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RÉSUMÉ

Les décisions de localisation sont souvent soumises à des aspects dynamiques comme

des changements dans la demande des clients. Pour y répondre, la solution consiste

à considérer une flexibilité accrue concernant l’emplacement et la capacité des instal-

lations. Même lorsque la demande est prévisible, trouver le planning optimal pour le

déploiement et l’ajustement dynamique des capacités reste un défi. Dans cette thèse,

nous nous concentrons sur des problèmes de localisation avec périodes multiples, et per-

mettant l’ajustement dynamique des capacités, en particulier ceux avec des structures de

coûts complexes. Nous étudions ces problèmes sous différents points de vue de recherche

opérationnelle, en présentant et en comparant plusieurs modèles de programmation li-

néaire en nombres entiers (PLNE), l’évaluation de leur utilisation dans la pratique et en

développant des algorithmes de résolution efficaces.

Cette thèse est divisée en quatre parties. Tout d’abord, nous présentons le contexte

industriel à l’origine de nos travaux : une compagnie forestière qui a besoin de locali-

ser des campements pour accueillir les travailleurs forestiers. Nous présentons un mo-

dèle PLNE permettant la construction de nouveaux campements, l’extension, le dépla-

cement et la fermeture temporaire partielle des campements existants. Ce modèle uti-

lise des contraintes de capacité particulières, ainsi qu’une structure de coût à économie

d’échelle sur plusieurs niveaux. L’utilité du modèle est évaluée par deux études de cas.

La deuxième partie introduit le problème dynamique de localisation avec des capacités

modulaires généralisées. Le modèle généralise plusieurs problèmes dynamiques de lo-

calisation et fournit de meilleures bornes de la relaxation linéaire que leurs formulations

spécialisées. Le modèle peut résoudre des problèmes de localisation où les coûts pour

les changements de capacité sont définis pour toutes les paires de niveaux de capacité,

comme c’est le cas dans le problème industriel mentionnée ci-dessus. Il est appliqué

à trois cas particuliers : l’expansion et la réduction des capacités, la fermeture tempo-

raire des installations, et la combinaison des deux. Nous démontrons des relations de

dominance entre notre formulation et les modèles existants pour les cas particuliers. Des

expériences de calcul sur un grand nombre d’instances générées aléatoirement jusqu’à
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100 installations et 1000 clients, montrent que notre modèle peut obtenir des solutions

optimales plus rapidement que les formulations spécialisées existantes. Compte tenu de

la complexité des modèles précédents pour les grandes instances, la troisième partie de la

thèse propose des heuristiques lagrangiennes. Basées sur les méthodes du sous-gradient

et des faisceaux, elles trouvent des solutions de bonne qualité même pour les instances

de grande taille comportant jusqu’à 250 installations et 1000 clients. Nous améliorons

ensuite la qualité de la solution obtenue en résolvent un modèle PLNE restreint qui tire

parti des informations recueillies lors de la résolution du dual lagrangien. Les résultats

des calculs montrent que les heuristiques donnent rapidement des solutions de bonne

qualité, même pour les instances où les solveurs génériques ne trouvent pas de solu-

tions réalisables. Finalement, nous adaptons les heuristiques précédentes pour résoudre

le problème industriel. Deux relaxations différentes sont proposées et comparées. Des

extensions des concepts précédents sont présentées afin d’assurer une résolution fiable

en un temps raisonnable.

Mots clés: localisation dynamique d’installations, niveaux de capacités modu-

laires, programation linéaire en nombres entiers, relaxation lagrangienne, heuris-

tiques.



ABSTRACT

Location decisions are frequently subject to dynamic aspects such as changes in cus-

tomer demand. Often, flexibility regarding the geographic location of facilities, as well

as their capacities, is the only solution to such issues. Even when demand can be forecast,

finding the optimal schedule for the deployment and dynamic adjustment of capacities

remains a challenge. In this thesis, we focus on multi-period facility location problems

that allow for dynamic capacity adjustment, in particular those with complex cost struc-

tures. We investigate such problems from different Operations Research perspectives,

presenting and comparing several mixed-integer programming (MIP) models, assessing

their use in practice and developing efficient solution algorithms.

The thesis is divided into four parts. We first motivate our research by an industrial

application, in which a logging company needs to locate camps to host the workers in-

volved in forestry operations. We present a MIP model that allows for the construction of

additional camps, the expansion and relocation of existing ones, as well as partial closing

and reopening of facilities. The model uses particular capacity constraints that involve

integer rounding on the left hand side. Economies of scale are considered on several lev-

els of the cost structure. The usefulness of the model is assessed by two case studies. The

second part introduces the Dynamic Facility Location Problem with Generalized Mod-

ular Capacities (DFLPG). The model generalizes existing formulations for several dy-

namic facility location problems and provides stronger linear programming relaxations

than the specialized formulations. The model can address facility location problems

where the costs for capacity changes are defined for all pairs of capacity levels, as it is

the case in the previously introduced industrial problem. It is applied to three special

cases: capacity expansion and reduction, temporary facility closing and reopening, and

the combination of both. We prove dominance relationships between our formulation

and existing models for the special cases. Computational experiments on a large set of

randomly generated instances with up to 100 facility locations and 1000 customers show

that our model can obtain optimal solutions in shorter computing times than the existing

specialized formulations. Given the complexity of such models for large instances, the
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third part of the thesis proposes efficient Lagrangian heuristics. Based on subgradient

and bundle methods, good quality solutions are found even for large-scale instances with

up to 250 facility locations and 1000 customers. To improve the final solution quality, a

restricted model is solved based on the information collected through the solution of the

Lagrangian dual. Computational results show that the Lagrangian based heuristics pro-

vide highly reliable results, producing good quality solutions in short computing times

even for instances where generic solvers do not find feasible solutions. Finally, we adapt

the Lagrangian heuristics to solve the industrial application. Two different relaxations

are proposed and compared. Extensions of the previous concepts are presented to en-

sure a reliable solution of the problem, providing high quality solutions in reasonable

computing times.

Keywords: dynamic facility location, modular capacities, mixed-integer pro-

gramming, lagrangian relaxation, heuristics.



CONTENTS

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . 6

2.1 An Overview of Facility Location Problems and Applications . . . . . . 6

2.1.1 Facility Location in the Context of Location Analysis . . . . . . 6

2.1.2 Capacitated Facility Location . . . . . . . . . . . . . . . . . . 8

2.1.3 Dynamic Facility Location . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Exact Methods: Polyhedral Approaches . . . . . . . . . . . . . 19

2.2.2 Mathematical Decomposition . . . . . . . . . . . . . . . . . . 21

2.2.3 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Summary of Existing Literature . . . . . . . . . . . . . . . . . 27

2.3.2 Heuristics vs. Exact Solution Procedures . . . . . . . . . . . . 28



viii

CHAPTER 3: OPTIMAL CAMP LOCATIONS IN FORESTRY . . . . . 30

3.1 Chapter Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Approximation of the Cost Structure . . . . . . . . . . . . . . . 31

3.1.2 Modeling of Relocation . . . . . . . . . . . . . . . . . . . . . 31

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Context and Scope . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Contributions and Organization of the Paper . . . . . . . . . . . 36

3.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Work Crews, Demands and Hosting Capacities . . . . . . . . . 37

3.3.2 Camps and Trailers . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Capacity Expansion and Camp Relocation . . . . . . . . . . . . 40

3.3.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 The DMCFLP – An Extension of the CFLP . . . . . . . . . . . 46

3.5.2 Round-Up Capacity Constraints . . . . . . . . . . . . . . . . . 49

3.5.3 The CSLP - Adding Partial Camp Closing, Relocation and Mod-

ular Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Instance Generation and Experimentation Environment . . . . . 57

3.6.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 Comparative Study for Planning Period 2006 to 2010 . . . . . . 64

3.7.2 Analysis of Proposed Planning for Period Starting in 2011 . . . 70

3.8 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . 72

CHAPTER 4: DYNAMIC FACILITY LOCATION WITH GENERALIZED

MODULAR CAPACITIES . . . . . . . . . . . . . . . . . 74

4.1 Chapter Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



ix

4.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 DFLPG Formulation . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 DFLPG Based Models for the Special Cases . . . . . . . . . . 84

4.5 Comparisons with Specialized Formulations . . . . . . . . . . . . . . . 86

4.5.1 Facility Closing and Reopening . . . . . . . . . . . . . . . . . 86

4.5.2 Capacity Expansion and Reduction . . . . . . . . . . . . . . . 91

4.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.1 Linear Relaxation Solution and Integrality Gaps . . . . . . . . . 95

4.6.2 CPLEX Optimization . . . . . . . . . . . . . . . . . . . . . . . 95

4.6.3 Closing and Reopening with Capacity Expansion and Reduc-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.4 Solution Structure and Instance Properties . . . . . . . . . . . . 104

4.7 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . 108

CHAPTER 5: LAGRANGIAN RELAXATION FOR DYNAMIC FACIL-

ITY LOCATION . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Chapter Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Mixed Integer Programming Formulation . . . . . . . . . . . . . . . . 117

5.3.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Solution of the Lagrangian Subproblem . . . . . . . . . . . . . 123

5.4.2 Solution of the Lagrangian Dual . . . . . . . . . . . . . . . . . 125

5.4.3 Upper Bound Generation . . . . . . . . . . . . . . . . . . . . . 127

5.5 Upper Bound Improvement: Restricted MIP Model . . . . . . . . . . . 129

5.5.1 MIP Model Based on Lagrangian Solutions . . . . . . . . . . . 129

5.5.2 MIP Model Based on Convexified Bundle Solutions . . . . . . 130

5.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 131



x

5.6.1 Integrality Gaps of the Test Instances . . . . . . . . . . . . . . 133

5.6.2 Comparison of Different Configurations for the Lagrangian Heuris-

tics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6.3 Comparisons with CPLEX . . . . . . . . . . . . . . . . . . . . 139

5.7 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . 146

CHAPTER 6: LAGRANGIAN RELAXATION FOR DYNAMIC FACIL-

ITY LOCATION WITH RELOCATION AND PARTIAL FA-

CILITY CLOSING . . . . . . . . . . . . . . . . . . . . . 148

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 GMC Based Mathematical Formulation . . . . . . . . . . . . . . . . . 149

6.3 Lagrangian Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.1 Relaxation of Demand and Relocation Linking Constraints . . . 155

6.3.2 Relaxation of the Demand Constraints . . . . . . . . . . . . . . 161

6.3.3 Using Round-up Capacity Constraints . . . . . . . . . . . . . . 162

6.3.4 Restricted MIP model . . . . . . . . . . . . . . . . . . . . . . 166

6.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.1 Computational Results for the DFLP_PC . . . . . . . . . . . . 168

6.4.2 Computational Results for the DFLP_RPC . . . . . . . . . . . 173

6.4.3 Computational Results for the DFLP_RPC with RUC Constraints 185

6.5 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . 194

CHAPTER 7: CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . 196

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 197

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

APPENDIX A: SUPPLEMENT TO CHAPTER 3 . . . . . . . . . . . . . . 214

A.1 Relocation for the CSLP: Models . . . . . . . . . . . . . . . . . . . . . 214

A.1.1 Relocation via Hub Nodes . . . . . . . . . . . . . . . . . . . . 214



xi

A.1.2 Relocation via Direct Arcs . . . . . . . . . . . . . . . . . . . . 214

A.2 Relocation for the CSLP: Strength of the LP relaxations . . . . . . . . . 216

A.3 Relocation for the CSLP: Computational Experiments . . . . . . . . . . 221

APPENDIX B: SUPPLEMENT TO CHAPTER 4 . . . . . . . . . . . . . . 224

B.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.1.1 Theoretical Results for the DMCFLP_CR formulations . . . . . 224

B.1.2 Theoretical Results for the DMCFLP_ER formulations . . . . . 234

B.1.3 Theoretical Results for the DMCFLP_CRER formulations . . . 241

B.2 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

B.2.1 Number of time periods . . . . . . . . . . . . . . . . . . . . . 249

B.2.2 Problem dimension . . . . . . . . . . . . . . . . . . . . . . . . 249

B.2.3 Number of capacity levels . . . . . . . . . . . . . . . . . . . . 249

B.2.4 Customer/facility locations . . . . . . . . . . . . . . . . . . . . 250

B.2.5 Demand allocation costs . . . . . . . . . . . . . . . . . . . . . 250

B.2.6 Fixed costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B.2.7 Demand distribution . . . . . . . . . . . . . . . . . . . . . . . 253

B.3 Model Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

APPENDIX C: SUPPLEMENT TO CHAPTER 5 . . . . . . . . . . . . . . 259

C.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

C.1.1 Problem dimension . . . . . . . . . . . . . . . . . . . . . . . . 259

C.1.2 Number of capacity levels . . . . . . . . . . . . . . . . . . . . 259

C.1.3 Customer/facility locations . . . . . . . . . . . . . . . . . . . . 260

C.1.4 Demand allocation costs . . . . . . . . . . . . . . . . . . . . . 260

C.1.5 Fixed costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

C.1.6 Demand distribution . . . . . . . . . . . . . . . . . . . . . . . 263



LIST OF TABLES

3.I Relation between the number of hosting and supporting trailers, as

well as the corresponding construction costs. . . . . . . . . . . . 32

3.II Comparing the solution quality for the DMCFLP without/with RUC

constraints as well as without/with SAD inequalities after one hour

of computation time. . . . . . . . . . . . . . . . . . . . . . . . . 60

3.III Comparing the solution quality after one hour of computation time

using different solution approaches. . . . . . . . . . . . . . . . . 61

3.IV The average optimality gaps of optimal DMCFLP solutions in the

CSLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.V The average number of constructed and relocated trailers within

near optimal CSLP solutions. . . . . . . . . . . . . . . . . . . . . 62

3.VI Results (ISall) with CSLPheur when camp relocation is allowed

only once a year. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.VII Cost distribution for the simulated company activities and the op-

timized solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.VIII Cost distribution for optimal and heuristic demand allocation. . . 69

3.IX Cost distribution in the optimal solutions for both scenarios. . . . 71

3.X Usage of existing trailers and travel distances for the both scenarios. 72

4.I Average LP relaxation solution time and average integrality gaps

for all formulations. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.II CPLEX branch-and-cut computation times (in seconds) for in-

stances solved to optimality by all formulations for each problem. 98

4.III CPLEX branch-and-cut optimality gaps for instances of the DM-

CFLP_CR not solved within 6hs. . . . . . . . . . . . . . . . . . . 99

4.IV CPLEX branch-and-cut optimality gaps for instances of the DM-

CFLP_ER not solved within 6hs. . . . . . . . . . . . . . . . . . . 99



xiii

4.V Computation times (in seconds) using CPLEX with default set-

tings for instances solved to optimality by all formulations for each

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.VI Optimality gaps using CPLEX with default settings for instances

of the DMCFLP_CR not solved within 6hs. . . . . . . . . . . . . 102

4.VII Optimality gaps using CPLEX with default settings for instances

of the DMCFLP_ER not solved within 6hs. . . . . . . . . . . . . 102

4.VIII Impact of instance characteristics (transportation costs and demand

distribution) on the solution structure for the DMCFLP_CRER. . 106

4.IX Impact of number of time periods in problem instances (q = 10)

for the CRER-GMC formulation when using CPLEX with default

settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.I Comparison of different configurations for the Lagrangian based

heuristics for the four problems. . . . . . . . . . . . . . . . . . . 136

5.II Comparison of results for different parameters for the bundle method

with MIP based on Lagrangian solutions, applied to the DFLPG. . 138

5.III Comparison of CPLEX and Lagrangian based heuristics for the

DFLPG: average and maximum optimality gap when compared to

the best known lower bound. . . . . . . . . . . . . . . . . . . . . 142

5.IV Comparison of CPLEX and Lagrangian based heuristics for the

DMCFLP_CR: average and maximum optimality gap when com-

pared to the best known lower bound. . . . . . . . . . . . . . . . 143

5.V Comparison of CPLEX and Lagrangian based heuristics for the

DMCFLP_ER: average and maximum optimality gap when com-

pared to the best known lower bound. . . . . . . . . . . . . . . . 144

5.VI Comparison of CPLEX and Lagrangian based heuristics for the

DMCFLP_CR_ER: average and maximum optimality gap when

compared to the best known lower bound. . . . . . . . . . . . . . 145



xiv

6.I Deviations of LP relaxation values from best known upper bounds

for the two formulations of the DFLP_PC. . . . . . . . . . . . . . 169

6.II CPLEX optimization, using the PC-2i and PC-GMC formulations

for the DFLP_PC. . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.III CPLEX results comparing the the two DFLP_PC formulations,

considering instances where both formulations found feasible so-

lutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.IV Results of the Lagrangian Heuristic for all 540 instances of the

DFLP_PC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.V Comparison of solution quality for CPLEX and the Lagrangian

heuristic for the DFLP_PC, considering instances where CPLEX

found feasible solutions. . . . . . . . . . . . . . . . . . . . . . . 175

6.VI Deviations of LP relaxation values from best known upper bounds

of the RPC-2i and RPC-GMC formulations for the DFLP_RPC. . 177

6.VII CPLEX optimization, using the RPC-2i and RPC-GMC formula-

tions for the DFLP_RPC. . . . . . . . . . . . . . . . . . . . . . . 178

6.VIII CPLEX results comparing the two DFLP_RPC formulations, con-

sidering instances where both formulations found feasible solutions.179

6.IX Comparison of solution quality for CPLEX and the Lagrangian

heuristic based on the relaxation of the demand constraints, con-

sidering instances for the DFLP_RPC where CPLEX found feasi-

ble solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.X Results of the Lagrangian Heuristic based on the relaxation of the

demand constraints for all 540 instances for the DFLP_RPC. . . . 183

6.XI Results of the Lagrangian Heuristic, relaxing demand and reloca-

tion linking constraints, for all 540 instances for the DFLP_RPC. . 184

6.XII Comparison of solution quality for CPLEX and the Lagrangian

heuristic, relaxing demand and relocation linking constraints, con-

sidering instances for the DFLP_RPC where CPLEX found feasi-

ble solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



xv

6.XIII Deviations of LP relaxation values from best known upper bounds

of the RPC-2i and RPC-GMC formulations for the DFLP_RPC

with RUC constraints. . . . . . . . . . . . . . . . . . . . . . . . 187

6.XIV CPLEX optimization, using the RPC-2i and RPC-GMC formula-

tions for the DFLP_RPC with RUC constraints. . . . . . . . . . . 189

6.XV CPLEX results comparing the two formulations for the DFLP_RPC

with RUC constraints, considering instances where both formula-

tions found feasible solutions. . . . . . . . . . . . . . . . . . . . 190

6.XVI Results for different configurations of the Lagrangian heuristic,

relaxing demand and relocation linking constraints, for all 540 in-

stances for the DFLP_RPC with RUC constraints. . . . . . . . . . 192

6.XVII Comparison of solution quality for CPLEX and the Lagrangian

heuristic, relaxing demand and relocation linking constraints, con-

sidering instances for the DFLP_RPC with RUC constraints where

CPLEX found feasible solutions. . . . . . . . . . . . . . . . . . . 193

A.I Computing times to solve the LP relaxation: direct arcs vs. hub

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.II Computing time to solve problems: direct arcs vs. hub nodes. . . 223

B.I Model sizes for the formulations CR-GMC, CR-1I and CR-2I+. . 256

B.II Model sizes for the formulations ER-GMC, ER-1I and ER-2I. . . 257

B.III Model sizes for the formulations CRER-GMC and CRER-1I. . . . 258



LIST OF FIGURES

3.1 Example of facility relocation by the use of (a) direct arcs and (b)

hub nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Example of logging demands hosted at the same accommodation. 39

3.3 Network model to manage open and closed trailers at each location. 52

3.4 The impact of the transportation cost ratio on (a) the number of

CSLP instances where no solutions have been found, (b) the aver-

age optimality gaps and (c) the average number of constructed and

relocated trailers in near optimal solutions. . . . . . . . . . . . . 63

3.5 Total demand (in average number of workers per day) throughout

all seasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Simplified illustration of the logging regions and the road network. 66

4.1 Capacity expansion/reduction by use of a single facility (a), hori-

zontal capacity blocks (b) and vertical capacity blocks (c). . . . . 81

4.2 Structure of optimal solutions: minimum, average and maximum

number of selected facility locations, as well as the average num-

ber of open facilities per time period throughout the entire plan-

ning horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Structure of optimal solutions: average number of facility closings

and reopenings, as well as capacity reductions and expansions. . . 105

6.1 Network model to manage partial facility closing and reopening

used in the PC-GMC and RPC-GMC models. Each node indicates

the level of open and existing capacity. . . . . . . . . . . . . . . . 154

A.1 Network flow structure for managing the number of open and closed

trailers at each location as well as the camp relocation by direct arcs.215



xvii

A.2 Relative improvement of time to solve the LP relaxation for each

of the instances when hub node relocation is used instead of direct

arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B.1 Network flow to manage open and closed capacities at each facility

for the DMCFLP_CRER. . . . . . . . . . . . . . . . . . . . . . . 241



LIST OF ABBREVIATIONS

Combinatorial Optimization Problems

1I One index (normally refers to a formulation)

2I Two indices (normally refers to a formulation)

4I Four indices (normally refers to a formulation)

CFLP Capacitated Facility Location Problem

(synonym: Capacitated Plant Location Problem)

CSLP Camp Size and Location Problem

DFLP Dynamic Facility Location Problem

DFLPG Dynamic Facility Location Problem with Generalized Modular Capacities

DFLP_PC Dynamic Facility Location Problem with Partial Facility Closing

DFLP_RPC Dynamic Facility Location Problem with Relocation and Partial Facility Closing

FLP Facility Location Problem

GMC Generalized Modular Capacities

MCFLP Modular Capacitated Facility Location Problem

MCKP Multiple-Choice Knapsack Problem

UFLP Uncapacitated Facility Location Problem

(synonym: Simple Plant Location Problem)

Mathematical Programming

B&B Branch-and-Bound

B&C Branch-and-Cut

LP Linear Programming / Linear Program

IP Integer Program

MIP Mixed-Integer Program

ADC Aggregated Demand Constraints

RUC Round-Up Capacity Constraints

SAD Strengthened Aggregated Demand Constraints

SI Strong Inequalties (synonym: Strong Linking Constraints)



xix

Miscellaneous

LB Lower Bound

UB Upper Bound



To my family.



ACKNOWLEDGMENTS

First and foremost, I would like to express my sincerest gratitude to my supervisors,

Professors Bernard Gendron and Jean-François Cordeau. I feel deeply fortunate and

honored for the opportunity to work with them and would like to thank them for their

confidence, support and advice both on research as well as on my career. Further, I

would like to thank Professor Francisco Saldanha da Gama, the external examiner, for

his valuable comments.

I am also thankful to the academic and technical staff of the Department of Computer

Science and Operations Research of the Université de Montréal and the Interuniversity

Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT).

I would like to thank Mathieu Blouin and Jean Favreau from FPInnovations, for their

extensive collaboration on the industrial problem. Special thanks also to Ivan Contreras

for his insights on Lagrangian relaxation, as well as to Antonio Frangioni and Enrico

Gorgone for providing the implementation of the bundle method and advice on its us-

age. I greatly appreciate the fruitful discussions with the many colleagues and friends

at CIRRELT: Claudio, Fausto, Geraldine, Gerardo, Greg, Leandro, Marie-Eve, Paul,

Thibaut, and many more. I also owe an important debt to Professor Marcus V. S. Poggi

de Aragão, who introduced me to the field of operations research.

This list of acknowledgments would be incomplete without my deepest appreciation

to my family, who always believed in me and fully accepted and supported my choice

to live abroad. I am aware of all moments that I was not able to share with them. I

am indebted to my wife Bérénice; strong, patient, and constantly supportive and loving.

One cannot fail with someone like her by his side. Heartfelt thanks to my friends and life

mentors Colette, Lorenzo, Michel et Nicolas, and many others in Montreal and around

the world. Merci aux Québecois, pour leur accueil chaleureux, même aux jours froids.

Last, but not least, I also thank Calcul Québéc for providing excellent computing

resources, as well as MITACS, the Natural Sciences and Engineering Research Council

of Canada (NSERC) and the Fonds de recherche du Québec Nature et Technologies

(FRQNT) for their financial support.



CHAPTER 1

INTRODUCTION

The location of facilities is considered one of the most important decisions in logis-

tics. Both the private and public sectors have shown a particular interest in the study

of facility location, as they require to strategically locate warehouses, factories, fire sta-

tions, schools, telecommunications hubs, and many others. Choosing the ideal location

for a facility greatly depends on the application context and may take into considera-

tion aspects that are as diverse as the distance to intermediate storage locations or final

customers, the accessibility of the facility terrain, the location’s susceptibility to natu-

ral disasters, the accessibility and prices of necessary raw materials, the availability of

qualified employees, or tax considerations and governmental initiatives. In most of the

cases, the locations of facilities are strategic decisions that have a long lasting impact on

the operational costs.

Given its economic importance, facility location has been of high interest for Op-

erations Research (OR). In classical facility location, decisions aim to strike a balance

between the fixed costs to supply capacity and the allocation costs to serve the demand.

The latter often correspond to transportation costs to deliver products or provide services

to customers. The vast literature on facility location problems can be traced back to as

early as the beginning of the 20th century (Weber, 1929), when a single facility had to

be placed to best serve the demand of customers. It has since been extended to a large

variety of application contexts, with different objectives and different constraints. Hos-

pitals have to be placed such that the maximum distance to the population is minimal,

obnoxious facilities have to be placed as far as possible from the population, and budget

constraints may limit the total investment. Among the many extensions that have been

proposed, the most common ones include different commodity types for the customer

demands, multiple periods in which customers may have different demands, as well as

the choice of the facility size.

Most facility location problems are NP-hard, i.e., no algorithms are available that
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may solve these problems in polynomial time. However, many powerful solution meth-

ods have been developed to solve these problems. With constant advances in information

technology, as well as an increasing understanding of solution algorithms and the struc-

ture of combinatorial optimization problems, the OR community has successfully solved

increasingly complex and realistic problems.

Today’s challenges to advance facility location research may be divided into at least

three categories, each of them holding opportunities to achieve significant impact in prac-

tice. First, dynamic facility location takes into account the change in planning parame-

ters over time. Uncertainty, in particular concerning the customer demands, may require

a robust choice of the facility location. Population shifts, evolving market trends and

changes of other environmental factors often require adjustments reaching from facili-

ties to the entire supply chain. These adjustments often concern the decisions of where

and when to provide capacity to best satisfy the customer demands. Another impor-

tant challenge is to represent a problem in a more realistic manner. Typically, this can be

done by ensuring that the individual problem constraints are modeled realistically and by

representing the cost structure of the problem on a sufficiently detailed level. Economies

of scale have often been considered on levels such as the facility’s construction, main-

tenance and production costs. They may also be found on other levels such as the costs

to deliver the products to the customers. Finally, integrated planning problems aim at

acknowledging the interaction between several planning problems and try to solve them

simultaneously, such as in location-routing problems and in integrated facility location

with network design. Taking these aspects into consideration when designing facility

location problems holds a valuable opportunity to represent the problems in a more real-

istic manner and therefore provide more tools for supporting decision making processes.

However, even today, modeling and solving such problems remains a challenge.

The objective of this thesis is to contribute with models and algorithms to solve dy-

namic facility location problems, in particular responding to the first two of the above

mentioned challenges. This thesis focuses on multi-period facility location problems

in which the planning parameters may be subject to significant changes over time. Fa-

cilities adapt to the new environment by adjusting the available capacity at each of the
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locations. The proposed models also take into consideration a very detailed level of the

cost structure, enabling a more realistic representation of the problems. The work on

these problems has been inspired by an industrial collaboration with FPInnovations, one

of the world’s largest private, non-profit research centers working in forest research. The

project aims at providing a decision support tool for a Canadian logging company that

has to locate logging camps to host the workers involved in forestry operations. Although

it is an extension of classical multi-period facility location problems, this problem does

not only possess very specific constraints, but also a very detailed cost structure. As

solving these problems exactly by the use of generic mixed-integer programming (MIP)

solvers is only successful for small problem instances, we develop heuristics based on

Lagrangian relaxation to provide high quality solutions in short computation times, even

for large-scale instances.

The remainder of this thesis is organized as follows. In Chapter 2, we review the lit-

erature for facility location problems. Given the vast amount of literature that has been

produced in this domain in the last decades, we focus on the classical Capacitated Fa-

cility Location Problem (CFLP) and its variants. In the first part, the CFLP is discussed

within the context of location analysis. A classification scheme is provided to guide the

discussion on variants and extensions of the classical problem. In particular, we discuss

the choice of the facility size, multiple commodities and dynamic adjustment of capaci-

ties. The second part of the chapter concerns solution methods that have been proposed

for these problems. We then draw conclusions concerning the existing literature.

Chapter 3 introduces an industrial application that can be found in the Canadian

forestry sector. The problem is referred to as the Camp Size and Location Problem

(CSLP) and investigates where to locate and relocate logging camps to host workers in-

volved in the forest operations. This problem can be abstracted to a multi-period facility

location problem with multiple commodities that allows for the capacity expansion at

facilities, as well as the relocation of facilities from one location to another. This prob-

lem contributes to the literature by extending existing problems in several ways. First,

facilities may be partially closed during certain time periods. Second, the problem pos-

sesses particular capacity constraints in which the total demand allocated to each facility
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is rounded to the next highest integer value. Finally, the problem has a detailed cost

structure for capacity changes, i.e., capacity expansion, as well as for the closing and

reopening of capacities. A MIP model based on capacity flows, as well as new valid

inequalities for the particular capacity constraints, are presented. All individual prob-

lem characteristics are taken into account, while the detailed cost structure for capacity

changes is approximated. It is shown how the problem can be tackled more efficiently

by solving a simplified version of the problem and using its solutions to warm start the

MIP solver. Two case studies exemplify the usefulness of the model in practice.

In Chapter 4, we then introduce a very general dynamic facility location problem,

referred to as the Dynamic Facility Location Problem with Generalized Modular Capac-

ities (DFLPG). The problem is characterized by modular capacity changes subject to a

detailed cost structure. Due to its generality, the proposed MIP model unifies several

existing problems found in the literature. This is illustrated by means of three special

cases: the problem with facility closing and reopening, the problem with capacity ex-

pansion and reduction, and the combination of the two. The cost structure used in the

DFLPG is based on a matrix describing the costs for capacity changes between all pairs

of capacity levels, capable to represent complicated cost structures such as the one found

in the CSLP. We are not aware of any other work dealing with facility location with a

similar level of detail in the cost structure. We analyze the linear programming (LP)

relaxation bound obtained by our model, showing that it is at least as strong as the LP

relaxation bound of existing specialized formulations. Furthermore, we perform compu-

tational studies on a large set of randomly generated instances with up to 100 candidate

facility locations (each with up to 10 capacity levels), 1000 customers and 14 time peri-

ods. The results show that our model, when solved with a state-of-the-art MIP solver, can

obtain optimal solutions in significantly shorter computation times than the specialized

formulations for the three special cases.

