103 research outputs found

    Modeling congestion and service time in hub location problems

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.apm.2017.10.033 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper, we present a modeling framework for hub location problems with a service time limit considering congestion at hubs. Service time is modeled taking the traveling time on the hub network as well as the handling time and the delay caused by congestion at hubs into account. We develop mixed-integer linear programming formulations for the single and multiple allocation versions of this problem. We further extend the multiple allocation model with a possibility of direct shipments. We test our models on the well-known AP data set and analyze the effects of congestion and service time on costs and hub network design. We introduce a measure for the value of modeling congestion and show that not considering the effects of congestion may result in increased costs as well as in building infeasible hub networks

    The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem

    Get PDF
    In this study we investigate the single source location problem with the presence of several possible capacities and the opening (fixed) cost of a facility that is depended on the capacity used and the area where the facility is located. Mathematical models of the problem for both the discrete and the continuous cases using the Rectilinear and Euclidean distances are produced. Our aim is to find the optimal number of open facilities, their corresponding locations, and their respective capacities alongside the assignment of the customers to the open facilities in order to minimise the total fixed and transportation costs. For relatively large problems, two solution methods are proposed namely an iterative matheuristic approach and VNS-based matheuristic technique. Dataset from the literature is adapted to assess our proposed methods. To assess the performance of the proposed solution methods, the exact method is first applied to small size instances where optimal solutions can be identified or lower and upper bounds can be recorded. Results obtained by the proposed solution methods are also reported for the larger instances

    Dynamic Facility Location with Modular Capacities : Models, Algorithms and Applications in Forestry

    Get PDF
    Les décisions de localisation sont souvent soumises à des aspects dynamiques comme des changements dans la demande des clients. Pour y répondre, la solution consiste à considérer une flexibilité accrue concernant l’emplacement et la capacité des installations. Même lorsque la demande est prévisible, trouver le planning optimal pour le déploiement et l'ajustement dynamique des capacités reste un défi. Dans cette thèse, nous nous concentrons sur des problèmes de localisation avec périodes multiples, et permettant l'ajustement dynamique des capacités, en particulier ceux avec des structures de coûts complexes. Nous étudions ces problèmes sous différents points de vue de recherche opérationnelle, en présentant et en comparant plusieurs modèles de programmation linéaire en nombres entiers (PLNE), l'évaluation de leur utilisation dans la pratique et en développant des algorithmes de résolution efficaces. Cette thèse est divisée en quatre parties. Tout d’abord, nous présentons le contexte industriel à l’origine de nos travaux: une compagnie forestière qui a besoin de localiser des campements pour accueillir les travailleurs forestiers. Nous présentons un modèle PLNE permettant la construction de nouveaux campements, l’extension, le déplacement et la fermeture temporaire partielle des campements existants. Ce modèle utilise des contraintes de capacité particulières, ainsi qu’une structure de coût à économie d’échelle sur plusieurs niveaux. L'utilité du modèle est évaluée par deux études de cas. La deuxième partie introduit le problème dynamique de localisation avec des capacités modulaires généralisées. Le modèle généralise plusieurs problèmes dynamiques de localisation et fournit de meilleures bornes de la relaxation linéaire que leurs formulations spécialisées. Le modèle peut résoudre des problèmes de localisation où les coûts pour les changements de capacité sont définis pour toutes les paires de niveaux de capacité, comme c'est le cas dans le problème industriel mentionnée ci-dessus. Il est appliqué à trois cas particuliers: l'expansion et la réduction des capacités, la fermeture temporaire des installations, et la combinaison des deux. Nous démontrons des relations de dominance entre notre formulation et les modèles existants pour les cas particuliers. Des expériences de calcul sur un grand nombre d’instances générées aléatoirement jusqu’à 100 installations et 1000 clients, montrent que notre modèle peut obtenir des solutions optimales plus rapidement que les formulations spécialisées existantes. Compte tenu de la complexité des modèles précédents pour les grandes instances, la troisième partie de la thèse propose des heuristiques lagrangiennes. Basées sur les méthodes du sous-gradient et des faisceaux, elles trouvent des solutions de bonne qualité même pour les instances de grande taille comportant jusqu’à 250 installations et 1000 clients. Nous améliorons ensuite la qualité de la solution obtenue en résolvent un modèle PLNE restreint qui tire parti des informations recueillies lors de la résolution du dual lagrangien. Les résultats des calculs montrent que les heuristiques donnent rapidement des solutions de bonne qualité, même pour les instances où les solveurs génériques ne trouvent pas de solutions réalisables. Finalement, nous adaptons les heuristiques précédentes pour résoudre le problème industriel. Deux relaxations différentes sont proposées et comparées. Des extensions des concepts précédents sont présentées afin d'assurer une résolution fiable en un temps raisonnable.Location decisions are frequently subject to dynamic aspects such as changes in customer demand. Often, flexibility regarding the geographic location of facilities, as well as their capacities, is the only solution to such issues. Even when demand can be forecast, finding the optimal schedule for the deployment and dynamic adjustment of capacities remains a challenge. In this thesis, we focus on multi-period facility location problems that allow for dynamic capacity adjustment, in particular those with complex cost structures. We investigate such problems from different Operations Research perspectives, presenting and comparing several mixed-integer programming (MIP) models, assessing their use in practice and developing efficient solution algorithms. The thesis is divided into four parts. We first motivate our research by an industrial application, in which a logging company needs to locate camps to host the workers involved in forestry operations. We present a MIP model that allows for the construction of additional camps, the expansion and relocation of existing ones, as well as partial closing and reopening of facilities. The model uses particular capacity constraints that involve integer rounding on the left hand side. Economies of scale are considered on several levels of the cost structure. The usefulness of the model is assessed by two case studies. The second part introduces the Dynamic Facility Location Problem with Generalized Modular Capacities (DFLPG). The model generalizes existing formulations for several dynamic facility location problems and provides stronger linear programming relaxations than the specialized formulations. The model can address facility location problems where the costs for capacity changes are defined for all pairs of capacity levels, as it is the case in the previously introduced industrial problem. It is applied to three special cases: capacity expansion and reduction, temporary facility closing and reopening, and the combination of both. We prove dominance relationships between our formulation and existing models for the special cases. Computational experiments on a large set of randomly generated instances with up to 100 facility locations and 1000 customers show that our model can obtain optimal solutions in shorter computing times than the existing specialized formulations. Given the complexity of such models for large instances, the third part of the thesis proposes efficient Lagrangian heuristics. Based on subgradient and bundle methods, good quality solutions are found even for large-scale instances with up to 250 facility locations and 1000 customers. To improve the final solution quality, a restricted model is solved based on the information collected through the solution of the Lagrangian dual. Computational results show that the Lagrangian based heuristics provide highly reliable results, producing good quality solutions in short computing times even for instances where generic solvers do not find feasible solutions. Finally, we adapt the Lagrangian heuristics to solve the industrial application. Two different relaxations are proposed and compared. Extensions of the previous concepts are presented to ensure a reliable solution of the problem, providing high quality solutions in reasonable computing times

