-inspired algorithm, which is the latest addition
to a family of algorithms termed Artificial Immune Systems (AIS). Such systems use abstract models
of particular components of the human immune system to produce systems which perform similar
computational tasks to those seen in the human body. Previous approaches drew inspiration from the
adaptive immune system producing algorithms such as clonal selection [14] and negative selection [33].
The negative selection approach has been used extensively in the domain of computer security specif-
ically in the detection of potential intrusions [44]. Such systems enjoyed initial success, but have since
been plagued with problems regarding scalability and the generation of excessive numbers of false
positive alerts.

Aickelin et al. [1] proposed an alternative which suggests that successful AIS should be constructed
using the ‘danger theory’ as inspiration. The danger theory suggests that the immune system responds
to signals generated by the host cells (i.e. by the tissue) during cell stress, ultimately leading to the
targeting of proteins present under the conditions of cell stress. It is a competing immunological theory,
though it is still widely debated within immunology itself. This theory is centred around the detection
of ‘danger signals’, which are released as a result of unplanned cell death, a process termed necrosis.
Upon the detection of danger signals, the immune system can be activated. In the absence of necrosis,
cells may die in a controlled manner as part of the regulatory processes found within the tissue, in a
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2

process called apoptosis. Dendritic cells (DCs) are sensitive to both signal types and have the ability
to stimulate or suppress the adaptive immune system. DCs are the intrusion detection agents of the
human immune system, policing the tissue for potential sources of damage in the form of signals and
for potential culprits responsible for the damage in the form of ‘antigen’. Antigens are proteins which
can be ‘presented’ to the adaptive immune system by DCs, and can belong to pathogens or to the host
itself.

The DCA incorporates danger-based DC biology to form an algorithm that is both truly bio-inspired
and is capable of performing anomaly detection. It is a population based algorithm, where multiple
DCs are programmed to process signals and antigen. ‘Signals’ are mapped to context information, such
as the behaviour of a monitored, e.g. CPU usage or network traffic statistics. ‘Antigens’ are mapped
as potential causes for the changes in behaviour, e.g. the system calls of a running program. The DCA
correlates the antigen and signal information across the population of cells to produce a consensus
coefficient value which is assessed to determine anomalous antigen.

The DCA has been successfully applied to a subset of intrusion detection problems, focussing on port
scan detection. Port scans are used to establish network layout and to uncover vulnerable computers.
The detection of the scanning phase of an attack can be highly beneficial, as upon its detection the
level of security can be increased across a network in response. The DCA has been applied to both
ping scans and SYN scans in realtime and offline [27] [25]. The algorithm produced high rates of true
positives and low rates of false positives.

While the performance of the DCA on these problems appears to be good, thus far no direct
comparison has been performed with another system on the same port scan data. The need for a
rigorous comparison is necessary to truly demonstrate the capabilities of this algorithm. The signal
processing component housed within the DCA bears some resemblance to the function of a neural
network [13]. Given these superficial similarities, the obvious next-step for the development of the DCA
is to compare its performance to that of a neural network based system, such as a Self-Organizing Map
(SOM) [47].

SOM is a clustering method of unsupervised learning where high dimensional data is mapped to
a lower dimensional space to create a feature map. This map is constructed from training data and
consists of a series of interconnected nodes. Upon the analysis of the test data, the incoming data items
are matched against nodes in the map with similar characteristics. SOM uses a similar process to a
single-layer neural network to generate the map, and a simple distance metric is used to match the
incoming test data to the most appropriate node. This technique can be used for anomaly detection
as the training data can consist of normal data items, with unclustered data representing a potential
anomaly. SOM is an excellent choice for comparison as it has a history of application within computer
security and can be manipulated to use similar input data as used with the DCA.

The aim of this paper is to compare the DCA with a SOM. To achieve this aim the two algorithms
are applied to the detection of an outbound SYN-based port scan using data captured from previous
real-time experiments performed with the DCA [25]. The results of this comparison indicate that the
DCA and SOM are both equally as effective at detecting SYN based port scans, and appear to make
similar false positive errors. As a baseline a k-means clustering algorithm is applied to the signals in
isolation.

This paper is structured as follows. In Section 2, the relevant background and context information
is given regarding problems in computer security and how these problems relate to port scanning in
addition to a summary of current port scanning techniques. In Sections 3 and 4, descriptions are given
of the DCA and SOM respectively, including details of their implementations. In Section 5, the two
approaches are compared experimentally. In Section 6 we perform an analysis and comparison between
the two systems based on the obtained results and debate their differences and similarities, further
validated by a baseline series. In the final sections we discuss the results of these comparisons and
present the implications for the future of the DCA.

2 Related Work

2.1 Overview

As this paper encompasses a variety of techniques and concepts, this section is subdivided into three
parts. Firstly, the problems associated with port scans are described followed by a description of current
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3

scan detection techniques. This is followed by the related computer security work in AIS, including the
development of the DCA and the motivation for its development. This section continues with a brief
overview of the use of various SOM algorithms in computer security.

2.2 Port Scanning and Detection

2.2.1 Introduction to Port Scanning

Insider attacks are one of the most costly and dangerous attacks performed against computerised
systems, with a large amount of known intrusions of intrusions attributed to internal attackers [6].
This type of intrusion is defined through the attacker being a legitimate user of a system who behaves
in an unauthorised manner. Such insider attacks have the potential to cause major disruption given
that a large number of networks do not employ internal firewalling with many security countermeasures
focussing on the detection of external intruders. Insiders frequently know and have access to network
topology information. As insiders operate from within an organisation, this provides them with scope
to abuse a weak link in the security chain, namely the end users. Having knowledge and relationships
with other network users brings with it the potential to coerce passwords from legitimate users for
the purpose of gaining access across multiple machines on a network. This information can be used to
steal sensitive data, to cause damage to the network or to disguise the identity of the true attacker.

Such attacks frequently involve multiple stages. The initial stage is the information gathering stage,
which is followed by monitoring of potential victims, finally involving an intrusion. The information
gathering stage involves scouting the network for potential victim host machines to suit the nature of
the attack. For example, the insider may wish to exploit an FTP service and would therefore search the
network for hosts running FTP. Port scanning is used in the information gathering stage to retrieve
which hosts are currently running on the network, the IP addresses and DNS names of each host,
which ‘ports’ are currently ‘open’ and named running host services.

It is wise for an attacker to understand the network in question, to avoid wasting time trying to
exploit machines which are not receptive to an attack. It is pointless attempting to attack a host which
is no longer connected to the network! While scanners are not an ‘intrusion’ in the classical sense, they
are often a pre-cursor to an actual attack, and evidence of sufficient scanning across a network can
suggest that an attack may soon follow [39].

A port is a specific endpoint on a network, which is a virtual address as part of a virtual circuit. It is
important to note that a port in this context is an abstract concept, not to be confused with a physical
port such as a serial port. Ports allow for the direct exchange of information between two hosts. It is
similar to a telephone number and is more specific than an IP address as it provides a direct connection
between two endpoints. Probing a port with a packet leads to information on the state of the port and
its host. Ports can be in three states if the scanned host is available, namely open, closed or filtered.
Port scanning tools such as nmap [17] can be used to send packets to various ports on remote hosts to
gain understanding regarding the status of the scanned host. The type of packet used to perform such
probes can be one of a number of types, including Internet Control Message Protocol (ICMP) ping,
TCP, and UDP. According to Bailey-Lee et al. [4], TCP SYN scans are the most commonly observed
scan, accounting for over half of all scans performed.

Additionally the scans themselves can be performed in a number of different ways, varying the
number of hosts scanned, the number of ports scanned, the IP address of the sender and the rate
at which packets are sent. The combination of the number of hosts (IP addresses) scanned and the
number of ports gives rise to three combinations of scan:

– Horizontal Scans: A wide range of IP addresses are scanned, though only one port per host is
probed. This kind of scan can be used if a particular service is to be exploited, such as an FTP
exploit whose success would depend on finding a host running the particular version of an FTP
server/client.

– Vertical Scans: A range of ports are specified for a single IP address. This is a scan of a single
host, where multiple services can be searched for. Example usage of this type of scan includes
characterising a specific target such as a web server to assess if any exploitable services are currently
running.
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Attacker

Victim host present with open ports

SYN

SYN/ACK
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Victim host present with closed ports

SYN
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Attacker

Victim host not attached to IP address

Firewall
SYN

RST

Fig. 1 The TCP/IP packet flow for SYN scans under various conditions.

– Block Scans: This is a combination of both types of scan, where multiple ports are probed across a
range of IP addresses. This search is especially good for uncovering the topology of a network, for
locating servers, printers, client hosts etc.

A SYN scan, apart from being the most prevalent scan, can be used to retrieve a substantial amount
of information regarding the status of a host or a network. SYN scans exploit the ‘3-way handshake’
employed by the TCP protocol. The 3-way handshake describes the specific manner in which two
endpoints communicate with each other and is the initial step in opening a TCP data stream. For
example two hosts are connected to one another via a switched ethernet, host A and host B. To initiate
TCP connections between A and B, A sends a TCP SYN (synchronisation) packet to B. Provided that
B can receive such TCP packets, B sends a SYN/ACK (synchronisation/acknowledgement) packet to
A in response to the initial SYN request. Host A then replies with ACK packets which are sent until
all data in the transmission stream is transferred. Upon completion, A sends B a FIN (finish) packet,
signalling that the data transfer is complete. Port scans based on TCP SYN packets exploit a flaw in
this 3-way connection method.

Instead of completing the 3-way handshake of ‘SYN, SYN/ACK, ACK’, upon receipt of the
SYN/ACK packet, the scanning host does not send an ACK packet in response: depending on the
initial response of remote host B depends on how the scanning host behaves. The various responses to
SYN requests are depicted in Figure 1.

In the case of a host with an open port, the victim sends the attacker a SYN/ACK packet in
response to the original SYN request. Instead of the attacker responding back with an ACK packet, a
RST packet is sent instead. This leaves the TCP connection ‘half open’. As the conversation remains
incomplete, it does not appear in system logs, making the SYN scan stealthy. Should the scanned victim
host have no open ports the attacker receives a RST packet. This however, informs the attacker that a
host is connected to an IP address. If no host is associated with a scanned IP address, the connection
will time out on the attackers machine, or the attacker will receive a “destination unreachable error”
from an interim router or firewall.

2.2.2 Port Scan Detection

Port scan detection components are frequently integrated with commercial intrusion detection systems
such as Snort [62]. The detection method used involves generating an ‘alert’ upon receiving ‘X’ con-
nections within ‘Y ’ seconds from host IP address ‘Z’. There are three problems with this method.
Firstly, the majority of port scanners are equipped with the facility to fake the IP address, often
called spoofing, of the source machine, rendering Z unreliable. Secondly most scanners allow for the
randomisation of the duration between the sending of individual packets, including slowing the rate of
sending to avoid detection. This makes the detection of the scan difficult if Y is defined as a constant
value. Finally, should the port scan detector be host based, the performance of a detector in response
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5

to an incoming scan will be impaired for the detection of horizontal scans, as only a single connection
is made to each host. This problem can be overcome through the detection of outbound port scans, as
per extrusion detection [6].