Chapter 5 is devoted to the solution of a DFLPG extension in which customers have

demands for different commodities. We propose Lagrangian based heuristics that find

good quality solutions in reasonable computing times. Two methods are used to solve

the Lagrangian dual: a subgradient method and a bundle method. After this process, a



5

second optimization step is used to improve the solution quality. This step consists of

solving a restricted MIP model, taking into consideration only decisions that have been

part of a significant number of the previous Lagrangian solutions. Computational results

are given for large instances with up to 250 candidate facility locations and 1000 cus-

tomers. The results are stable even for large instances, for which general-purpose MIP

solvers either consume too much memory or do not solve the problem in reasonable time.

To the best of our knowledge, this work is the first to present a Lagrangian relaxation

approach to solve large-scale instances of a multi-period facility location problem of this

nature, i.e., including modular capacity adjustments and multiple commodity types.

We then close the loop in Chapter 6 by demonstrating how to extend the Lagrangian

heuristics to the case of the CSLP or similar problem variants. An alternative formu-

lation, based on the same modeling technique used to model the DFLPG, is presented.

Even though the size of this formulation is too large to be handled by generic MIP

solvers, the subproblems are of quite reasonable size when decomposed by Lagrangian

relaxation. The algorithm from the previous chapter is modified to additionally account

for the partial closing and reopening of facilities, the relocation of facilities, and the par-

ticular capacity constraints defined in the CSLP. Two different relaxations are presented,

each relaxing different sets of constraints. Computational results show the benefit of the

Lagrangian heuristics when compared to the use of generic MIP solvers.

Finally, Chapter 7 summarizes the contributions of this thesis and discusses potential

future research directions.
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LITERATURE REVIEW

In this chapter, we review the literature relevant to the facility location problems we

study in this thesis. Section 2.1 introduces classical facility location problems, their

variants and extensions, as well as their applications. Section 2.2 focuses on solution

methods for the previously introduced problems. Finally, in Section 2.3, we discuss the

importance of the existing literature for the work presented in this thesis.

2.1 An Overview of Facility Location Problems and Applications

This section introduces facility location in the broader context of location analysis

and reviews classical facility location problems and their variants and extensions. Then,

the most common applications are discussed.

2.1.1 Facility Location in the Context of Location Analysis

Location Analysis is concerned with identifying the optimal locations subject to con-

text related constraints. Often, the former are referred to as the locations of facilities,

placed to efficiently serve the demand of customers. Literature on location problems can

be traced back to as early as 1909 in a book by Alfred Weber, first published in German

and later translated into English (Weber, 1929). This work considered the location of

a production facility to minimize the total sum of distances to a set of customers. The

field of location analysis mostly grew during the 1960’s (Smith et al., 2009) and discrete

location problems are nowadays a large branch of combinatorial optimization. Many

schemes have been proposed to classify location models (Hamacher and Nickel, 1998).

One of the basic criteria categorizes the problems into analytic, continuous, network,

and discrete location models (Daskin, 2008; Revelle et al., 2008). Analytic models are

the simplest form of location problems and are based on simplifying assumptions re-

garding their constraints and their objective function, such as the cost structure. They
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are typically solved analytically, using calculus or other techniques. Continuous loca-

tion models typically assume a discrete set of demand points, while the locations for the

facilities are chosen in the continuous space. A well known example for this class of

location models is the above mentioned Weber problem. Network models assume that

facilities can be placed on the nodes or links of a specified network, while demands are

typically placed on the nodes. Discrete location models form a special case of network

models where demands are given by a discrete set of nodes and facilities may be located

on a discrete set of candidate locations.

The category of discrete location models has constantly evolved in the last decades

and offers a rich literature on different problems and solution methods to solve them.

It can be further classified (Daskin, 2008; Revelle et al., 2008) into median and plant

location problems, as well as center and covering problems. A similar classification has

also been proposed by Revelle and Eiselt (2005). The development of location analysis

from its early beginning and today’s most important applications are also reviewed by

Smith et al. (2009). Covering problems investigate the minimum number of facilities

necessary to guarantee a certain maximum distance between the customers and their

assigned facilities. Center problems aim at minimizing the maximum distance between

the customers and facilities to which they are allocated.

The p-median problem is the simplest problem of the first category of discrete lo-

cation models. It is known to be NP-hard (Kariv and Hakimi, 1979a,b) and aims at

finding the optimal locations for p facilities such that the total average weighted dis-

tance between the customers and their assigned facilities is minimal. The essence of this

problem, i.e., serving customer demands at minimum cost, is preserved in most of the

problem extensions. Typically known as plant or facility location problems, these vari-

ants generalize the p-median problem by introducing heterogeneous construction costs

and a flexible choice of the number of facilities p.

The authors cited above also comment on other classes of discrete location mod-

els. Competitive location problems (Eiselt et al., 1993) deal with facility location in

the presence of competitors. Locations have to be chosen such that the market share is

maximized. Hub location problems (O’Kelly, 1986; Contreras et al., 2011b; Campbell
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and O’Kelly, 2012) locate transportation hubs according to a given flow from origins to

destinations. While facilities are usually located as close as possible to their customers,

some problems may aim at the opposite. For example, undesirable (or obnoxious) facil-

ities (Berman and Wang, 2008) may impose health risk to the population and therefore

have to be located in a sufficient distance. The combination of different planning prob-

lems has also been considered, such as the Location-Routing problem (Contardo et al.,

2013; Prodhon and Prins, 2014) and integrated logistics network design (Cordeau et al.,

2006).

In the following, we will focus on facility location problems and their main variants

proposed in the literature.

2.1.2 Capacitated Facility Location

In the following, we review classical capacitated facility location problems. We then

discuss literature surveys and classical problem extensions. A classification scheme is

provided that guides the discussion on different problem characteristics.

2.1.2.1 The Capacitated Facility Location Problem

As has been mentioned in the previous section, facility location problems are impor-

tant extensions of the classical p-median problem. The Uncapacitated Facility Location

Problem (UFLP), also known as the Simple Plant Location Problem, aims at selecting a

number of facility locations from a discrete set of candidate locations j ∈ J, considering

the construction costs f j for each of the facilities. Customer demands di are given for

each customer i defined by a discrete set I. These demands have to be satisfied at min-

imum cost, also taking into consideration the aggregated production and transportation

costs ci j to serve one demand unit of customer i by facility j. Clearly, the capacitated

case, referred to as the Capacitated Facility Location Problem (CFLP), is a more re-

alistic model, as production capacities are usually limited. It is known to be strongly

NP-hard (Cornuéjols and Sridharan, 1991). Here, the binary variables y j take value 1

if the facility at location j is selected. Its capacity is given by u j. The continuous vari-
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ables xi j represent the fraction of the demand from customer i that is served by facility

j. Using this notation, the CFLP can be formulated as follows (Sridharan, 1995):

(CFLP) min ∑
j∈J

f jy j +∑
i∈I

∑
j∈J

ci jdixi j (2.1)

s.t. ∑
j∈J

xi j = 1 ∀i ∈ I (2.2)

∑
i∈I

dixi j ≤ u jy j ∀ j ∈ J (2.3)

0≤ xi j ≤ 1 ∀i ∈ I,∀ j ∈ J (2.4)

y j ∈ {0,1} ∀ j ∈ J. (2.5)

The problem minimizes the total cost composed by facility construction and demand

allocation. Equalities (2.2) ensure that all customer demands are met. Constraints (2.3)

are the capacity constraints at the facilities.

Note that the presented model allows the demand of a customer to be met by different

facilities. Certain variants require that each customer is allocated to a single facility,

defining xi j as binary, also referred to as single-sourcing.

2.1.2.2 Literature Surveys and Problem Classification

The facility location community benefits from a rich and diverse literature dating

back to the early 19th century (Krzyzanowski, 1927). The diversity, importance and

maturity of the field has been confirmed by many recent literature surveys (Hamacher

and Nickel, 1998; Klose and Drexl, 2005; Melo et al., 2009a; Revelle and Eiselt, 2005;

Revelle et al., 2008; Smith et al., 2009; Zanjirani Farahani and Hekmatfar, 2009). Sev-

eral classification schemes have been proposed to point out similarities and differences

between the existing models. Melo et al. (2009a) focuses on criteria in the context of

Supply Chain Management, whereas Klose and Drexl (2005) specify a classification

for facility location problems. One may slightly extend their classification scheme and

characterize facility location problems by the following properties:
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– Metric of the underlying network. Based on the shape or topology of the trans-

portation network, the distances and costs may be based on Euclidean distances or

other more complex structures.

– Type of the objective function. The problem may minimize the total sum of

distances or the maximum distance between the customers and the facilities they

are assigned to.

– Facility capacities. If facilities possess capacities, they may have fixed or flexi-

ble capacities. Capacity modifications may be continuous or chosen according to

predefined capacity levels.

– Single-facility vs. multi-facility. Each location may either possess a single facil-

ity or several facilities, independent or interacting.

– Single-echelon vs. multi-echelon. In multi-echelon models, the commodity flow

may pass trough several echelons, such as facilities, warehouses, depots, and fi-

nally the customer. Reverse flows may be allowed. A direct flow from facilities to

customers corresponds to a single-echelon model.

– Single-commodity vs. multi-commodity. Customers may have demands for dif-

ferent commodities. Facilities may produce only a certain subset and a certain

quantity of commodities.

– Single-period vs. multi-period. Models with a single time period rarely cor-

respond to realistic applications. Multiple time periods may involve independent

demands and costs for each of the time periods, as well as the opportunity to adjust

the locations and capacities of facilities along the planning horizon.

– Deterministic vs. uncertain. In practice, certain input data may be subject to

uncertainty. Even when data, such as customer demands, can be well predicted,

the real values will most probably differ from the predicted value.

– Single-source vs. multi-source. Customer demands are either met by a single

facility or by different facilities.

Some of these characteristics are similar for most of the works found in facility lo-

cation literature. For example, the majority of the proposed models aims at minimizing

the total costs to serve the customers. Only few assume a fixed budget (e.g., Wang
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et al., 2003; Sonmez and Lim, 2012). In a similar manner, most of the works assume

that customer demands may be served by different facilities (multi-source), while only

a few constrain the customer demands to single-sourcing (e.g., Agar and Salhi, 1998;

Holmberg et al., 1999; Albareda-Sambola et al., 2009). Some other characteristics have

evolved to individual classes of facility location problems, each of them offering a tai-

lored literature on how to model and solve them. In the following, we use the above

classification criteria to guide the discussion on the existing facility location literature.

We emphasize problem characteristics that are found in the CSLP (see Section 3), the

industrial application that has inspired large parts of the research presented in this thesis.

Multi-period problem variants are discussed in Section 2.1.3.

2.1.2.3 Choice of the Facility Size and Cost Structure

Given that in most of the application contexts resources are finite, the majority of

the proposed facility location models impose capacities on the facilities. In an effort

to represent cost structures realistically, many researchers acknowledged the importance

of economies of scale (Holmberg and Ling, 1997; Agar and Salhi, 1998; Correia and

Captivo, 2003; Correia et al., 2010), i.e., the larger the facility, the cheaper the unit price

in terms of facility construction and commodity production. Similarly, some applica-

tions involve cost structures that imply inverse economies of scale (Harkness, 2003),

where the unit price increases as the facility gets larger. To enable the representation of

such cost structures, many models decide not only for the location of facilities, but also

for their total capacity instead of assuming a fixed capacity. Problems that involve the

choice of the facility size are known under different names, such as the Dynamic Ca-

pacitated Plant Location Problem (Shulman, 1991) in the multi-period context, and the

Multi-capacitated Plant Location Problem (Agar and Salhi, 1998) or Modular Capaci-

tated Location Problem (Correia and Captivo, 2003) in the single-period context. Early

works with a choice of capacities include those of Lee (1991, 1993a,b), Shulman (1991)

and Sridharan (1991). In these works, the choice of the capacity level is modeled using

an additional variable index, resulting in a facility variable of the form y j`, ` ∈ L, where

L is a discrete set of available capacity levels or facility types assigned to a fixed ca-
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pacity. This intuitive modeling technique has been adapted by several other researchers

(Sankaran and Raghavan, 1997).

An alternative modeling technique has been presented in Holmberg (1994) and Holm-

berg and Ling (1997). The authors use an incremental approach to model staircase

functions, where all variables up to the chosen capacity level are active. Similar ap-

proaches have since been adapted for more complex location problems (Correia and

Captivo, 2003; Gouveia and Saldanha da Gama, 2006). While most of these works con-

sider economies of scales in the construction costs, Correia and Captivo (2003) also

represent economies of scale in the total amount of produced commodities. The authors

separate the decision of the production level from the demand allocation variables x by

using additional binary variables of the form w j` to indicate the total amount produced

at facility j working at capacity level `.

Most of the works discussed above propose models where a single facility can be

located at each location. However, the total capacity available at a site may also be

configured by choosing more than one facility at the same location (Wu et al., 2006).

Some of these works involving multiple time periods are discussed further below in the

context of capacity expansion and reduction over time.

2.1.2.4 Multiple Commodities

Customers may have demands for several distinct commodities and facilities may

produce different commodity types. Multiple commodities have become a common ex-

tension to classical facility location problems, in particular since they do not further

complicate the structure of the model. Models can be distinguished between those that

allocate a separate production capacity for each commodity (Canel et al., 2001; Geof-

frion and Graves, 1974; Lee, 1991; Warszawski, 1973; Pirkul and Jayaraman, 1998) and

those that assume that the production capacity of a facility covers all commodity types

at once (Melo et al., 2006). The constraint type depends on the application context. The

first type is often used to indicate different technologies or facility types that enable the

production of a certain commodity type (Lee, 1991; Pirkul and Jayaraman, 1998). It is

modeled by using separate capacity constraints for each commodity. In the second type,
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the same capacity constraint is used for all commodities and sums up the entire demand

allocation.

New research directions also explore the interaction between facilities that produce

different commodities, where one facility may benefit from the by-product of another

nearby facility (Xie and Ouyang, 2013).

2.1.2.5 Other Generalizations and Variants

Another important class of facility location problems takes into account stochastic

and probabilistic elements (Snyder, 2006). In these problems, the input data is not deter-

ministic, but subject to uncertainty. Uncertainty has mostly been assumed to concern the

customer demands (Schütz et al., 2008). However, it may also concern other input data

such as the traveling times on the transportation network (Berman and LeBlanc, 1984).

Multi-echelon facility location (Zanjirani Farahani et al., 2014), also referred to as

multi-level, multi-layer or multi-stage facility location, assumes that the product passes

several layers before it reaches its final destination. These kinds of models are very

common to model supply chains (Thomas and Griffin, 1996), also known as production-

distribution systems (Thanh et al., 2008), where the commodities may be produced in

facilities, stored in warehouses and sent to stores or customers. In many applications,

there is a natural hierarchy given that the product moves downstream in the supply chain

(Gendron and Semet, 2009; Gendron et al., 2011, 2013). In contrast, problems in which

the network of commodity flow may contain cycles are said to involve reverse flows and

fall in the area of reverse logistics (Alumur et al., 2012).

The majority of works discussed in this thesis have one simple and common objec-

tive: the minimization of costs. However, many other objectives are possible. Multi-

objective problems aim at combining several, often conflicting, objectives. A very typ-

ical example is the combination of traditional economic objectives and the reduction

of environmental impact. Given that the public becomes more aware of environmental

issues, both the governmental and private sectors will most likely analyze how green

their supply chain and production process are (Dekker et al., 2012), aiming at the reduc-

tion of their carbon footprint and the opportunities to recycle. These are opportunities
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to explore reverse logistics supply chains as discussed above, but also to combine the

traditional economic objective with environmental goals and their impacts (e.g., Hugo

and Pistikopoulos, 2005; Harris et al., 2014). Other facility location problems involving

multiple objectives include the work of Melachrinoudis (2000), which additionally aims

at minimizing the time to access the product.

2.1.3 Dynamic Facility Location

The majority of facility location models are applied to strategic long-term planning.

However, customer demands, as well as the prices for production, transportation and

commodities tend to change over time. Multi-period models aim at coping with these

challenges by defining independent demands and costs for each time period. Early works

in the domain of dynamic facility location were initiated by authors such as Ballou

(1968), Wesolowsky (1973), Wesolowsky and Truscott (1975) and Sweeney and Tatham

(1976). A few authors used the term dynamic in a broader context (Arabani and Zanji-

rani Farahani, 2011; Zanjirani Farahani and Hekmatfar, 2009), also including stochastic

aspects. However, the majority of the literature limited the use of the term to the con-

text of multi-period problems. From the modeling viewpoint, the temporal aspect is

usually captured by an additional variable index t. While a few models represent the

available capacity by an additional flow variable z jt ∈ R+, most of the works incorpo-

rate modular capacities, using binary variables of type y j`t , where ` is either a capacity

level or a facility type linked to a fixed amount of capacity. While the optimal timing

of a facility construction, as well as its initial capacity are important decisions (e.g.,

Shulman, 1991), it has often been found beneficial to adjust capacities at later time pe-

riods to better respond to changing demand and market conditions (Owen and Daskin,

1998). Mathematical models that include such features have been applied in both the

private and the public sectors to determine locations and capacities for production facil-

ities, entire supply chains (Melo et al., 2006), telecommunications networks (Chardaire

et al., 1996), schools (Antunes and Peeters, 2001), ambulances (Brotcorne et al., 2003),

emergency services (Hochbaum, 1998) and many more, responding to population shifts

and other environmental factors. Several surveys (Owen and Daskin, 1998; Arabani and
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Zanjirani Farahani, 2011; Zanjirani Farahani and Hekmatfar, 2009) reviewed the grow-

ing literature on dynamic facility location problems, which suggested different ways to

adjust capacities throughout a given planning horizon:

– The construction of a facility at a certain time period.

– The expansion or reduction of capacity at an existing facility.

– The temporary closing of a facility and reopening at a later time period.

– The relocation of capacity from one location to another.

The timing of facility construction is part of most of the multi-period facility location

problems. We now review the existing literature for the other three features.

2.1.3.1 Capacity Expansion and Reduction

When customer demands of certain regions permanently change and are not likely to

return to their previous levels, it may be beneficial to add or reduce (or even permanently

shut down) production capacities at an existing facility to permanently adjust to the new

conditions.

Luss (1982) discusses modeling techniques for capacity expansion. He points out

that the total capacity available at a location may either be provided by a single facility

or be composed by several coexisting facilities. The first category includes models that

allow one facility at a location that increases or decreases the available capacity over

time (Jacobsen, 1990; Canel et al., 2001; Antunes and Peeters, 2001; Melo et al., 2006;

Behmardi and Lee, 2008). These models typically use flow variables of type z jt ∈ R+

and manage the expansion (s jt ∈ R+ variables) or reduction (r jt ∈ R+ variables) of ca-

pacity by using flow conservation constraints similar to the following:

z jt = z j(t−1)+ s jt− r jt ∀i ∈ I ,∀t ∈ T (2.6)

Models in the second category commonly use integer variables to indicate the num-

ber of existing facilities at a location. When the problem allows for capacity expansion,

but not reduction, the total capacity can also be composed of several binary variables,

one for each constructed facility or expanded capacity (Shulman, 1991; Troncoso and



16

Garrido, 2005). This modeling technique can also be found in other classes of loca-

tion problems, such as variants of the Capacitated Concentrator Problem (Gouveia and

Saldanha da Gama, 2006; Gourdin and Klopfenstein, 2008; Correia et al., 2010).

When the problem involves both capacity expansion and reduction, an alternative

modeling technique (Dias et al., 2007) can be used involving binary variables of type

y j`t1t2 to indicate that a capacity of size ` is added for a period defined by the interval

[t1, t2]. The total capacity available at a location and time period is then computed by the

sum of all facilities (capacity blocks) available at that time period, enabling a flexible

expansion and reduction of capacity along time. The two different categories, using flow

variables and capacity block variables, are illustrated in Figure 4.1. We refer to Section

4.3 for a detailed discussion of these modeling techniques.

Next to classical capacity expansion and reduction, several special cases with in-

dividual restrictions have been presented. In the work of Antunes and Peeters (2001),

facilities may either expand or decrease their capacities throughout the planning hori-

zon, but not both. We refer to the book chapter of Jacobsen (1990) for more references

to works that consider capacity expansion.

2.1.3.2 Temporary Facility Closing and Reopening

In some situations, it may be beneficial to temporarily close a facility, for example

to avoid high maintenance costs. This may be appropriate when demand temporarily

decreases, but is likely to return to its previous level afterwards. While, in practice, it

may be possible to close only parts of a facility, previous studies focused on the tem-

porary closing of entire facilities. Among the suggested models, certain are limited to a

single closing and reopening of each facility, whereas others allow repeated closing and

reopening throughout the planning horizon. The uncapacitated facility location prob-

lem presented by Van Roy and Erlenkotter (1982), as well as the supply chain model

of Hinojosa et al. (2008), allow one-time opening or closing of facilities: new facilities

can be opened once and existing facilities can be closed once. Chardaire et al. (1996)

and Canel et al. (2001) propose formulations for opening and closing facilities more

than once. The former installs and removes terminals in telecommunications networks
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to adapt to changes in data traffic and costs along time. The authors of both works use

binary variables of type y jt to indicate whether a facility is open or closed during a cer-

tain period. A closing or reopening is then indicated by a quadratic term y jt(1− y jt) in

the objective function. A linear formulation for a simplified variant of this problem with

fixed capacity levels has been proposed by Dias et al. (2006).

The works cited above interpret facility closing either as temporary (i.e., the facility

still exists, but its capacities are temporarily unavailable) or permanent (a facility is shut

down). In most cases, maintenance costs for temporarily closed facilities are low and

can therefore be ignored in the model. Most of the existing formulations therefore do not

explicitly distinguish temporary and permanent facility closing. Furthermore, permanent

facility closing may also be seen as a special case of capacity reduction.

2.1.3.3 Facility Relocation

In certain contexts, the relocation of existing capacity from one location to another

may be a possibility to shift capacity closer to the demand points. Wesolowsky and

Truscott (1975) have been one of the first to consider simple relocation of facilities.

The authors use flow conservation constraints similar to (2.6), but with binary variables

(instead of flow variables) to indicate whether a facility is available or not. That is,

instead of variables representing capacity expansion and reduction, the model contains

binary variables to represent the relocation from or to the location.

The relocation of facilities has since been considered by several researchers. Min and

Melachrinoudis (1999) document a case study for a company that relocates warehouses

and Melachrinoudis (2000) provides an appropriate model. Brotcorne et al. (2003) re-

view location-relocation models for ambulances for deterministic and probabilistic sce-

narios. Melo et al. (2006) and Melo et al. (2009b) provide an extensive modeling frame-

work for modeling generic multi-level supply chain network structures. Their model is

based on flow conservation constraints and focuses on gradual relocation of existing ca-

pacity. The authors also show how to link binary variables to indicate the facility type,

as well as the origin and destination for the relocated facility. However, it can be noted

that most of the other works ignore the distance the facilities are relocated and therefore
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allocate equal costs to all facility relocations.

Often, the closing of a facility at one location and opening at another location has also

been interpreted as a facility relocation, which has been considered under the constraints

of a global budget (Wang et al., 2003) and under demand uncertainty (Lim and Sonmez,

2013).

Relocation models have also been proposed under more restricted conditions. Amiri-

Aref et al. (2011) present a non-linear mixed-integer formulation to relocate emergency

maintenance rooms given that the transit availability for certain regions are subject to

uncertainty. Zanjirani Farahani et al. (2008) locate and relocate a single facility under the

condition that costs vary according to a continuous weight function. Albareda-Sambola

et al. (2009) introduce a problem in which facilities must select a certain number of

customers. Once served, customers have to be served in all subsequent periods.

2.1.4 Applications

Facility location problems have been applied in many different contexts. In the pri-

vate sector, facility location models most often concern the locations of manufactur-

ing and distribution systems (Min and Melachrinoudis, 1999; Broek et al., 2006) and

telecommunications networks (Chardaire et al., 1996). Location models have also been

often used in the public sector to locate schools (Antunes and Peeters, 2001), hospitals

(Vahidnia et al., 2009) or for military logistics (Gue, 2003; Ghanmi, 2010). Many more

references can be found in surveys such as those by Arabani and Zanjirani Farahani

(2011) and Melo et al. (2009a)

The forestry sector has also been an active user of facility location and supply chain

optimization models. Transportation in the forestry domain accounts for a large part of

the total operational costs (Audy et al., 2012), reported to be 25-35% in Southern USA,

more than 35% in Canada and more than 45% in Chile. Naturally, studies have been

strongly contributed from countries with significant log export, such as it is the case in

Canada (Haartveit et al., 2004; Vila et al., 2006), Chile (Epstein et al., 1999; Troncoso

and Garrido, 2005) and the Scandinavian countries (Rönnqvist, 2003; Bredström et al.,

2004; Carlsson and Rönnqvist, 2005). Chan et al. (2009) provide a facility location
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model to place satellite yards. A comprehensive introduction is provided by D’Amours

et al. (2008), also providing further references. We also refer to the work of Vahid and

Maness (2010) who have recently reviewed and classified supply chain literature for the

forestry sector.

2.2 Solution Methods

We now review solution methods that have commonly been used to solve facility lo-

cation problems. Solution methods for optimization problems can be distinguished into

two broad classes: exact and heuristic methods. Exact methods solve the problem to

optimality, given that sufficient time and memory is available. If, for some reason, the

problem is not solved to optimality, exact methods can provide bounds on the optimal

solution value. As has been seen in the previous section, it has become common prac-

tice to model location problems as MIP models. It is equally common that generic MIP

solvers, usually based on elaborate exact methods, are used to solve these models. How-

ever, even though generic solvers and information technology constantly advance, OR

practitioners try to model real world applications more and more realistically and solve

instances as large as possible. Given the complexity of the resulting models, it is often

not possible to solve them exactly. Heuristics aim at providing high quality solutions

in short computing times even for large problems. Several surveys (Sridharan, 1995;

Arabani and Zanjirani Farahani, 2011; Melo et al., 2009a) review some of the many ex-

act and heuristic solution methods that have been proposed. Some of the algorithmic

advances have been implemented to improve the performance of generic solvers, while

other approaches require to be customized to each problem and therefore form a method-

ological category by themselves. In the following, we will review the literature for the

methods that have been most successful and popular to solve facility location problems.

2.2.1 Exact Methods: Polyhedral Approaches

Most of the facility location problems have been modeled as linear MIP models.

Many of them (Sankaran and Raghavan, 1997; Melachrinoudis, 2000; Melo et al., 2006;
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Wilhelm et al., 2013) have been solved to optimality within reasonable time by general-

purpose solvers. These solvers, such as IBM ILOG CPLEX (IBM, 2010), the Gurobi

Optimizer (Gurobi Optimization, Inc., 2014) and COIN-OR (2014), aim at providing an

efficient framework to solve generic, in particular linear MIP models, to optimality. To

prove optimality, generic MIP solvers are typically based on some sort of Branch-and-

Bound (B&B) algorithm. Certain binary variables are fixed to one of their feasible values,

forming a branch in the B&B tree. Typically, the LP relaxation then provides a lower

bound (in the case of a minimization problem) on the optimal integer solution value that

may be found in the corresponding branch. Integer feasible solutions are typically used

to provide an upper bound on the optimal integer solution. As B&B algorithms rely on

the concept of complete enumeration of the decision tree, their performance crucially

depends on their ability to prune branches that are not promising to lead to an improved

feasible solution, i.e., when the lower bound of a branch is not smaller than the best upper

bound available. Therefore, pruning tends to be more successful when the integrality gap

of the model (i.e., the relative gap between the optimal integer solution value and the LP

relaxation solution value) is small.

A valid inequality is an inequality that is satisfied by all feasible integer solutions

of the MIP model. Cuts are valid inequalities that are not part of the current problem

formulation and are commonly used to approximate the convex hull of the set of integer

feasible solutions. The tighter the formulation is, the smaller the integrality gap tends to

be. Branch-and-Cut (B&C) algorithms are B&B algorithms that may add cuts at each

node in the tree. B&C algorithms provide the foundation for many generic solvers. To

derive effective cuts, the CFLP has been extensively studied in terms of its polyhedral

structure. Reference works include those by Leung and Magnanti (1989) and Aardal

et al. (1995). Aardal (1998b) strengthens the formulation by introducing redundant vari-

ables to derive valid inequalities afterwards. Cutting Plane algorithms for facility loca-

tion problems are presented by Aardal (1998a) and Avella and Boccia (2007). A few

authors also presented customized B&B algorithms (Görtz and Klose, 2012).

As many of the developed cuts are based on sets that are extremely large, one cannot

add all cuts to the model. Separation algorithms (Aardal, 1998a) are necessary to identify
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cuts that actually improve the LP relaxation bound. However, a few valid inequalities

have been developed whose number is polynomial in the size of the input data and suf-

ficiently small to be added a priori to the model. Some of these cuts are quite effective

when added to the model and can be used in combination with other solution approaches

to facilitate the solution of the problem. The Strong Inequalities (Van Roy, 1986), also

referred to as the Strong Linking Constraints (Gendron and Crainic, 1994), have been

shown to be very effective to increase the value of the facility opening decisions in the

LP relaxation. For the CFLP as given by (2.1 - 2.5), they are defined as follows:

xi j ≤ y j ∀i ∈ I, ∀ j ∈ J. (2.7)

Another important class of valid inequalities are the Aggregated Demand Constraints

(ADC) (Cornuéjols and Sridharan, 1991):

∑
j∈J

y j ≤∑
i∈I

di. (2.8)

Even though they are redundant to the LP relaxation, they often enable generic MIP

solvers to derive further cuts.

2.2.2 Mathematical Decomposition

Methods based on mathematical decomposition exploit the structure of linear pro-

grams to decompose them into smaller and easier subproblems. Even though, for most

of these methods, convergence is formally provided, in practice it is often slow or not

achievable. Some of these techniques, in particular those based on Lagrangian relax-

ation, are therefore often used to solve the problem heuristically. In the following, Ben-

ders decomposition, Lagrangian relaxation and cross decomposition will be discussed in

the scope of facility location problems.
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2.2.2.1 Benders Decomposition

Benders decomposition (Benders, 1962) has proved to be efficient to solve problems

under the condition of a special structure. The method relies on the idea that any MIP

can be decomposed into two different kinds of problems. If the integer variables are

fixed, the resulting subproblem only contains continuous variables. If the continuous

variables are fixed, the resulting problem, also referred to as the master problem, only

contains integer variables. In algorithms based on Benders decomposition, the dual of

the subproblem is solved. Its solution generates a Benders cut in the master problem,

stating that the optimal solution has to be at least as costly as the solution found in the

subproblem. If the optimal solutions of all possible subproblems were added as a cut to

the master problem, the latter would yield the optimal solution. However, in practice, the

number of Benders cuts is often too large. Algorithms based on Benders decomposition

are therefore only efficient if they provide strong convergence.