    Solving the bi-objective capacitated p-median problem with multilevel capacities using compromise programming and VNS

    Get PDF
    A bi-objective optimisation using a compromise programming (CP) approach is proposed for the capacitated p-median problem (CPMP) in the presence of the fixed cost of opening facility and several possible capacities that can be used by potential facilities. As the sum of distances between customers and their facilities and the total fixed cost for opening facilities are important aspects, the model is proposed to deal with those conflicting objectives. We develop a mathematical model using integer linear programming (ILP) to determine the optimal location of open facilities with their optimal capacity. Two approaches are designed to deal with the bi-objective CPMP, namely CP with an exact method and with a variable neighbourhood search (VNS) based matheuristic. New sets of generated instances are used to evaluate the performance of the proposed approaches. The computational experiments show that the proposed approaches produce interesting results

    Hub Network Design Problem with Capacity, Congestion and Stochastic Demand Considerations

    Get PDF
    Our study introduces the hub network design problem with congestion, capacity, and stochastic demand considerations (HNDC), which generalizes the classical hub location problem in several directions. In particular, we extend state-of-the-art by integrating capacity acquisition decisions and congestion cost effect into the problem and allowing dynamic routing for origin-destination pairs. Connecting strategic and operational level decisions, HNDC jointly decides hub locations and capacity acquisitions by considering the expected routing and congestion costs. A path-based mixed-integer second-order cone programming (SOCP) formulation of the HNDC is proposed. We exploit SOCP duality results and propose an exact algorithm based on Benders decomposition and column generation to solve this challenging problem. We use a specific characterization of the capacity-feasible solutions to speed up the solution procedure and develop an efficient branch-and-cut algorithm to solve the master problem. We conduct extensive computational experiments to test the proposed approach’s performance and derive managerial insights based on realistic problem instances adapted from the literature. In particular, we found that including hub congestion costs, accounting for the uncertainty in demand, and whether the underlying network is complete or incomplete have a significant impact on hub network design and the resulting performance of the system

    Spatial organization of public services: models and applications

    Get PDF
    Location decisions are crucial in the spatial organization in both public and private sectors as they can have a long term impact on operational performances and on service levels. Social cost minimization, universality of services and equity, expressed in terms of users' accessibility, are the main objectives in public services contexts. Nevertheless, the enduring trend of public expenditures revision poses, also in the public sectors, the need to pursue objectives of economic efficiency. In the literature, two families of optimization problems are typically used to address these problems, namely Facility Location Problems (FLPs) and Districting Problems (DPs). The aim of this thesis is to show how FLPs and DPs can be used to underpin spatial organization processes of public services, providing analytical models able to assist the decision making. To this end, novel mathematical models are developed with application to the healthcare and postal service sectors. In particular, a hierarchical facility location model is formulated to reorganize an existing regional Blood Management System (BMS) while an integrated location-districting model is proposed for the organization of postal collection operations in urban areas. A constructive heuristic procedure is also devised to solve the latter problem. Extensive computational experiments are realized to validate the proposed models and to show their capability to provide insightful managerial implications. Finally, the thesis aims at filling another existing gap in the literature due to the absence of stochastic models for DPs. Hence, a two-stage stochastic program for districting is introduced and tested on real georgaphic data. Several extensions of the proposed modeling framework are also discussed
    • …
    corecore