To overcome some of these problems a handful of systems are developed as dedicated port scan
detectors. For example ‘Spice’ developed by Staniford et al. [68] incorporates an anomaly probability
score to dynamically adjust the duration of Y . This is useful for the detection of stealthier scans which
use randomised or slowed rates of scan packets sending. This detection technique is termed reverse
sequential hypothesis testing. It is used to further extent in research performed by Jung et al. [39],
where it is combined with a network based approach and is used to identify potentially malicious
remote hosts in addition to detecting scanning activity.

In our previous research, the DCA is applied to the detection of various port scans. The DCA is
implemented as a host based system monitor, detecting the performance of an outbound port scan, in
attempt overcome some of the problems with using static time windows. Initially the DCA is applied to
the detection of simple ICMP ping scans [29], where the algorithm was used in real-time and produced
high rates of true positives and low rates of false positives.

In addition, DCA is used in the detection of a standard SYN scans, also in a real-time environ-
ment [27]. The results of this study show that the DCA shows promise as a successful port scan
detector. However the results presented were preliminary and as the experiments were performed ‘live’
in real-time, certain sensitivity could not be performed. Therefore, it is necessary to take this investi-
gation further and explore this application with more rigour. The experiments described in this paper
are extension experiments from the SYN scan data used in Greensmith and Aickelin [25].

2.3 Artificial Immune Systems and Security

2.3.1 Immunity by Design

Numerous computer security approaches are based on the principles of anomaly detection. This tech-
nique involves producing a profile of normal host behaviour, with any significant deviation from this
profile presumed to be malicious or anomalous. Various AIS have been applied as anomaly detection
algorithms within the field of computer security, given the obvious parallel of fighting computer viruses
with a computer immune system [18]. The research of AIS in security has extended past the detection
of viruses and has focussed on network intrusion detection [45].

The AIS algorithms used in security are generally based on the principles of “self-nonself discrimi-
nation”. This is an immunological concept that the body has the ability to discriminate between self
and nonself (i.e. foreign) protein molecules, termed antigen. The natural mechanism by which the body
learns this discrimination is termed negative selection. In this process, self-reactive immune cells are
deleted during a ‘training period’ in embryonic development and infancy. This results in a tuned popu-
lation of cells, poised to react against any threat which is deemed nonself. These principles are used to
underpin the supervised negative selection algorithm. Negative selection itself is described eloquently
in a number of sources including the work of Hofmeyr and Forrest [32], Ji and Dasgupta [37] and
Balthrop et al. [5].

Following its initial success in the detection of system call anomalies [32], the negative selection
approach was applied to the detection of anomalous network connections [44], where potential problems
with scaling and excessive false positive rates were uncovered. These empirical studies suggest that
negative selection might not be a suitable algorithm for use in computer security, with these notions
confirmed by the theoretical work performed by Stibor et al. [69]. Further analysis performed by the
same authors has given insights into the theoretical reasons for negative selection’s problems [70], with
more evidence presented recently by Stibor et al. in [71].

2.3.2 The Danger Project: The Missing Link?

The criticisms of negative selection have to some degree overwhelmed the positive aspects of its de-
velopment and have in some respect discredited the use of AIS in security [66]. Issues such as scaling
cannot be ignored, especially as anomaly detection is often required to be performed in real-time. The
theoretical proofs of these problems are evident and duly noted by the wider AIS community [72].The
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6

question of how to overcome these problems remains at the forefront of AIS research, focussing on the
incorporation of more advanced immunology.

An interdisciplinary approach is presented by Aickelin et al. [1], developed in 2003 through the Dan-
ger Project. Aickelin et al. believe that some of the problems shown with negative selection approaches
can be attributed to its biological naivety. It is recognised that the negative selection algorithm is
based on a naive model of central tolerance developed in the 1950s [12].

Aickelin et al. propose that through close collaboration with immunologists, computer scientists
will be able to develop more biologically realistic AIS which could potentially overcome the problems
of false positives and scaling observed with negative selection [1]. The DCA is developed using this
interdisciplinary approach [26], drawing inspiration from DCs as it is now widely accepted that these
cells are a major control unit in the human immune system.

The Danger Project brought innate immunology in to the AIS spotlight, as the innate immune
system is shown as responsible for the initial pathogen detection [52]. From this emerged two streams
of research which were based on innate principles, the Dendritic Cell Algorithm and the libtissue
system and its related algorithms [73]. The DCA will be explained in detail in Section 3, and is based
on an abstract model of the behaviour of natural DCs. The libtissue system is an innate immune
framework implemented as an API (application programming interface) [75].

2.3.3 Summary

AIS have been used within computer security for over a decade. Despite its initial success, the negative
selection algorithm was not as useful as first thought due to problems with scaling and the generation
of excessive amounts of false positives. These negative aspects have been shown both theoretically and
experimentally. To remedy this problem, the research proposed by Aickelin et al. [1] developed into
the DCA and the libtissue framework, both of which have shown promise in the areas of port scan
and exploit detection respectively.

2.4 SOM and Security

The Self-Organizing Map algorithm was developed by Teuvo Kohonen more than two decades ago [46],
yet its success in various fields of science, over the years, surpasses many other neural inspired algo-
rithms to date. The algorithm’s strengths lie in a number of important scientific domains. Namely
visualisation, clustering, data processing, reduction and classification. In more specific terms SOM is
an unsupervised learning algorithm that is based on the competitive learning mechanism with self-
organizing properties. Besides its clustering properties SOM can also be classed as a method for
multidimensional scaling and projection.

SOM algorithms have been first applied to computer security applications almost ten years after
the algorithm’s inception [19]. The majority of existing research however is limited to anomaly de-
tection, particularly network based intrusion detection [16]. Some work has been done on host based
anomaly detection using Kohonen’s algorithm, however such work is rare [35], which is surprising,
due to the algorithms suitability to handle multidimensional, thus multi-signal data. On numerous
occasions SOM algorithms have been used as a pre-processor to other computational intelligence tools,
such as Hidden Markov Models (HMM) [11] [10] [43] or Radial Basis Function Networks [36]. Compar-
isons of SOM algorithms with other anomaly detection approaches have been performed on numerous
occasions in the past. Notably a comparison with HMM [76], AIS [21] [22], traditional neural net-
works [63] [50] [38] [49] [8], k-means clustering [42] as well as Adaptive Resonance Theory [3].

2.4.1 SOM in Intrusion Detection

Besides the above mentioned comparisons of SOM algorithms with various computational intelligence
techniques, here we will describe the use of SOM algorithms in areas related to our comparison or that
could be of interest to the general reader.

A seminal paper on the use of SOM algorithms for intrusion detection was presented by Ramadas
et al. [59]. Their work employed the original SOM algorithm as a network based anomaly detection
module for a larger IDS. Besides being able to monitor all types of network traffic including SMTP
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protocol (email), the authors state that the SOM algorithm is particularly suitable to detect buffer-
overflow attacks. However, as with the majority of anomaly detection systems, the algorithm struggles
to recognise attacks which resemble normal behaviour in addition to boundary case behaviour, giving
rise to false positives.

Buffer overflow [20] attack detection was also tackled by Rhodes [60] using a multilayer SOM,
monitoring payloads. Bolzoni [9] also looked at payload monitoring using SOM by employing a two-
tier architecture system.

Gonzalez and Dasgupta [21] compared SOM against another AIS algorithm. Their Real-Valued
Negative Selection algorithm is based on the original Negative Selection algorithm proposed by Forrest
et al. [18] with the difference of using a new representation. The original Negative Selection algorithm
has been applied to Intrusion Detection problems in the past and has received some criticism regarding
its “scaling problems” [44]. Gonzalez and Dasgupta argue that their new representation is the key to
avoiding the scaling issues of the original algorithm. Their results showed that for their particular
problem the SOM algorithm and their own algorithm were comparable overall.

Albarayak et al. [2] proposed a unique way of combining a number of existing SOM approaches
together in a node based IDS. Their thesis is of automatically determining the most suitable SOM
algorithm for each node within their system. Such a decision can be achieved using heuristic rules that
determine a suitable SOM algorithm based on the nodes environment.

Miller and Inoue [55] suggested using multiple intelligent agents, each of which contains a SOM on
its own. Such agents combine a signature and anomaly based detection technique in order to achieve
a collaborative IDS, which is able to improve its detection capabilities with the use of reinforcement
learning.

DeLooze [15] employed an ensemble of SOM networks for the purpose of an IDS as well as for attack
characterisation. Genetic algorithms were used for attack type generation, subsequently employed as
part of an IDS that is able to discriminate the type of attack that has occurred.

SOM algorithms have also been used for the analysis of executables. Yoo [78] analysed windows
executables by creating maps of EXE files before and after an infection by a virus. Such maps have
been subsequently analysed visually and found to have contained patterns, which can be thought of
as virus masks. The author concludes by stating that such masks can be used in the future for virus
detection in a similar manner to current anti-virus techniques. The difference being that a single mask
could detect viruses from a whole virus family rather than being able to find only a single variant.

Besides the original single network SOM algorithm, the previously described newer SOM variations
were employed for various security research scenarios. A number of papers discuss the advantages of
using multiple or hierarchical SOM networks in contrast to a single network SOM. These include the
work of Sarasamma et al. [64], Lichodzijewski et al. [51] and Kayacik et al. [41] [30] who all used
various versions of the Hierarchical SOM or employed multiple SOM networks for the purpose of
intrusion detection. Kayacik et al. [41] state that the best performance is achieved using a 2-layer
SOM and that their results are by far the best of any unsupervised learning based IDS to date.

2.4.2 Visualisation using SOM in IDS

Due to the SOM algorithm’s capability of visualising multidimensional data in a meaningful way, its use
lends itself ideally to its application in visualising computer security problems. Gonzalez et al. [23] use
this ability to visualise the self non-self space that they use for anomaly detection. This visualisation
presents a clear discrimination of the different behaviours of the monitored system. Hoglund et al. [34]
on the other hand employed visualisation of user behaviour. In their work various host based signals
were used for monitoring of users. A visual representation was subsequently presented to administrators
in order for them to be able to make an informed decision in case of unacceptable user behaviour.