Several researchers approached large facility location problems by Benders decom-

position. Lee (1991) solves an extended CFLP with multiple commodities and multiple

capacity levels. Wentges (1996) shows how to accelerate Benders decomposition for the

CFLP by strengthening the Benders cuts. Next to facility location problems, Benders

decomposition has also been successfully applied to related problems such as supply

chain network design (Cordeau et al., 2006; Easwaran and Üster, 2009) and several hub

location problems (e.g., Contreras et al., 2011a).

2.2.2.2 Lagrangian Relaxation

Lagrangian Relaxation (Fisher, 1981, 1985; Guignard, 2003; Frangioni, 2005) de-

composes LPs which possess block structures in their coefficient matrix. The constraints

that link the different blocks in the original problem are relaxed and penalized in the ob-

jective function, referred to as the Lagrange multipliers, or Lagrangian dual variables.

Ideally, the relaxed problem, denoted as the Lagrangian subproblem, can be solved effi-

ciently. The optimal Lagrange multipliers can be found by solving the Lagrangian dual

problem. Its optimal solution provides a bound on the optimal integer solution and is
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known to be at least as strong as the LP relaxation bound.

Most of the existing literature that applies Lagrangian relaxation to facility location

problems solves the Lagrangian dual by the subgradient method (Held et al., 1974; Guig-

nard, 2003). Several refinements have been proposed to improve the convergence of such

methods, such as the deflected subgradient method (e.g., Contreras et al., 2011b) and

bundle methods (e.g., Frangioni, 2002, 2005).

Given that they are iterative methods, they typically require hundreds of iterations

before converging to the optimal multipliers. At each iteration, the Lagrangian subprob-

lem is solved. Due to these properties, Lagrangian relaxation based methods are typi-

cally either embedded in exact methods (e.g., in B&B algorithms) to provide bounds, or

as a foundation to heuristically generate feasible solutions, often based on the solutions

obtained by solving the Lagrangian subproblems. For a more detailed explanation on

Lagrangian relaxation, we refer to Section 5.4.

Lagrangian relaxation has been applied to a large variety of location problems, such

as capacitated network design problems (Holmberg and Yuan, 2000) and dynamic hub

location problems (Elhedhli and Wu, 2010; Contreras et al., 2011b). When applying La-

grangian relaxation to the CFLP or one of its variants, one has several choices of which

constraints to relax. Cornuéjols and Sridharan (1991) present the relaxations of relevant

constraint combinations for the CFLP, evaluating and comparing their complexity and

strength of bounds. The authors conclude that relaxing the demand constraints or the

capacity constraints yields the tightest bounds. Among these two, the relaxation of the

capacity constraints may be substantially stronger, but one has to solve a NP-hard sub-

problem. Correia and Captivo (2003) compare different relaxations for the single period

CFLP with modular capacities. They find that the relaxation of the demand constraints

performs, on average, better than relaxations of other constraints linked to the capacity

limits.

We now explore the two most common relaxations applied to the CFLP as defined

by (2.1) - (2.5), the relaxation of the demand constraints (2.2) and the relaxation of

the capacity constraints (2.3). When relaxing the demand constraints, one obtains the
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following Lagrangian subproblem, where α is the vector of Lagrange multipliers:

L(α) = min ∑
j∈J

f jy j +∑
i∈I

∑
j∈J

(ci jdi−αi)xi j +∑
i∈I

αi

s.t. (2.3)− (2.5).

The Lagrangian subproblem L(α) then decomposes into |I| independent fractional knap-

sacks. Balas and Zemel (1980) showed how to solve the fractional knapsack in linear

time, even though in practice an alternative O(|J| log(|J|)) time algorithm may be more

efficient. Once the knapsacks are solved, the y j variables are selected by inspection.

Given that the Lagrangian subproblem can be solved very efficiently, the relaxation of

the demand constraints has been used to solve a large variety of different single period

facility location problems (Shetty, 1990; Sridharan, 1991; Pirkul and Jayaraman, 1998;

Correia and Captivo, 2003; Wu et al., 2006; Görtz and Klose, 2012; Diabat et al., 2013).

As the Lagrangian subproblem does not have the integrality property, the Lagrangian

dual may yield bounds which are stronger than the LP relaxation of the original problem

(Geoffrion, 1974), which may result in fractional y j solution values. However, the inte-

grality property can be restored by adding the strong inequalities (2.7) to the problem.

Multi-period capacitated facility location has been addressed in Shulman (1991).

The author selects the y jt variables according to the optimal opening schedule for each

location j, as can be computed by the use of Dynamic Programming (Bellman, 1957,

1966). The same relaxation has then been adapted to the Uncapacitated Facility Loca-

tion Problem with facility closing and reopening (Chardaire et al., 1996). Given that

the formulation contains the strong inequalities (2.7) (adapted to the multi-period case),

relaxing the demand constraints results in a similar Lagrangian subproblem.

Next to the relaxation of the demand constraints, several works also investigated the

relaxation of the capacity constraints (Barcelo et al., 1990; Holmberg and Ling, 1997;

Gendron et al., 2013; Xie and Ouyang, 2013). When relaxing the capacity constraints,

the formulation loses the link between the facility opening decisions and the demand

allocation variables. To restore this link and obtain stronger bounds from the Lagrangian
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dual, it has been common to add the strong inequalities (2.7) to the formulation, referred

to as the strong relaxation (in contrast to the weak relaxation, which is defined by the LP

relaxation given by (2.1) - (2.5) (Van Roy, 1986). The resulting Lagrangian subproblem

is as follows:

L(α) = min ∑
j∈J

( f j−α ju j)y j +∑
i∈I

∑
j∈J

(ci j +α j)dixi j

s.t. (2.2),(2.4),(2.5),(2.7).

Here, the Lagrange multipliers α j are non-negative. The use of the SIs significantly

strengthens the bound provided by the solution of the Lagrangian dual. However, the

Lagrangian subproblem L(α) is now a UFLP, which is still NP-hard. When relaxing the

capacity constraints, adding the SIs has the opposite effect concerning the integrality gap

as when relaxing the demand constraints: with the SIs, the Lagrangian subproblem does

not have the integrality property, whereas without the SIs, it has the integrality property,

but is very weak. A few works also relaxed both the demand and capacity constraints, in

particular for extensions of the classical CFLP (Beasley, 1993; Agar and Salhi, 1998).

Further relaxations may be obtained by performing Variable Splitting (Guignard and

Kim, 1987). In this technique, certain variables are duplicated and an additional set of

constraints is added, ensuring the equality for each pair of the duplicated variables. Ide-

ally, the set of variables that are duplicated is chosen such that the subproblem can be

divided into two independent problems, each of which can be efficiently solved. Cor-

nuéjols and Sridharan (1991) report on different combinations for variable splitting for

the CFLP. However, the authors do not observe that the relaxations based on variable

splitting yield better bounds than the well known relaxation of the capacity constraints.

It has also been found beneficial to perform some sort of local search after the so-

lution of the Lagrangian dual to further improve the quality of the feasible solution.

Correia and Captivo (2006) relax capacity constraints for a single-source facility loca-

tion problem with modular capacities and perform a subsequent tabu search. Li et al.

(2009) use the same combination of solution methods for capacitated facility location
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with multi-commodity flows. Kim and Kim (2013) solve a health-care facility location

problem by using a Lagrangian relaxation heuristic. They relax constraints that limit the

allocation of clients to at most one facility. Finally, Lagrangian relaxation has not only

been used in heuristic frameworks. Their efficient computation of bounds has also been

found useful within exact methods (Görtz and Klose, 2012).

2.2.2.3 Cross Decomposition

Some researchers also combined Lagrangian relaxation with Benders decomposition,

denoted to as cross decomposition (Van Roy, 1983). The algorithm of Van Roy (1986) is

based on the Benders primal subproblem and the Lagrangian dual subproblem. In each

iteration, the integer variables are fixed to obtain the primal Benders subproblem. Based

on its solution, a solution for its dual is derived. The dual values are then fixed in the

Lagrangian subproblem, which is solved to obtain the integer facility opening decisions.

These steps produce upper and lower bounds at each iteration and may provide the opti-

mal solution at a certain point. Lee (1993a) and Lee (1993b) apply this technique to their

previously presented CFLP with multiple commodities and multiple capacity levels.

2.2.3 Heuristic Methods

Heuristics are algorithms that provide feasible solutions without the guarantee of op-

timality. However, they are usually much faster than exact algorithms and are therefore

useful when an optimization problem is too large to be solved by an exact method or

when the application context does not require the optimal solution. Some heuristics,

such as those based on mathematical decomposition (Boschetti and Maniezzo, 2007),

provide bounds on the solution quality, while others may provide bounds on the total

running time.

Two important members in the class of heuristics are Metaheuristics and Approxi-

mation algorithms. A metaheuristic is an algorithmic framework to find solutions to a

general class of optimization problems. Metaheuristics such as tabu search, simulated

annealing and genetic algorithms have been frequently applied to several families of lo-
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cation problems, from classical facility location problems (Arostegui Jr. et al., 2006) to

logistics network design problems that model entire supply chains (Lee and Dong, 2008;

Melo et al., 2011a). Approximation algorithms are designed to provide an upper bound

for the deviation of the value of the constructed solution from the optimal solution value.

Shmoys et al. (1997) present approximation algorithms for several facility location prob-

lems. Recent results for k-level capacitated facility location problems are given by Du

et al. (2009).

Next to the above mentioned classes, heuristics have been developed exploiting dif-

ferent properties of the problems. LP rounding heuristics are methods that construct

feasible solutions based on the LP relaxation solution. Melo et al. (2011b) apply this

type of heuristic with a subsequent local search to solve a supply chain redesign model.

Primal-dual heuristics (Dias et al., 2006) oscillate between the solution of the primal and

its dual formulation and aim at finding the optimal solution by satisfying the comple-

mentary slackness conditions.

2.3 Discussion and Future Work

The previous review of the related literature is now summarized. Furthermore, we

discuss when exact methods are necessary and in which cases the optimal solution may

be of less importance.

2.3.1 Summary of Existing Literature

As has been seen throughout this chapter, the existing literature for facility location

problems is extensive. A large number of different problem variants has been proposed

to take into consideration the different characteristics and extensions as they are relevant

in practice. For multi-period capacitated facility location, the most common features

to adjust capacities over time have been found to be capacity expansion and reduction,

temporary facility closing and reopening and the relocation of facilities. Economies of

scale have been considered on all of these levels. However, most of the proposed models

consider these features separately.
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The majority of the presented facility location problems has been modeled as linear

MIP models, many of them solved by generic solvers. Even though generic solvers

constantly improve, they are often not capable to solve large models due to limited time

and memory resources. Many specialized algorithms have therefore been developed

to tackle large-scale problems. In particular, one finds many problems approached by

metaheuristics such as Tabu search or algorithms based on mathematical decomposition.

In many cases, researchers chose to use Lagrangian relaxation techniques. Interestingly,

most of the works are based on the subgradient method, while only few (e.g., Gendron

et al., 2013) attempted to use more sophisticated techniques such as bundle methods.

2.3.2 Heuristics vs. Exact Solution Procedures

Given that facility location problems deal with strategic decisions and tend to have

a strong financial impact, it may be reasonable to assume that these problems should

be solved to optimality. One has several opportunities to reduce the complexity of the

problem, as has been suggested in many previous works: one may use a simplified cost

structure, reduce the number of candidate facility locations, cluster customers to central

demand points or simplify constraints. However, by performing such simplifications,

the original problem loses accuracy. As a consequence, cost efficient decisions that may

actually be feasible in practice may be ignored by the simplified model. In more severe

cases, the suggested solutions may not even be feasible in practice. We may therefore

conclude that it is beneficial to model problems as accurately as possible if this has the

potential to represent the cost-reducing decisions more realistically, and if the resources

to solve the problem appropriately are available. The use of heuristics is therefore a

reasonable choice to tackle problems which are complex, and therefore more realistic,

than those that can be solved by exact algorithms.

Furthermore, depending on the application context, the question arises whether it is

necessary to find an optimal solution. For some applications, a close-to-optimal solu-

tion may be satisfactory, while, in other contexts, the optimal solution may be required.

Several authors (Cordeau et al., 2006; Melo et al., 2006) argue that, when input data is

estimated, an optimal solution is not more useful in practice than a solution that is close
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to optimality. This is often observed in multi-period planning problems. Even though

the input data may be forecast accurately, it is most likely that the real data will slightly

deviate from the data used in the planning model.

If the optimal solution cannot be guaranteed, it is important to provide a bound on the

quality of the generated solutions, in particular for strategic planning problems. If the

problem cannot or does not have to be solved to optimality, how far is the solution from

optimality? Mathematical decomposition methods such as Benders decomposition and

Lagrangian heuristics provide bounds on the optimal value. They also hold several other

advantages, as they facilitate the solution in the case of re-planning and re-optimization,

for example when the decision maker needs to evaluate different scenarios.

The previous considerations have a strong impact on how to model and solve com-

plex facility location problems, and have particularly influenced the research presented

in this thesis.



CHAPTER 3

OPTIMAL CAMP LOCATIONS IN FORESTRY

3.1 Chapter Preface

In this chapter, we present a complex facility location problem found in the Cana-

dian forestry sector. In this problem, a logging company needs to locate camps to host

the workers involved in the forestry operations, either making use of existing camps or

constructing new ones. Camps may also be relocated. The decisions have to be made

based on a given five year planning that indicates how many workers will be necessary

for logging and road construction, at which place and in which seasons.

The research on this problem has been performed in collaboration with FPInnova-

tions, which held contact with the logging company. FPInnovations provided the de-

scription of the problem and has been very supportive to verify that all the industrial

constraints have been correctly interpreted and taken into consideration in the model.

FPInnovations also verified the produced solutions and successfully carried out the cum-

bersome task of providing the data for two case studies.

From an OR point of view, the problem discussed here can be cast as an extension

of classical multi-period facility location. In addition to typical features such as multiple

commodities, used to represent different types of workers, the problem extends classical

facility location models on several levels, mostly with respect to the complex cost struc-

ture. Camps are composed by independent trailers, which may be temporarily closed

when not in use. A part of the camp may therefore be closed. To the best of our knowl-

edge, partial temporary facility closing has not been addressed before in the literature.

In this chapter, a MIP model for this problem is introduced, which is able to represent

the cost structure on a detailed level. Furthermore, it provides a large variety of capacity

adjusting features, such as those mentioned above, to represent the problem in a realistic

manner and model decisions that are feasible in practice and hold the potential to reduce

operational costs.
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3.1.1 Approximation of the Cost Structure

Trailers can be divided into two groups: hosting trailers, which host the workers, and

supporting trailers, which provide additional infrastructure. The number of supporting

trailers depends on the number of hosting trailers. However, this relation is not linear, as

can be observed in Table 3.I. Economies of scale can be easily modeled for the case of a

simple camp construction. However, previous literature does not answer the question of

how to model capacity expansion for an already existing camp, as the costs for additional

capacities do not take into consideration the capacity level of the existing camp.

This non-linear relation between hosting and supporting trailers also impacts on the

costs to close and reopen parts of the camp. Feasible assumptions have been elaborated

with FPInnovations, including a simplification of this non-linear relation that suggests to

slightly over-estimate the costs. The model presented here implements this simplifica-

tion of the cost structure to ensure that the MIP model can be solved by generic solvers.

However, the non-linear relation of different types of trailers has been a motivation for

further research on models capable of representing such complex cost structures. Chap-

ter 4 focuses on this issue.

3.1.2 Modeling of Relocation

As previously mentioned, existing camps can be relocated from one location to an-

other. The relocation of camps is commonly modeled by direct arcs between each pair

of locations (Melo et al., 2006), involving Θ(n2) relocation variables, where n is the

number of locations. An example of relocation implemented by the use of direct arcs is

illustrated in Figure 3.1 (a).

In some applications, the relocation costs may be equal (or almost equal) for the dif-

ferent pairs of origin and destination. In the CSLP, the costs depending on the distance of

a relocation only marginally affects the total relocation costs: in the real-world instances

provided by FPInnovations, the variable relocation costs make only 0.14% of the fixed

relocation costs for each 100km for a camp with one trailer. The information of origin

and destination therefore contributes only marginally to the costs.
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# Hosting Total # Supporting # Trailer Cost $ Cost $ per
Trailer Capacity Trailer Total Total Hosting Trailer

1 12 1 2 404,000 140,000
2 24 1 3 606,000 105,000
3 36 1 4 808,000 86,667
4 48 1 5 975,000 81,250
5 60 2 7 1,330,000 91,000
6 72 2 8 1,520,000 86,667
7 84 2 9 1,710,000 77,143
8 96 2 10 1,850,000 75,000
9 108 3 12 2,154,000 80,000
10 120 3 13 2,333,500 78,000
11 132 3 14 2,415,000 76,364
12 144 4 16 2,728,000 76,000
13 156 4 17 2,898,500 74,538
14 168 4 18 3,069,000 73,286
15 180 5 20 3,260,000 76,000
16 192 5 21 3,423,000 72,188
17 204 6 23 3,749,000 74,412
18 216 6 24 3,912,000 73,333
19 228 6 25 4,018,750 72,368
20 240 6 26 4,179,500 71,500
21 252 7 28 4,431,000 72,667
22 264 7 29 4,589,250 71,841
23 276 7 30 4,747,500 71,087
24 288 7 31 4,890,250 70,396
25 300 7 32 5,043,200 69,120

Table 3.I: Relation between the number of hosting and supporting trailers, as well as the
corresponding construction costs.

Origin DestinationOrigin Destination

a) b)

Figure 3.1: Example of facility relocation by the use of (a) direct arcs and (b) hub nodes.
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Based on this assumption, we consider an alternative formulation to model reloca-

tion, which can be seen as a generalization of the modeling technique suggested by

Wesolowsky and Truscott (1975). Instead of sending relocation flow directly from one

location to another, all relocation flow is first sent to a central hub node and then redis-

tributed to other locations. This reduces the number of relocation variables to the order

of Θ(n), which should facilitate the solution of the problem. An example of relocation

using hub nodes is illustrated in Figure 3.1 (b), in which the hub node is designated with

an “H”. Contrary to what one may suspect, relocation by direct arcs does not result in a

stronger LP relaxation bound than relocation by hub nodes. A proof for the equality of

the strength of these two modeling techniques is provided in Appendix A for the case of

the CLSP. The appendix also includes a summary of computational results which indi-

cates that, on average, the use of hub nodes significantly facilitates the solution when a

generic MIP solver is used.

The camp location problem considered here also considers a new type of capacity

constraints, which involves the rounding of the demand allocated to the same facility.

Details are found in the remainder of this chapter.

Notes about the chapter

The contents of this chapter correspond to those of the article entitled Modeling and

Solving a Camp Location Problem, co-authored with Professors Jean-François Cordeau

and Bernard Gendron, which has been accepted for publication in Annals of Operations

Research (ISSN: 0254-5330), in 2012.

Please note that this paper has been published with a notation slightly different then

the one used in the rest of this thesis. In this chapter, as well as in the corresponding

Appendix A, candidate facility location are represented by set I and customers by set J,

whereas in the rest of the thesis the reverse notation is used.
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Harvesting plans for Canadian logging companies tend to cover wider territories than

before. Long transportation distances for the workers involved in logging activities have

thus become a significant issue. Often, cities or villages to accommodate the workers

are far away. A common practice is thus to construct camps close to the logging re-

gions, containing the complete infrastructure to host the workers. The problem studied

in this paper consists in finding the optimal number, location and size of logging camps.

We investigate the relevance and advantages of constructing additional camps, as well

as expanding and relocating existing ones, since the harvest areas change over time.

We model this problem as an extension of the Capacitated Facility Location Problem.

Economies of scale are included on several levels of the cost structure. We also con-

sider temporary closing of facility parts and particular capacity constraints that involve

integer rounding on the left hand side. Results for real-world data and for a large set of

randomly generated instances are presented.

Key words: Logging Camps, Capacitated Facility Location Problem, Mixed Integer Pro-

gramming.
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3.2 Introduction

3.2.1 Context and Scope

Context. Log harvest planning in the forestry sector has changed throughout the last

decades. Both silviculture and harvesting in Canada have become more sophisticated

and now pose complex planning problems to get the most from the available regions and

harvest cycles. Based on a wide variety of considerations, a long-term plan is designed

to determine the volume and regions for wood logging. These decisions are commonly

divided into smaller time periods, as logging activities and road construction within a

single logging region typically take several months.

Due to political and environmental issues, as well as the size of the country, harvest-

ing plans tend to cover wider territories than they used to. Often, sparse logging is nec-

essary to certify the forestry operations. Several questions arise such as the location and

capacity for administrative services, sorting yards and central log processing stations.

Similarly, the location where the workers involved in forestry activities are accommo-

dated gains in importance. If villages or cities are close, workers can be hosted at their

homes or at motels. However, logging regions in Canada are often widely distributed

and located far from such hosting options. In that case, accommodating the workers in

the closest village or city is rarely an attractive option, as the commuting time and trans-

portation costs are too high. Transportation times would consume a significant portion

of the potential productive time. Furthermore, an additional salary is commonly paid

when the transportation times exceed a certain threshold.

A common solution to this problem is the construction of logging camps in which the

workers are accommodated. Logging camps are typically located close to the logging

regions so that the transportation costs for the workers are reasonable. When allocating

each work crew to a camp, the accommodation costs are given as a cost per day per

worker. In order to host all workers, the construction of new accommodations may be

necessary. The larger a camp, the smaller the daily cost per person. Hence, a small

number of large camps results in smaller accommodation costs than a large number of

small camps. However, the fewer camps are available, the higher the transportation costs
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tend to be, because their location is less flexible. The construction of a new camp or the

relocation of an existing one may pay off in the long term as the traveling costs to the

logging regions may be much lower.

Scope. This work investigates the possibility of constructing and relocating camps for

the accommodation of workers, considering the harvest planning for the next five years.

The problem is motivated by the needs of a Canadian logging company. It consists in

finding the number of camps that have to be constructed or relocated, their size and their

location such that the total costs for accommodation and transportation are minimized.

The interesting question is whether such an investment in camp construction and reloca-

tion pays off, considering the operational logging and road construction planning for the

next five years. It is important to note that the actual work crew assignment between ac-

commodations and work regions is not relevant in practice. It is only used to determine

the minimum capacity level necessary to host all workers. For the operational work crew

assignment, other planning tools will be used. It is assumed that all information about

work crews, logging regions and distances are known at the beginning of the planning

and are not subject to uncertainty.

3.2.2 Contributions and Organization of the Paper

Contributions. Due to the complexity of the problem, manual planning approaches

usually do not yield optimal solutions. The main objective of this paper is to propose a

formulation for the problem that can be solved by a general-purpose solver for instances

of reasonable size. The impact of different instance and model properties on the diffi-

culty of the problem is studied. The presence of economies of scales on several levels of

the cost structure as well as partial facility closing are part of the main concerns. Further

aspects include particular capacity constraints that involve integer rounding on the left

hand side. It is shown how such capacity constraints can be useful in other applications,

but increase the integrality gap of the problem. We derive valid inequalities to effectively

reduce this integrality gap.
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Organization. This paper is organized as follows. Section 3.3 describes the relevant

problem details. Since the problem can be modeled as a facility location problem, the

literature review in Section 3.4 focuses on relevant extensions in that domain. The math-

ematical formulation in Section 3.5 gradually extends the Capacitated Facility Location

Problem to model the problem being addressed. This includes the particular capacity

constraints, valid inequalties and additional features such as the relocation and partial

closing of camps. Section 3.6 summarizes the results of the computational experiments

performed. Two case studies in Section 3.7 illustrate the benefits of the proposed model

when applied in practice. Finally, Section 3.8 concludes the work.

3.3 Problem Description

Based on an existing strategic plan, the logging company provides a harvesting plan

for the next five years. Each year is divided into two seasons: winter and summer,

each with a certain number of available working days. Depending on the geographical

location, some regions will be logged more in winter whereas other regions will be

logged more in summer. Each region is defined by its estimated log volume (measured

in m3) that is subject to harvesting (it may be part of the strategic decision that not the

entire region will be harvested) within each season and the length of the road (measured

in km) that has to be constructed in that region in order to access the logging areas and

transport the log.

3.3.1 Work Crews, Demands and Hosting Capacities

There are two types of work crews: logging and road construction. Crews of the same

type contain the same number of members. The members of a crew always stay together

during work and are hosted at the same accommodation. For each logging region and

season, a logging and road construction demand is given. Based on given productivity

rates for the work crews one can compute the average number of crews necessary to

cover the demand at each region for each season.

Example: Logging crews work 100 days within a given season and cut 180m3 per
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day, i.e., 18,000m3 within the season. A certain region holds a total demand of 27,000m3

for the season. Throughout 50 days, two logging crews will be working (i.e., 2 · 50 ·
180m3 = 18,000m3). The other 50 days, a single logging crew will be working (i.e.,

1 · 50 · 180m3 = 9,000m3). This results in an average allocation of 27,000/18,000 = 1.5

logging crews in that season.

As the operational assignment of logging crews is not our final concern, we can

assume that the crews of each working type are flexible with respect to the days they

work within each season. That is, if a crew works only a few days in a season, we may

assume that the exact days do not matter. In our example, it does not matter in which of

the 100 days we use two crews and in which we use only one crew. In practice, a work

crew may work a number of days in one region and then in another region in the same

season. To determine the minimum capacity necessary to host all work crews allocated

to a certain accommodation, consider the following example.

The workers from two regions are hosted at the same camp. One region has an

average demand of 1.5 logging crews and 0.7 road construction crew. The other region

has an average demand of 1.25 logging crews and 0.5 road construction crew. Figure

3.2 (a) illustrates this scenario for the logging crews. In total, we have a demand of

1.5+ 1.25 = 2.75 logging crews and 0.7+ 0.5 = 1.2 road construction crews. Hence,

for 75% of the time during the season there will be d2.75e = 3 logging crews and 25%

of the time there will be b2.75c= 2 logging crews, which is illustrated in Figure 3.2 (b).

In the same way, for 20% of the season there will be d1.2e= 2 road construction crews

and for the other 80% there will be only b1.2c = 1 road construction crew. Assuming

that a logging crew has six workers and a road construction crew has three workers, we

will need accommodation for d2.75e ·6+d1.2e ·3 = 18+6 = 24 workers. To determine

the minimum capacity of an accommodation, we can add the average numbers of crews

allocated to this accommodation and round up the sum to the next highest integer (for

each crew type).

3.3.1.0.1 Transportation. Workers are usually transported by pick-ups, using a

given road network. Costs are composed of the travel and working time of the workers
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One season One season

Crews at
region 1

Crews at
region 2

(a) (b)

0.25 0.50.0 1.00.75 0.25 0.50.0 1.00.75

Figure 3.2: Example of logging demands hosted at the same accommodation.

as well as the vehicle costs, i.e., renting and gas. An additional salary has to be paid if

a certain transportation time (usually one hour per day) is exceeded. This makes large

travel distances very costly. Workers of the same crew are transported in one or more

vehicles. Workers of different crews do not share the same vehicle.

3.3.1.0.2 Supervisors. In addition to the work crews, there are fixed numbers of

logging and road construction supervisors. Supervisors have to be considered for the

accommodation capacities and their individual transportation costs. Although it is not

clearly predictable how many days a supervisor will be at which region, one may assume

that their presence in a region is proportional to the demand for work crews at that region.

Hosting regions for supervisors are often limited to accommodations with administrative

units.

3.3.2 Camps and Trailers

Certain accommodations for the workers may already exist. These accommodations

can either be hosting options in villages or cities (e.g., apartments, hotels or the employ-

ees’ own homes) in reasonable distance of the logging regions, or camps that are usually

located in the forest close to the logging regions. Accommodations vary in their capacity

and their hosting costs. Camps are composed of trailers. A trailer contains the infras-

tructure to host a certain number of workers. In practice, trailers of different capacities

are available. However, for the purpose of this study, we may assume that the trailer

with a capacity for twelve persons is the most common one and hence all trailers have



40

the same capacity. In addition to the trailers that host workers, a camp contains a number

of additional trailers that provide complementary, but necessary infrastructure, such as a

kitchen and leisure facilities. The number of additional trailers directly depends on the

total hosting capacity of the camp, i.e., the number of hosting trailers. In the follow-

ing, we will measure the capacity of a camp by the number of hosting trailers. Hence,

the construction costs for a number of hosting trailers already include the costs for the

necessary number of additional trailers.

Trailers can be either open or closed. Only open trailers are available for use. Trailers

that are not in use have to be closed, involving one-time closing costs. Once a trailer is

closed, it cannot be used in subsequent seasons until it is reopened, involving one-time

reopening costs. Closing or reopening operations can be performed before each season.

Costs for such operations usually involve economies of scale in the number of hosting

trailers, since common resources are shared. The use of hosting trailers to accommodate

workers involves two types of daily costs: fixed costs for each open trailer (including

the cost for the trailer itself, its equipment, the cook, etc.) and variable costs (food,

etc.) for each worker. The fixed costs are paid for each open trailer per day. Costs

for closed trailers are so small that they do not have to be considered. Variable costs

are paid for each worker hosted at the camp. If a trailer is open, its fixed costs have

to be paid throughout the entire season, independent of its use. All costs may follow

the principle of economies of scale, i.e., the larger the quantity, the lower the price-per-

worker/trailer. New camps can only be constructed at certain places from a given set of

potential locations. It is very common that several logging regions are served by workers

from the same accommodation. Though it is rare, one logging region may also be served

by workers from different accommodations.

3.3.3 Capacity Expansion and Camp Relocation

At certain points during the planning it may be interesting to increase the capacity

of existing camps. Such capacity expansion is performed by adding new trailers. It is

assumed that the cost of adding n trailers is the same as the construction of a new camp

with n trailers. Trailers may also be permanently shut down. For the sake of simplicity,
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it is assumed that this is done by closing these trailers.

Logging regions are not equally harvested every year. That is, a camp may be close

to logging regions with demands in certain years, but far away from logging regions

that will be harvested afterwards. Instead of constructing a new camp, which involves

high costs, camps can be moved from one location to another. The relocation of camps

can only be performed once a year, before the summer season. The distance between

the origin and destination for a relocation has very little impact on the total relocation

costs. We may thus assume that the total cost for relocating a camp depends only on

the camp size (i.e., the number of trailers it includes). All trailers have to be closed

before relocation. After the relocation, all trailers that are supposed to be in use have to

be reopened again. In theory, camps from two distinct locations can also be joined to

further reduce the costs per unit. Trailers from the same camp could also be relocated to

distinct locations. In practice, these features are observed rather rarely. For the sake of

simplicity, it is hence assumed that camps can only be relocated as a whole and that two

different camps cannot be merged at the same location.

3.3.4 Objective

Given that all logging and road construction demands must be covered, we must

ensure that sufficient accommodations are available to host the workers. We want to

minimize the total costs, which are composed of two parts:

– All costs involved in providing the necessary accommodations: camp construc-

tion, camp relocation, maintenance for open trailers, closing and reopening of

trailers and hosting costs for workers.

– The transportation costs between the accommodations and the logging regions.

This includes the costs for using the vehicles and an additional salary for long

transportation times.

A solution to the problem consists of the following information, given for each of

the seasons in each of the years of the planning horizon:

– For each camp construction: the location and camp size.

– For each camp relocation: the origin, destination and size of the relocated camp.
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– For each camp: the number of trailers that will be closed or reopened.

An insight into the suggested assignment of work crew demands to the accommo-

dations may also be interesting for decision-makers. The assignment is necessary to

determine the minimum level of camp capacities. However, it is not explicitly part of the

problem solution.

Throughout this work, we will refer to this problem as the Camp Size and Location

Problem (CSLP).

3.4 Literature Review

The forestry sector has been an extensive user of Operations Research (OR) methods

for strategic, tactical and operational planning. Optimization is mainly used for supply

chain design (D’Amours et al., 2008), harvesting (Bredström et al., 2010) and trans-

portation planning (Carlsson et al., 2009). Strong interest is shown by both the public

and private sector, typically in countries where logs represent a large portion of the net

exports, such as Canada, Chile, New Zealand and the Scandinavian countries. Several

recent surveys provide broad overviews of optimization in the forestry sector (see, e.g.,

D’Amours et al., 2008; Rönnqvist, 2003; Weintraub and Romero, 2006).

Rönnqvist (2003) compares different planning levels in terms of planning horizon,

allowable solution time and required solution quality. These characteristics strongly

vary among the different applications. Board cutting is individually decided for each

tree and has to be optimally solved within less than a second. Harvesting plans typically

cover an entire year. Such forest management plans have to be evaluated quickly to

allow manual comparisons. Thus, for problems of this category, near optimal solutions

are desired within a few hours of computation time. However, the planning includes a

strategic outlook for more than 100 years. To the best of our knowledge, the problem

of locating logging camps has not yet been addressed in the OR literature. Its solution

requirements are similar to those of road planning: one aims at near-optimal solutions,

planning includes decisions for five years and one can allow computation times of several

hours. Mathematical programming appears to be an appropriate tool, since it provides
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high quality solutions and it allows to model particular industrial constraints.

Several known problems present features similar to those found in the CSLP. Such

problems typically belong to the family of Facility Location Problems. The CSLP can

be formulated as an extension of the well studied Capacitated Facility Location Problem

(CFLP), which aims at finding the optimal locations to construct an unknown number

of facilities with capacity constraints. All customer demands have to be covered and the

total costs, usually composed by costs for facility construction, production and trans-

portation, are minimized. In the last decades, practical needs led to many extensions of

the CFLP such as multiple periods, multiple commodities, multiple capacity levels and

multiple stages. Since demands are likely to change over time, many models focused on

the dynamic (i.e., multi-period) case of the problem in order to address dynamic aspects

such as capacity reduction, expansion and relocation.

The diversity, importance and maturity of facility location problems has been con-

firmed by many recent literature surveys (Hamacher and Nickel, 1998; Klose and Drexl,

2005; Melo et al., 2009a; Revelle and Eiselt, 2005; Revelle et al., 2008). Melo et al.

(2009a) focus on the context of supply chains. Smith et al. (2009) review the develop-

ment of location analysis from its early beginning and highlights today’s most important

applications. Many of the extensions proposed for the CFLP can be found in the pro-

posed CSLP. Camps are translated to facilities and hosting demands to customers. The

relevant literature regarding these features will now be reviewed.

Dynamic Facility Location Problems. The CSLP contains strong dynamic aspects,

since logging regions tend to be harvested within a few seasons. Hence, a customer may

have high demands in some time periods and no demand at all in the other periods. Early

works in the domain of dynamic facility location were initiated by Ballou (1968) and

Wesolowsky (1973). Recent works include Albareda-Sambola et al. (2009), Canel et al.

(2001), Dias et al. (2006), Melo et al. (2006), Antunes and Peeters (2001), Shulman

(1991) and Troncoso and Garrido (2005). Many more references can be found in the

previously cited reviews as well as in the one of Owen and Daskin (1998), which focuses

on approaches that are based on either dynamic or stochastic facility location problems.
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In addition to the optimal timing and sizes for facility construction, further dynamic

features have been found beneficial to adapt to changing demand and market conditions.

Capacity expansion has been incorporated by Melo et al. (2006), Antunes and Peeters

(2001) and Troncoso and Garrido (2005). Capacity reduction or facility shut-down is

addressed by Canel et al. (2001), Dias et al. (2006), Melo et al. (2006) and Antunes and

Peeters (2001). In an early work, Wesolowsky and Truscott (1975) considered a simple

case of relocation of facilities. Melo et al. (2006) provide an extensive modeling frame-

work for dynamic multi-commodity facility location problems. Their model focuses on

the relocation of existing facilities and gradual capacity transfer from existing facilities

to new ones while considering generic multi-level supply chain network structures.

Multiple Commodities. In some applications, customers have demands for several

distinct commodities. The models must then distinguish between the different com-

modities to satisfy the demand for each of them as well as to control their capacity at the

facilities. In the context of the CSLP, the different work crew types (i.e., logging crews

and road construction crews) and supervisors can be modeled as different commodities.

In the multi-commodity facility location literature, models commonly assume that

the customers have an individual demand for each commodity. However, on the facility

side, the capacity constraints can be formulated in two different ways:

i. Each facility holds an individual capacity for each of the commodities.

ii. Each facility holds a global capacity for the sum of all commodities.

The first option is the more common one in the literature (Canel et al., 2001; Geof-

frion and Graves, 1974; Lee, 1991; Warszawski, 1973). In the CSLP, we rather consider

the second case. While customers have a demand distinguished between the different

commodities, the total capacity at the camps applies to the sum of all workers, whether

they are logging or road construction workers. This idea of a common capacity for all

commodities is also followed in the modeling framework of Melo et al. (2006).

Multiple Capacity Levels. The presence of production capacities automatically raises

the question of the dimension of such capacities. While some applications allow for
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several facilities at the same place, most consider only one facility per location. Facilities

may have fixed capacities or may choose among different capacity levels. Often, facility

construction and unit production costs follow the principle of economies of scale, i.e.,

the larger the facility, the cheaper the price per unit in terms of facility construction and

commodity production. One finds this feature in the CSLP, where camps are composed

of trailers. The more hosting trailers exist, the larger the capacity and the better common

resources (such as supplementary infrastructure) are shared. The choice of different

capacity levels allows to represent such economies of scale.

Early works considering different capacity levels are Lee (1991), Shulman (1991)

and Sridharan (1991). The choice of the capacity level is modeled as an additional

variable index, having only one variable of a certain capacity level active for each facility.

The cost part in the objective function thus corresponds to a piecewise linear function.

In the literature, this has been the most common way to represent such cost functions

(Paquet et al., 2004; Troncoso and Garrido, 2005).

Holmberg (1994) and Holmberg and Ling (1997) introduce an incremental approach

to model staircase functions, where all variables up to the chosen capacity level are

active. Similar approaches have since been adapted to more complex problems (Correia

and Captivo, 2003; Gouveia and Saldanha da Gama, 2006).

Conclusions. Many of the features found in the CSLP have already been addressed in

isolation in the facility location literature. However, very few models consider modular

capacity levels in a dynamic context (Melo et al., 2006; Antunes and Peeters, 2001;

Shulman, 1991; Troncoso and Garrido, 2005). These works do not address dynamic

features such as facility closing/reopening or relocation. The closest related works are

those of Melo et al. (2006) and Troncoso and Garrido (2005). The latter authors represent

economies of scale for facility construction, but not for operational costs. Capacity

relocation is also not considered. Melo et al. (2006) focus on capacity relocation, but

consider modular capacity decisions only for relocation.

While many models consider closing an entire facility or reducing its capacity, none

of the reviewed works present the possibility of partially or entirely deactivating a facility
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for a certain time period, as it is possible with trailers in logging camps. In addition, the

capacity constraints found in the CSLP have not yet been addressed in the context of

facility location problems.

3.5 Mathematical Formulation

The CSLP can be modeled as an extension of the CFLP. Some of the additional

features have been considered in variations of that classical problem. However, to the

best of our knowledge, no extension of the CFLP considered all features at the same

time. In particular, two of them have not been mentioned in the related literature:

i. Round-up (integer) capacity constraints for the camps.

ii. Partial closing and reopening of trailers throughout the planning periods.

In the following, we will model the CSLP by extending the CFLP in two steps. In

a first step, a formulation for a dynamic modular (i.e., multiple capacity levels) multi-

commodity Facility Location Problem is studied. This problem will be referred to as

the Dynamic Modular Multi-Commodity Capacitated Facility Location Problem (DM-

CFLP). Then, the dynamic features are added, namely the relocation of camps and the

closing and reopening of trailers. This problem represents the CSLP as described above.

The intermediate problem, namely the DMCFLP, is explored mainly due to two rea-

sons. First, to explore the impact of the additional features on the solution difficulty.

Second, all DMCFLP solutions are essentially feasible for the CSLP. As we will see

later on, DMCFLP solutions of good quality can be obtained much easier than solutions

for the CSLP. Using DMCFLP solutions as starting solutions can be helpful to solve the

complete CSLP.

3.5.1 The DMCFLP – An Extension of the CFLP

The classical CFLP, as presented by Sridharan (1995), is extended. To be more

precise, the following features are added:

– Multiple periods. We study the problem in a dynamic context, i.e., over multiple

time periods with independent demands.
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– Multiple commodities. We assume the existence of different commodities, one for

each work crew type. Each customer may have independent demands for each of

these commodities.

– Multiple capacity levels. We assume that a facility may have different capacities,

i.e., different numbers of hosting trailers. These capacities are modular and can

represent cost structures involving economies of scale.

Due to its additional characteristics, we refer to this problem as the Dynamic Modular

Multi-Commodity Facility Location Problem (DMCFLP).

3.5.1.1 Input Data and Decision Variables

Input Data. Consider the following input data:

– I - set of potential camp locations (facilities).

– J - set of logging/road construction regions (customers).

– K - set of possible camp sizes (with respect to the number of hosting trailers),

K =
{

1,2, ..,K
}

.

– P - set of existing work crew types (commodities).

– T - set of seasons (time periods), T = {1,2,3, .., |T |}.
– Np - number of workers in a crew of type p.

– d jpt - demand (in number of crews) for commodity p ∈ P in region j ∈ J and

period t ∈ T .

– uik - total capacity (in number of workers) of a camp of size k ∈K at location i∈ I.

– cC
ik - construction cost of a camp of size k ∈ K at location i ∈ I.

– cV
i jkpt - variable operational costs (including transportation and hosting costs) for

the entire time period t ∈ T for one crew of working type p ∈ P accommodated at

a camp of size k ∈ K at location i ∈ I and working at region j ∈ J. The total cost is

typically not linear with respect to the Euclidean distance between the work region

and the accommodation.

Decision Variables. The decision variables are:
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– xi jkpt ∈R+
0 - total demand (in number of crews) of crew type p ∈ P assigned from

a camp of size k ∈ K at location i ∈ I to region j ∈ J at time period t ∈ T .

– yik ∈ {0,1} - 1, if a camp of size k ∈ K is constructed at location i ∈ I at the

beginning of the horizon, 0 otherwise.

3.5.1.2 Mathematical Model

The model is given by:

min∑
i∈I

∑
k∈K

cC
ikyik +∑

i∈I
∑
j∈J

∑
k∈K

∑
p∈P

∑
t∈T

cV
i jkptxi jkpt (3.1)

s.t. ∑
i∈I

∑
k∈K

xi jkpt = d jpt ;∀ j ∈ J ;∀p ∈ P ;∀t ∈ T (3.2)

∑
p∈P

∑
j∈J

Npxi jkpt ≤ uikyik ;∀i ∈ I ;∀k ∈ K ;∀t ∈ T (3.3)

∑
k∈K

yik ≤ 1 ;∀i ∈ I (3.4)

xi jkpt ≤ d jptyik ;∀i ∈ I ;∀ j ∈ J ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.5)

xi jkpt ∈ R+
0 ;∀i ∈ I ;∀ j ∈ J ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.6)

yik ∈ {0,1} ;∀i ∈ I ;∀k ∈ K (3.7)

The objective function (3.1) minimizes the camp construction cost and the opera-

tional costs. Note that the operational costs cV
i jkpt are composed by both transportation

and hosting costs. The transportation costs depend on the distance between both loca-

tions i and j as well as the type of crew p. The hosting costs depend on the camp size k

as well as the crew type p.

The set of constraints (3.2) guarantees that all customer demands are satisfied. Note

that demands are likely to be fractional, as illustrated in Figure 3.2. Constraints (3.3)

require that the hosting demands assigned to each camp do not exceed the camp capac-

ities. Constraints (3.4) ensure that only one capacity level is selected for each facility.

The set of valid inequalities (3.5), also referred to as Strong Inequalities (SI) (Gendron

and Crainic, 1994), provide a stronger upper bound for the demand assignment variables.
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Computational experiments show that CPLEX solves the problem more effectively when

adding only the violated SIs (using CPLEX user cuts) than when adding all SIs a priori

or not adding them at all.

Non-movable accommodations. In addition to logging camps, we may model ac-

commodations such as motels and apartments to host workers. We do so by representing

them as a restricted case of a camp, with two types of information: hosting costs and total

capacity. Such accommodations possess a single capacity level and cannot be relocated.

3.5.2 Round-Up Capacity Constraints

As explained above, the CSLP involves particular capacity constraints where the sum

of all demands assigned to a certain accommodation is rounded up to the next integer

value. Adding, for example, demands of 1.5 crews and 1.25 crews, one only needs a

total capacity for three crews (if all crews are hosted at the same camp) instead of four

(compare Figure 3.2).

We introduce additional integer variables zikpt for the integer rounding, indicating

the total number of crews of type p assigned to a size k camp at location i ∈ I at period

t ∈ T . The existing capacity constraints (3.3) are replaced by two new constraints (3.8)

and (3.9), which we will refer to as the round-up capacity constraints (RUC). Instead of

using the continuous sum of the facility/customer assignment variables (x variables), the

capacity constraints (3.9) take into account the next highest integer value, bounded by

the z variables in constraints (3.8):

∑
j∈J

xi jkpt ≤ zikpt ;∀i ∈ I ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.8)

∑
p∈P

Npzikpt ≤ uikyik ;∀i ∈ I ;k ∈ K ;∀t ∈ T (3.9)

zikpt ∈ Z+
0 ;∀i ∈ I ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.10)

This type of capacity constraints is likely to appear in other applications. In the

context of facility location problems, scenarios can be modeled where a facility may not
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be able to produce any arbitrary amount of a product, but only modular sized packages

of products.

3.5.2.1 Strengthening the Formulation

Experiments have shown that the average integrality gap increases significantly (see

Section 3.6.2 for details) when using round-up capacity constraints (3.8)–(3.10) instead

of the usual constraints (3.3). Consider the following aggregrated demand inequalities

which are known to be redundant for the linear relaxation of the model:

∑
i∈I

∑
k∈K

uikyik ≥ ∑
p∈P

∑
j∈J

d jptNp ;∀t ∈ T

We will now strengthen these inequalities, based on the fact that z is integer. Sub-

stituting (3.2) in (3.8) shows that one can always round up the sum of all demands from

different regions for the same product. We replace the right hand side (RHS) of the

previous inequality by Dt , where:

Dt = ∑
p∈P

⌈
∑
j∈J

d jpt

⌉
Np ;∀t ∈ T

We now express the resulting inequality in terms of the number of trailers instead of

the number of crews. Assuming that each trailer hosts exactly M workers, i.e., uik = Mk,

we have:

∑
i∈I

∑
k∈K

kyik ≥
Dt

M
;∀t ∈ T

These inequalities state the minimum number of open trailers necessary to satisfy all

customer demands. We know that the RHS, the minimum number of open trailers, is

always integer. We can thus replace the RHS by St , where:

St =

⌈
Dt

M

⌉
;∀t ∈ T
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In a final step, we aim at reducing the coefficients of the y variables on the left hand

side. Suppose that K > St . It is then sufficient that only one yik′ with k′ ≥ St is active in

order to satisfy the entire customer demand in the integer solution. That is, we may set

the coefficient of a variable yik′ to St whenever k′ ≥ St :

∑
i∈I

∑
k∈K

min{k,St}yik ≥ St ;∀t ∈ T (3.11)

In the following, we will refer to these constraints as the strengthened aggregated

demand (SAD) inequalities.

3.5.3 The CSLP - Adding Partial Camp Closing, Relocation and Modular Costs

In this section, the previous model will be extended with the following features that

may appear in a dynamic context:

i. Construction of new camps/trailers at any time period.

ii. Closing and reopening of trailers at any time period.

iii. Relocation of camps at any time period.

iv. Modular costs for trailer closing/reopening and camp relocation.

This problem corresponds to the CSLP. A network flow structure, illustrated in Fig-

ure 3.3, is added on top of the previously introduced model to manage the first three fea-

tures. For each time period, two nodes for open trailers and two nodes for closed trailers

are used. Arcs between these nodes represent certain operations to modify the number of

open and closed trailers at each location and to relocate them to other locations. The flow

on these arcs indicates the number of trailers involved in the corresponding operation.

New trailers can be constructed at the beginning of any season (s arcs). Open trailers

can be closed (vOC arcs) and closed trailers can be reopened (vCO arcs). The arcs vOO

represent trailers that were open at the beginning of the season and remain open during

the current season. The arcs vCC indicate closed trailers that are not relocated to another

region. These trailers can still be reopened for the current season. Finally, lO and lC
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indicate the number of trailers that are open and closed, respectively, at each location

throughout the entire season.

Relocation is allowed only for closed trailers. One could model relocation by the use

of direct arcs between all location pairs. However, this would result in very large models.

Experiments showed that this significantly increases the model size and therefore also

the difficulty of solving the problem. Instead, relocation is modeled by the use of a

central node, here referred to as a hub node (H). The flow of relocated trailers is first

passed to the hub node (wO arcs) and then further distributed to another location (wI

arcs).
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Figure 3.3: Network model to manage open and closed trailers at each location.

3.5.3.1 Input Data and Decision Variables

Additional Input Data. In addition to the previously introduced input data, additional

parameters are considered. These data may already consider economies of scale with
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respect to k, the number of trailers involved in the operation: cTO
k and cTC

k are the costs

to reopen and close k trailers of the same camp, respectively. The maintenance costs for

a camp with k open trailers during season t is given by cM
kt . Finally, cR

k represents the

costs for relocating a camp with k closed trailers.

Additional Decision Variables. To incorporate the new features, some variables have

to be extended and new variables have to be added to the model. Binary variables yikt

now indicate whether the camp located at i has k open hosting trailers during period t.

A separate binary variable siqt indicates the construction of q new trailers at location i

before period t. In addition, arc flow variables for the network are added to manage the

closing and reopening of trailers: lO
it , lCit , vOO

it , vOC
it , vCO

it , vCC
it , wO

it and wI
it .

Finally, binary variables are needed to incorporate modular costs: vBCO
ikt and vBOC

ikt

indicate whether k trailers are reopened or closed, respectively, at location i before time

period t. Variables wBO
ikt and wBI

ikt indicate whether a size k camp is relocated from or to,

respectively, location i before period t. The relocation of a camp of size k′ from location

i1 to location i2 at time period t ′ is thus performed by selecting the two variables wBO
i1k′t ′

and wBI
i2k′t ′ .

3.5.3.2 Mathematical Model

Objective Function. The objective function minimizes all costs: maintenance for

open trailers, operational hosting and transportation, trailer construction, camp reloca-

tion and trailer reopening and closing. Note that each camp relocation involves two

binary variables wBO
ikt and wBI

ikt , while only one of them has to be considered in the objec-

tive function to attribute the relocation costs:

min∑
i∈I

∑
k∈K

∑
t∈T

cM
kt yikt +∑

i∈I
∑
j∈J

∑
k∈K

∑
p∈P

∑
t∈T

cV
i jkptxi jkpt (3.12)

+∑
i∈I

∑
q∈K

∑
t∈T

cC
iqsiqt +∑

i∈I
∑
k∈K

∑
t∈T

cR
k wBO

ikt

+∑
i∈I

∑
k∈K

∑
t∈T

cTO
k vBCO

ikt +∑
i∈I

∑
k∈K

∑
t∈T

cTC
k vBOC

ikt
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Demand and Capacity Constraints. The constraints representing the part of the fa-

cility location problem are identical to the ones in the previously presented model. How-

ever, the y variables now represent the number of open trailers at each location and time

period:

∑
i∈I

∑
k∈K

xi jkpt = d jpt ;∀ j ∈ J ;∀p ∈ P ;∀t ∈ T (3.13)

∑
j∈J

xi jkpt ≤ zikpt ;∀i ∈ I ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.14)

∑
p∈P

Npzikpt ≤ uikyikt ;∀i ∈ I ;∀k ∈ K ;∀t ∈ T (3.15)

∑
k∈K

yikt ≤ 1 ;∀i ∈ I ;∀t ∈ T (3.16)

xi jkpt ≤ d jptyikt ;∀i ∈ I ;∀ j ∈ J ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.17)

Flow Conservation and Consistency Constraints. The network is modeled by the

following constraints. Constraints (3.18), (3.19), (3.20) and (3.21) represent the first

nodes for open and closed trailers and the second nodes for open and closed trailers,

respectively. Note that the variables lO
it and lCit do not exist for t = 0, i.e., in constraints

(3.18) and (3.19), we have lO
i(t=0) = 0 and lCi(t=0) = 0. If a region i ∈ I already possesses

a camp at the beginning of the planning horizon, then a constant Γit > 0 (with t = 1)

indicates the number of hosting trailers of that camp. Clearly, Γit = 0 for all t > 1.

Constraints (3.22) guarantee that the number of existing trailers at a camp never exceeds
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the maximum camp size, while (3.23) link the y variables to the number of open trailers:

Γit + lO
i(t−1)+ ∑

q∈K
qsiqt = vOO

it + vOC
it ;∀i ∈ I ;∀t ∈ T (3.18)

lCi(t−1)+ vOC
it = vCC

it +wO
it ;∀i ∈ I ;∀t ∈ T (3.19)

vOO
it + vCO

it = lO
it ;∀i ∈ I ;∀t ∈ T (3.20)

vCC
it +wI

it = vCO
it + lCit ;∀i ∈ I ;∀t ∈ T (3.21)

lO
it + lCit ≤ K ;∀i ∈ I ;∀t ∈ T (3.22)

∑
k∈K

kyikt = lO
it ;∀i ∈ I ;∀t ∈ T (3.23)

Relocation Consistency Constraints. Equalities (3.26) enforce that if a camp of size

k is removed from a location, then a camp of the same size must be placed at another

region. They ensure that trailers of different camps will not be mixed if they are relocated

at the same time period. Constraints (3.24) ensure that camps are only relocated as a

whole, i.e., no trailers remain at the location if a camp is relocated. Constraints (3.25) say

that a camp can only be relocated to locations where no other camps exist. Constraints

(3.26) ensure that camps from different locations are not merged. Although redundant,

constraints ∑k∈K wBO
ikt ≤ 1 and ∑k∈K wBI

ikt ≤ 1 are explicitly added to the model, since they

help CPLEX generate further cuts.

vCC
it + vOO

it ≤ K

(
1− ∑

k∈K
wBO

ikt

)
;∀i ∈ I ;∀t ∈ T (3.24)

vCC
it + vOO

it − ∑
q∈K

qs jqt ≤ K

(
1− ∑

k∈K
wBI

ikt

)
;∀i ∈ I ;∀t ∈ T (3.25)

∑
i∈I

wBO
ikt = ∑

i∈I
wBI

ikt ;∀k ∈ K ;∀t ∈ T (3.26)

Linking Constraints for Modular Costs. Linking constraints as suggested by Melo

et al. (2006) are used to link the continuous arc flow variables to the binary variables for
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modular decisions:

∑
k∈K

kvBCO
ikt = vCO

it ;∀i ∈ I ;∀t ∈ T (3.27)

∑
k∈K

kvBOC
ikt = vOC

it ;∀i ∈ I ;∀t ∈ T (3.28)

∑
k∈K

kwBO
ikt = wO

it ;∀i ∈ I ;∀t ∈ T (3.29)

∑
k∈K

kwBI
ikt = wI

it ;∀i ∈ I ;∀t ∈ T (3.30)

Variable Domains. Once the y variables are fixed, the remaining subproblem defined

by the network flow structure can be stated as a Mininum Cost Network Flow Problem.

All lO arcs are then fixed according to the y values due to the equality constraints (3.23).

Thus, the remaining network matrix has the unimodularity property. We could thus state

all arc variables as continuous without losing their integrality property in the solution.

However, we keep integrality on the arc variables, since experiments showed that it

slightly facilitates the solution by CPLEX.

xi jkpt ∈ R+ ;∀i ∈ I ;∀ j ∈ J ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.31)

zikpt ∈ Z+ ;∀i ∈ I ;∀k ∈ K ;∀p ∈ P ;∀t ∈ T (3.32)

yikt ∈ {0,1} ;∀i ∈ I ;∀k ∈ K ;∀t ∈ T (3.33)

siqt ∈ {0,1} ;∀i ∈ I ;∀q ∈ K ;∀t ∈ T (3.34)

lO
it , l

C
it ,v

CC
it ,vCO

it ,vOO
it ,vOC

it ,wO
it ,w

I
it ∈ Z+ ;∀i ∈ I ;∀t ∈ T (3.35)

vBCO
ikt ,vBOC

ikt ,wBO
ikt ,w

BI
ikt ∈ {0,1} ;∀i ∈ I ;∀k ∈ K ;∀t ∈ T (3.36)

Note that, for the CSLP, the SAD inequalities given by (3.11) are modified, replacing

each variable yik by a variable yikt .
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3.6 Computational Experiments

3.6.1 Instance Generation and Experimentation Environment

In order to test the robustness of the model, instances have been generated with differ-

ent parameters. Certain data have been adapted from a real-world (RW) instance, based

on data provided by a Canadian logging company (see Section 3.7.2). Key parameters

are found to be the ones that may change the difficulty of the problem, namely:

– Problem dimension. Instances have been generated with the following dimen-

sions (#facility locations/#customers): (10/20), (10/50), (50/50) and

(50/100).

– Distances and transportation costs. For each of the problem sizes, three dif-

ferent networks have been randomly generated on squares of the following sizes:

300km×300km, 380km×380km and 450km×450km. Transportation costs have

been computed as explained in Section 3.3.1.0.1.

– Number of commodities. Demands are generated either only for logging and

road construction (i.e., two commodities) or additionally for the corresponding

supervisors (i.e., four commodities).

– Concavity of the cost curves. Two extreme cases are considered: construction

and operational costs are either linear or concave. In addition, the cost curves

given in the RW instance with linear construction costs and concave operational

costs are considered.

– Demand distribution. The demand for each region within each season is ran-

domly generated so that the total demand in each season throughout all regions

is similar. For each region, the demand is either uniformly distributed over all

seasons or randomly distributed over up to four seasons.

– Cost distribution. Costs are generated to result in different ratios between camp

construction/relocation and transportation costs. The transportation costs were set

to 20%, 100% and 200% of the original transportation costs indicated in the RW

instance.

– Initial demand coverage. Instances are generated with different numbers of ini-
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tially existing camps. The total capacity of such camps covers either 0%, 50% or

100% of the total demand.

All generated instances contain ten time periods. Camp relocation costs and the

costs to close or reopen trailers have been adapted from the RW instance. The maximum

camp size K has been chosen so that a single camp with K trailers is capable to host

the entire worker demand. The combination of all different configurations explained

above resulted in 1296 instances. Experiments on all instances showed that instances

are significantly easier to solve when the cost curves are linear or only two commodities

(i.e., no demands for supervisors) are used. On the other hand, instances with 50 or more

potential facility locations could virtually not be solved within the imposed time limit

of one hour of computation time. The results presented throughout this paper are thus

based on a subset of the instances described above. This subset includes 216 instances:

all instances of reasonable size, i.e., (10/20) and (10/50), excluding those which are

known to be easily solved, i.e., having only two commodities or linear cost curves.

The code has been written in C/C++ using the Callable Library of IBM ILOG CPLEX

12.3 and has been compiled and executed on openSUSE 11.3. Each problem instance has

been run on a single AMD Opteron 250 processor (2.4 GHz), limited to 4GB of RAM.

If not stated otherwise, CPLEX computation times have been limited to 60 minutes.

3.6.2 Computational Results

The following variants of the problem have been considered to investigate the impact

of the different problem features on the difficulty of solving the problem:

– The DMCFLP as described in Section 3.5.1. Both versions without and with RUC

constraints (round-up capacity constraints, see Section 3.5.2) and SAD inequal-

ities (strengthened aggregated demand inequalities, see Section 3.5.2.1) are con-

sidered.

– The CSLP, as described in Section 3.5.3.

The SI valid inequalities, given by (3.5) and (3.17) for the DMCFLP and the CSLP,

respectively, are very effective to strengthen the model. The integrality gap of the DM-

CFLP with RUC constraints and SAD inequalities was found to be 20.3% (average over
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the 216 selected instances). Adding the SI inequalities (3.5) to the model decreased the

integrality gap to an average of 2.2%. In CPLEX, valid inequalities can be added to the

model either all a priori or dynamically (called user cuts), only those that are violated

during the solution of the linear relaxation. In the following experiments, the SIs have

been added as user cuts in the case of the DMCFLP. For the CSLP, all SIs have been

added to the model a priori. Further experiments indicate that CPLEX performs best

when the parameter MIPEmphasis is set to feasibility.

3.6.2.1 Impact of the RUC constraints and SAD inequalities

Computational experiments for the DMCFLP (performed on all 1296 instances de-

scribed above) showed that the average integrality gap increased from 2.8% to 6.0%

when the RUC (round-up capacity) constraints are used within the model. This indicates

that the RUC constraints significantly complicate the solution of the problem. However,

the additional use of the SAD inequalities reduces the average integrality gap to 1.4%.

Table 3.II summarizes the average optimality gaps after one hour of computation

time. We compare three different versions for the DMCFLP. The version w/o RUC

indicates the DMCFLP, defined by (3.1) – (3.7), with common capacity constraints (i.e.,

no round-up capacity constraints). The second version, denoted by w/ RUC w/o SAD,

explores the impact of the round-up capacity constraints. This problem version is thus

defined by by (3.1), (3.2) and (3.4) – (3.10). Finally, we investigate the impact of the

SAD inequalities. The version, denoted by w/ RUC w/ SAD, is thus defined by (3.1),

(3.2) and (3.4) – (3.11). As previously mentioned, all SIs, given by inequalities (3.5) are

added as CPLEX user cuts.