3 The Dendritic Cell Algorithm

3.1 Natural DCs

The DCA is based on the observed functions of natural dendritic cells. DCs are natural intrusion
detection agents, who monitor the host tissue for evidence of damage. In the human body, DCs have a
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dual role, as garbage collectors for tissue debris and as commanders of the adaptive immune system.
DCs belong to the innate immune system, and do not have the adaptive capability of the lymphocytes
of the adaptive immune system. DCs exist in three states of differentiation, immature, semi-mature
and mature, which determines their exact function [52]. Modulations between the different states are
dependent upon the receipt of signals while in the initial or immature state. Signals which indicate
damage cause a transition from immature to mature. Those signals indicating good health in the
monitored tissue cause a transition from immature to semi mature. The signals in question are derived
from numerous sources, including pathogens, from healthy dying cells, from damaged cells and from
inflammation. Each DC has the capability to combine the relative proportions of input signals to
produce its own set of output signals. Input signals processed by DCs are categorised based on their
origin:

PAMPs: Pathogenic associated molecular patterns are proteins expressed exclusively by bacteria,
which can be detected by DCs and result in immune activation [56]. The presence of PAMPS
usually indicates an anomalous situation.

Danger signals: Signals produced as a result of unplanned necrotic cell death. On damage to a cell,
the chaotic breakdown of internal components form danger signals which accumulate in tissue [53].
DCs are sensitive to changes in danger signal concentration. The presence of danger signals may
or may not indicate an anomalous situation, however the probability of an anomaly is higher than
under normal circumstances.

Safe signals: Signals produced via the process of normal cell death, namely apoptosis. Cells must
apoptose for regulatory reasons, and the tightly controlled process results in the release of various
signals into the tissue [54]. These ‘safe signals’ result in immune suppression. The presence of safe
signals almost certainly indicate that no anomalies are present.

Inflammation: Various immune-stimulating molecules can be released as a result of injury. Inflamma-
tory signals and the process of inflammation is not enough to stimulate DCs alone, but can amplify
the effects of the other three categories of signal [67]. It is not possible to say whether an anomaly is
more or less likely if inflammatory signals are present. However, their presence amplifies the above
three signals.

Dendritic cells act as natural data fusion agents, producing various output signals in response to
the receipt of differing combinations of input signal. The relative concentration of output signal is
used to determine the exact state of differentiation, expressed by the production of two molecules,
namely the mature and semi-mature output signals. During this phase they are exposed to varying
concentrations of the input signals. Exposure to PAMPs, danger signals and safe signals causes the
increased production of costimulatory molecules, and a resulting removal from the tissue and migration
to a local lymph node.

DCs translate the signal information received in the tissue into a context for antigen presentation,
i.e. the antigen presented in an overall ‘normal’ or ‘anomalous’ context. The antigen collected while in
the immature phase is expressed on the surface of the DC. Whilst in the lymph node, DCs seek out T-
lymphocytes (T-cells) and attempt to bind expressed antigen with the T-cells variable region receptor.
T-cells with a high enough affinity for the presented antigen are influenced by the output signals of
the DC. DCs exposed to predominantly PAMPs and danger signals are termed ‘mature DCs’; they
produce mature output signals, which activate the bound T-cells. Conversely, if the DC is exposed to
predominantly safe signals the cell is termed semi-mature and antigens are presented in a safe context,
as little damage is evident when the antigen is collected. The balance between the signals is translated
via the signal processing and correlation ability of these cells. The overall immune system response is
based on the systemic maturation state average of the whole DC population on a per antigen basis.
An abstract view of this process is presented in Figure 2.

3.2 Algorithm Overview

The purpose of the DCA is to correlate disparate data-streams in the form of antigen and signals and
to label groups of identical antigen as ‘normal’ or ‘anomalous’. This algorithm is population based
with each ‘cell’ expressed as an ‘agent’. The DCA is not only a classification algorithm, it also shares
properties with certain filtering techniques. It provides information representing how anomalous a group
of antigens are, not simply if a data item is anomalous or not. This is achieved through correlating
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Semi-mature

Mature 

Immature

-collect antigen
-receive signals
-in tissue

-present antigen
-produce costimulation
-provide tolerance cytokines
-in lymph node

-present antigen
-produce costimulation
-provide reactive cytokines
-in lymph node

Safe Signals

Danger Signals
PAMPS

Fig. 2 An abstract view of DC maturation and signals required for differentiation where cytokines are molec-
ular messengers between immune system cells.

Table 1 Table of cumulative output signals and their associated implications for the DCA.

Output signal Function
CSM signal assessed against a threshold to limit the duration

of DC signal and antigen sampling, based on a
migration threshold

Semi-mature signal terminal state to semi-mature if greater than re-
sultant mature signal value

Mature signal terminal state to mature if greater than resultant
semi-mature signal value

a time-series of input signals with a group of antigen. The signals used are pre-normalised and pre-
categorised data sources, which reflect the behaviour of the system being monitored. The co-occurrence
of antigen and high/low signal values forms the basis of categorisation for the antigen data. The primary
components of a DC based algorithm are as follows:

1. Individual DCs with the capability to perform multi-signal processing;
2. Antigen collection and presentation;
3. Sampling behaviour and state changes;
4. A population of DCs and their interactions with signals and antigen;
5. Incoming signals and antigen, with signals pre-categorised as PAMP, danger, safe or inflammation;
6. Multiple antigen presentation and analysis using ‘types’ of antigen;
7. Generation of anomaly coefficient for various different types of antigen.

Whilst in the immature state, the DC has three functions, which are performed each time a single
DC is updated, with the exact nature of this processing given in Section 3.4:

1. Sample antigen: the DC collects antigen from an external source (in our case, from the ‘tissue’)
and places the antigen in its own antigen storage data structure.

2. Update input signals: the DC collects values of all input signals present in the signal storage area.
3. Calculate interim output signals: at each iteration each DC calculates three temporary output

signal values from the received input signals, with the output values then added to form the cell’s
cumulative output signals.

The signal processing used to transform the input to interim output signals is shown in Figure 3,
with the implications of each output signal given in Table 1. Costimulatory molecule (CSM) signal is
used to limit the sampling duration of an individual cell. Each cell is assigned a migration threshold
value upon creation. The CSM values are incremented each time a cell receives signal input. Once
the CSM exceeds the cell’s migration threshold the cell is removed from the sampling population for
analysis. Different cells sample for different durations as each cell is assigned a random migration
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Thickness of line ~ Transforming Weight
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Mature-o
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Fig. 3 A representation of the three calculations performed by each DC, per update cycle, to derive the
cell’s outputs through fusing together the signal inputs. Two sample notations for the weights are shown. The
inflammation signal (if any) applies to all transformations shown and is therefore not depicted. Details of the
notation are given in Section 3.4.

threshold value (within a range to match the normalised range of the input signals). This leads to a
‘time-window’ effect which adds robustness to the algorithm, as the migration is signal dependent with
no fixed time dependency. During periods where signal values are large the rate of migration is higher
and therefore tighter coupling is given to the signal and antigen data. This effect is explored in more
detail in Oates et al. [58] where a theoretical analysis is provided.

Upon transition to a matured state, the DCs output signals are assessed to form the context of all
antigen collected. A higher ’mature’ output signal value results in the assignment of a context value
of 1 to the DC, whereas a higher ‘semi-mature’ output signal value results in a context value of 0.
All antigen sampled by the DC over its lifetime are output with the assigned context value. Upon
completion of all data processing the mean context in which the antigens are presented is calculated
deriving an anomaly coefficient value per antigen type. Each antigen (suspect data item) is not unique,
but several identical antigens are sampled. The mature context antigen value - MCAV, is used to assess
is a particular antigen type is anomalous. The derivation of the MCAV per antigen type is shown in
Equation 1,

MCAVx =
Zx

Yx

(1)

where MCAVx is the MCAV coefficient for antigen type x, Zx is the number of mature context
antigen presentations for antigen type x and Yx is the total number of antigen presented for antigen
type x.

The effectiveness of the MCAV is dependent upon the use of antigen types. This means that the
input antigens are not unique in value, but belong to a population in themselves. For example, the
ID value of a running program is used to form antigen, with each antigen generated every time the
program sends an instruction to the low level system. Therefore a population of antigen is used, linked
to the activity of the program and all bearing the same ID number.

To process signals, antigens and cells the DCA uses two virtual compartments: tissue and lymph
nodes. The tissue is used as storage for antigens and signals and the lymph node is used for MCAV
generation. The tissue consists of antigen and signal containers from which the DCs sample the input
data. Signals are updated at regular intervals and are not removed upon sampling by a DC. Antigens
are input in an event-driven manner and are removed from the tissue antigen store upon sampling by
a DC.

We suggest that the updates of antigen, signals and cells are performed independently, based on
previous experience with this algorithm. This is represented in Figure 4. The three updates need not
occur simultaneously: this temporal correlation between asynchronously arriving data is performed
by the processing of the cells themselves. The population dynamics are used to perform the actual
anomaly detection. The ultimate classification of a particular type of antigen is derived not from a
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Fig. 4 A UML overview of the processes at the tissue level of the program, showing the asynchronous update
of cells, signals and antigen. It also shows the two main stages of update and initialisation and subsequent
analysis.

antigen

response

signal

antigen store

signal store

compartment

cells

clients server

systrace

signal collector

(AIS, DCs)

Fig. 5 Architecture used to support the DCA. Input data is processes via signal and antigen clients [75]. The
algorithm utilises this data and resides on a server.

single DC, but from an aggregate analysis produced across the DC population over the duration of an
experiment.

3.3 libtissue

The Danger Project [1] has produced a variety of research outcomes alongside the DCA. Such outcomes
include the development of danger theory and DC based immunology [77]; a framework for developing
immune inspired algorithms called libtissue [75]; an investigation into the interactions between the
innate and adaptive immune system; artificial tissue [7] and the application of a naive version of the
DCA for the security of sensor networks. libtissue is the API used within the Danger Project for
the testing of ideas and algorithms, as shown in the works of Twycross [73] [75] and Greensmith et
al. [28] [29].

libtissue is a library implemented in C which assists the development of immune inspired algo-
rithms on real-world data. It is based on principles of innate immunology [74] [75], through the use
of techniques from modelling, simulation and artificial life. It allows researchers to implement algo-
rithms as a collection of cells, antigen and signals, interacting within a specified compartment. The
implementation has a client/server architecture which separates data collection using clients, from data
processing on a server, as shown in Figure 5.

Input data is processed using libtissue clients, which transform raw data into antigen and signals.
Algorithms can be implemented within the libtissue server, as it provides all the required components
such as the ability to define different cell types, specifying receptors, compartments and internal signals.
Antigen and signal sources can be added to libtissue servers, facilitating the testing of the same
algorithm with a number of different data sources. Input data from the client are passed to and
represented in a compartment contained on a server known as the tissue compartment. This is a space
in which cells, signals and antigen interact. Each tissue compartment has a fixed-size antigen store
where collected antigens are placed. The tissue compartment also stores levels of signals, set by the
input clients.
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Fig. 6 Illustration of the DCA showing data input, continuous sampling, the maturation process and aggregate
analysis.