For each of the three versions we report average and maximum optimality gaps. The

column # ns indicates the number of instances where either no feasible integer solution

has been found or the solver ran out of memory. The results indicate that adding the

round-up capacity constraints significantly complicates the solution of the problem. For

ten instances, no feasible solution could be found. However, the additional use of the

SAD inequalities proved quite effective to improve the optimality gap.
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w/o RUC w/ RUC w/o SAD w/ RUC w/ SAD
Inst # gap % # gap % # gap % #
size Inst avg max ns avg max ns avg max ns
10/20 108 0.00 0.01 0 7.73 41.05 0 0.39 26.01 0
10/50 108 8.60 38.26 0 25.06 59.88 10 17.82 57.83 10
All 216 4.30 38.26 0 16.02 59.88 10 8.68 57.83 10

Table 3.II: Comparing the solution quality for the DMCFLP without/with RUC con-
straints as well as without/with SAD inequalities after one hour of computation time.

3.6.2.2 Solving the CSLP and Solution Properties

We now explore how the difficulty of solving the CSLP is affected by the RUC

constraints and SAD inequalities. We also investigate the impact of different instance

characteristics. We show relations between the optimal solutions of the DMCFLP and

the CSLP by comparing the number of constructed and relocated trailers. This leads to

the idea of using DMCFLP solutions as starting solutions for the CSLP. The impact of

certain properties such as the demand distribution over time, the initial camp capacity

and the dimension of transportation costs is evaluated.

Table 3.III compares the results for different solution approaches: two approaches

based on conventional CPLEX optimization and a third approach which is explained

further below. The first approach, denoted by CSLP w/o SAD, involves the solution of

the CSLP defined by (3.12) – (3.36) using CPLEX. The second approach, denoted by

CSLP w/ SAD additionally uses the SAD inequalities (3.11).

The table presents average and maximum optimality gaps when compared with the

best known lower bound for each instance. In addition, the number of instances where

no feasible integer solution has been found or the solver ran out of memory (# ns) is

reported. As the results indicate, the SAD inequalities improve the performance of

CPLEX. Feasible solutions can be found for 36 further instances and the solution quality

improves significantly.

DMCFLP warm start solutions for the CSLP. As we observed in the previous sec-

tion, DMCFLP solutions of fair quality can easily be obtained. For the CSLP, we may
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CSLP w/o SAD CSLP w/ SAD CSLPHeur w/ SAD
Inst # gap % # gap % # gap % #
size Inst avg max ns avg max ns avg max ns
10/20 108 28.71 55.32 41 9.13 54.06 22 6.42 20.24 0
10/50 108 - - 108 3.53 22.57 91 18.24 49.95 31
All 216 28.71 55.32 149 8.21 54.06 113 11.89 49.95 13

Table 3.III: Comparing the solution quality after one hour of computation time using
different solution approaches.

have trouble to find any feasible integer solution at all. However, a feasible solution

for the DMCFLP is also feasible for the CSLP. To convert an optimal DMCFLP solu-

tion into a feasible CSLP solution, the y variable values of the DMCFLP solution are

fixed. CPLEX then heuristically finds feasible values for the missing variables (param-

eter effortLevel has been set to 3). Table 3.IV shows the average optimality gaps of

the optimal DMCFLP solutions in the CSLP. The average optimality gap of such solu-

tions (except for five instances of size (10/50) where no optimal DMCFLP solution has

been found) is around 15%. The results are then separated by instances with certain

characteristics, namely the demand distribution along time as well as the initial demand

coverage by existing camps. One would assume that DMCFLP solutions perform better

for instances where the demand is uniformly distributed over time, since the relocation

of camps seems less probable. However, the results do not show any clear evidence of a

better performance.

On the other hand, the total capacity of existing camps seems to have more impact

on the DMCFLP solution quality in the CSLP. The less camps initially exist, the bet-

ter the DMCFLP solution quality. This is because in both versions camps have to be

constructed. This is summarized in Table 3.V, which reports the average number of

constructed and relocated trailers according to the demand distribution and the number

of initially existing camps (only solutions with a proven optimality gap smaller than or

equal to 10% have been considered). Instances with demand uniformly distributed over

all time periods tend to have less constructions and relocations than instances in which

demand is irregularly distributed over time. In addition, the less camp capacity is initially

available, the smaller the chance that existing camps are relocated instead of construct-
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ing new ones. Thus, new optimal placed camps in a DMCFLP solution are more likely

to be a good choice for the CSLP as well.

Inst all Demand distribution Initial demand coverage
Size Uniform Clustered 0% 50% 100%
10/20 12.8 11.6 13.9 9.2 12.9 16.1
10/50 17.2 18.8 15.7 12.1 15.8 23.9
Total 14.9 15.0 14.8 10.6 14.4 19.8

Table 3.IV: The average optimality gaps of optimal DMCFLP solutions in the CSLP.

Inst Demand distribution Initial demand coverage
Size Uniform Clustered 0% 50% 100%
# Constructions 4.9 6.7 7.8 4.6 2.3
# Relocations 0.8 1.1 0.0 1.2 1.8

Table 3.V: The average number of constructed and relocated trailers within near optimal
CSLP solutions.

We may thus use DMCFLP solutions as warm start solutions for the CSLP. The last

three columns, denoted by CSLPHeur w/ SAD, in Table 3.III indicate the results after

one hour of computation time for the CSLP (w/ SAD), when the best DMCFLP (w/

RUC w/ SAD) solution obtained after one hour of computation time is used as a warm

start solution. Compared with the conventional execution of the CSLP, CPLEX now

finds feasible solutions for most of the instances while maintaining a similar average

optimality gap.

The impact of the cost ratio. The ratio between transportation costs and the costs to

construct or relocate camps has also been found to have a strong impact on the difficulty

of solving the problem. A total of 264 additional instances of the sizes (10/20) and

(10/50) have been generated with eleven different transportation costs, set between 1%

and 3000% of the original transportation costs given in the RW instance. We refer to this

percentage as TC%. All instances contain sufficient camp capacities to cover 50% of the

average demand per season.

Figure 3.4 (a) and (b) illustrate the difficulty of solving the generated instances for

the CSLP subject to their TC% ratios (in one hour of computation time). For each of
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the TC% cost ratios, the number of instances where no feasible solution has been found

(see Figure 3.4 (a)) and the average optimality gap of the final solutions (see Figure 3.4

(b)) are reported. The results indicate that the problem gets more difficult to solve when

TC% = 100. With TC% values greater than 1500, it seems that the solution of the prob-

lem gets slightly easier again. Figure 3.4 (c) shows the average number of constructed

and relocated trailers within the final solutions (again, only solutions with a proven opti-

mality gap smaller than or equal to 10% have been considered). The results indicate that

the number of constructed trailers grows faster than the number of relocations when the

transportation costs increase.
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Figure 3.4: The impact of the transportation cost ratio on (a) the number of CSLP in-
stances where no solutions have been found, (b) the average optimality gaps and (c) the
average number of constructed and relocated trailers in near optimal solutions.

Yearly camp relocation. All previous experiments have assumed that camp relocation

is allowed after each season. In the case of the Canadian logging company that provided
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the real-world instance, relocation is possible only once a year. We investigate the dif-

ficulty of solving this slightly simplified problem, considering all instances (ISall). We

use the CSLPheur approach, i.e., we first solve the DMCFLP with a time limit of one

hour and then use the best solution as a starting solution for the CSLP, also limited to one

hour of computation time. The results, summarized in Table 3.VI, show that instances

of reasonable size (i.e., 10/20 and 10/50) can be fairly well solved. Most of the larger

instances exceed either the given memory limit of 4GB or CPLEX capabilities to solve

the problem in the given time limit.

Inst # gap # ns # opt time
Size Inst % (sec)
10/20 324 4.3 0 134 3992
10/50 324 14.6 17 24 5664
50/50 324 24.2 134 12 7173
50/100 324 19.7 295 31 7447
Total Avg 1296 11.5 446 201 4984

Table 3.VI: Results (ISall) with CSLPheur when camp relocation is allowed only once a
year.

3.7 Case Study

In this section, we analyze the planning solutions proposed by our model for two

planning periods of our industrial partner. Each of the two planning periods spans five

years. Each year is divided into a summer and a winter season. For the first planning

period, we consider the activities performed by the company throughout the harvest

period 2006 to 2010. We aim at simulating the decisions made by the company and

compare them with the decisions suggested by the mathematical model. The second

planning horizon considers the harvest planning for the next five years, starting in 2011.

3.7.1 Comparative Study for Planning Period 2006 to 2010

In this study, we simulate the activities performed by the company on two different

levels: first, construction and relocation of logging camps and, second, the allocation
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of worker demand to accommodations. The results are then compared to the solution

provided by the mathematical model.

3.7.1.1 Data Description

The company performed logging and road construction activities in an area which

is divided into approximately 4000 different regions. These regions are geographically

clustered to a total of 38 regions. The planning period starts at the summer season in

2006 and ends after the winter season in 2010. The logging and road construction ac-

tivities were subject to significant variations throughout the seasons. The total average

demands (in number of workers per day) for logging and road construction in each sea-

son are illustrated in Figure 3.5. Note that the demands at each region are not necessarily

clustered within subsequent seasons. Logging crews are formed by six workers, while

road construction crews contain three workers. Demands for three logging supervisors

and one road construction supervisor are estimated in proportion to the regions’ work

crew demands. All 38 working regions as well as the locations of the company’s camps

are available for potential camp construction or relocation. Detailed data for the entire
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Figure 3.5: Total demand (in average number of workers per day) throughout all seasons.

road network, composed by roads categorized into four different conditions, are avail-

able. A simplified version is illustrated in Figure 3.6. Logging and road construction

regions are indicated by the green areas. Each road type allows a different vehicle aver-

age speed, such that transportation times and costs are computed fairly accurately. Costs

take into account gasoline, vehicle renting and additional salary due to long travel times.
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Figure 3.6: Simplified illustration of the logging regions and the road network.

Available accommodations and camp relocations. A village is located in a central

location between the regions of forestry activities. According to the company, approxi-

mately two out of five crews live in the village and may thus be hosted at zero costs. We

thus roughly estimate that 40% of the total worker demand may be hosted at the village,

paying only the transportation costs. In addition, a practically unlimited number of ho-

tel accommodations is available at the village for a price of 170$ per person per night,

including 54$ for food.

In addition to the village, three logging camps from an external company are avail-

able. In the map, these camps are indicated by (capacity in parentheses in number of

workers) E1 (65), E2 (40) and E3 (120). The latter has been relocated to location E4

after the winter season in 2008. External camps can be used on demand at an estimated

price of 170$ per person per night (food included).

The company itself held three camps in the beginning of 2006, indicated by C1 (60),
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C2 (96) and C3 (48). We assume that these camps hold trailers each with a capacity for

twelve workers. After a few years, the location of camp C1 was two far from the new

logging regions. Parts of this camp have thus been relocated to join the camp located

at C2 after the winter season 2009, resulting in a larger camp for up to 144 workers.

The costs for these camps involve significant economies of scale and thus depend on the

size of the camp. The maintenance costs are around 1020$ per day for a camp with a

single trailer (capacity for twelve workers) and around 3400$ for a camp with ten trailers

(capacity for 120 workers). In addition, we assume a daily cost of 54$ per worker for

food. Maintaining large camps may thus be much cheaper than using the external camps

and accommodations.

As can be recognized, the available capacities are very large compared to the total

number of workers active in logging and road construction. This is due to the fact that

other workers involved in forestry activities, such as forest management, tree planting,

etc. use the camps. In addition, some capacities are used by the mining industry. How-

ever, the priority is always given to logging and road construction workers. We can thus

assume that the entire capacity is available.

3.7.1.2 Comparison to the Proposed Planning

We now compare the activities performed by the company with the planning pro-

posed by the mathematical model. As previously mentioned, we compare the planning

decisions on two different levels:

i. Availability of capacities. We compare the decisions regarding camp construction

and relocation.

ii. Worker demand allocation. We compare the allocation of workers from working

regions to accommodations.

Decisions regarding camp construction and relocation. All optimization models are

based on the CSLP model, defined by (3.12) – (3.36) and using the SAD inequalities

(3.11) to facilitate the solution. We simulate the activities performed by the company
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by fixing all decisions regarding available capacities exactly as stated in Section 3.7.1.1.

To be precise, we fix the relocation of external camp E3, the relocation of camp C1

and the construction of camp C3. As all construction and relocation decisions are fixed,

the model is solved to optimality in a few minutes. The results for this scenario are

compared to the optimal solution for a scenario where only the initial capacities of the

company are fixed. External camp E3 is still relocated (as this is not a decision made by

the company). However, the relocation of C1 and the construction of C3 are not fixed.

The optimal solution for this scenario has been obtained within 20 hours of computation

Costs ($) Simulated company activities Optimized decisions
Hosting 2,683,588 2,770,588
Transportation 1,848,021 1,931,367
Maintenance 1,600,222 1,419,187
Trailer Change 164,328 110,713
Sub-total 6,296,159 6,231,855
Construction 975,000 0
Relocation 302,470 0
Total 7,573,630 6,231,855

Table 3.VII: Cost distribution for the simulated company activities and the optimized
solution.

time (nine hours to prove optimality < 1%). In contrast to the decisions made by the

company, the optimal solution does not suggest any camp construction or relocation.

Instead, the cheapest solution is obtained when using the available capacities at the same

locations as found in the beginning. Table 3.VII summarizes the cost distribution for both

scenarios. Without costs for construction and relocation, the costs for both scenarios are

very similar. This suggests that, for the activities in the given time period, the initial

locations of the existing camps, as well as their capacities were just as good as the

locations and capacities achieved by the construction and relocation of camps. Adding

the costs for construction and relocation to the costs for the company’s activities results

in a total cost that is much higher. Note that both scenarios assume optimal demand

allocation. We will explore this topic further below.
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Decisions regarding the demand allocation. The previous analysis simulates the

company’s activities regarding the decisions of where to locate or relocate camps. For

both scenarios, the results assume that the demand allocation is optimal, i.e., the amount

of workers from each region hosted at each accommodation, as well as the capacity level

maintained at each camp during each season. As many cost factors have to be consid-

ered when allocating the workers to the accommodations, a manual allocation planning

is likely to be far from optimal. Of course, many other factors may impact the decisions

when allocating certain working regions to accommodations, such as the preferences of

certain workers.

For the given planning period, the actual allocation of the workers to the available

accommodations is not known. We thus use a simple heuristic to simulate the manual

allocation planning. The allocation is performed for each season. We give priority to

regions with large worker demands. Logging and road construction demands are thus

considered in non-increasing order. We then select the accommodation that has the low-

est cost for transportation and hosting. To compute the real cost, one should also consider

the maintenance costs for open trailers at the company’s camps. However, these costs

depend on the actual occupation level of the camp and are thus difficult to estimate at the

beginning of the heuristic planning. We thus do not include the maintenance costs in the

total costs to emphasize the use of the company’s own camps. Table 3.VIII compares the

Costs ($) Optimal Heuristic
Hosting 2,683,588 1,437,822
Transportation 1,848,021 3,093,429
Maintenance 1,600,222 2,424,474
Trailer Change 164,328 186,881
Sub-total 6,296,159 7,142,606
Construction 975,000 975,000
Relocation 302,470 302,470
Total 7,573,630 8,420,076

Table 3.VIII: Cost distribution for optimal and heuristic demand allocation.

cost distribution for the optimal and the heuristic demand allocation. From an economic

point of view, the optimal demand allocation is 11.8% cheaper when comparing the costs
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involved in hosting, transportation and camp/trailer maintenance. Note, however, that a

planning as suggested in the optimal scenario is likely not to be completely feasible in

practice. Many other factors may impact on such planning, such as the preferences of

workers, changes in demand and other uncertainties. Workers will most likely prefer not

to change their accommodation too often throughout a working season. An analysis of

the suggested demand allocation in the optimal scenario shows that in most cases this

criterion is met. Working crews are allocated to the same accommodation throughout

the entire season. Only in a small number of cases, two different accommodations are

suggested to host the same crew throughout a season. Although the allocation of work-

ers to accommodations includes many other factors not considered in our analysis, the

large cost difference found in our comparison emphasizes the difficulty of a cost efficient

manual planning and suggests a potential to perform demand allocation in a more cost

efficient manner, while respecting all other requirements.

3.7.2 Analysis of Proposed Planning for Period Starting in 2011

Based on the logging and road construction demands for the harvesting period 2011

to 2015, we now analyze the decisions proposed by the mathematical model.

Data Description. The data contains 29 clusters of logging regions. The road network

is similar to the one shown in Figure 3.6. However, logging regions, as well as the

locations of available accommodations, are different. The demands in this planning

are much more balanced over the seasons than it was the case in the previous planning

period. Demands require up to eight logging and four road construction crews. The

complete demand is easily covered by five existing accommodations: the village and

four camps (with 2, 3, 4 and 4 trailers, respectively). All other assumptions are similar

to the ones made for the previous planning period.

Solution analysis for different scenarios. Data about whether or not the company

intends to construct or relocate camps were not available. We therefore do not com-

pare to decisions of the company, but rather to two extreme scenarios to show how the



71

proposed model may help in future decisions: one scenario where available capacities

are not changed at all and one where capacities may be changed if beneficial. The first

scenario thus considers only the existing accommodations at their original locations.

Camp construction and relocation are thus not allowed. The second scenario assumes

the original locations of the initially existing accommodations, but additionally allows

the construction of new camps and the relocation of existing ones (once a year). Both

scenarios are based on the CSLP model, defined by (3.12) – (3.36) and the SAD in-

equalities (3.11). Table 3.IX shows how costs are distributed in the optimal solution of

each scenario. Scenario 2 suggests the relocation of a camp with four trailers after the

fifth season. The additional camp relocation costs are outweighed by the savings in the

transportation costs, which reduced by more than 40%. This results in a very beneficial

solution, reducing the total costs by 8.6%.

Costs ($) Scenario 1 Scenario 2
Hosting 1,879,905 1,476,083
Transportation 2,261,809 1,353,561
Maintenance 2,983,112 3,365,490
Trailer Change 252,521 242,751
Construction 0 0
Relocation 0 302,470
Total 7,377,347 6,740,355

Table 3.IX: Cost distribution in the optimal solutions for both scenarios.

Clearly, the reduction of the transportation costs is directly linked to the traveled

time and distance. As can be seen in Table 3.X, the average distance traveled by the

crews is reduced significantly (23% and 16%, respectively, in Scenario 2) when the

camp is relocated. Finally, Table 3.X also reports the proportion of time during which

existing trailers are open. This percentage considers all existing trailers throughout all

time periods. One can observe that slightly more trailers are opened in Scenario 2, i.e.,

the existing camps are better used than in the previous two scenarios. Maintenance costs

increase, but lower transportation costs may be involved as such trailers are closer to

certain logging regions.
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Scenario 1 Scenario 2
Trailers open 49.4% 54.8%
Average travel distance (km):
Logging crews 114 88
Road construction crews 129 109

Table 3.X: Usage of existing trailers and travel distances for the both scenarios.

3.8 Conclusions and Future Research

A mixed-integer programming model for the location of logging camps has been

presented. This model extends the classical Capacitated Facility Location Problem by

several features. Next to the well known features of multiple periods, multiple commodi-

ties and multiple capacity levels, further extensions include the partial and temporary

closing of facilities, particular capacity constraints that include integer rounding and the

integration of economies of scale on several levels of the cost structure. In addition, the

model allows the extensions and relocation of existing facilities. Such integer rounding

capacity constraints can be useful in other applications. As they increase the integrality

gap and therefore the difficulty to solve the problem, new valid inequalities are derived

to effectively reduce this integrality gap.

Instances based on a large variety of different properties have been generated. Ex-

periments on these instances illustrated the impact of the different problem features on

the difficulty to solve the problem. It is shown that general purpose solvers such as

CPLEX are capable of solving most of the instances up to a realistic size in reasonable

time, when using optimal solutions of a simplified problem as warm start solution for

the entire problem. Case studies based on data from a Canadian logging company for

two planning periods have been presented. The first study indicates a strong potential for

economic savings on two different decision levels: where to locate the logging camps,

as well as how to allocate worker demand from the working regions to the accommoda-

tions. The second study proposes a planning for the upcoming planning period of the

company. It proposes the relocation of an existing camp, resulting in potential savings

of more than 8% of the total costs when compared to the scenario where camps stay at
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their current location.

Though most of the smaller and medium sized instances can be solved in reasonable

time, some of the instances remain unsolved. The models for larger instances typically

exceed the memory limitations of current standard computers, such as the ones used

in the experiments. In order to solve these instances, more sophisticated solution tech-

niques are necessary, such as mathematical decomposition. Interesting extensions of the

model for future research include the possibility of partial relocation of camps, as well

as the use of trailers of different sizes.
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CHAPTER 4

DYNAMIC FACILITY LOCATION WITH GENERALIZED MODULAR

CAPACITIES

4.1 Chapter Preface

In Chapter 3, an industrial application has been introduced that possesses a very

detailed cost structure for capacity changes. In that application, the costs do not only

depend on the total capacity involved in the operation, such as capacity expansion or the

temporary closing of a part of a facility, but also on the current capacity level. As can be

observed in Table 3.I, the relation between the number of hosting and supporting trailers

cannot be represented by a polynomial function. In fact, to represent the cost structure

of the problem on a detailed level, one may construct a matrix indicating the exact costs

to expand capacities from capacity level `1 to capacity level `2. One may do the same

for the temporary closing of capacity levels.

In this chapter, we consider a simplified variant of the CSLP, a multi-period facil-

ity location problem with modular capacities where the costs for capacity changes are

based on a cost matrix. As we will see, the resulting MIP model is simple, yet power-

ful, generalizing several facility location problems found in the existing literature and

providing strong LP relaxation bounds. This is illustrated by comparing the new for-

mulation to specialized formulations for three facility location problems. Using generic

MIP solvers, the proposed formulation finds optimal solutions in significantly shorter

computing times than the specialized formulations. The dominance of the formulation

in terms of the LP relaxation bound is proved in Appendix B.1. The results of this chap-

ter provide an ideal foundation to model problems with complex cost structures, such as

the one found in the CSLP, in full detail.
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Notes about the chapter

The contents of this chapter correspond to those of the article entitled Dynamic Fa-

cility Location with Generalized Modular Capacities, co-authored with Professors Jean-

François Cordeau and Bernard Gendron, which has been submitted for publication to

Transportation Science (ISSN: 0041-1655), in March 2013 (revised version submitted

in March 2014).

While the above mentioned paper only contains formal dominance proofs for the

two special cases DMCFLP_CR and DMCFLP_ER, a dominance proof for the DM-

CFLP_CR_ER, as well as its explicit flow model can be found in Appendix B.1.3.
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Location decisions are frequently subject to dynamic aspects such as changes in cus-

tomer demand. Often, flexibility regarding the geographic location of facilities, as well

as their capacities, is the only solution to such issues. Even when demand can be forecast,

finding the optimal schedule for the deployment and dynamic adjustment of capacities

remains a challenge, especially when the cost structure for these adjustments is complex.

In this paper, we introduce a unifying model that generalizes existing formulations for

several dynamic facility location problems and provides stronger linear programming

relaxations than the specialized formulations. In addition, the model can address facil-

ity location problems where the costs for capacity changes are defined for all pairs of

capacity levels. To the best of our knowledge, this problem has not been addressed in

the literature. We apply our model to special cases of the problem with capacity expan-

sion and reduction or temporary facility closing and reopening. We prove dominance

relationships between our formulation and existing models for the special cases. Com-

putational experiments on a large set of randomly generated instances with up to 100

facility locations and 1000 customers show that our model can obtain optimal solutions

in shorter computing times than the existing specialized formulations.

Key words: Mixed-Integer Programming, Facility Location, Modular Capacities.
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4.2 Introduction

Dynamic facility location consists in deciding where and when to provide capacity

to satisfy customer demand at the lowest cost. This demand is rarely stable, but rather

increases, decreases or oscillates over time. Therefore, facility capacities often have

to be adjusted dynamically. Many variants of dynamic facility location problems have

been studied, suggesting different ways to adjust capacities throughout a given planning

horizon. The most common features include capacity expansion and reduction (Luss,

1982; Jacobsen, 1990; Antunes and Peeters, 2001; Troncoso and Garrido, 2005; Dias

et al., 2007), temporary facility closing (Chardaire et al., 1996; Canel et al., 2001; Dias

et al., 2006), as well as the relocation of capacities (Melo et al., 2006). Mathematical

models that include such features have been applied in both the private and the public

sectors to determine locations and capacities for production facilities, schools, hospitals,

libraries and many more.

Facility location decisions aim to strike a balance between the fixed costs to supply

capacity and the allocation costs to serve the demand. The latter often correspond to

transportation costs to deliver products or provide services to customers. The ratio be-

tween these two types of costs has a strong impact on the solution and the difficulty of

solving the problem (see, e.g., Shulman, 1991; Melkote and Daskin, 2001). In dynamic

facility location problems, a detailed representation of the transportation costs not only

affects the facility locations, but also their capacity throughout the planning horizon as

capacity tends to follow the demand along time.

Regarding the fixed costs to provide the capacity, many studies acknowledge the ex-

istence of economies of scale (Correia and Captivo, 2003; Correia et al., 2010). While

previous works considered economies of scale mainly for the construction and produc-

tion costs, the costs for adjusting the capacities of the facilities have commonly been

modeled in less detail. However, the latter is necessary to ensure a fair representation

of the cost structure found in practice. The costs to adjust capacities often do not only

depend on the size of the adjustment, but also on the current capacity level. This is true

in a large class of applications, especially in transportation, logistics and telecommuni-
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cations, where additional capacity gets cheaper (or more expensive) when approaching

the maximum capacity limit.

In this work, we introduce a very general dynamic facility location problem, re-

ferred to as the Dynamic Facility Location Problem with Generalized Modular Capaci-

ties (DFLPG). The problem allows modular capacity changes subject to a detailed cost

structure and is modeled as a mixed-integer programming (MIP) formulation. Due to

its generality, this model unifies several existing problems found in the literature. The

cost structure used in the model is based on a matrix describing the costs for capacity

changes between all pairs of capacity levels. We are not aware of any other work dealing

with facility location with a similar level of detail in the cost structure.

Our study is motivated by an industrial project with a Canadian logging company that

must locate camps to host workers involved in wood harvest activities while optimizing

the overall logistics and transportation costs (Jena et al., 2012). In this problem, the total

capacity of a camp is represented by its number of hosting units, while additional units

provide supporting infrastructure. As the relation between the number of different units

is non-linear, the costs for capacity changes are described in a transition matrix.

The contribution of this work is threefold. First, we introduce a general dynamic

facility location model that comprises a large set of existing formulations. Second, we

analyze the linear programming (LP) relaxation bound obtained by our model, showing

that it is at least as strong as the LP relaxation bound of existing specialized formula-

tions. Third, we perform a computational study on a large set of randomly generated

instances, showing that our model, when solved with a state-of-the-art MIP solver, can

obtain optimal solutions in shorter computation times than the specialized formulations.

The paper is organized as follows. In Section 4.3, we present a survey of the rel-

evant literature. Section 4.4 introduces a linear MIP formulation for the DFLPG and

shows how this model can be used to represent two important special cases. To com-

pare the resulting models with alternative formulations, Section 4.5 derives specialized

formulations for the two special cases, based on existing models from the literature. We

identify a weak point in one of the existing formulations and suggest a set of valid in-

equalities to make it as strong as our model. Dominance relations are proved between
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all formulations, showing that our model is at least as strong as each of the special-

ized formulations. The presented models are then compared by means of computational

experiments in Section 4.6. Finally, conclusions follow in Section 4.7.

4.3 Literature Review

Most dynamic facility location problems can be seen as multi-periodic extensions of

classical location problems, such as the Capacitated Facility Location Problem (CFLP).

However, dynamic facility location problems commonly involve further extensions. As

pointed out by Arabani and Zanjirani Farahani (2011), the notion of what dynamic

means may differ when dealing with different areas of facility location. Its definition

thus strongly depends on the application context. For example, school capacities may

be increased or decreased to meet demographic trends (e.g., Antunes and Peeters, 2001),

terminals in telecommunications networks may be installed and removed along time to

adapt to changes in data traffic and costs (e.g., Chardaire et al., 1996) and hospitals may

relocate ambulances to cope with unpredictable demand (e.g., Brotcorne et al., 2003).

Owen and Daskin (1998) review works that treat either dynamic or stochastic facility lo-

cation problems. A chapter in the textbook of Zanjirani Farahani and Hekmatfar (2009)

deals with dynamic aspects of facility location problems. Several classification criteria

are proposed. A book chapter by Jacobsen (1990) dedicated to multi-period capacitated

location models thoroughly discusses models that allow capacity expansion. Luss (1982)

focuses on capacity expansion and reviews the literature and applications in the context

of problems with a single facility, two facilities and multiple facilities. Although not

explicitly focusing on dynamic aspects, many other works introduced classifications for

location problems which often also apply to features that can be found in dynamic loca-

tion problems. These include, among many others, the works of Hamacher and Nickel

(1998), Owen and Daskin (1998), Klose and Drexl (2005), Daskin (2008) and Melo et al.

(2009a).

The choice of the facility type or size has also been considered in several works.

In particular, Shulman (1991), Correia and Captivo (2003) and Troncoso and Garrido
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(2005) consider such choice, which implies different capacities and costs for each facility

type. The last authors apply the model to the forestry sector, where facilities of different

sizes may also be expanded. Dias et al. (2007) focus on modular capacity expansion and

reduction. Wu et al. (2006) present a facility location problem where the facility setup

costs depend on the number of facilities placed at a site. To represent economies of scale,

all of the cited works use binary variables to distinguish different facility sizes. Capacity

level changes consider only the amount of capacity added or removed. However, the

previous capacity level is not taken into consideration. Some authors such as Harkness

(2003) also recognize the importance of inverse economies of scale, where the unit price

increases as the facility gets larger.

To dynamically adjust capacity to demand changes, the best choice depends on the

demand forecast and the costs involved in capacity changes. For example, if capacity

is leased, it may be possible to terminate a leasing contract at any time. In other situa-

tions, it may be beneficial to temporarily close a facility to avoid high maintenance costs.

This may be appropriate when demand temporarily decreases, but is likely to return to

its previous level afterwards. The closing and reopening of facilities may be partial

or complete. Previous studies focused mostly on temporarily closing entire facilities.

Among the suggested models, certain are limited to a single closing and reopening of

each facility, whereas others allow repeated closing and reopening throughout the plan-

ning horizon. The uncapacitated facility location problem presented by Van Roy and

Erlenkotter (1982), as well as the supply chain model of Hinojosa et al. (2008), allow

one-time opening or closing of facilities: new facilities can be opened once and existing

facilities can be closed once. Chardaire et al. (1996) and Canel et al. (2001) propose

formulations for opening and closing facilities more than once. Both works use binary

variables to represent the state of the facility. The objective function contains a bilinear

term to represent a state change from open to closed or vice-versa. A linear formulation

for a simplified version of this problem, treating only a single capacity level, has been

proposed by Dias et al. (2006). Binary variables with two time indices indicate the pe-

riod throughout which a facility is open. The cited works interpret facility closing either

as temporary (i.e., the facility still exists, but its capacities are temporarily unavailable)
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or permanent. In most cases, maintenance costs for temporarily closed facilities are low

and can therefore be ignored in the model. Most of the existing formulations therefore

do not explicitly distinguish temporary and permanent facility closing.