3.4 DCA Implementation

The DCA is implemented as a libtissue server. Input signals are combined with antigen data, such
as a program ID number. This is achieved through using the population of artificial DCs to perform ag-
gregate sampling and data processing. Using multiple DCs means that multiple data items in the form
of antigen are sampled multiple times. If a single DC presents incorrect information, it becomes incon-
sequential provided that the majority of the DCs population derive the correct cell context represented
as the MCAV coefficient.

The DCA has two main stages: initialisation, and update. Initialisation involves setting various
parameters and is followed by the update stage. The update stage can be decomposed into tissue
update and cell cycle. Signal data is fed from the data-source to the tissue server through the tissue
client and is updated at a user defined rate. The cell cycle involves the regular update of the DC
population. Following the processing of all data, the MCAV coefficients are calculated for each antigen
type. An overview of this is given in Figure 6.

The tissue update is a continuous process, whereby the values of the tissue data structures are
refreshed. In this implementation, signals are updated at regular intervals - in our case, this is at a
rate of once per second. The update of antigen occurs on an event-driven basis, with antigen items
updated in the tissue each time new raw data appears in the system. The updated signals provide the
input signals for the population of DCs.

The cell cycle is a discrete process occurring at a user defined rate of once per second in this
research. Signals and antigen from the tissue data structures are accessed by the DCs during the cell
cycle. This includes an update of every DC in the system with new signal values and antigen. The
new values are processed and accumulated as the output vector of signals is generated. The cell cycle
and update of tissue continues until a stopping criterion is reached. Finally, the aggregation stage is
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initiated, where all collected antigens are subsequently analysed and the MCAV per antigen derived.
This procedure forms the required post-processing for use with this algorithm.

3.5 Parameters and Structures

The algorithm is described formally using the following terms.

– Indices:
i = 0, ..., I input signal index;
j = 0, ..., J input signal category index;
k = 0, ...,K tissue antigen index;
l = 0, ..., L DC cycle index;
m = 0, ...,M DC index;
n = 0, ..., N DC antigen index;
p = 0, ..., P DC output signal index.

– Parameters:
I = number of input signals per category (e.g. PAMP, Danger, Safe);
J = number of categories of input signal;
K = number of antigen in tissue antigen vector;
L = number of DC cycles;
M = number of DCs in population;
N = DC antigen vector size ;
P = number of output signals per DC;
Q = number of antigens sampled per DC, per cycle;
R = number of DC antigen receptors;
Tmax = tissue antigen vector size.

– Data Structures:
T = {S, A} - the tissue;
S = tissue signal matrix;
sij = a signal index i, category j in the signal matrix S;
A = tissue antigen vector;
ak = antigen k in the tissue antigen vector;
DCm={s(m), a(m), ōp(m), tm}- a DC within the population;
s(m) = signal matrix of DCm;
a(m) = antigen vector of DCm;
op(m) = output signal p of DCm;
ōp(m) = cumulative output signal p of DCm;
tm = migration threshold of DCm;
wijp = transforming weight from sij to op.

op(m) =
∑

i

∑

j 6=3

wijpsij(m) ∀p (2)

Each DCm transforms each value of s(m) to op(m). In Equation 2, a specific example is given for
use with four input signals, with one signal per category and consists of some additional components.
Additionally, the j 6= 3 component implies that signal category index is not summed with the other
three signal categories i.e. inflammation is not treated in the same manner as the other signals, as
shown in this equation. The interrelationships between the weights, determined through practical
immunology, are shown in Table 2.

The tissue has containers for signal and antigen values, namely S and A. In this example version
of the DCA, there are four categories of signal (J = 3) and one signal per category (I = 0). In this
instantiation s0,0 = PAMP signals, s0,1 = danger signals and s0,2 = safe signals and s0,3= inflammation.
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Table 2 Derivation and interrelationship between weights in the signal processing equation, where the values
of the PAMP weights are used to create all other weights relative to the PAMP weight. W1 is the weight to
transform the PAMP signal to the CSM output signal and W2 is the weight to transform the PAMP signal to
the mature output signal.

wijp j = 0 j = 1 j = 2

p = 0 W1 W1

2
W1 ∗ 1.5

p = 1 0 0 1

p = 2 W2 W2

2
-W2 ∗ 1.5

An antigen store is constructed for use within the tissue cycle where all DCs in the population can
collect antigen.

The cell update component maintains all DC data structures including the DC population of set
size M . Each DC has an input signal matrix, antigen vector, cumulative output signals and migration
threshold. The internal values of DCm are updated, based on current data in the tissue signal matrix
and antigen vector. The DC input signals, s(m) use the identical mapping for signal categories as tissue
s and are updated every cell cycle iteration. Each s(m) for DCm is updated via an overwrite every
cell cycle. These values are used to calculate output signal values, op(m), for DCm, which are added
cumulatively over a number of cell cycles to form ōp(m), where p = 0 is costimulatory value, p = 1 is
the semi-mature DC output signal and p = 2 is the mature DC output signal. With each cell update,
DCs sample R antigens from the tissue antigen vector A.

After the internal values of a DC are updated, o0 is assessed against tm the cell’s migration threshold.
If o0 is greater than tm, the DC is ‘removed’ from the tissue. Here, ‘remove’ means that the DC is
de-allocated the receptors needed to sample the signal matrix and to collect antigen. On the next
update cycle, the remaining output signals are checked and the analysis procedure is initiated.

In this implementation, each DC is assigned a random value for tm, within a specified range. The
random value adds some diversity to the DC population. The value of o0 is increased on exposure
to any signal and proportionately to the strength of the input signal. By using randomly assigned
migration thresholds, each DC samples the signal matrix a different number of times throughout its
lifetime. Some exist for a short period sampling once or twice, others can persist for longer, dependent
on the strength of the signals. This creates a variable time window effect for the sampling.

Pseudocode for this specific instantiation of the DCA is given in Algorithm 1. This pseudocode
shows both the update of the tissue and the individual DCs. The stages of the algorithm are shown,
namely initialisation, update and analysis. While this provides the detail of the DC update mechanisms,
this pseudocode does not encapsulate the asynchronous nature of the update stages. As libtissue
is a multithreaded framework, the three updates are controlled by three different processes, therefore,
the three updates occur asynchronously. This architecture is particularly suited for real time data
processing as updates occur as and when they are required.

3.6 Antigen Aggregation

Once DCm has been removed from the population, the contents of a(m) and values ōp(m) are logged
to a file for the aggregation stage. Once completed, s(m), a(m) and ōp(m) are all reset and DCm is
returned to the sampling population. The re-cycling of DCs continues until the stopping condition is
met (l = L). Once all data has been processed by the DCs, the output log of antigen-plus-context is
analysed.

The same antigen is presented multiple times with different context values. This information is
recorded in a log file. The total fraction of mature DCs presenting said antigen (where ō1 > ō2) is
divided by the total amount of times the antigen was presented namely ō1/(ō1 + ō2). This is used to
calculate the mean MCAV. Equation 1 describes this process.
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input : T = {S, A}
output: a and context

create DCs;
initialise parameters {I, J, K, L, M, N, O, P, Q};
for l < L do

update A and S;
for m = 0 to M do

for n = 0 to Q do
DCm samples Q antigen from A;

end
for i = 0 to I and j = 0 to J do

sDC
ij = sij ;

end
for n = 0 to N do

DCm processes an(m);
end
for p to P do

compute op;
ōp(m) = ōp(m) + op;

end

if o0(m) > tm then
DCm removed from population;
DCm migrate, print antigen and context;
DCm reset antigen vector and all signals;

end

end
l++;

end

analyse antigen and calculate MCAV
Algorithm 1: Pseudocode of the implemented DCA

3.7 Signals and Antigen

An integral part of DC function is the ability to combine multiple signals to produce context informa-
tion. The semantics of the different categories of signal are derived from the study of the influence of
the different signals on DCs in vitro. Definitions of the characteristics of each signal category are given
below, with an example of an actual signal per category. This categorisation forms the signal selection
schema. Any number of sources of information can be mapped using the outlined principles.

– PAMP - si0, e.g. the number of error messages generated per second by a failed network connection:
1. a signature of abnormal behaviour, e.g. an error message;
2. a high degree of confidence of abnormality associated with an increase in this signal strength.

– Danger signal - si1, e.g. the number of transmitted network packets per second:
1. measure of an attribute which significantly increases in response to abnormal behaviour;
2. a moderate degree of confidence of abnormality with increased level of this signal, though a low

signal strength can represent normal behaviour.
– Safe signal - si2 e.g. the inverse rate of change of number of network packets per second. A high

rate of change equals a low safe signal level and vice versa:
1. a confident indicator of normal behaviour in a predictable manner or a measure of steady-

behaviour;
2. measure of an attribute which increases signal concentration due to the lack of change in

strength.

Signals, though interesting, are inconsequential without antigen. To a DC, antigen is an element
which is carried and presented to a T-cell, without regard for the structure of the antigen. Antigen is
the data to be classified and works well in the form of an identifier, be it an anomalous process ID
or the ID of a data item [26]. At this stage, minimal antigen processing is performed and the antigen
presented is an identical copy of the antigen collected. Detection is performed through the correlation
of antigen with fused signals.
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4 Self-Organizing Maps

4.1 Biological Inspiration for SOM

Various properties of the brain were used as an inspiration for a large set of algorithms and compu-
tational theories known as neural networks. Such algorithms have shown to be successful, however a
vital aspect of biological neural networks was omitted in the algorithm’s development. This was the
notion of self-organization and spatial organization of information within the brain. In 1981 Kohonen
proposed a method which takes into account these two biological properties and presented them in his
SOM algorithm [46].

The SOM algorithm generates, usually, two dimensional maps representing a scaled version of
n-dimensional data used as the input to the algorithm. These maps can be thought of as “neural
networks” in the same sense as SOM’s traditional rivals, artificial neural networks (ANNs). This is
due to the algorithm’s inspiration from the way that mammalian brains are structured and operate
in a data reducing and self-organised fashion. Traditional ANNs originated from the functionality and
interoperability of neurons within the brain. The SOM algorithm on the other hand was inspired by
the existence of many kinds of “maps” within the brain that represent spatially organised responses.
An example from the biological domain is the somatotopic map within the human brain, containing a
representation of the body and its adjacent and topographically almost identical motor map responsible
for the mediation of muscle activity [47].

This spatial arrangement is vital for the correct functioning of the central nervous system [40]. This
is because similar types of information (usually sensory information) are held in close spatial proximity
to each other in order for successful information fusion to take place as well as to minimise the distance
when neurons with similar tasks communicate. For example sensory information of the leg lies next to
sensory information of the sole.