When the customer demand permanently changes in a certain region and is not likely

to return to its previous level, one may want to expand or reduce the facility capacities

to permanently adjust to these new conditions. Luss (1982) observes that models for

capacity expansion can be classified into two categories: capacity expansion at a single

facility and capacity expansion via a finite set of projects, each holding a certain capac-

ity. The first category includes models that allow one facility at a location and increases

or decreases of the available capacity along time. The second category consists of mod-

els where multiple facilities are allowed in the same location, each specified by a time

interval (a capacity block) of production availability. Figure 4.1 illustrates both classes.

The first class is shown in (a), where capacities at the same facility are either increased

or decreased. The second class may be illustrated by (b) and (c), representing two ex-

treme configurations of the capacity blocks. Any configuration between these two is also

feasible for the second class.

(a)

c
a
p
a
c
it
y

le
v
e
l

time period

1 2 3 4 5 61 2 3 4 5 6 1 2 3 4 5 6

(c)(b)

Figure 4.1: Capacity expansion/reduction by use of a single facility (a), horizontal ca-
pacity blocks (b) and vertical capacity blocks (c).

Models in the first category include those of Melo et al. (2006) and Behmardi and Lee

(2008). Both works model capacity expansion and reduction by relocating capacity from

or to a dummy location. The authors of the former work model capacities as a continuous

flow, but demonstrate how to link the flow to binary variables to restrict capacity changes

to modular sizes. Models in the second category do not allow the capacity modification

of a facility once it is constructed. However, they allow multiple facilities of different

sizes (capacity blocks) at the same location, which is equivalent to the adjustment of the
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total capacity sum along time. Examples for this class include the works of Shulman

(1991), Troncoso and Garrido (2005) and Dias et al. (2007). More restricted types of

capacity expansion or reduction have also been presented. In the work of Antunes and

Peeters (2001), either a facility expands or decreases its capacity throughout the entire

planning horizon. Capacity expansion and reduction at the same location is thus not

allowed.

4.4 Mathematical Formulation

In this section, we give a more formal description of the DFLPG and introduce a MIP

model for the problem. We also explain how the different cases described in Section 4.3

can be modeled as a DFLPG.

4.4.1 DFLPG Formulation

We denote by J the set of potential facility locations and by L = {0,1,2, . . . ,q} the

set of possible capacity levels for each facility. We also denote by I the set of customer

demand points and by T = {1,2, . . . , |T |} the set of time periods in the planning horizon.

We assume throughout that the beginning of period t+1 corresponds to the end of period

t.

The demand of customer i in period t is denoted by dit . The cost to serve one unit

from facility j operating at capacity level ` to customer i during period t is denoted

by gi j`t . This term is typically a cost function for handling and transportation costs,

based on the distance between customer i and facility j. The capacity of a facility of

size ` at location j is given by u j` (with u j0 = 0). The cost matrix f j`1`2t describes the

combined cost to change the capacity level of a facility at location j from `1 to `2 at

the beginning of period t and to operate the facility at capacity level `2 throughout time

period t. Furthermore, we let ` j be the capacity level of an existing facility at location j.

The constant ` j is 0 if location j does not possess an existing facility at the beginning of

the planning horizon.

To formulate the problem, we use binary variables y j`1`2t equal to 1 if and only if the
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facility at location j changes its capacity level from `1 to `2 at the beginning of period t

and maintains capacity level `2 throughout period t. The allocation variables xi j`t denote

the fraction of the demand of customer i in period t that is served from a facility of size

` located at j. Based on these definitions, we define the following MIP model, referred

to as the Generalized Modular Capacities (GMC) formulation:

(GMC) min ∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

f j`1`2ty j`1`2t +∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

gi j`tditxi j`t (4.1)

s.t. ∑
j∈J

∑
`∈L

xi j`t = 1 ∀i ∈ I, ∀t ∈ T (4.2)

∑
i∈I

ditxi j`t ≤ ∑
`1∈L

u j`y j`1`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.3)

∑
`1∈L

y j`1`(t−1) = ∑
`2∈L

y j``2t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T\{1} (4.4)

∑
`2∈L

y j` j`21 = 1 ∀ j ∈ J (4.5)

xi j`t ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.6)

y j`1`2t ∈ {0,1} ∀ j ∈ J, ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T. (4.7)

The objective function (4.1) minimizes the total cost for changing the capacity levels

and allocating the demand. Constraints (4.2) are the demand constraints for the cus-

tomers. Constraints (4.3) are the capacity constraints at the facilities. Constraints (4.4)

link the capacity change variables in consecutive time periods. Finally, constraints (4.5)

specify that exactly one capacity level must be chosen at the beginning of the planning

horizon. The flow constraints (4.4) further guarantee that, at each time period, exactly

one capacity change variable is selected. Note that, taking into consideration the initial

locations of facilities, we necessarily have: y j`1`21 = 0,∀ j ∈ J,∀`1 ∈ L\{` j},∀`2 ∈ L.

Valid Inequalities. To facilitate the solution of the GMC, we may additionally use

two types of valid inequalities. The Strong Inequalities (SI) used in facility location and

network design problems (see, for instance, Gendron and Crainic, 1994) are known to

provide a tight upper bound for the demand assignment variables. These inequalities can
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be adapted to our model as follows:

xi j`t ≤ ∑
`1∈L

y j`1`t ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T. (4.8)

The SIs may be added to the model either a priori or in a branch-and-cut manner only

when they are violated in the solution of the LP relaxation. The second set of valid

inequalities is referred to as the Aggregated Demand Constraints (ADC). Although they

are redundant for the LP relaxation, adding them to the model enables MIP solvers to

generate cover cuts that further strengthen the formulation:

∑
j∈J

∑
`1∈L

∑
`2∈L

u j`2y j`1`2t ≥∑
i∈I

dit ∀t ∈ T. (4.9)

4.4.2 DFLPG Based Models for the Special Cases

We now explain how two important special cases can be modeled with the GMC

formulation: first, Facility closing and reopening and, second, Capacity expansion and

reduction.

The first problem considered here allows the construction of at most one facility per

location. The size of the facility is chosen from a discrete set of capacity levels. Ex-

isting facilities may be closed and reopened multiple times. Note that, in this problem,

facility closing does not refer to permanent closing, but only to the temporary closing

of a facility. We therefore distinguish costs for the construction of a facility, for tem-

porarily closing an open facility, for reopening a closed facility and for maintenance

of open facilities. As most of the previous literature, we do not consider maintenance

costs for temporarily closed facilities. We denote this problem as the Dynamic Modular

Capacitated Facility Location Problem with Closing and Reopening (DMCFLP_CR).

In the second problem considered, capacities can be adjusted by the use of a single fa-

cility at each location. At each facility, the capacity can be expanded or reduced from one

capacity level to another. We assume that an expansion of ` capacity levels has always

the same costs, regardless of the previous capacity level. We assume the same for the

reduction of capacities. We denote this problem as the Dynamic Modular Capacitated
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Facility Location Problem with Capacity Expansion and Reduction (DMCFLP_ER).

In addition to the input data already defined for the DFLPG, we define the following

fixed costs to characterize these two special cases:

– cc
j` and co

j` are the costs to temporarily close and reopen a facility of size ` at

location j, respectively;

– f c
j` and f o

j` are the costs to reduce and to expand the capacity of a facility at location

j by ` capacity levels, respectively;

– Fo
j` is the cost to maintain an open facility of size ` at location j throughout one

time period.

For the sake of simplicity and without loss of generality, we assume that all these

costs do not change during the planning horizon.

In the GMC, capacity level changes are represented by the y j`1`2t variables. These

transitions from one capacity level to another can be represented in a graph, where each

node represents a capacity level and each arc a capacity level transition. To model the

special cases, we choose a certain subset of arcs, as well as their corresponding objective

function coefficients f j`1`2t . Note that, while the costs for the GMC can be based on a

cost matrix, the costs for the special cases are based on a cost vector. The cost coeffi-

cients f j`1`2t correspond to combinations of different operations, for example the cost to

expand capacity plus the maintenance costs for the new capacity level.

For the problem variant involving facility closing and reopening, we create an arti-

ficial capacity level ` for each capacity level ` ∈ L\{0}. Capacity level ` represents the

state in which a facility of size ` is temporarily closed. At each time period t ∈ T and

location j ∈ J, we may find different arc types y j`1`2t to model capacity level changes

(note that the cost for an arc is usually composed by the cost to perform the capacity

transition, as well as the maintenance costs for the new capacity level):

i. Facility construction and capacity expansion. The expansion of the capacity is rep-

resented by an arc from capacity level `1 to any other capacity level `2 > `1. If the

arc represents a facility construction, then `1 is 0. The capacity is thus expanded

by `2− `1 capacity levels. The cost for this arc is set to f j`1`2t = f o
j(`2−`1)

+Fo
j`2

.
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ii. Capacity reduction. The reduction of the capacity is represented by an arc from

capacity level `1 to any other capacity level `2 < `1. The capacity is thus reduced

by `1− `2 capacity levels. The cost for this arc is set to f j`1`2t = f c
j(`1−`2)

+Fo
j`2

.

iii. Maintaining the current capacity level. A facility may neither expand nor reduce

the current capacity level. The cost of this arc is thus only composed of the main-

tenance cost, i.e., f j`1`1t = Fo
j`1

if the capacity level represents an open facility,

f j`1`1t = 0 if the capacity level represents a temporarily closed facility and f j00t = 0

if no facility exists.

iv. Temporary closing. An open facility of size `1 can be temporarily closed, i.e., it

changes to capacity level `1. The total cost is f j`1`1t = cc
j`1
.

v. Reopening a closed facility. A temporarily closed facility of size `1 can be re-

opened, i.e., it changes its capacity level from `1 to `1. The total cost for this arc

is f j`1`1t = co
j`1

+Fo
j`1

.

The DMCFLP_CR is represented by arcs of type 1 (for construction only), 3, 4 and

5. We denote the resulting model as the CR-GMC formulation. The DMCFLP_ER is

represented by arcs of type 1, 2 and 3. The resulting model is denoted as the ER-GMC

formulation.

4.5 Comparisons with Specialized Formulations

We now present alternative formulations for the two special cases discussed in Sec-

tion 4.4.2. These formulations are adaptations of existing models proposed in the lit-

erature. For each problem, we present formulations based on two different modeling

approaches as presented in Section 4.3: location variables with one time index and loca-

tion variables with two time indices.

4.5.1 Facility Closing and Reopening

We consider models for the problem with facility closing and reopening, the DM-

CFLP_CR.
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4.5.1.1 Single Time Index Flow Formulation

This model can be seen as an extension of existing dynamic facility location prob-

lems (Shulman, 1991). Flow conservation constraints such as those used in the relocation

model of Wesolowsky and Truscott (1975) are adapted to model facility closing and re-

opening. The model is based on the following variables. The demand allocation from

facilities to customers is given by xi j`t . Binary variable s j`t is 1 if a facility of size ` is

constructed at the beginning of period t at location j, while binary flow variable y j`t in-

dicates whether a facility of size ` is available at location j during time period t. Finally,

binary variables vo
j`t and vc

j`t are equal to 1 if a temporarily closed facility at location j

of size ` is reopened at the beginning of period t and if an open facility at location j of

size ` is temporarily closed at the beginning of period t, respectively. The input data is

as defined in Section 4.4.2. Note that certain equations may include terms which are not

defined for a certain variable index, e.g., index (t−1) is not defined for t = 1. Undefined

terms are assumed to take the value 0. The single time index flow formulation (CR-1I) is

given by:

(CR-1I) min ∑
j∈J

∑
`∈L

∑
t∈T

(
f o

j`s j`t +Fo
j`y j`t + co

j`v
o
j`t + cc

j`v
c
j`t

)
+∑

i∈I
∑
j∈J

∑
`∈L

∑
t∈T

gi j`tditxi j`t

(4.10)

s.t. ∑
j∈J

∑
`∈L

xi j`t = 1 ∀i ∈ I, ∀t ∈ T (4.11)

∑
i∈I

ditxi j`t ≤ u j`y j`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.12)

y j`t = y j`(t−1)+ s j`t + vo
j`t− vc

j`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.13)
t

∑
t ′=1

vo
j`t ′ ≤

t

∑
t ′=1

vc
j`t ′ ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.14)

∑
`∈L

∑
t∈T

s j`t ≤ 1 ∀ j ∈ J (4.15)

xi j`t ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.16)

s j`t ,vo
j`t ,v

c
j`t ,y j`t ∈ {0,1} ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T. (4.17)
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The objective function (4.10) minimizes the total costs composed by facility con-

struction, maintenance of open facilities and facility reopening and closing, as well as

the costs to satisfy the customer demand. Constraints (4.11) are the demand constraints.

Constraints (4.12) are the capacity constraints. The flow constraints (4.13) manage the

state of a facility of a certain size, either open or closed. Constraints (4.14) ensure that a

facility has to be temporarily closed before it can be reopened. Finally, constraints (4.15)

state that at most one facility can be constructed at each location.

The Strong Inequalities (4.8) can be adapted by replacing the right-hand side by y j`t ,

while the Aggregated Demand Constraints (4.9) can be used by replacing the left-hand

side by ∑ j∈J ∑`∈L u j`y j`t .

4.5.1.2 Double Time Index Block Formulations

Dias et al. (2006) presented a linear MIP model that allows the repeated closing and

reopening of facilities. The model uses binary decision variables with two time indices,

one for the opening and one for the closing of a facility. We extend this model by adding

the choice of different facility capacity levels (note that we remove the constraints that

require a minimum availability of open facilities). We also use a different notation to

be consistent with our previously introduced notations. Binary variable s j`t1t2 is 1 if a

facility of size ` is constructed at location j at the beginning of time period t1 and stays

open until the end of period t2. Binary variable y j`t1t2 is 1 if an existing facility of size `,

located at j, is reopened at the beginning of time period t1 and stays open until the end

of period t2. We let f̂C
j`t1t2

denote the aggregated cost to construct a facility of size ` at

location j at time period t1, its maintenance costs from the beginning of period t1 to the

end of period t2, and the costs to temporarily close it at the end of period t2. We also let

f̂ R
j`t1t2 denote the same type of cost for reopening an existing facility of size ` instead of

its construction. These constants are computed as follows:

f̂C
j`t1t2 = f o

j`+ cc
j`+(t2− t1 +1)Fo

j` and f̂ R
j`t1t2 = co

j`+ cc
j`+(t2− t1 +1)Fo

j`.

Since the binary variables with two time indices describe capacity blocks through time,
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we refer to this formulation as the double time index block formulation (CR-2I):

(CR-2I) min ∑
j∈J

∑
`∈L

∑
t1∈T

|T |

∑
t2=t1

(
f̂C

j`t1t2s j`t1t2 + f̂ R
j`t1t2y j`t1t2

)
+∑

i∈I
∑
j∈J

∑
`∈L

∑
t∈T

gi j`tditxi j`t

(4.18)

s.t. ∑
j∈J

∑
`∈L

xi j`t = 1 ∀i ∈ I, ∀t ∈ T (4.19)

|T |

∑
t2=t

y j`tt2 ≤
t−1

∑
t1=1

t−1

∑
t2=t1

s j`t1t2 ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.20)

∑
`∈L

∑
t1∈T

|T |

∑
t2=t1

s j`t1t2 ≤ 1 ∀ j ∈ J (4.21)

∑
`∈L

t

∑
t1=1

|T |

∑
t2=t

(s j`t1t2 + y j`t1t2)≤ 1 ∀ j ∈ J, ∀t ∈ T (4.22)

∑
i∈I

ditxi j`t ≤
t

∑
t1=1

|T |

∑
t2=t

u j`(s j`t1t2 + y j`t1t2) ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.23)

xi j`t ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.24)

s j`t1t2,y j`t1t2 ∈ {0,1} ∀ j ∈ J, ∀` ∈ L, ∀t1 ∈ T, ∀t2 ∈ T. (4.25)

Constraints (4.19) are the demand constraints. Constraints (4.20) guarantee that a facil-

ity can only be reopened if it has been constructed and temporarily closed in an earlier

period. Inequalities (4.21) impose that a facility can be constructed only once through-

out the entire planning horizon. Constraints (4.22) guarantee that the intervals of open

facilities (i.e., the capacity blocks) at the same location do not intersect. In other words,

a facility can only be reopened if it is currently closed. In addition, these constraints also

require that only one facility size ` is selected at each location. Constraints (4.23) are

the facility capacity constraints.

The Strong Inequalities (4.8) can be adapted by replacing the right-hand side by

∑
t
t1=1 ∑

|T |
t2=t
(
s j`t1t2 + y j`t1t2

)
. The Aggregated Demand Constraints (4.9) can be used by

replacing the left-hand side by ∑ j∈J ∑`∈L ∑
t
t1=1 ∑

|T |
t2=t u j`(s j`t1t2 + y j`t1t2).
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Strengthening the CR-2I formulation. Constraints (4.20) specify that, at each time

period t, the capacity that is reopened at this period cannot be greater than the capacity

that has been previously constructed. Consider the following LP relaxation solution sce-

nario, where demands exist for three time periods t1, t2 and t3. A facility construction

variable is selected with solution value 0.5, opening at the beginning of t1 and closing at

the end of t1 (i.e., s j`t1t1 = 0.5). Facility reopening variables are then selected twice, each

time with the same solution value 0.5. The first reopening spans the time interval from

the beginning of t2 until the end of t3 (i.e., y j`t2t3 = 0.5), whereas the second reopening

spans the time interval from the beginning of t3 until the end of t3 (i.e., y j`t3t3 = 0.5).

Separately, each of the last two reopenings is feasible in constraints (4.20). However, in

total the solution reopens more capacity than has been made available through construc-

tion. To avoid such behaviour in the LP relaxation solution, we may replace constraints

(4.20) with the tighter set of constraints:

t

∑
t1=1

|T |

∑
t2=t

y j`t1t2 ≤
t

∑
t1=1

t

∑
t2=t1

s j`t1t2 ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T. (4.26)

We denote the formulation given by (4.18), (4.19) and (4.21) – (4.26) as the CR-2I+

formulation.

4.5.1.3 Dominance Relationships

For any integer linear programming model P, let P be the corresponding LP relax-

ation. For any model P, we denote by v(P) its optimal value. For the three models

presented for the DMCFLP_CR, the following relationships hold:

Theorem 4.5.1. v(CR-GMC) = v(CR-1I)≥ v(CR-2I).

Proof. See Appendices B.1.1.1 (Theorem B.1.1) and B.1.1.2 (Theorem B.1.2).

If constraints (4.20) in the CR-2I formulation are replaced by the strengthening con-

straints (4.26), all three formulations are equally strong:

Theorem 4.5.2. v(CR-GMC) = v(CR-1I) = v(CR-2I+).

Proof. See Appendix B.1.1.3 (Theorems B.1.1 and B.1.4).
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4.5.2 Capacity Expansion and Reduction

We consider models for the facility location problem with capacity expansion and

reduction, the DMCFLP_ER.

4.5.2.1 Single Time Index Flow Formulation

We modify the CR-1I as follows. Binary variables s j`t now represent the total capac-

ity expansion. A variable s j`t is 1 if the capacity of the facility located at j is expanded

by ` capacity levels at the beginning of period t. Binary variable w j`t is 1 if the capacity

of a facility located at j is reduced by ` capacity levels at the beginning of period t. We

refer to this formulation as the single time index flow formulation (ER-1I):

(ER-1I) min ∑
j∈J

∑
`∈L

∑
t∈T

(
f o

j`s j`t + f c
j`w j`t +Fo

j`y j`t

)
+∑

i∈I
∑
j∈J

∑
`∈L

∑
t∈T

gi j`tditxi j`t (4.27)

s.t. (4.11),(4.12)

∑
`∈L

`y j`t = ∑
`∈L

(
`y j`(t−1)+ `s j`t− `w j`t

)
∀ j ∈ J, ∀t ∈ T (4.28)

∑
`∈L

y j`t ≤ 1 ∀ j ∈ J, ∀t ∈ T (4.29)

∑
`∈L

s j`t ≤ 1 ∀ j ∈ J, ∀t ∈ T (4.30)

∑
`∈L

w j`t ≤ 1 ∀ j ∈ J, ∀t ∈ T (4.31)

xi j`t ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.32)

s j`t ,w j`t ,y j`t ∈ {0,1} ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T. (4.33)

Now, the flow conservation constraints (4.28) manage the size of the facilities throughout

the planning periods. Constraints (4.29) – (4.31), referred to as the limiting constraints,

guarantee that the solution selects at most one capacity level for each type of variable

y, s and w, respectively. If the costs for facility maintenance, capacity expansion and

capacity reduction include economies of scale, these constraints are redundant, because

the optimal solution will always choose a single capacity level: the one with the lowest
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cost in relation to its capacity.

The model may be seen as an adaptation of the relocation model of Wesolowsky and

Truscott (1975), where capacity is expanded or reduced instead of relocated. It is also

similar to the model presented by Jacobsen (1990) and to simplifications of the models

presented by Melo et al. (2006) and Behmardi and Lee (2008).

4.5.2.2 Double Time Index Block Formulations

Dias et al. (2007) allow multiple capacity blocks of different sizes at the same lo-

cation. For each block, binary variables define the exact time interval during which the

block is active. This accumulation of capacity blocks allows flexible capacity expansion

and reduction as previously discussed and exemplified in Figure 4.1 (b) and (c). We

extend this formulation to model the DMCFLP_ER.

Binary variables y′j`t1t2 indicate whether a capacity block of size ` is available at loca-

tion j from the beginning of time period t1 until the end of time period t2. Each capacity

block may thus represent economies of scale in function of its own size. However, in

contrast to the ER-1I, the total capacity available at a location can now be composed by

several capacity blocks. To consider economies of scale on the entire capacity involved

at each location, we introduce additional binary variables y j`t , which are 1 if the total

capacity summed over all capacity blocks at location j available at time period t equals

`. In the same manner, we introduce variables s j`t and w j`t to represent the total capac-

ity that is added at a location (i.e., the construction of capacity blocks) or removed at

a location (i.e., the closing of capacity blocks), respectively. Finally, as in the previous

models, xi j`t is the fraction of customer i’s demand that is served by a facility of size ` at
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location j. The double time index block formulation (ER-2I) is given by:

(ER-2I) min ∑
j∈J

∑
`∈L

∑
t∈T

(
f o

j`s j`t + f c
j`w j`t +Fo

j`y j`t

)
+∑

i∈I
∑
j∈J

∑
`∈L

∑
t∈T

gi j`tditxi j`t (4.34)

s.t. (4.11),(4.12),(4.29),(4.30),(4.31)

∑
`∈L

`s j`t = ∑
`∈L

|T |

∑
t2=t

`y′j`tt2 ∀ j ∈ J, ∀t ∈ T (4.35)

∑
`∈L

`w j`t = ∑
`∈L

t−1

∑
t1=1

`y′j`t1(t−1) ∀ j ∈ J, ∀t ∈ T (4.36)

∑
`∈L

`y j`t = ∑
`∈L

t

∑
t1=1

|T |

∑
t2=t

`y′j`t1t2 ∀ j ∈ J, ∀t ∈ T (4.37)

xi j`t ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (4.38)

y′j`t1t2,s j`t ,w j`t ,y j`t ∈ {0,1} ∀ j ∈ J, ∀` ∈ L, ∀t1 ∈ T, ∀t2 ∈ T. (4.39)

We adapt the demand and capacity constraints (4.11) and (4.12), respectively, from the

previous models. Constraints (4.35), (4.36) and (4.37) are the linking constraints that set

the binary variables to benefit from economies of scale in function of the total capacity

involved in each operation and location. As for the ER-1I formulation, we also add

the limiting constraints (4.29) – (4.31) as introduced in Section 4.5.2.1. The limiting

constraints are necessary to ensure that feasible solutions use only one active variable

of each type y, s and w for each location and time period. These constraints have also

proved to facilitate the solution process. We may also add the Strong Inequalities and

the Aggregated Demand Constraints.

4.5.2.3 Dominance Relationships

For the DMCFLP_ER, the ER-GMC formulation is stronger (strictly stronger for

some instances) than the other two formulations:

Theorem 4.5.3. v(ER-GMC)≥ v(ER-1I) = v(ER-2I).

Proof. See Appendices B.1.2.2 (Theorem B.1.6) and B.1.2.1 (Theorem B.1.7).
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4.6 Computational Experiments

In this section, computational results are reported to illustrate the strength of the

different formulations and their performance when using a state-of-the-art MIP solver to

find optimal integer solutions. Computational experiments were performed for the two

problem variants, DMCFLP_CR and DMCFLP_ER.

A large set of instances has been generated to evaluate the performance of the pro-

posed formulations, varying a set of key parameters that were found to affect the dif-

ficulty of the problem. Instances have been generated with the following dimensions

(|J|/|I|): (10/20), (10/50), (50/50), (50/100), (50/250), (100/250), (100/500) and

(100/1000). The highest capacity level at any facility, denoted by q, has been selected

such that q ∈ {3,5,10}. Three different networks have been randomly generated on

squares of the following sizes: 300km, 380km and 450km. We consider two different

demand scenarios. In both scenarios, the demand for each of the customers is randomly

generated and randomly distributed over time. The two scenarios differ in their total

demand summed over all customers in each time period. In the first scenario (regular),

the total demand is similar in each time period. The second scenario (irregular) as-

sumes that the total demand follows strong variations along time and therefore varies at

each time period. Construction and operational costs follow concave cost functions, i.e.,

they involve economies of scale. All instances have also been generated with a second

cost scenario in which the transportation costs are five times higher. Instances have been

generated with different numbers of time periods |T | ∈ {6,8,10,12,14}. However, if not

otherwise stated, the following computational experiments are based on instances with

|T | = 12, which may be interpreted as a planning horizon of one year divided into 12

months. This instance set contains a total of 288 instances. Note that we assume that the

problem instances do not contain initially existing facilities. We refer to Appendix B.2

for a detailed description of the parameters used to generate the instances. Furthermore,

we refer to Appendix B.3 for details on the model sizes.

All mathematical models have been implemented in C/C++ using the IBM CPLEX

12.6.0 Callable Library. The code has been compiled and executed on openSUSE 11.3.
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Each problem instance has been run on a single Intel Xeon X5650 processor (2.67GHz),

limited to 24GB of RAM.

4.6.1 Linear Relaxation Solution and Integrality Gaps

The different formulations for the two problem variants are now compared by means

of their LP relaxation bounds as well as the time necessary to solve the LP relaxations.

All SIs have been added a priori. The Aggregated Demand Constraints have not been

added to these models, since they do not have any impact on the strength of the LP

relaxation. For all instances, the LP relaxation has been solved to optimality. Table 4.I

shows the average times to solve the LP relaxation as well as the average integrality

gaps, for each problem dimension and each number of maximum capacity levels q. The

optimal integer solutions used to compute the integrality gaps have been obtained by

running CPLEX for up to 24hs.

As previously shown, the CR-1I, the CR-2I+ and the CR-GMC formulations provide

the same LP relaxation bound and thus the same integrality gap.

However, the CR-GMC formulation solves the relaxation in slightly shorter comput-

ing times than the CR-1I and CR-2I+ formulations.

For the DMCFLP_ER, the ER-1I and ER-2I formulations provide the same integral-

ity gaps.

Even though the computing times for the ER-GMC formulation are higher than for

the previous two formulations, the ER-GMC formulation provides a significantly smaller

integrality gap.

4.6.2 CPLEX Optimization

Generic MIP solvers such as CPLEX incorporate several heuristics to find good qual-

ity solutions early in the search tree and to improve the final solution quality. However,

the use of such heuristics often leads to an unforeseeable behavior and does not allow

for a proper comparison of different formulations for the same problem. We therefore

compare the performance of the different formulations by considering two different opti-
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DMCFLP_CR DMCFLP_ER
ER-1I ER-2I ER-GMC

q Instance Time (sec) Integr. Time Integr. Time Integr. Time Integr.
size 1I 2I+ GMC Gap % (sec) Gap % (sec) Gap % (sec) Gap %

3 10/20 0.0 0.2 0.0 1.36 0.1 2.54 0.0 2.54 0.2 0.97
10/50 0.3 0.3 0.1 0.33 0.2 0.96 0.0 0.96 0.3 0.34
50/50 1.1 1.7 0.4 0.28 0.7 2.97 0.4 2.97 0.8 0.31
50/100 1.7 2.6 0.8 0.01 0.7 1.34 0.7 1.34 0.6 0.03
50/250 2.5 3.8 1.4 0.00 1.0 0.61 1.2 0.61 1.6 0.01
100/250 8.3 10.3 4.4 0.02 3.8 0.99 4.4 0.99 5.3 0.02
100/500 17.5 21.6 11.3 0.01 8.3 0.58 8.8 0.58 12.3 0.01
100/1000 34.3 51.4 28.4 0.01 19.7 0.37 23.3 0.37 28.4 0.00
Avg All 8.2 11.5 5.9 0.25 4.3 1.29 4.8 1.29 6.2 0.21

5 10/20 0.3 0.5 0.1 2.33 0.3 5.19 0.0 5.19 0.3 1.86
10/50 0.6 1.0 0.4 0.80 0.2 2.08 0.1 2.08 0.7 0.68
50/50 3.8 5.8 2.8 0.93 1.3 6.60 1.5 6.60 3.0 1.15
50/100 6.5 8.4 2.8 0.18 1.9 2.79 2.4 2.79 3.5 0.19
50/250 7.1 8.8 3.2 0.01 2.6 1.17 2.8 1.17 3.8 0.01
100/250 26.6 24.3 10.8 0.03 8.3 1.93 9.4 1.93 15.1 0.03
100/500 39.8 47.6 18.8 0.01 16.5 1.12 15.3 1.12 23.8 0.01
100/1000 74.6 85.5 43.6 0.01 33.4 0.70 46.9 0.70 49.8 0.00
Avg All 19.9 22.7 10.3 0.54 8.1 2.70 9.8 2.70 12.5 0.49

10 10/20 2.1 3.7 1.8 2.30 0.3 7.27 0.7 7.27 1.8 1.15
10/50 3.6 7.1 4.1 1.38 0.8 4.81 1.1 4.81 3.4 0.70
50/50 73.9 128.9 66.8 3.78 29.7 14.10 31.2 14.10 103.1 2.44
50/100 125.3 207.7 96.2 1.25 38.9 7.15 45.0 7.15 101.1 1.07
50/250 212.3 163.3 140.3 0.44 47.9 3.22 48.2 3.22 101.6 0.42
100/250 1126.1 1011.4 940.0 0.53 274.2 4.73 285.7 4.73 829.2 0.47
100/500 647.7 451.3 236.9 0.06 122.5 2.46 152.5 2.46 303.7 0.09
100/1000 325.6 421.3 138.9 0.01 116.6 1.47 140.0 1.47 158.2 0.01
Avg All 190.8 184.0 120.8 1.10 50.3 5.85 54.8 5.85 125.7 0.78

Table 4.I: Average LP relaxation solution time and average integrality gaps for all formulations.
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mization environments. The first one is a traditional branch-and-cut environment, which

aims at testing the formulations’ ability to prove optimality. We used the MIP branch-

and-cut algorithm of CPLEX 12.6.0 and turned off all heuristics (i.e., MIP heuristics,

Feasibility Pump, Local Branching and RINS). Instead, we used the solution value of

the optimal integer solution as an artificial upper bound. This value is passed as a cut-off

value in the branch-and-cut tree. In the second optimization scenario, we used CPLEX

default settings, which reflects a typical use in practice.