The fact that similarities in the input signals are converted into spatial relationships among the
responding neurons provides the brain with an abstraction ability that suppresses trivial detail and
only maps most important properties and features along the dimensions of the brain’s map [61].

4.2 SOM Algorithm Overview

As the algorithm represents the above described functionality, it contains numerous methods that
achieve properties similar to the biological system. The SOM algorithm comprises of competitive
learning, self-organization, multidimensional scaling, global and local ordering of the generated map
and its adaptation.

There are two high-level stages of the algorithm that ensure a successful creation of a map. The
first stage is the global ordering stage in which we start with a map of predefined size with neurons
of random nature and using competitive learning and a method of self-organization, the algorithm
produces a rough estimation of the topography of the map based on the input data. Once a desired
number of input data is used for such estimation, the algorithm proceeds to the fine-tuning stage,
where the effect of the input data on the topography of the map is monotonically decreasing with
time, while individual neurons and their close topological neighbours are sensitised and thus fine tuned
to the present input.

The original algorithm developed by Kohonen comprises of initialisation followed by three vital
steps which are repeated until a condition is met:

– Choice of stimulus
– Response
– Adaptation

Each of these steps are described in detail in the next section.

4.3 Algorithmic Detail and Implementation

A number of existing software packages that contain an implementation of the SOM algorithm are
available, however these are not ideal for some types of security research, such as real-time detection,
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due to their limited speed and integratability. For this reason a C++ based implementation is developed
according to the original incremental SOM algorithm as described by Kohonen [48]. In this section a
detailed analysis of the implemented algorithm and its step by step functional description follows.

4.3.1 Initialisation

A number of parameters have to be chosen before the algorithm is to begin execution. These include
the size of the map, its shape, the distance measure used for comparing how similar nodes are, to
each other and to the input feature vectors, as well as the kernel function used for the training of the
map. Kohonen suggested recommended values for these parameters [47], which are used throughout
our experiments. The values used in this paper are described in Section 5, found in Table 8. Once these
parameters are chosen, a map is created of the predefined size, populated with nodes, each of which is
assigned a vector of random values, wi, where i denotes node to which vector w belongs.

4.3.2 Stimulus Selection

The next step in the SOM algorithm is the selection of the stimulus that is to be used for the generation
of the map. This is done by randomly selecting a subset of input feature vectors from a training data
set and presenting each input feature vector, x, to the map, one item per epoch. An epoch represents
one complete computation of the three vital steps of the algorithm.

4.3.3 Response

At this stage the algorithm takes the presented input, x and compares it against every node i within
the map by means of a distance measure between x and each nodes’ weight vector wi. For example this
can be the Euclidean distance measure shown in Equation 3, where ||.|| is the Euclidean norm and wi

is the weight vector of node i. This way a winning node can be determined by finding a node within
the map with the smallest Euclidean distance from the presented vector x, here signified by c.

c = argmin{||x− wi||} (3)

4.3.4 Adaptation

Adaptation is the step where the winning node is adjusted to be slightly more similar to the input x.
This is achieved by using a kernel function, such as the Gaussian function (hci) as seen in Equation 4
as part of a learning process.

hci(t) = α(t).exp

(

−
||rc − ri||

2

2σ2(t)

)

(4)

In the above function, α(t) denotes a “learning-rate factor” and σ(t) denotes the width of the
neighbourhood affected by the Gaussian function. Both of these parameters decrease monotonically
over time (t). During the first 1,000 steps, α(t) should have reasonably high values (e.g. close to 1).
This is called the global ordering stage and is responsible for proper ordering of wi. For the remaining
steps, α(t) should attain reasonably small values (≥ 0.2), as this is the fine-tuning stage where only
fine adjustments to the map are performed. Both rc and ri are location vectors of the winner node
(denoted by subscript c) and i respectively, containing information about a node’s location within the
map.

wi(t + 1) = wi(t) + hci(t)[x(t)− wi(t)] (5)

The learning function itself is shown in Equation 5. Here the Gaussian kernel function hci is responsible
for the adjustment of all nodes according to the input feature vector x and each node’s distance from
the winning node. This whole adaptation step is the vital part of the SOM algorithm that is responsible
for the algorithm’s self-organisational properties.



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

18

4.3.5 Repetition

Stimulus selection, Response and Adaptation are repeated a desired number of times or until a map of
sufficient quality is generated. For our experiment this was set to a value suggested by Kohonen [48].
He states that the number of steps should be at least 500 times the number of map units. For this
reason 100,000 epochs were used in our experiments. Another possible mechanism for the termination
of the algorithm is the calculation of the quantization error, which is the mean of ||x − wc|| over the
training data. Once the overall quantization error falls below a certain threshold, the execution of
the algorithm can stop as an acceptable lower dimensional representation of the input data has been
generated.

5 Experimental Comparison

5.1 Scenarios

For the experiments in this paper, two data sets are compiled, collected using a system of signal
collection scripts with raw input signal data collected from the Linux /proc filesystem. One data set
is termed passive normal (PN) and contains a SYN scan performed without normal processes invoked
by a user i.e. scan and shell processes. The second data set is termed active normal (AN). This data
set contains an identical SYN scan but is combined with simultaneous instances of normal programs
which are used actively by a user throughout the duration of the session i.e. scan, shell processes and
a firefox web browser.

Block scans are conducted across 254 IP addresses connecting to multiple ports on each host
successfully probed. Approximately 70 hosts out of the 254 addresses scanned are available at any one
instance during the scan. For these scenarios, the DCA resides on a client machine which is connected
to the main network. As the scanned local hosts are part of a university network and the availability
of the hosts is beyond direct control, with the exception of the host on which the DCA monitors. The
scan performed in both data sets is a standard SYN scan, with a fast probe sending rate ( <0.1 seconds
per probe), facilitated through the use of the popular scanning tool, nmap [17]. The command invoked
to perform the SYN scan using nmap is “nmap -sS -v xxx.xxx.xxx.1-254”.

The AN data set is 7,000 seconds in duration, with ‘normal’ antigen generated by running a web
browser over a separate remote ssh session. During browsing, multiple downloads, chat sessions and the
receipt of e-mail occur representing different patterns of network behaviour. This actively generated
network traffic is provided to observe if the algorithms can differentiate between two highly active
processes which run simultaneously and modify the networking behaviour of the victim host. Having
both normal and anomalous processes running via the monitored ssh demon may make the detection
of the scan more difficult. This may increase the MCAV for the normal processes as the DCA relies on
the temporal correlation of signals and antigen to perform detection.

The PN data set is also 7,000 seconds in duration and comprises of a SYN scan and its pseudo-
terminal slave (pts) parent process as anomalous examples. The ssh demon process acts as normal
antigen and is needed to facilitate the remote login. In addition, a firefox browser runs throughout the
session, but the system calls are run locally and not through the ssh demon. Therefore this does not
form antigen, but can influence the input signal data.

5.2 Data Pre-processing and Signals

The DCA relies on correct mapping of signals, ensured through the examination of preliminary samples
of input data. For the detection of SYN scans, seven signals are derived from behavioural attributes of
the victim host: two PAMPs, two danger signals, two safe signals and one inflammatory signal. Having
multiple signals per category may make the DCA more robust against random network fluctuations or
conversely could impede classification through conflicting inputs.

The PAMP signals (PAMP-1 and PAMP-2) are both taken from data sources which indicate a
scan specifically. Danger signals (DS-1 and DS-2) are derived from attributes which represent changes
in behaviour. Safe signals (SS-1 and SS-2) are also derived from changes in behaviour, but high safe
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signal values are shown when the changes are small in magnitude. The inflammatory signal is simplified
to a binary signal i.e. inflammation present (1) or not (0). All PAMPs, danger and safe signals are
normalised within a range of zero to 100. A sketch of the input signals throughout the duration of the
two sessions are shown in Figures 7, 8 and 9 for the AN data set and in Figure 10, 11 and 12 for the
PN data set.

To devise a set of appropriate signals a number of preliminary experiments must be performed,
in addition to the acquisition of knowledge regarding the effects of scanning and normal networking
usage within a host. Initially a plethora of system variables are monitored under a variety of situations.
The signals used in this experiment are network based attributes. This kind of system data appears
to be the most variable under scanning conditions. Once the candidate signals are selected, they are
then categorised using the general principles of signal selection i.e. PAMPs are signature-based, danger
signals are normal at low values and anomalous at high values etc. Following the categorisation, the
raw values of signals are transformed into normalised signals.

PAMP-1 is the number of ICMP ‘destination unreachable’ (DU) error messages received per second.
Scanning IP addresses attached to hosts which are firewalled against ICMP packets generate these error
messages in response to probing. This signal is shown to be useful in detecting ping scans and may also
be important for the detection of SYN scans, as an initial ping scan is performed to find running hosts.
In this experiment, the number of ICMP messages generated is significantly less than observed with a
ping scan. To account for this, normalisation of this signal includes multiplying the raw signal value
by five, capped at a value of 100 (equivalent to 20 DU errors per second). This process is represented
in Equation 6 where raw is the unmodified system data and signal represents the normalised output
signal. These terms apply to all equations described within this section.

signal = min{100, raw ∗ 5} (6)

PAMP-2 is the number of TCP reset packets sent and received per second. Due to the nature of
the scan, a volume of RST packets are created in both port status cases; they are generated from the
scanning host if ports are open and are generated by the remote hosts if ports are closed. RST packets
are not usually present in any considerable volume, so their increased frequency is a likely sign of
scanning activity. This signal is normalised linearly, with a maximum cap set at 100 RSTs per second.
This normalisation process is shown in Equation 7.

signal = min{100, raw} (7)

DS-1, the first danger signal is derived from the number of network packets sent per second.
Previous experiments with this signal data indicate that it is useful for the detection of outbound
scans [27]. A different approach is taken for the normalisation of this signal. A sigmoid function is
used to emphasise the differences in observed rate, making the range of 100 to 700 packets per second
more sensitive. This sensitive range is determined through preliminary data analysis of host behaviour
during scans and normal use, with 750 packets per second found to be the median value across the
plethora of preliminary data. This function makes the system less sensitive to fluctuations under 100
packets per second, whilst keeping the sensitivity of the higher values. A cap is set at 1500 packets
per second, resulting in a signal range between 0 and 100. The general sigmoid function used for this
transformation is shown in Equation 8, with the specific function shown in Equation 9.

f(x) =
1

1 + e−x
(8)

signal = min{

(

1

1 + 2(7.5− raw

100
)

)

∗ 100, 100} (9)

DS-2 is derived from the ratio of TCP packets to all other packets processed by the network card of
the scanning host. This may prove useful as during SYN scans there is a burst of traffic comprised of
almost entirely TCP type packets, which is not usually observed under normal conditions. The ratio is
normalised through multiplication by 100, to give this signal the same range as DS-1. This procedure
is shown in Equation 10.

signal =

(

rawSignalTcp

rawSignalAllPkts

)

∗ 100 (10)



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

20

0 1000 2000 3000 4000

0

20

40

60

80

100

Time(s)

N
o
rm

a
lis

e
d
 S

ig
n
a
l 
V

a
lu

e

−

−
PAMP−1

PAMP−2

Fig. 7 Line graph of the PAMP (PAMP-1, PAMP-2) signals which constitute the AN (active normal) data
set.
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Fig. 8 Line graph of the danger (DS-1, DS-2) signals which constitute the AN (active normal) data set.
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Fig. 9 Line graph of safe (SS-1, SS-2) signals which constitute the AN (active normal) data set.
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Fig. 10 Line graph of the PAMP (PAMP-1, PAMP-2) signals which constitute the PN (passive normal) data
set.