For all experiments, computation times have been limited to six hours. Furthermore,

all Strong Inequalities have been added a priori to the models. Even though the number

of SIs may increase significantly, adding them a priori (instead of as CPLEX user cuts or

even not at all) significantly facilitates the solution of the problems. Experiments showed

that, for most of the problem instances, a large number of SIs are violated. CPLEX thus

spends much time identifying and adding violated SIs when treated as CPLEX user cuts.

Although redundant to the LP relaxation of the presented formulations, the Aggregated

Demand Constraints tend to slightly facilitate the solution of the problems. Therefore,

they also have been added to the formulations. For some models, the limiting constraints

as shown in Section 4.5.2 may not change the set of feasible integer solutions, but still

facilitate the solution of the problem. For example, for the ER-1I formulation, the av-

erage solution time for our test instances decreased by around 35%. The constraints are

thus added to the models even if they are redundant.

4.6.2.1 Optimization in Branch-and-Cut Environment

We now present computational results for the branch-and-cut environment. CPLEX

offers three different search strategies (parameter MIPsearch): traditional branch-and-

cut, dynamic search and an automatic choice based on internal rules. Our experiments

showed that the traditional branch-and-cut performed slightly better than the other two

options. All of the following results are therefore based on the traditional branch-and-cut

scheme. Furthermore, all heuristics are turned off and the optimal integer solution value

is passed to the solver as an upper bound cut-off value.

For each problem, the results have been separated into two groups: instances that
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DMCFLP_CR DMCFLP_ER
q Instance # CR- CR- CR- # ER- ER- ER-

size Inst 1I 2I+ GMC Inst 1I 2I GMC
3 10/20 12 0.9 11.3 1.2 12 0.3 1.4 0.3

10/50 12 0.5 5.1 0.4 12 0.5 1.7 0.5
50/50 11 6.3 7.8 2.3 12 421.8 1,015.9 161.4
50/100 12 3.6 9.9 2.3 12 3.1 5.9 2.5
50/250 12 3.4 23.2 3.8 12 6.0 9.6 5.2
100/250 12 14.8 56.7 14.6 12 17.4 29.3 14.3
100/500 12 28.2 127.0 31.3 12 34.7 65.7 29.4
100/1000 12 66.9 370.3 75.8 12 82.2 179.1 54.8
All 95 15.7 77.1 16.6 96 70.7 163.6 33.6

5 10/20 12 13.7 470.4 11.8 12 7.8 199.8 4.3
10/50 12 12.3 1,141.8 6.8 12 3.4 16.7 2.6
50/50 9 13.9 18.9 4.3 8 24.4 139.9 7.8
50/100 11 72.6 824.5 17.3 12 32.3 142.8 23.6
50/250 12 8.8 46.8 9.8 12 11.4 21.0 10.1
100/250 12 30.2 107.7 31.3 12 50.8 71.7 32.8
100/500 12 45.9 230.2 47.8 12 83.6 131.4 56.4
100/1000 12 109.3 652.8 115.2 12 198.5 301.4 97.6
All 92 38.8 446.0 31.5 92 52.7 127.6 30.3

10 10/20 8 529.1 899.4 159.5 3 26.0 8,762.3 5.3
10/50 7 115.1 3,584.3 81.7 2 3.0 1,104.0 3.5
50/50 4 85.5 37.3 16.0 1 53.0 2,387.0 19.0
50/100 6 102.7 2,168.3 18.8 6 133.5 4,194.0 23.3
50/250 8 243.9 1,830.3 101.0 6 47.8 203.0 36.0
100/250 7 112.0 306.6 88.3 7 165.9 659.6 111.4
100/500 11 198.8 931.0 165.5 11 531.6 2,131.2 284.7
100/1000 5 136.6 1,226.6 155.4 12 887.2 2,291.4 313.0
All 56 207.2 1,403.7 108.0 48 393.3 2,350.4 168.0

Table 4.II: CPLEX branch-and-cut computation times (in seconds) for instances solved
to optimality by all formulations for each problem.
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CR-1I CR-2I+ CR-GMC
q Instance # Gap % # Gap % # Gap % #

size Inst Avg Max ns Avg Max ns Avg Max ns
3 50/50 1 0.01 0.01 0 0.06 0.06 0 0.01 0.01 0
5 50/50 3 0.12 0.12 2 - - 3 0.01 0.01 2

50/100 1 0.01 0.01 0 0.02 0.02 0 0.01 0.01 0
10 10/20 4 0.05 0.13 1 0.63 0.63 3 0.12 0.31 0

10/50 5 0.01 0.01 2 0.45 0.45 4 0.01 0.01 2
50/50 8 0.10 0.10 7 0.01 0.01 7 0.01 0.01 6
50/100 6 0.01 0.01 5 - - 6 0.01 0.01 5
50/250 4 0.01 0.01 3 - - 4 0.00 0.01 2
100/250 5 0.04 0.04 4 - - 5 0.01 0.01 3
100/500 1 0.01 0.01 0 - - 1 0.01 0.01 0
100/1000 7 0.00 0.00 0 - - 7 0.00 0.01 0
All 40 0.02 0.13 22 0.37 0.63 37 0.03 0.31 18

Table 4.III: CPLEX branch-and-cut optimality gaps for instances of the DMCFLP_CR
not solved within 6hs.

ER-1I ER-2I ER-GMC
q Instance # Gap % # Gap % # Gap % #

size Inst Avg Max ns Avg Max ns Avg Max ns
5 50/50 4 0.01 0.01 3 - - 4 0.05 0.12 1
10 10/20 9 0.01 0.01 0 0.37 0.37 8 0.01 0.01 0

10/50 10 0.01 0.01 1 - - 10 0.01 0.01 0
50/50 11 0.01 0.01 8 - - 11 0.00 0.01 7
50/100 6 0.01 0.01 5 - - 6 0.00 0.01 4
50/250 6 0.01 0.01 2 - - 6 0.03 0.12 1
100/250 5 0.01 0.01 4 - - 5 0.01 0.01 3
100/500 1 - - 1 - - 1 0.01 0.01 0
All 48 0.01 0.01 21 0.37 0.37 47 0.01 0.12 15

Table 4.IV: CPLEX branch-and-cut optimality gaps for instances of the DMCFLP_ER
not solved within 6hs.
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have been solved to optimality by all formulations and instances where at least one for-

mulation could not prove optimality within the given time limit. Table 4.II summarizes

the results for the instances that have been solved by all formulations for each problem.

The table reports the number of instances that have been solved to optimality, as well as

the average computation times to solve the instances for each of the formulations. For

both problem variants, we observe that the 2I formulation performs worst. Among the

1I and the GMC based formulations, the GMC based models provide substantially better

results.

Tables 4.III and 4.IV summarize the results for instances where at least one of the

formulations did not solve the instances in the given time limit. The tables show average

and maximum optimality gaps as reported by CPLEX, as well as the number of instances

where the optimal solution has not been found within the given time limit (#ns). Note

that a positive optimality gap indicates that an optimal solution (i.e., the one with the

cut-off value) has been found, but optimality has not been proven. For q = 3 and q = 5, a

few instances with 50 facility locations have been found to be difficult to solve. All other

instances are for q = 10. Again, the 2I formulations perform worst, having the highest

number of instances where the optimal solution has not been found. For both problem

variants, the GMC finds more solutions than the 1I and 2I formulations. If the optimal

solutions are found, the optimality gaps are low for all three formulations.

4.6.2.2 Optimization with CPLEX Default Settings

As shown in the previous section, the GMC based formulation outperforms the 1I

and 2I formulations for both problem variants in a traditional branch-and-cut environ-

ment, allowing for a clear comparison of the formulations without the interference of

heuristics. In practice, however, the objective is most often to find high quality solu-

tions in short computing times. Generic MIP solvers such as CPLEX incorporate several

heuristics to find good quality solutions early in the search tree and to improve the final

solution quality. We now compare the different formulations using CPLEX with default

settings, making full use of the heuristic capabilities of the MIP solver.

Computational experiments on the same set of test instances indicate trends similar
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DMCFLP_CR DMCFLP_ER
q Instance # CR- CR- CR- # ER- ER- ER-

size Inst 1I 2I+ GMC Inst 1I 2I GMC
3 10/20 12 1.1 5.7 1.5 12 0.3 1.4 0.3

10/50 12 0.8 3.8 1.2 12 0.5 1.6 1.1
50/50 12 121.8 158.4 18.3 12 302.4 1,402.6 116.2
50/100 12 4.2 13.4 3.3 12 4.8 7.3 3.7
50/250 12 4.3 25.3 5.6 12 7.5 12.3 6.8
100/250 12 13.9 70.0 20.4 12 22.7 36.6 19.1
100/500 12 36.5 155.0 36.3 12 45.9 75.5 36.8
100/1000 12 76.3 440.4 89.3 12 92.7 156.0 64.4
All 96 32.4 109.0 22.0 96 59.6 211.7 31.0

5 10/20 12 10.2 43.0 10.4 12 7.3 42.3 5.8
10/50 12 10.8 121.2 12.9 12 5.0 25.1 5.0
50/50 10 194.6 176.1 62.0 9 663.0 2,126.3 84.2
50/100 12 447.9 518.8 143.3 12 84.6 161.8 35.3
50/250 12 10.2 51.8 11.7 12 14.8 29.2 13.8
100/250 12 40.3 136.5 41.1 12 61.1 104.4 46.0
100/500 12 65.3 270.9 56.1 12 119.5 160.3 69.5
100/1000 12 128.1 741.3 143.4 12 192.8 331.8 126.8
All 94 111.7 259.2 60.1 93 126.8 316.1 47.1

10 10/20 8 59.8 903.8 52.9 8 55.0 2,808.0 10.9
10/50 7 119.3 1,033.6 108.3 8 180.9 4,310.8 28.6
50/50 5 184.4 61.6 44.4 5 392.0 2,946.4 67.0
50/100 7 744.1 1,595.0 97.4 7 577.0 3,186.6 162.1
50/250 10 1,824.1 2,018.3 289.4 9 1,747.9 4,865.4 257.2
100/250 8 2,009.1 1,049.3 503.8 7 258.3 963.0 125.6
100/500 11 208.0 701.5 215.3 11 806.2 3,565.6 416.9
100/1000 8 420.3 1,760.5 355.8 12 957.1 2,809.6 389.8
All 64 740.8 1,192.4 222.2 67 683.3 3,245.6 212.6

Table 4.V: Computation times (in seconds) using CPLEX with default settings for in-
stances solved to optimality by all formulations for each problem.
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CR-1I CR-2I+ CR-GMC
q Instance # Gap % # Gap % # Gap % #

size Inst Avg Max ns Avg Max ns Avg Max ns
5 50/50 2 0.99 1.18 0 1.17 1.32 0 0.18 0.35 0

10 10/20 4 0.01 0.01 0 0.72 0.96 0 0.01 0.01 0
10/50 5 0.12 0.56 0 0.56 1.36 0 0.26 0.87 0
50/50 7 1.85 3.73 0 1.46 4.21 0 1.36 3.42 0
50/100 5 1.14 2.54 0 0.87 1.84 0 0.58 1.43 0
50/250 2 0.59 0.85 0 0.59 0.89 0 0.42 0.75 0
100/250 4 1.10 2.76 0 0.67 1.61 0 0.69 1.69 0
100/500 1 0.01 0.01 0 0.04 0.04 0 0.01 0.01 0
100/1000 4 0.00 0.00 0 - - 4 0.00 0.01 0
All 32 0.78 3.73 0 0.86 4.21 4 0.54 3.42 0

Table 4.VI: Optimality gaps using CPLEX with default settings for instances of the DM-
CFLP_CR not solved within 6hs.

ER-1I ER-2I ER-GMC
q Instance # Gap % # Gap % # Gap % #

size Inst Avg Max ns Avg Max ns Avg Max ns
5 50/50 3 0.50 1.00 0 1.01 1.33 0 0.00 0.00 0

10 10/20 4 0.01 0.01 0 1.60 2.76 0 0.01 0.01 0
10/50 4 0.01 0.01 0 1.22 1.65 0 0.01 0.01 0
50/50 7 1.43 3.23 0 3.12 5.08 1 0.55 1.30 0
50/100 5 0.83 1.47 0 1.47 2.45 0 0.45 1.09 0
50/250 3 0.32 0.74 0 0.60 1.06 0 0.12 0.35 0
100/250 5 0.52 1.22 0 2.05 6.85 0 0.34 1.11 0
100/500 1 0.12 0.12 0 0.55 0.55 0 0.01 0.01 0
All 29 0.62 3.23 0 1.78 6.85 1 0.29 1.30 0

Table 4.VII: Optimality gaps using CPLEX with default settings for instances of the
DMCFLP_ER not solved within 6hs.
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to those observed in the experiments of Section 4.6.2.1. The results for the instances

that have been solved by all formulations for each problem are summarized in Table

4.V. The table reports the number of instances that have been solved to optimality, as

well as the average computing times to solve the instances for each of the formulations.

As in the previous experiments, the 2I formulation performs worst. Among the 1I and

the GMC based formulations, the GMC based models are solved in substantially shorter

computing times.

Tables 4.VI and 4.VII summarize the results for instances where at least one of the

formulations did not solve the instances in the given time limit. The tables report average

and maximum optimality gaps as reported by CPLEX, as well as the number of instances

where no feasible solution has been found (#ns). For q = 5, the few instances that have

been found to be difficult to solve are those with 50 facility locations. All other instances

are for q = 10. Again, the 2I formulations perform worst. For some of the instances, the

formulation did not find any feasible solution. The GMC formulation performs similar

to the 1I formulation for the DMCFLP_CR and presents slightly better results than the

1I formulation for the DMCFLP_ER.

4.6.3 Closing and Reopening with Capacity Expansion and Reduction.

The two problem variants treated above consider either facility closing/reopening or

capacity expansion/reduction. Experiments have also been performed for a third prob-

lem variant combining both features, referred to as the DMCFLP_CRER. The problem

is modeled by the use of the DFLPG by using the transition arcs for both problems as

shown in Section 4.4.2. Additionally, arcs are added representing combined decisions

such as facility reopening with subsequent capacity expansion (in the same time period),

as well as capacity reduction with subsequent facility closing. Alternatively, a special-

ized flow formulation can be used with two types of flow constraints: one to manage the

capacity of open facilities and one to manage the capacity of closed facilities. The obser-

vations made above regarding the CPLEX root node solution were also confirmed for this

more complex problem variant. In addition, the advantage of the GMC model for this

variant is even more obvious than what was observed for the DMCFLP_ER. We proved
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that the GMC based model provides a stronger LP relaxation than the specialized flow

formulation. Computationally, the average integrality gap (for all instances with q = 10)

improved from 6.00% to 1.06% when using the GMC based model instead of the special-

ized formulation. In the traditional branch-and-cut environment, using CPLEX without

heuristics and providing it with the optimal integer solution value as cut-off, the flow

formulation takes on average 1,820 seconds to solve the instances of size q = 10, while

the GMC based formulation solves the same instances in an average time of only 206

seconds, about nine times faster. Using CPLEX default settings, the dominance of the

GMC based formulation is mainly preserved. The average computation time improves

from 1,924 to 313 seconds.

4.6.4 Solution Structure and Instance Properties

We now analyze the structure of the optimal or near-optimal solutions. Figure 4.2

illustrates for each problem variant and problem size (10, 50 and 100 candidate facility

locations) the minimum (Min), maximum (Max) and average number (Avg) of selected

facility locations. Since a facility may not be available in all of the subsequent time

periods after its construction, a second average value (Avg open) indicates the average

number of facilities that are available (i.e., having `≥ 1) at each time period. The results

are surprisingly similar for the three problem variants CR, ER and CRER. On average,

about half of the candidate locations have been selected. These facilities are active only

in about two thirds of the planning horizon. For the CR, this is done by closing a facility.

For the ER, the capacity is reduced to level 0.

Figure 4.3 shows different indicators of the solutions structure: the average number

of facility closings and reopenings, as well as the average number of capacity expansions

and reductions. It can be observed that the average values for certain indicators such as

capacity expansion and reduction are similar for the three problem variants. Based on

these results, one may conclude that the main driver to adjust capacities are high main-

tenance costs and therefore high quality solutions tend to provide a total capacity that

only slightly exceeds the total demand. However, an analysis of the solutions for smaller

instances reveals that the selected opening schedules are very different for the three
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Figure 4.2: Structure of optimal solutions: minimum, average and maximum number
of selected facility locations, as well as the average number of open facilities per time
period throughout the entire planning horizon.
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Figure 4.3: Structure of optimal solutions: average number of facility closings and re-
openings, as well as capacity reductions and expansions.
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problem variants when the original transportation costs are used. In contrast, the open-

ing schedules are very similar when the transportation costs are set five times higher.

Table 4.VIII presents the impact of these instance properties on the solution structure.

The table shows, for each of the indicators, the average number of occurrences in in-

stances with the original transportation costs and in instances where the transportation

costs are set five times higher. In the same way, it indicates the number of occurrences

in instances with regular demand distribution and with irregular demand distribution.

The impact of these instance properties has been found to be very similar for all three

problem variants and is here exemplified for the DMCFLP_CRER, showing the aver-

age values over all instances. We can identify a clear trend. Solutions for instances

with original transportation costs involve only a few operations that adjust the capacities

throughout the planning horizon and therefore tend to serve the demand from a similar

set of facility locations. Solutions for instances with high transportation costs provide

capacities that tend to geographically follow the demand along time, constructing on

average more than twice the number of facilities and performing two to three times the

operations that adjust capacities along time. As in both cases the maintenance cost are

the same, the motivating factor to geographically shift capacity is rather given by high

transportation costs and the effort to bring capacities closer to the demand. Regarding

the demand distribution, an irregular demand distribution results in only slightly more

capacity adjustments than a regular demand distribution.

Transportation costs Demand distribution
# original 5× higher regular irregular
Constructions 21.7 44.9 33.3 33.3
Closings 21.0 63.3 40.3 43.9
Reopenings 21.0 63.2 40.3 43.8
Capacity expansions 22.3 46.3 33.8 34.7
Capacity reductions 5.3 16.4 10.6 11.1
Avg. open facilities 16.2 28.4 23.2 21.3

Table 4.VIII: Impact of instance characteristics (transportation costs and demand distri-
bution) on the solution structure for the DMCFLP_CRER.
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Impact on problem difficulty. The instance characteristics not only impact the solu-

tion structure, but also the difficulty of solving the problem. The computing time for

instances with irregular total customer demand is, on average, 30% lower than for in-

stances where the total customer demand is regular at each time period. In contrast,

the ratio between transportation and facility construction costs has a much larger im-

pact. Instances where the transportation costs are five times higher than the original

transportation costs are, on average, solved around 60 times faster.

|T |= 6 |T |= 8 |T |= 10 |T |= 12 |T |= 14
Gap Time Gap Time Gap Time Gap Time Gap Time

% (sec) % (sec) % (sec) % (sec) % (sec)
10/20 0.00 112.1 0.01 180.8 0.01 140.0 0.01 940.7 0.01 2,569.4
10/50 0.00 73.0 0.01 129.1 0.01 302.4 0.01 1,822.0 0.06 6,203.6
50/50 0.17 7,842.3 0.25 8,818.4 0.45 10,820.0 1.23 10,913.3 0.96 12,800.9
50/100 0.02 2,126.8 0.11 4,107.6 0.17 4,201.6 0.56 7,582.8 0.40 9,225.2
50/250 0.01 446.0 0.02 2,002.3 0.01 1,945.0 0.14 7,304.1 0.12 5,655.8
100/250 0.05 2,883.7 0.08 5,516.9 0.14 6,940.4 0.57 8,899.3 0.31 9,481.0
100/500 0.00 339.3 0.00 988.9 0.00 940.8 0.01 2,687.5 0.01 2,571.3
100/1000 0.00 414.5 0.00 463.9 0.00 538.4 0.00 690.2 0.00 549.1
All 0.03 1,779.7 0.06 2,776.0 0.10 3,228.6 0.19 4,201.8 0.23 6,132.0

Table 4.IX: Impact of number of time periods in problem instances (q = 10) for the CRER-
GMC formulation when using CPLEX with default settings.

Finally, we also analyzed the impact of the length of the planning horizon in the

problem instances, using CPLEX with its default settings. Table 4.IX summarizes the

average computation times and average optimality gaps for the CRER-GMC formula-

tion. The computational results are presented for five different numbers of time periods

|T |: 6, 8, 10, 12 and 14. The results are very consistent, showing that the difficulty of

the problems increases proportionally to the number of time periods. For the CRER-1I

formulation, a similar trend was observed. However, the CRER-1I was clearly outper-

formed by the CRER-GMC for all tested lengths of the planning horizon.
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4.7 Conclusions and Future Research

We have introduced a new general facility location problem that unifies several ex-

isting multi-period facility location problems. We showed the flexibility of this general-

ization by focusing on two problem variants: facility closing and reopening and capacity

expansion and reduction. In addition, we also reported results on a variant that combines

both of these features. For the two first cases, we derived specialized models based

on two well-known formulation approaches. We formally proved that, even though our

model is more general, it provides LP relaxation bounds as strong as the other formula-

tions for the case of facility closing/reopening and stronger LP relaxation bounds than

the formulations for the other two cases. Computational experiments showed that, for

the two variants involving capacity expansion and reduction, the integrality gap of our

model is up to seven times smaller than the integrality gaps of the specialized formu-

lations. When assessing the performance of the models in a traditional branch-and-cut

environment, the GMC based models solved the instances, on average, up to nine times

faster than the specialized formulations. Using CPLEX default settings to solve the

problem, the GMC based models are, on average, up to six times faster.

The general model may also be used to model other problem variants not addressed

in this work, e.g., the closing and reopening model of Chardaire et al. (1996) or the dy-

namic location problem of Sridharan (1995). In addition, problem variants that involve

capacity changes may benefit from the proposed modeling technique to strengthen the

existing models. Problems such as those presented by Shulman (1991) and Correia and

Captivo (2003) can be modeled by the DFLPG when adding individual constraints such

as minimum production bounds for the facilities. Finally, as the general model is already

very strong, it may also be an ideal candidate for decomposition techniques such as La-

grangian relaxation to find good quality solutions in short computation times.
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CHAPTER 5

LAGRANGIAN RELAXATION FOR DYNAMIC FACILITY LOCATION

5.1 Chapter Preface

The DFLPG, presented in Chapter 4, has shown to be a fairly general facility loca-

tion problem that provides strong LP relaxation bounds, in particular when the problem

involves different capacity levels. When applied to other facility location problems, it

has been shown that generic MIP solvers find optimal solutions in significantly shorter

computing times when using the proposed GMC formulation instead of existing special-

ized formulations. However, no matter which formulation is used, models grow quickly

when considering large problem instances. Generic solvers may therefore not solve the

problem in reasonable computing times or, even worse, not find feasible solutions at all

due to the complexity of the model and the given time and memory restrictions.

In this chapter, we explore solution methods that are capable to solve large-scale in-

stances for the DFLPG. The widely recognized success of Lagrangian relaxation based

methods for facility location problems suggests applying this technique to the GMC

formulation. The Lagrangian heuristic proposed in this chapter relaxes the demand con-

straints of the problem. If, instead, the capacity constraints are relaxed, the difficulty

of the resulting problem strongly depends on whether the Strong Inequalities are used

or not. Without the SIs, the Lagrangian subproblem decomposes into two independent

problems, which can be solved efficiently: a fractional knapsack to fill up the demand

and a shortest path problem with negative costs. However, as pointed out in Section

2.2.2.2, relaxing the capacity constraints without the presence of the SIs decouples the

demand allocation variables from the facility opening decisions. The resulting bound is

therefore expected to be rather weak. For many facility location problems, using the SIs

when relaxing the capacity constraints results in a bound which is stronger than the one

obtained by relaxing the demand constraints. In the case of the GMC model, the resulting

Lagrangian subproblem involves solving the Dynamic Uncapacitated Facility Location



111

Problem. This relaxation has two major drawbacks. First, the subproblem is known to

be NP-hard and it may be difficult to find an efficient algorithm to solve it. Second, the

strength and the essence of the DFLPG lay in its ability to represent capacity changes on

a detailed level. Relaxing the capacity constraints is therefore not promising. The same

reason argues against the relaxation of the flow conservation, since the strength of the

GMC’s LP relaxation stems from these constraints.

As will be shown in this chapter, a Lagrangian heuristic based on the relaxation of the

demand constraints may solve a large part of the instances. However, for more difficult

instances, the feasible solutions generated through the solution of the Lagrangian dual

have been found to have a large optimality gap. Several local search approaches have

therefore been tested to improve the feasible solutions in a second optimization phase.

Satisfactory results have been obtained with a local search including relatively simple

neighborhoods. However, given the generality of the DFLPG, it has been found benefi-

cial to use a more generic approach. We therefore use a restricted MIP model, limited

to decisions which have been judged important in the Lagrangian solution throughout

the solution process. This approach solves fairly well even large-scale instances for

all three special cases tested in this work, as well as the DFLPG itself. This type of

matheuristic may also be applied to problems other than facility location problems. Us-

ing information from the Lagrangian solutions to construct such a restricted MIP model

may be a promising avenue for a general heuristic framework. The results of this chap-

ter confirm the potential of Lagrangian relaxation techniques to solve complex and large

facility location problems and are even encouraging to approach the CSLP with similar

techniques.
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Notes about the chapter

The contents of this chapter correspond to those of the article entitled Lagrangian

Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capac-

ities, co-authored with Professors Jean-François Cordeau and Bernard Gendron, which

has been submitted for publication to the INFORMS Journal on Computing (ISSN:

1091-9856), in April 2014.
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We consider the Dynamic Facility Location Problem with Generalized Modular Capac-

ities, a multi-period facility location problem in which the costs for capacity changes

are defined for all pairs of capacity levels. The problem embeds a complex cost struc-

ture and generalizes several existing facility location problems, such as those that allow

temporary facility closing or capacity expansion and reduction. As the model may grow

very large, general-purpose mixed-integer programming solvers are limited to solving

instances of small to medium size. In this paper, we extend the generalized model to

the case of multiple commodities. We propose Lagrangian heuristics, based on subgra-

dient and bundle methods, to find good quality solutions for large-scale instances with

up to 250 facility locations and 1000 customers. To improve the final solution qual-

ity, a restricted model is solved based on the information collected through the solution

of the Lagrangian dual. Computational results show that the Lagrangian based heuris-

tics provide highly reliable results for all problem variants considered. They produce

good quality solutions in short computing times even for instances where state-of-the-

art mixed-integer programming solvers do not find feasible solutions. The strength of

the formulation also allows the method to provide tight bounds on the solution quality.

Key words: Dynamic Facility Location, Modular Capacities, Lagrangian Relaxation.
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5.2 Introduction

Dynamic facility location problems aim at providing capacity planning over a multiple-

period planning horizon. Given that customer demands may vary significantly over time,

facilities often adjust their capacities. These problems find applications in both the pub-

lic and private sectors, for the location of production facilities (Fleischmann et al., 2006),

schools (Antunes and Peeters, 2001), health care facilities (Correia and Captivo, 2003;

Kim and Kim, 2013) and many more, as documented in several recent literature sur-

veys (Thomas and Griffin, 1996; Brotcorne et al., 2003; Revelle et al., 2008; Melo et al.,

2009a; Smith et al., 2009). To represent the adjustment of capacities in such problems,

common actions include capacity expansion and reduction (Luss, 1982; Jacobsen, 1990;

Antunes and Peeters, 2001; Troncoso and Garrido, 2005; Dias et al., 2007), temporary

closing of facilities (Chardaire et al., 1996; Canel et al., 2001; Dias et al., 2006) and the

relocation of facilities (Melo et al., 2006). Although mathematical models often take

into account complex environments such as complete supply chains, the cost structure

to adjust capacities along time is commonly modeled in less detail. Economies of scale

are often represented on the level of the total capacity involved in each operation, but do

not take into consideration the capacity level before the change. A more detailed repre-

sentation of the cost structure is necessary in a number of applications, especially in the

domains of transportation, logistics and telecommunications, where additional capacity

gets cheaper (or more expensive) when approaching the maximum capacity limit. For

instance, in the problem introduced by Jena et al. (2012), logging camps are located to

host workers in the forest industry. In this problem, the total capacity of a camp is repre-

sented by its number of different hosting units, while additional units provide supporting

infrastructure. As the relation between the number of different units cannot be captured

by a simple function, the costs for capacity changes need to be described in a transition

matrix.

Jena et al. (2013) recently introduced the Dynamic Facility Location Problem with

Generalized Modular Capacities (DFLPG), in which the costs for capacity changes are

based on a cost matrix. The mixed-integer programming (MIP) model presented by
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the authors therefore allows taking into account not only the total capacity involved in

the capacity change, but also the current capacity level. This model generalizes several

multi-period facility location problems: the problem with facility closing and reopening,

the problem with capacity expansion and reduction, and the combination of the two. In

addition, the DLFPG provides a strong linear programming (LP) relaxation bound. Com-

pared to alternative MIP formulations, the DFLPG based models can often be solved

twice as fast using a general-purpose MIP solver. Although it is possible to solve the

models for small and medium size instances, they usually grow too large when consid-

ering more complex problem variants or larger instances. In this case, heuristics are an

interesting alternative. They also provide an advantage when performing “what-if” anal-

ysis, which requires repeatedly solving the problem with different scenarios. Heuristics

are usually capable of using solutions for a certain scenario to quickly find solutions for

a different one.

Metaheuristics such as tabu search, simulated annealing and genetic algorithms have

been frequently applied to several families of location problems, from classical facility

location problems (Arostegui Jr. et al., 2006) to logistics network design that model

entire supply chains (Lee and Dong, 2008; Melo et al., 2011a). Lagrangian relaxation

based heuristics have been developed for several variants of single-period facility loca-

tion problems (Barcelo et al., 1990; Sridharan, 1991; Beasley, 1993; Sridharan, 1995;

Holmberg and Ling, 1997; Agar and Salhi, 1998; Holmberg and Yuan, 2000; Correia

and Captivo, 2003; Wu et al., 2006), some of which combined Langrangian relaxation

and local search (Correia and Captivo, 2006; Li et al., 2009). Lagrangian bounds have

also been used within exact methods (Görtz and Klose, 2012). For multi-period facility

location, approaches based on Lagrangian relaxation have been proposed for problems

without capacities (Chardaire et al., 1996), with fixed capacities (Shulman, 1991), and

for multi-echelon problems in the context of supply chain design (Diabat et al., 2013).