0 1000 2000 3000 4000

0

20

40

60

80

100

Time(s)

N
o
rm

a
lis

e
d
 S

ig
n
a
l 
V

a
lu

e

−

−
DS−1

DS−2

Fig. 11 Line graph of the danger (DS-1, DS-2) signals which constitute the PN (passive normal) data set.
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Fig. 12 Line graph of the safe (SS-1, SS-2) signals which constitute the PN (passive normal) data set.
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Table 3 Ranges used in the normalisation function of SS-2.

Range Signal Value
40 - 45 0
46- 50 10
51- 60 50
61 + 100

SS-1 is the rate of change of network packet sending per second. Safe signals are implemented to
counteract the effects of the other signals, hopefully reducing the number of false positive antigen types.
High values of this signal are achieved if the rate is low and vice versa. This implies that a large volume
of packets can be legitimate, as long as the rate at which the packets are sent remains constant. The
value for the rate of change can be calculated from the raw DS-1 signal value, though conveniently, the
proc file system also generates a moving-average representation of the rate of change of packets per
second (over 2 seconds). This raw value can be normalised between values of 10 and 100 and inverted
so that the safe signal value decreases as the raw signal value increases. This normalisation process is
described in Equation 11.

signal = min{100,max{0, (100− raw) ∗
10

9
}} (11)

SS-2 is based on the observation that during SYN scans the average network packet size reduces to a
size of 40 bytes, with a low standard deviation. Preliminary observations under normal conditions show
that the average packet size for normal traffic is within a range of 70 and 90 bytes. A step function
is implemented to derive this signal with transformation values presented in Table 3. Preliminary
experiments have also shown that a moving average is needed to increase the sensitivity of this signal.
This average is created over a 60 second period.

The inflammatory signal is binary and based on the presence of remote root logins. If a root log-in
is detected through the monitored ssh demon, this signal is assigned a value of one. When used in the
signal processing equation, this multiplies the resultant values of the other signals by two, acting as
an amplifier for all other signals including the safe signal. This signal may be useful as to perform a
SYN scan the invocation has to come from a user with root privileges. While this is a very important
feature of the SYN scan process, it is not suitable for use as a PAMP signal as it can be easily spoofed.
Thorough analysis of the relationship between inflammation and the DCA is outside of the scope of
this paper and may feature in future work. While this signal influences the rates of migration of the
DCs, it does not influence the rates of detection as the addition of this signal increases the output
signal values for both the semi-mature output (o1) and the mature output (o2) signals.

As shown in Figure 7-9 and 10-12, the AN signals are more variable than the PN signals, as many
more processes run during the AN session. In the AN session, the nmap scan is invoked at 651 seconds.
Signals PAMP-1, PAMP-2 and DS-2 clearly change for the duration of the scan. The remaining signals
are less clear, though some evidence of changes throughout the scan duration is shown. The changes
are transient and localised in particular to the beginning of the scan, when the majority of probes are
sent to other hosts.

The signals of the PN data set are less noisy. Analysis of input antigen confirms nearly 99% of these
antigen belong to the anomalous pts and nmap processes. PAMP-1 and PAMP-2 are responsive to the
scan, as shown by their rapid decline towards the end of the scanning period, at 5,500 seconds. Changes
in DS-1 are more pronounced in the PN data set, yet the magnitude of this signal is smaller than
expected. DS-2 appears to be highly correlated with the scan, yielding values of over 20 throughout
the scan duration. SS-1 performs poorly and only decreases in response to the scan in a few select
places. SS-2 falls sharply in the middle of the scan, as predicted, but otherwise remains at a constant
level of 60 even after the scan has finished.

5.3 Antigen

Process identification numbers (PIDs) form the antigen and are generated each time a system call is
invoked. To provide antigen, all remote sessions facilitated by ssh are monitored for this experiment.
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Table 4 Summary statistics of the frequency of system calls for the nmap and firefox processes.

Statistic Nmap Firefox
Mean 2445 880
Standard Deviation 1243 840
1st Quartile 1796 76
2nd Quartile (Median) 2106 792
3rd Quartile 2894 1479
4th Quartile (Total) 11758 7156
Mean/SD 1.97 1.05
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Fig. 13 The frequency of system calls invoked by the nmap scan process for the AN data set. The trendline
represents a moving average over 100 data points. As this figure is presented on a logarithmic scale, the absence
of points indicates a frequency of zero system calls for that particular second.

Using multiple system calls with identical PIDs allows for the aggregate antigen sampling method,
having multiple antigen per antigen type. This allows for the detection of active processes when changes
in signal values are observed. This technique is a form of process anomaly detection, but the actual
structure of the PID is not important in terms of its classification, i.e. no pattern matching is performed,
on the actual value of the PIDs: it is a label for the purpose of process identification.

A graph of the frequency of system calls invoked per second for the AN data set by the nmap
process is shown in Figure 13 and for the firefox process in Figure 14. In these two figures, individual
points represent the frequency of system calls per second, while the trendline represents a moving
average over 100 points. Summary statistics of the system call data are given in Table 4, which are
generated across the entire session for both processes.

The mean/median frequency of system calls for the nmap process is higher than the firefox process.
To assess which process is more variable, the means are divided by the standard deviations, as shown
in the summary table. This value is larger in the case of nmap than for firefox. This indicates that
relatively, the standard deviation of the firefox process is larger in comparison to the mean than that of
the nmap process. The various proportions of input system calls are represented as a chart in Figure 15
and shows that the nmap process invokes the majority of system calls in the AN data set.

5.4 Special Cases for SOM

For use with the SOM both antigen and signal data must be correlated explicitly - this is a feature of
the DCA that cannot be translated for use with the SOM. To achieve this coupling, the timestamps of
the signal and antigen data are used. Each antigen is assigned the set of signals which occurs within
one second of the antigen generation. This results in what resembles a standard feature vector, where
antigens are the data item ID and signals form seven attributes. In addition to this pairing, the SOM
requires training data, to assign nodes and to create the map. Unlike the DCA which uses expert
knowledge, SOM requires training data sets and therefore ten sets are constructed. Each training set
consists of a diverse number of normal processes which use the networking facility of the host machine.
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Fig. 14 The frequency of system calls invoked by the firefox web browser process for the AN data set. The
trendline represents a moving average over 100 data points. This figure is presented on a logarithmic scale and
the absence of points indicates a frequency of zero system calls for that particular second.
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Fig. 15 Proportionate chart of antigen per processes as input data for the active normal data set, where
FF Parent is the parent firefox process and FF Child1 and FF Child2 are the forked children of the parent
process.

5.4.1 Training

Due to the SOM algorithm’s unsupervised learning nature, training data is required in order to generate
a map that is representative of normal behaviour. As described earlier this is not necessary for the
DCA as there is no training stage. A set of ten sessions of normal activity are generated in an identical
manner to the testing data except for the fact that no antigens are generated as the SOM is only
trained on signals. Antigen themselves bring no benefit to the SOM in the training stage. Each session
contains approximately 60 minutes worth of data. The data contains normal activity such as internet
browsing, chatting, file transfer and other activities performed by a standard user.

Once the data is collected, it is combined into one data set, which is subsequently used as the input
into the SOM algorithm. Input feature vectors are then selected from this data set at random and
presented to the map for computation. The training results in a map which can be seen in Figure 16.
In this example, the brighter the colour, the greater the dissimilarity of neighbouring nodes, with
the map representing four clusters. This shows one of the maps that was generated throughout our
experiments. Ten runs were performed, both for training and detection.

5.4.2 Detection

The SOM algorithm itself cannot perform anomaly detection without any further processing. A mean-
ingful way has to be devised in order to be able to classify and make a decision whether a data item
or a set of items are anomalous. The aim of our experiments was to detect whether a whole process



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

25

Fig. 16 An example map generated by the original SOM algorithm.

is anomalous or not. Thus a method for process, rather than signal set anomaly detection calculation
had to be developed.

For informational purposes a simple anomaly detection can be performed on our data by classifying
sets of signals only. This can be done by firstly using the calculation in Equation 3, which will determine
the winning node within our trained map. We will call this the Best Matching Unit (BMU). Once the
BMU is found, the actual Euclidean distance between the currently observed vector of signals and
the BMU is calculated. The most trivial anomaly detection is done by choosing a threshold for this
dissimilarity. If the currently observed item is too different from the BMU, then it is deemed anomalous.

In order to perform process anomaly detection, antigen information has to be correlated with signals
from the testing data. As the SOM is trained on signals only, antigens (PIDs) need to be correctly
correlated with the right signals in order to be able to link anomalous sets of signals to their respective
initiators (processes). Initial correlation is done by synchronizing antigens with signals using timestamp
information. Any antigen with timestamp t is assigned a signal set at time t, and for the purpose of
synchronisation t is measured in seconds. Once this synchronisation takes place, the signal set - antigen
coupling is assessed for its anomaly level using the BMU technique described previously.

As explained later in this section, the output antigen from the DCA are ’segmented’ into fixed
sized sets for analysis. These ‘antigen segments’ consist of a specified number of output antigen used
to form the MCAV values. Multiple MCAV values are produced as a result of this procedure, which
may add additional sensitivity. To get a more meaningful and easily comparable results to the DCA, a
segmentation post-processing needs to be employed. This is achieved by selecting a segment size z which
generates the same number of segments as the DCA. The reason behind the differing segment sizes is
the way that synchronisation of signal and antigen is achieved in the SOM experiments compared to
the way it is achieved by the DCA. The DCA correlates antigen and signal as part of the algorithm’s
operation whereas the signal and antigen need to be manually correlated at a pre-processing stage
before analysis using the SOM can occur. In our case z = 1,800; 18,000; 180,000 and 1,800,000. These
segment sizes produce the same number of segments as segment sizes of 100; 1,000; 10,000 and 100,000
respectively, used by the DCA.

Further post-processing is done by using a binary discrimination of how anomalous a signal set -
antigen coupling is. It was observed that the median dissimilarity value between an input feature vector
and the BMU is approximately 65. Thus this value is chosen as the threshold for deciding whether
a signal set-antigen coupling should be deemed anomalous and thus assigned a value of 1 or deemed
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Table 5 Default parameter settings for the DCA, chosen following the sensitivity analysis performed previ-
ously [24]. Values shown indexed from zero.

Name Symbol Value
Number of signals per category I 0
Number of signals categories J 3
Max number of tissue antigen K 499

Number of cells M 99
Max number of antigen per DC N 49

Number of output signals per DC P 3
Number of DC antigen receptors Q 9

normal and assigned a value of 0. These binary anomaly values are then used for the calculation of the
mean process anomaly value.

Segment generation is achieved by calculating the anomaly value for each signal set - antigen
coupling as described above, followed by further analysis of these results per the various antigen segment
sizes of z. Thus for z = 1,800, the first 1,800 data items were processed in the following way. For each
unique antigen a mean anomaly value is calculated for that given segment. Once this calculation is
performed, each segment contains a list of unique antigens with their associated mean anomaly value.
We call this the Mean Best Matching Unit (MBMU) value. This value gives an indication of how
anomalous a process is in the given antigen segment.

5.5 Experiments

Two null hypotheses are used in these SYN scan experiments:

1. H1: modification of the antigen segment size will not influence the resultant anomaly coefficient
values for both normal and anomalous processes

2. H2: the DCA and the SOM will produce results which are not statistically different

Both the AN and PN data sets are used in this series. Each data set is collected using a real-time
version of the DCA, which also provides the opportunity to verify the detection rate results before an
in-depth analysis is performed. Ten runs are performed for each data set and the mean MCAV values
/ MBMU values across the ten runs are recorded. Unlike previous experiments with the DCA, no
system parameters are varied for these experiments. Instead the number of antigen used in the MCAV
calculation is varied.

For the previous DCA application of ping scan detection, the sessions used are at most one minute
in duration and generate approximately 3,000 antigen. However, the AN and PN data sets generate
in excess of 100,000 antigen per process therefore analysis once all data is processed may not provide
meaningful results. Generating the output coefficient value at the end of the 7,000 second session is
too insensitive to changes which happen over a matter of seconds or minutes. Figures are generated
showing the varying coefficients per process as the session proceeds and comparisons drawn between
the performance for the two data sets.

In terms of assessment, the PIDs with the highest volume of antigen output are used as the processes
of interest. For the passive normal data set these processes are the nmap scan process and the pts parent
process of the SYN scan. The processes of interest for the active normal data set include the nmap
scan, pts process and the firefox browser. Graphs are generated showing the MCAV and MBMU for
each process of interest per z antigen presented, for the duration of the experiments for example z=100.
Higher values of MCAV are expected for the SYN scan process and its parent process the ssh demon,
than for the firefox browser. It is expected that smaller values of z will yield an improvement in the
precision and accuracy of the detection, though when z = 100, the system may be too sensitive and
an element of tolerance to false positives could be lost. The variants of z for the DCA are presented in
Table 6.

All data sets are collected and analyses with the DCA are performed on an AMD Athlon 1 GHz
Debian linux machine (kernel 2.4.10). A 2.66 GHz Intel Core 2 Duo Ubuntu linux machine (kernel
2.6.22) is used for the SOM processing. Data generated from the DCA machine is used in SOM
processing to avoid kernel discrepancies. The DCA is implemented in C (gcc 4.0.2) with the SOM
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Table 6 The various sizes of antigen segment z used for the DCA and SOM respectively.

DCA SOM
100 1,800

1,000 18,000
10,000 180,000
100,000 1,800,000

1,000,000 -

Table 7 Weights used for signal processing, where j represents the input signal category, i represents an
instance of a signal within signal category j and p is the corresponding output signal.

wijp j = 0 j = 1 j = 2
p = 0 4 2 6
p = 1 0 0 1
p = 2 8 4 -12

Table 8 SOM parameters, where α is the “learning-rate factor” and t is the current epoch.

Parameter Global Ordering Fine-Tuning
SOM size 10*10 -
Epoch Limit 100,000 -
Initial α 0.9 0.02
α decay scheme Initial α(1− t/1000) -
Neighbourhood size 5 1
Neighbourhood function Gaussian -
Neighbourhood relation Square -

implemented in C++ (g++ 4.1.3). All raw signals are derived using signal collection scripts, with
values taken from the /proc filesystem (PAMP-1, DS-1, SS-1, I), the tcpstat linux utility (DS-2, SS-2)
and a custom developed packet sniffer (PAMP-2). The system parameters used with the DCA are
shown in Table 5, derived as a result of previous DCA sensitivity analysis [24]. Weights for the signal
processing of these data are shown in Table 7. These weights provide a shorter time-window for the
duration of signal sampling per DC, shown to be advantageous for the detection of ping scans. The
migration threshold tm is assigned a value of 60 +/− 30 which is the median signal value observed
across all signals. The parameters used for the SOM are shown in Table 8 and are chosen based on
recommended values as proposed by Kohonen [47].

Antigens are generated using system calls, captured through the use of strace and through manip-
ulation within the antigen tissue client. The normalisation of the input signals is implemented using
the tissue client, antigen processed using a separate tissue client, with data processing and the DCA
performed using the tissue server process. An initial run of this system is performed to collect the
input data and to check for any potential coding errors. Input signals and antigens are collected and
recorded in a logfile using the real-time runs. Analysis of the preliminary real-time results of the output
antigen and empirical analysis of the input data indicate its suitability for use in these experiments.
The libtissue tcreplay client is used to perform the numerous runs of each data set. It is impor-
tant to stress that the system is designed to work in real-time, though tcreplay is used to provide
reproducibility of results, so a rigorous analysis can be performed.

5.6 DCA Results

The results of the DCA applied to the passive normal data are presented in Figures 17-19 and in
Table 9 and 10. The results for an antigen segment size z=100 are shown in Figure 17 and represent
results generated across ten runs by the DCA on the same data set. High MCAV values are shown
upon the initiation of the SYN scan for both nmap and pts processes. The moving average trendline
shows three distinct ‘spikes’ which correlate to the initial sending out of packets by the SYN scan, the
period of targeted scanning and the final stages where network connections are terminated and scan
results collated by the nmap process.
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Fig. 17 PN results for the DCA for nmap SYN scan and pts processes. Points represent an average MCAV
derived from across the ten runs performed, where the size of the antigen segment is z=100. The trendline
represents a moving average across 50 data points.
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Fig. 18 PN results for the DCA for nmap SYN scan and pts processes The size of the antigen segments (z)
is 1,000. This data represents an average MCAV derived from across the ten runs performed. The trendlines
represent moving averages per process of interest across 20 data points.

Table 9 The results for both active (AN) and passive (PN) normal data sets for the DCA with an antigen
segment size of z = 100,000. Segment 0 includes antigen 0-99,999; segment 1 includes antigen 100,000 to 199,999
etc.

Segment Num PN Nmap PN Pts AN Nmap AN Firefox AN Pts
0 0.12 0.24 0.16 0.05 0.05
1 0.07 0.05 0.06 0.04 0.06
2 0 0 0.01 0.00 0.00
3 - - 0.05 0.02 0.01

While the pts process produces a high MCAV initially, between antigen segments 100 and 900 no
antigens are presented for the pts process, as it is inactive at this point. As the trendline is required
to clarify the results this indicates that a higher value of z would be preferable to clearly assess the
presence of an anomalous process.

In Figure 18, the result of the PN data set are presented where z=1,000. As with the results
presented in Figure 17, an initial spike of a high MCAV is shown, implying that the scan is in its initial
stages. While the individual points on this graph are not as dense as in Figure 17, the additional spikes
representing the latter stages of the scan are less in magnitude, though little difference in the initial
MCAV for the nmap processes is shown.

The results for z=10,000 are plotted in Figure 19 showing lower values for the pts process and a less
sustained response to the nmap SYN scan process. Sensitivity is lost when the value of z is increased
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Fig. 19 PN results for the DCA for all three processes. Individual points not included for the sake of clarity.
The size of the antigen segments (z) is 10,000. This data represents an average MCAV derived from across the
ten runs performed. The trendlines represent moving averages per process of interest across ten data points.

Table 10 The results for the DCA for both active (AN) and passive (PN) normal data sets with an antigen
segment size of z = 1,000,000.

Process AN PN
Nmap 0.07 0.19
Pts 0.04 0

Firefox 0.03 n/a

further as shown in Tables 9 and 10, with the maximum MCAVs greatly reduced from 1.0 in previous
experiments to 0.19 for the nmap process.

The AN results produced by the DCA show similar features. Figure 20 shows the results using the
smallest antigen segment size of z=100. In contrast to the PN data set, the nmap SYN scan is not
invoked until antigen segment 500. As shown on this graph, following the initiation of this scan, the
MCAV of all three processes of interest (nmap, pts, firefox) are shown to increase.

These increases in MCAV form four spikes throughout the session duration. The density of the
datapoints in this graph makes the correct interpretation of this graph somewhat difficult. This is
improved with the addition of a trendline, generated through applying a moving average of 50 points
across the data. During the scan period, the DCA presents antigen, irrespective of its source, in the
mature context, as shown through the generation of high MCAV values for both the nmap SYN scan
and firefox browser processes. This implies that the generation of false positives occurs when a normal
and anomalous process run simultaneously through the monitored ssh demon.

The results for antigen segments 0 to 500 are shown in Figure 21 for the sake of clarity. During
this period the majority of antigen presented belong to the firefox process and some modulation of
the behaviour of the monitored system occurs, as seen in the initial 500 seconds of Figure 20. Despite
these activities, the MCAVs presented in Figure 21 are all relatively low. This suggests that the DCA
using these particular signals responds appropriately to normal processes in the absence of scanning
activity.

In Figure 22, the results are presented for the AN data set where z=1,000. In comparison to
Figure 20, the trendlines of the graph are observably similar. Figure 23 shows that an antigen segment
size of z=10,000 produces observably different results to z=1,000. This is evident as the major spike
peak evident in Figure 20 and 22 is missing in Figure 23. Additionally, the only process technically
classed as ‘anomalous’ (MCAV above 0.5, chosen to reflect the proportion of nmap antigen in the input
data) is the nmap scan, though only briefly. This implies that the larger size of z increases the rate of
false negatives as shown through the lower values in Figure 23 and also shown in Tables 9 and 10. For
experiments where z = 100,000 and z=1,000,000, the MCAVs are also reduced. However, an interesting
effect is that there is a greater difference in the MCAVs of the normal and anomalous processes.
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Fig. 20 AN results for the DCA for nmap SYN scan and pts processes. Points represent an average MCAV
derived from across the ten runs performed, where the size of the antigen segment is z=100. The trendline
represents a moving average across 50 data points.
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Fig. 21 AN results for initial 500 antigen segments produced with the DCA to highlight the low MCAVs
yielded. Points represent an average MCAV derived from across the ten runs performed, where z = 100. The
trendline represents a moving average across 20 data points.

An example of this is evident in antigen segment zero presented in Table 9, where the MCAV for
the nmap scan is three times the magnitude of the MCAV of the firefox process. If the threshold of
anomaly is applied at a level of 0.1, this experiment would yield results which detected the nmap SYN
scan as anomalous and the firefox process as ‘normal’. Other examples of this are also shown for the
AN data set in Table 10. This implies that while larger values of z can produce false negatives, the
potential for the reduction of false positives is also evident.

5.7 SOM Results

The PN results for the SOM are presented in Figures 24-26. As with the results of the DCA, high
coefficient values are generated initially for both nmap and pts processes. A further ‘spike’ is evident
at segment numbers 1,000-1,200 of Figure 24. These trends are also evident in Figures 25 and 26.
Trendlines are added to each graph to represent a moving average per process. At the lowest level
of granularity of z=1,800 (equivalent in the number of segments to DCA z=100), it is unclear as to
exactly what the individual data points imply. Therefore a larger size of segment may be required, as
also found with the DCA. Again, sensitivity is lost as the size of z is large, as shown by the results
presented in Table 11 where z is 1,800,000.
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Fig. 22 AN results for all three processes produced with the DCA. The size of the antigen segments (z) is
1,000. This data represents an average MCAV derived from across the ten runs performed. The trendlines
represent moving averages per process of interest across ten data points.
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Fig. 23 AN results for all three processes. Individual points not included for the sake of clarity. The size of
the antigen segments (z) is 10,000. This data represents an average MCAV derived from across the ten runs
performed. The trendlines represent moving averages per process of interest across ten data points.

In a similar manner, the AN results for the SOM produce initially high coefficients for the nmap
process. The results for z=1,800 are presented in Figure 27. This shows a major spike at the point
of the scan commencement (segments 400-700). Unlike the DCA upon application of a trendline, it
appears that the response to the scan is not sustained as three peaks are evident, as opposed to
the single peak shown with the DCA. Also, the SOM produces high coefficient values for the firefox
process, suggesting that discrimination between active anomalous and active normal processes can not
be completely achieved by either algorithm.

The graphs produced for z=18,000 and 180,000 are shown in Figures 28 and 29 respectively. As
with the PN results, the response to the nmap decreases as the value of z increases. This is evident
from both graphs and in Table 11. Unlike the DCA, which produced MCAVs for nmap which are
consistently higher than with firefox (Figure 23), with the SOM results both the nmap and firefox
coefficients decrease at a similar rate, as exemplified in Figure 29. Statistical analysis is presented to
verify these observations in the next section.
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Fig. 24 PN results for all three processes using the SOM. The size of the output segments (z) is 1,800. This
data represents an average MBMU derived from across the ten runs performed. The trendlines represent moving
averages per process of interest across 50 data points.

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Antigen Segment Number

M
B

M
U

 C
o

e
ff

ic
ie

n
t

●

Nmap

Pts

−

−
Nmap MA

Pts MA

●

●

●●●
●●

●

●

●

●●
●
●●●●●●●●●●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●

●

●

●

●

●

●●●●●
●

●

●
●

●●●
●

●

●

●●●●●●

●

●
●

●

●●
●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Fig. 25 PN results for all three processes using the SOM. The size of the output segments (z) is 18,000.
This data represents an average MBMU derived from across the ten runs performed. The trendlines represent
moving averages per process of interest across 20 data points.

Table 11 The results for both active (AN) and passive (PN) normal data sets for the SOM with a segment
size of z = 1,800,000.

Segment Num PN Nmap AN Nmap AN Firefox
0 0.293 0.078 0.028
1 0.135 0.016 0.013
2 - 0.003 0.011
3 - - 0.005
4 - - 0.002
5 - - 0.001

6 Discussion: Analysis and Comparison

6.1 Null Hypothesis H1: Antigen segments

Performance of Mann-Whitney tests (an unpaired rank-based statistical test for non-parametric data [31])
comparing the results are presented in Figure 20 with the other antigen segment sizes. The results of
this analysis are shown in Table 12, which assesses the rejection of null hypothesis H1. As indicated, in
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Fig. 26 PN results for all three processes using the SOM. The size of the output segments (z) is 180,000.
This data represents an average MBMU derived from across the ten runs performed. The trendlines represent
moving averages per process of interest across ten data points.
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Fig. 27 AN results for all three processes using the SOM. The size of the output segments (z) is 1,800.
This data represents an average MBMU derived from across the ten runs performed. The trendlines represent
moving averages per process of interest across 50 data points.

three out of the four tested cases, the data series are significantly different. This indicates that z does
have an influence on the results of the DCA. Some further work with this concept may prove fruitful,
especially if dynamic antigen segment sizes are used, linked to process activity. The demonstration of
statistical significance implies that null hypothesis H1 can be rejected.

As the data is not normally distributed for either algorithm, Mann-Whitney tests are performed
on the results of the SOM, comparing the results of z=1,800 with all other results for the AN nmap
process. The resultant p-values are presented in Table 13. These results show that the modification of
z produces a statistically significant effect on the resultant anomaly values. Therefore, null hypothesis
H1 is also rejected for the SOM in addition to its rejection produced by the DCA.

6.2 Null Hypothesis H2: Head to Head Comparison

To assess H2, the results produced by the DCA and SOM are compared statistically for one selected
antigen segment size. For this purpose DCA z=1,000 and SOM z=18,000 are used as they contain
approximately a similar number of segments for both nmap and firefox. As these data are not normally
distributed (confirmed by the application of the Shapiro-Wilk test) and do not form exact pairs, a one-
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Fig. 28 AN results for all three processes using the SOM. The size of the output segments (z) is 18,000.
This data represents an average MBMU derived from across the ten runs performed. The trendlines represent
moving averages per process of interest across 20 data points.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Antigen Segment Number

M
B

M
U

 C
o

e
ff

ic
ie

n
t

Nmap

Pts

Firefox

−

−

−

Nmap MA

Pts MA

Firefox MA

Fig. 29 AN results for all three processes using the SOM. The size of the output segments (z) is 180,000.
This data represents an average MBMU derived from across the ten runs performed. The trendlines represent
moving averages per process of interest across ten data points.

Table 12 The results of the Mann-Whitney test comparing the results of z=100 to the results of z=1,000,
z=10,000 and z=100,000. A confidence interval of 95 % is used and data which are statistically significantly
different are marked with an asterisk.

z p-value
1,000 <0.0001*
10,000 0.358
100,000 < 0.0001*

sided unpaired Mann-Whitney test is used to perform this comparison. As the sample size is in excess
of 300 datapoints, a 99% confidence interval is deemed appropriate for this assessment.

The results of this comparison for the firefox process yields a p-value of 0.02, which at the given
confidence interval implies that the two sets of results are not statistically significant. This implies
that the algorithms produce similar results for active normal processes. For the firefox process, null
hypothesis H2 cannot be rejected under these particular circumstances with these given data sets.

Upon performance of the same statistical test, the nmap process produces a p-value of 0.002,
which shows that the two algorithms produce statistically significant differences in the detection of the
scan process. To assess which system produces the better performance, an additional two-sided Mann-
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Table 13 The results of the Mann-Whitney test comparing the SOM results of z=1,800 to the results of
z=18,000, z=180,000 and z=1,800,000. A confidence interval of 95 % is used and data which are statistically
significantly different are marked with an asterisk.

z p-value
18,000 <0.0001*
180,000 < 0.0001*
1,800,000 < 0.0001*

Whitney is performed. The results of this test show that the DCA has the improved performance,
producing a p-value of 0.0001. Therefore null hypothesis H2 can be rejected for the nmap process and
that the DCA shows the better performance on this occasion.

6.3 Baseline

To validate both sets of results and to ensure that both performances are improved over a baseline,
a k-means classifier is applied to the signal data. The classifier used belongs to the WEKA suite [65].
In this test 52% of the signals were classed as belonging to one class while 48% to another class. This
implies that the necessary discrimination cannot be achieved through classification on the basis of
signals alone. This also shows that this data is non-trivial to classify and adds value to the results
produced for both the SOM and DCA.

6.4 Conjecture

We have validated the use of the DCA as a serious competitor for anomaly detection applications.
Until this comparison we were still uncertain as to the quality of results produced by the DCA. This
comparison with the traditional SOM has shown that the DCA shows great promise as a successful AIS
algorithm. The performance produced by the DCA shows that the algorithm is capable of performing
at a level comparable to a standard technique.

It is interesting that the results for the firefox process are not statistically different for both algo-
rithms, yet differences are evident for the nmap process. This may be attributed to the method by
which the signals are processed. In the DCA, signals are assigned weights on a per-category basis. In
the SOM, all signals carry equal weight. Perhaps the fact that the DCA uses heavy weighting for both
PAMP and danger signals is responsible for the improved rate of nmap detection.

Alternatively, the correlation between antigen and signal occurs within the DCA but is performed
explicitly during the normalisation stage with the SOM. This activity-dependent association produced
by the DCA may mean that for the duration of the scan, the coupling between the signals and antigen
for the nmap process is tighter. This could be due to the fact that the amount of processed antigen is
increased. As noted by Oates et al [57] the increased DC migration rate may result in greater volumes
of processed antigen. This may result in a tighter coupling between antigen and signals during periods
of high activity and high signal levels. A theoretical analysis, outside of the scope of this paper, is
necessary to confirm the coupling mechanism and may provide insight as to the cause and nature of
this effect plus the further reaching consequences of applicability of the DCA.

7 Conclusions

In this paper we have compared two biologically inspired algorithms, the immune-inspired DCA and
the neurological-inspired SOM when applied to the detection of a SYN port scan. Two constructed
data sets are produced for this purpose consisting of 13 million data items to classify. Each algorithm
was successful at performing anomaly detection, with the number of antigen, z, used per classification
step varied. It is shown that both algorithms are sensitive to changes in z. A direct comparison between
the SOM and DCA is provided. For the normal processes, both algorithms performed equally well, with
the DCA producing a significantly improved performance at detecting the anomalous process. As a
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result, the DCA is shown to be a competitive anomaly detection algorithm. As further work, the DCA
will be applied experimentally to other large data sets, including further benchmarking with computer
security data and applications potentially including large-scale data which requires correlation, such
as data derived from radio telescopes. In addition a theoretical analysis of the DCA is required to
fully understand the nature of this relatively novel algorithm and to be able to assess future successful
applications.
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