Furthermore, Lagrangian based methods have been successfully applied to other loca-

tion problems such as dynamic hub location (Elhedhli and Wu, 2010; Contreras et al.,

2011b).

In this paper, we present an extension of the DFLPG in which customers have de-
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mands for different commodities. We propose Lagrangian based heuristics that find good

quality solutions in reasonable computing times. Two methods are introduced to solve

the Lagrangian dual: a subgradient method and a bundle method. After this process, a

second optimization step is used to improve the solution quality. This step consists of

solving a restricted MIP model, taking into consideration only decisions that have been

part of a significant number of the previous Lagrangian solutions. To the best of our

knowledge, this work is the first to present a Lagrangian relaxation approach to solve

large-scale instances of a multi-period facility location problem of this nature, i.e., in-

cluding modular capacity levels and multiple commodities. Given the strength of the

formulation used to model the DFLPG, the Lagrangian heuristics are capable of provid-

ing relatively tight bounds on the optimal value. The results are stable even for large

instances, where general-purpose MIP solvers either consume too much memory or do

not solve the problem in reasonable time. Given the generality of the DFLPG, the pro-

posed heuristic can handle an entire class of problems, consisting of all those that can be

modeled by the DFLPG.

The remainder of the paper is organized as follows. Section 5.3 reviews and extends

the MIP formulation for the DFLPG and shows how it can be used to model three differ-

ent special cases. Section 5.4 explains how the problem is decomposed via Lagrangian

relaxation and outlines the resulting heuristics. Section 5.5 then discusses how the final

solution quality can be improved in a second optimization phase, using information from

the solution of the Lagrangian dual to generate a restricted MIP model. The Lagrangian

heuristics are then compared by means of computational experiments in Section 5.6.

First, general results are presented for each of the different problem variants. Then, the

advantages of the Lagrangian heuristics are illustrated with more detailed results com-

paring their performance to a state-of-the-art MIP solver. Finally, conclusions are drawn

and future research directions are discussed in Section 5.7.
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5.3 Mixed Integer Programming Formulation

This section first introduces a general formulation for the DFLPG and then explains

how it can be used to model three special cases.

5.3.1 General Model

We consider the mixed-integer programming formulation introduced by Jena et al.

(2013) and extend it to include multiple commodities. We denote by J the set of can-

didate facility locations and by L = {0,1,2, . . . ,q} the set of possible capacity lev-

els for each facility. We also denote by I the set of customer demand points and by

T = {1,2, . . . , |T |} the set of time periods in the planning horizon. We assume through-

out that the beginning of period t + 1 corresponds to the end of period t. Additionally,

we denote by P = {1,2, . . . , |P|} the set of different commodities. The demand of cus-

tomer i for commodity p in period t is denoted by dipt , while the cost to serve one unit of

commodity p from facility j operating at capacity level ` to customer i during period t

is denoted by gi j`pt . The capacity of a facility of size ` at location j is given by u j` (with

u j0 = 0). For each j and t, the cost matrix f j`1`2t describes the combined cost to change

the capacity level of a facility at location j from `1 to `2 at the beginning of period t and

to operate the facility at capacity level `2 throughout time period t. Furthermore, we let

` j be the initial capacity level of an existing facility at location j.

To formulate the problem, we use binary variables y j`1`2t equal to 1 if and only if the

facility at location j changes its capacity level from `1 to `2 at the beginning of period

t. The allocation variables xi j`pt denote the fraction of the demand of customer i for

commodity p in period t that is served from a facility of size ` located at j. Using this

notation, we define the following MIP model, referred to as the Generalized Modular
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Capacities (GMC) formulation:

(GMC) min ∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

f j`1`2ty j`1`2t +∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

gi j`ptdiptxi j`pt (5.1)

s.t. ∑
j∈J

∑
`∈L

xi j`pt = 1 ∀i ∈ I, ∀p ∈ P, ∀t ∈ T (5.2)

∑
i∈I

∑
p∈P

diptxi j`pt ≤ ∑
`1∈L

u j`y j`1`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (5.3)

∑
`1∈L

y j`1`(t−1) = ∑
`2∈L

y j``2t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T\{1} (5.4)

∑
`2∈L

y j` j`21 = 1 ∀ j ∈ J (5.5)

xi j`pt ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (5.6)

y j`1`2t ∈ {0,1} ∀ j ∈ J, ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T. (5.7)

The objective function (5.1) minimizes the total cost for changing the capacity levels

and allocating the demand. Constraints (5.2) are the demand constraints for the cus-

tomers. Constraints (5.3) are the capacity constraints at the facilities. Constraints (5.4)

link the capacity change variables in consecutive time periods. Finally, constraints (5.5)

specify that exactly one capacity level must be chosen at the beginning of the planning

horizon. Note that the flow constraints (5.4) and (5.5) further guarantee that, in each

time period, exactly one capacity change variable is selected.

We may also adapt two types of valid inequalities to be used in the GMC formulation:

xi j`pt ≤ ∑
`1∈L

y j`1`t ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T. (5.8)

∑
j∈J

∑
`1∈L

∑
`2∈L

u j`2y j`1`2t ≥∑
i∈I

∑
p∈P

dipt ∀t ∈ T. (5.9)

The Strong Inequalities (SI) (5.8), typically used in facility location and network design

problems (see, for instance, Gendron and Crainic, 1994), are known to provide a tight

upper bound for the demand assignment variables. The SIs may be added to the model

either a priori or in a branch-and-cut manner only when they are violated in the solution
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of the LP relaxation. The set of valid inequalities (5.9) is referred to as the Aggregated

Demand Constraints (ADC). Although they are redundant for the LP relaxation, adding

them to the model enables MIP solvers to generate cover cuts that further strengthen the

formulation.

5.3.2 Special Cases

We now illustrate how special cases can be modeled by using the GMC formula-

tion. As will be explained in Section 5.5, our solution approach can be tailored to take

advantage of the special structure of each problem variant. Jena et al. (2013) explicitly

show how to model two problem variants, using the GMC formulation: facility location

with closing and reopening of facilities and facility location with capacity expansion and

reduction. In the first problem, the size of the facility is chosen from a discrete set of ca-

pacity levels. Existing facilities may then be closed and reopened multiple times. In the

second problem considered, capacities can be adjusted by the use of a single facility at

each location. At each facility, the capacity can be expanded or reduced from one capac-

ity level to another. It is assumed that an expansion of ` capacity levels has always the

same cost, regardless of the previous capacity level. These two problems are denoted as

the Dynamic Modular Capacitated Facility Location Problem with Closing and Reopen-

ing (DMCFLP_CR) and the Dynamic Modular Capacitated Facility Location Problem

with Capacity Expansion and Reduction (DMCFLP_ER), respectively.

A subset of capacity change variables y j`1`2t is chosen to model these special cases.

The cost coefficients f j`1`2t for these variables are based on the following fixed costs,

defined to characterize the special cases:

– cc
j` and co

j` are the costs to temporarily close and reopen a facility of size ` at

location j, respectively;

– f c
j` and f o

j` are the costs to reduce and to expand the capacity of a facility at location

j by ` capacity levels, respectively;

– Fo
j` is the cost to maintain an open facility of size ` at location j throughout one

time period.

For the problem variant involving facility closing and reopening, we create an ar-
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tificial capacity level ` for each capacity level ` ∈ L\{0}. Capacity level ` represents

the state in which a facility of size ` is temporarily closed. At each time period t ∈ T

and location j ∈ J, we may find capacity transition decisions y j`1`2t that represent differ-

ent types of operations (note that the costs for these decisions are usually composed by

the cost to perform the capacity transition, as well as the maintenance cost for the new

capacity level):

i. Facility construction and capacity expansion. The expansion of the capacity is

represented by a capacity transition from capacity level `1 to any other capacity

level `2 > `1. If the decision represents a facility construction, then `1 is 0. The

capacity is thus expanded by `2− `1 capacity levels. The cost for this decision is

set to f j`1`2t = f o
j(`2−`1)

+Fo
j`2

.

ii. Capacity reduction. The reduction of the capacity is represented by a transition

from capacity level `1 to any other capacity level `2 < `1. The capacity is thus

reduced by `1− `2 capacity levels. The cost for this decision is set to f j`1`2t =

f c
j(`1−`2)

+Fo
j`2

.

iii. Maintaining the current capacity level. A facility may neither expand nor reduce

the current capacity level. The cost of this transition is thus only composed of

the maintenance cost, i.e., f j`1`1t = Fo
j`1

if the capacity level represents an open

facility, f j`1`1t = 0 if the capacity level represents a temporarily closed facility and

f j00t = 0 if no facility exists.

iv. Temporary closing. An open facility of size `1 can be temporarily closed, i.e., it

changes to capacity level `1. The total cost is f j`1`1t = cc
j`1
.

v. Reopening a closed facility. A temporarily closed facility of size `1 can be re-

opened, i.e., it changes its capacity level from `1 to `1. The total cost for this

decision is f j`1`1t = co
j`1

+Fo
j`1

.

The DMCFLP_CR is represented by transition decisions of type 1 (for construction

only), 3, 4 and 5. We denote the resulting model as the CR-GMC formulation. The

DMCFLP_ER is represented by transition decisions of type 1, 2 and 3. The resulting

model is denoted as the ER-GMC formulation.
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Jena et al. (2013) also refer to a third problem variant, which combines both features

of the two special cases. It is denoted as the Dynamic Modular Capacitated Facility

Location Problem with Closing/Reopening and Capacity Expansion/Reduction (DM-

CFLP_CR_ER). The problem variant is modeled by using the transition decisions of

type 1 – 5 presented above. However, these decisions allow only one single operation,

for example either capacity reduction or facility closing, at each time period. In prac-

tice, it is very likely that one may want to reduce or expand the capacity before closing

or after reopening a facility at the same time period. We may therefore consider four

additional decision types that represent combinations of such operations:

(a) A facility is reopened at level `1 and its capacity is expanded to level `2 > `1 at the

same time period.

(b) A facility is reopened at level `1 and its capacity is reduced to level `2 < `1 at the

same time period.

(c) The capacity of a facility at level `1 is expanded to level `2 > `1 and the facility is

closed right after.

(d) The capacity of a facility at level `1 is reduced to level `2 < `1 and the facility is

closed right after.

By making the realistic assumption that the costs for closing and reopening a facility

are non-decreasing as the size of the facility increases, we may discard two of the four

possibilities.

Proposition 5.3.1. Let co
j` ≤ co

j(`+1) and cc
j` ≤ cc

j(`+1) for ` = 0,1,2, . . . ,(q− 1), then

there is at least one optimal solution that does neither use decisions of type (b) nor of

type (c).

PROOF. Note that case (c) may only occur in two situations: either the facility stays

closed until the end of the planning horizon or the facility is reopened at a later moment.

If the facility stays closed, then closing it at level `1 is at most as expensive as combined

capacity expansion and closing as suggested in case (c): cc
j`1
≤ f o

j(`2−`1)
+ cc

j`2
. If the

facility is closed at the beginning of time period t1, but it will be reopened at the begin-

ning of period t2 > t1, then the corresponding costs using case (c) are given by: Cc =
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cc
j`1

+ f o
j(`2−`1)

+ co
j`2

+Fo
j`2

. However, the same solution may be reproduced by closing

the facility at level `1 and expanding its capacity only after it has been reopened using

case (a), which corresponds to the following costs: Ca = cc
j`1

+ co
j`1

+ f o
j(`2−`1)

+Fo
j`2

.

Now, because co
j`1
≤ co

j`2
, we have: Ca ≤Cc. Therefore, a solution using case (a) is at

most as expensive as a solution using case (c).

The same can be shown for the relation between cases (d) and (b), where reducing

the capacity before temporary closing is as most as costly as reducing the capacity after

temporary closing.

We thus add only the transition decisions given by the cases (a) and (d) to the model:

vi. Reopening and capacity expansion. A closed facility of capacity level `1 is re-

opened and its capacity is expanded to level `2 (with `1 < `2). The cost for

this decision, including the maintenance costs at capacity level `2 is thus set to

f j`1`2t = co
j`1

+ f o
j(`2−`1)

+Fo
`2

.

vii. Capacity reduction and facility closing. An open facility reduces its capacity from

level `1 to level `2 (with `1 > `2) and is temporarily closed afterwards. The cost

for this decision is thus set to f j`1`2t = f c
j(`1−`2)

+ cc
j`2

.

5.4 Lagrangian Relaxation

When applying Lagrangian relaxation to capacitated facility location problems, it is

common to relax either the capacity constraints or the demand constraints. Relaxing the

capacity constraints results in a subproblem that is NP-hard (Van Roy and Erlenkotter,

1982; Barcelo et al., 1990). Furthermore, given that the focus of the GMC model is the

detailed representation of capacity changes, it is intuitive to keep the capacity constraints.

A more promising and popular choice in the literature (e.g., Shulman, 1991; Beasley,

1993; Wu et al., 2006) is to relax the demand constraints (5.2), which yields a Lagrangian

subproblem that can be solved efficiently. Let α be the vector of Lagrange multipliers.

After relaxing the demand constraints (5.2) and rearranging the terms in the objective
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function, we obtain the following Lagrangian subproblem:

L(α) = min ∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

f j`1`2ty j`1`2t

+∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

(gi j`ptdipt−αipt)xi j`pt +∑
i∈I

∑
p∈P

∑
t∈T

αipt

s.t. (5.3)−−(5.8).

Note that the Strong Inequalities (5.8) are included in the Lagrangian subproblem, since

they are easy to handle, as shown next.

5.4.1 Solution of the Lagrangian Subproblem

Let c̃i j`pt = gi j`ptdipt −αipt denote the modified costs for the xi j`pt variables. We

separate the Lagrangian subproblem into |J| independent subproblems, one for each

candidate facility location for a fixed set of Lagrangian multipliers α . The Lagrangian

subproblem is solved as L(α) = ∑ j∈J L j(α)+∑i∈I ∑p∈P ∑t∈T αipt , where L j(α) is de-

fined as follows:

L j(α) = min ∑
`1∈L

∑
`2∈L

∑
t∈T

f j`1`2ty j`1`2t +∑
i∈I

∑
`∈L

∑
p∈P

∑
t∈T

c̃i j`ptxi j`pt

s.t. ∑
i∈I

∑
p∈P

diptxi j`pt ≤ ∑
`1∈L

u j`y j`1`t ∀` ∈ L, ∀t ∈ T

∑
`1∈L

y j`1`(t−1) = ∑
`2∈L

y j``2t ∀` ∈ L, ∀t ∈ T\{1}

∑
`2∈L

y j` j`21 = 1

xi j`pt ≤ ∑
`1∈L

y j`1`t ∀i ∈ I, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T

xi j`pt ≥ 0 ∀i ∈ I, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T

y j`1`2t ∈ {0,1} ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T.

Each of these subproblems (one for each location j ∈ J) is concerned with finding

the optimal capacity planning over time, i.e., an optimal schedule to open facilities of a
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certain size such that the total cost composed by demand allocation costs (considering

the modified costs c̃i j`pt) and the costs to change capacity levels is minimal. We can

solve this problem using dynamic programming by adapting the approach presented by

Shulman (1991). Let Lα
j (`, t) denote the cost for an optimal demand allocation at period

t assuming that a facility of size ` is available. For a given set of multipliers α , let

Oα
j (`, t) denote the optimal cost to serve all demands by facility j throughout the time

periods 0, . . . , t, with a facility of size ` at the end of period t. For ` > 0, t > 0, the

optimal value of Oα
j (`, t) is composed of the costs for demand allocation in period t, the

capacity transition to level `, the facility maintenance at level `, and the optimal cost to

serve all demands in previous time periods at the capacity level that minimizes the total

cost. They can be computed by the following recurrence formula:

Oα
j (`, t) = Lα

j (`, t)+ min
0≤`1≤q

{ f j`1`t +Oα
j (`1, t−1)}.

Note that Lα
j (0, t) = 0 since demand cannot be allocated to a facility with capacity level

0. Furthermore, for t = 0 the size of the facility that exists at the beginning of the

planning horizon is ` j. We therefore have: Oα
j (`,0) = fi` j`t +Lα

j (`,0).

The subproblem is then solved by selecting the facility size at the last time period

that has the lowest total cost:

L j(α) = min
0≤`≤q

{
Oα

j (`, |T |)
}
.

Note that, without the use of the SIs, the Lagrangian subproblem does not possess

the integrality property (Geoffrion, 1974), since facility capacities will only be opened as

much as forced by the capacity constraints, i.e., ∑`1∈L y j`1`t = ∑i∈I ∑p∈P(diptxi j`pt)/u j`,

which may be fractional. Adding the SIs to the problem strengthens the dependence be-

tween the opening decisions and the demand allocation: ∑`1∈L y j`1`t =maxi∈I,p∈P{xi j`pt}.
The variables xi j`pt (and therefore also one of the corresponding y j`1`2t variables) will

take value 1 if their modified costs c̃i j`pt compensate the costs for the open facility. As a

consequence, using the SIs, the Lagrangian subproblem also has the integrality property.
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The lower bound provided by the Lagrangian dual will therefore never be better than the

bound provided by the LP relaxation of the original problem using the SIs.

Computation of the Optimal Demand Allocation. The optimal demand allocation

Lα
j (`, t) at location j assumes that a facility of size ` is available and can be computed by

solving a fractional knapsack problem (subject to the capacity constraints and the SIs):

Lα
j (`, t) = min∑

i∈I
∑
p∈P

c̃i j`ptxi j`pt

s.t. ∑
i∈I

∑
p∈P

diptxi j`pt ≤ u j`

0≤ xi j`pt ≤ 1 ∀i ∈ I,∀p ∈ P.

This problem can be solved by sorting all x variables in increasing order of their

ratio c̃i j`pt/dipt , selecting those with the most negative ratio until the capacity is com-

pletely filled or all variables with negative ratios have been selected. To be precise, we

repeatedly select the variables with the most negative ratio for < i, p > and increase the

variable value to the maximum value possible, updating the remaining knapsack capacity

u′j` after each variable selection:

< i∗, p∗ >= argmin
i∈I,p∈P

{
c̃i j`pt

dipt

}
, xi∗ j`p∗t = min

{
1,

u′j`
dipt

}
.

Clearly, all other x variables are set to 0.

5.4.2 Solution of the Lagrangian Dual

The solution of the Lagrangian subproblem, for any choice of the Lagrange multipli-

ers α , provides a lower bound to the DFLPG. To obtain the best possible lower bound,

one must solve the Lagrangian dual:

z∗ = max
α

L(α).
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The Lagrangian function L(α) is non-differentiable. However, a subgradient direc-

tion can be easily computed. We consider two different methods to solve the Lagrangian

dual: a subgradient method and a bundle method.

Subgradient Method. The subgradient direction γipt at the k−th iteration is computed

as the violation of the relaxed constraints when x is fixed to the values found by solving

the Lagrangian subproblem:

γ
k
ipt = 1−∑

j∈J
∑
`∈L

xi j`pt ∀i ∈ I, ∀p ∈ P, ∀t ∈ T.

We choose the step size λ k at iteration k as suggested by Held et al. (1974) and often

used in other works (Shulman, 1991; Sridharan, 1991; Correia and Captivo, 2003):

λ
k = δ

k Ẑ−Lk(α)

∑i∈I ∑p∈P ∑t∈T (γ
k
ipt)

2
,

where δ k is a scalar, Lk(α) equals the value of L(α) at iteration k and Ẑ is the cost of the

best feasible solution found so far. The Lagrange multipliers for the (k+1)−st iteration

are then updated by:

α
(k+1)
ipt = α

k
ipt +λ

k
γ

k
ipt ∀i ∈ I, ∀p ∈ P, ∀t ∈ T.

Bundle Method. The second method used to solve the Langrangian dual is an imple-

mentation of the bundle method (Frangioni, 2005). The method uses a subset of the

tuples < L(αs),γs > with s ∈ B and B is referred to as the bundle of subgradients γs.

From the primal view point, the following quadratic problem has to be solved at each

iteration (Frangioni and Gallo, 1999):

min
θ s

{
1
2 ‖ ∑

s∈B
γ

s
θ

s ‖2 + 1
REBθ ; s.t. ∑

s∈B
θ

s = 1, θ ≥ 0

}
,
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where R is the so called trust region for the tentative ascent direction, and Es = L(α)+

γ(α̂−α)−L(α̂) is the linearization error from the current point α̂ . The solution values

for θ s, given for each bundle member, hold valuable information and can be used to

construct feasible integer solutions (see Section 5.5.2). The tentative ascent direction is

then computed by the convex combination of the subgradients, using the convex multi-

pliers θ . Alternatively, the dual problem can be solved to compute the ascent direction,

or directly the new point. Frangioni and Gallo (1999) elaborate on this relationship in

detail.

Bundle methods usually possess stronger convergence properties than the subgra-

dient method. However, they also tend to require more time to compute the Lagrange

multipliers. They are therefore beneficial when a small number of iterations is performed

to reach the desired accuracy.

5.4.3 Upper Bound Generation

At each iteration, a feasible solution is generated based on the Lagrangian solution

obtained by solving the Lagrangian subproblem. This solution provides an upper bound

for the optimal integer solution of the problem that directly impacts the convergence

of the subgradient and bundle methods. Even though high quality upper bounds are

desirable, it is important that they are generated in an efficient manner, as the solution of

the Lagrangian dual typically involves hundreds of iterations.

The solution of the Lagrangian subproblem provides a facility opening schedule for

the entire planning horizon. This schedule is defined by capacity levels `′jt indicating the

facility size at locaton j at time period t. In addition to the schedule, the Lagrangian so-

lution provides a demand allocation. As the demand constraints (5.2) have been relaxed,

the customer demands dipt are either exactly met, under-served or over-served.

The set of all customer demands can therefore be separated into three subsets, where

Σ1, Σ2 and Σ3 denote the demands defined by triplets < i, p, t >, which are exactly met,
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over-served and under served, respectively:

Σ1 =

{
< i, p, t >: ∑

j∈J
xi j(`′jt)pt = 1

}
,Σ2 =

{
< i, p, t >: ∑

j∈J
xi j(`′jt)pt > 1

}

and Σ3 =

{
< i, p, t >: ∑

j∈J
xi j(`′jt)pt < 1

}
.

To obtain an integer feasible solution, we heuristically reduce redundant demand

allocation for the pairs in Σ2 and increase missing demand allocation for the pairs in Σ3.

Note that the heuristic to increase available capacity is very simple. The difficulty here

is to find general rules that perform well on the different problem variants that may be

modeled by the use of the GMC formulation. The heuristic procedure used to obtain a

feasible solution is composed of the following steps:

i. Reduce demand allocation: For each < i, p, t >∈Σ2, all facility/size pairs ( j,(`′jt))

are sorted in decreasing order of their allocation costs gi j`pt . The allocated flow is

removed until the total allocated demand for < i, p, t > equals 1.

ii. Increase capacities: If the total remaining capacity is smaller than the total re-

maining demand, we increase the capacity sequentially for each time period ac-

cording to the following steps until the total demand can be met. Facilities are con-

sidered without a specific order. We consider two simple possibilities to increase

capacity: if a facility is already open at any moment in the planning horizon, we

increase the capacity for the current time period to its maximum capacity level

throughout the planning; if no facility exists, we increase the capacity level until

the missing capacity is covered or the maximum capacity level for this facility is

reached.

iii. Increase the demand allocation: For each < i, p, t >∈ Σ3, all facility/size pairs

( j,(`′jt)) with remaining capacity are sorted in increasing order of their allocation

costs gi j`pt . Demand is allocated to these pairs until the total allocated demand for

< i, p, t > equals 1.

iv. Reduce unused capacities of open facilities: For each facility, we use a dynamic



129

programming algorithm, similar to the one used to solve Lagrangian subproblem,

to compute the optimal opening schedule (i.e., the one with the lowest costs) that

guarantees sufficient capacity to satisfy the demand allocated to that facility.

Even though the resulting solution is integer feasible, its demand allocation may still

be improved. Therefore, a final step consists in computing the optimal demand allocation

for the current opening schedule using the CPLEX network algorithm.

5.5 Upper Bound Improvement: Restricted MIP Model

The previous section outlined the heuristic procedure to generate integer feasible

solutions. This heuristic focuses on efficiency rather than on the quality of the upper

bound. However, the objective of the Lagrangian heuristic is to provide high quality

solutions. It is therefore beneficial to add an optimization phase that aims at finding

solutions of higher quality than those already found during the solution of the Lagrangian

dual. Either one tries to improve promising solutions that have been found during the

Lagrangian dual method, or one constructs new solutions based on information gathered

during the process.

Local improvement heuristics, based on already available solutions, have been suc-

cessfully applied in a second optimization phase after performing a Lagrangian relax-

ation method (e.g., Correia and Captivo, 2006; Li et al., 2009). However, they require

a detailed knowledge of the problem structure. As seen in Section 5.3.2, the GMC is

a fairly general model, capable of representing different facility location problems. In

some cases, certain capacity levels represent open facilities, whereas other capacity lev-

els represent closed facilities. Given the flexibility regarding the usage of capacity levels,

it is beneficial to use a more general mechanism to find high quality solutions.

5.5.1 MIP Model Based on Lagrangian Solutions

The Lagrangian heuristic proposed in this work involves a second optimization phase

using information collected during the solution of the Lagrangian dual. We solve a re-

stricted MIP, taking into consideration the decisions made by the Lagrangian solutions.
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One would expect that the larger the decision space is, the better the quality of the final

solution will be. However, this is only true without memory and computing time limita-

tions. Given those limitations, a large MIP may result in a low overall performance, as

the model is too large to be solved with the available time and memory resources. We

therefore filter the decisions considered in the restricted MIP to sufficiently reduce the

size of the model.

Let nIter denote the number of iterations performed by the subgradient or by the

bundle method. Let nC
j`t be the number of Lagrangian solutions where capacity level `

has been selected for location j at time period t (note that we have ∑`∈L nC
j`t = nIter for

each j and t). Furthermore, let LR
jt be the set of capacity levels for location j and period

t available in the restricted MIP. The restricted MIP is then defined as follows:

– Decision fixing. For each j and t, a decision is fixed to capacity level ` if it appears

in at least 100× pFix (with pFix ∈]0.5,1]) percent of all iterations, i.e, LR
jt = {`},

if nC
j`t/nIter ≥ pFix.

– Selection of available capacity levels. If the capacity level for location j and time

period t is not fixed, LR
jt is composed by the nS capacity levels that appear the most

often in the Lagrangian solutions (i.e., have the highest nC
j`t) and appear in at least

one Lagrangian solution (i.e., nC
j`t ≥ 1).

– Defining the set of capacity transitions. Decisions y j`1`2t are defined for all

combinations between `1 and `2, with `1 ∈ LR
jt and `2 ∈ LR

j(t+1), if available in the

original GMC formulation.

Using appropriate values for the parameters pFix and nS, the original GMC model

can be reduced to a restricted version with reasonable memory and computing time re-

quirements, taking into consideration only decisions that have been found to be signifi-

cant by the Lagrangian solutions.

5.5.2 MIP Model Based on Convexified Bundle Solutions

When using the bundle method to solve the Lagrangian dual, we may take advantage

of the information the method holds concerning the set of solutions that are linked to the

subgradients in the bundle, as demonstrated by Borghetti et al. (2003).
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As explained in Section 5.4.2, the bundle method provides a multiplier θ s for each

Lagrangian solution s such that ∑s θ s = 1. The value θ s can be seen as a probability

that solution s provides a good opening schedule. We may therefore derive probabilities

for each of the opening decisions ỹ j`t = ∑s θ sys
j`t , where ys

j`t is 1 if solution s selects

capacity level ` for location j at period t.

We may now construct a restricted MIP, as previously shown based on the Lagrangian

solutions. Instead of using the number of occurrences nC
j`t in Lagrangian solutions, we

use the value of ỹ j`t ∈ [0,1], defining its importance according to the multipliers θ s

provided by the bundle method. In this case, a capacity level ` is fixed at location j

and period t if ỹ j`t ≥ pFix, where pFix ∈]0.5,1]. Otherwise, LR
jt is composed by the nS

capacity levels with the highest ỹ j`t values, with ỹ j`t ≥ 0.001. Note that the Lagrangian

solutions linked to the subgradients that are stored in the bundle are only a subset of

those generated in all iterations. The set of decisions considered in the restricted MIP

based on the convexified bundle solution is therefore very likely to be much smaller than

the restricted MIP based on all Lagrangian solutions.

5.6 Computational Results

In this section, the performance of different configurations for the Lagrangian heuris-

tics and that of the MIP solver CPLEX will be evaluated and compared by means of com-

putational experiments. First, we discuss how test instances were generated. Then, we

elaborate on the integrality gap of the different problems. Finally, computational results

are presented to explore the impact of parameter choices for the Lagrangian heuristics

and to compare different configurations with each other and with CPLEX.

Test instances have been generated by following a scheme similar to that described in

Jena et al. (2013). However, the instances used in this previous work included only one

commodity, up to 100 candidate facility locations and up to 1000 customer locations. In

this work, we use instances that are significantly larger with respect to the number of can-

didate facility locations and the number of commodities. Instances have been generated

with different numbers of candidate facility locations |J| and customers |I|, combining all
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pairs of |J| ∈ {50,100,150,200,250} and |I| ∈ {|J|,4 · |J|}. The highest capacity level at

any facility, denoted by q, has been selected such that q ∈ {3,5,10}. Three different net-

works have been randomly generated on squares of the following sizes: 300km, 380km

and 450km. We consider two different demand scenarios. In both scenarios, the demand

for each of the customers is randomly generated and randomly distributed over time.

The two scenarios differ in their total demand summed over all customers in each time

period. In the first scenario (regular), the total demand is similar in each time period.

The second scenario (irregular) assumes that the total demand follows strong variations

along time and therefore varies at each time period. The number of commodities |P|
has been selected such that |P| ∈ {1,3,5}. The demands for the second to fifth com-

modities are computed based on the demand for the first commodity. To be precise, the

demand d jpt for p ≥ 2 is computed as d jpt = d j1t · rand(1.0,0.2) · avgDemp/avgDem1,

where avgDem1 = 10, avgDem2 = 6, avgDem3 = 9, avgDem4 = 5, avgDem5 = 8, and

rand(1.0,0.2) is a random variable with normal distribution, mean value of 1.0 and stan-

dard deviation of 0.2. Construction and operational costs follow concave cost functions,

i.e., they involve economies of scale. Jena et al. (2013) also tested a second cost sce-

nario in which the transportation costs are five times higher. The authors found that

these instances are significantly easier to solve. In this work, we only consider the in-

stances that are more difficult to solve, i.e., the ones with their original level of trans-

portation costs. The combination of the different properties listed above results in a total

of (5×2×3×3×2×3 =) 540 instances. All instances contain ten time periods, which

is found to be sufficient to demonstrate capacity changes along time and small enough

to not increase the size of the models too much. Note that we assume that the prob-

lem instances do not contain initially existing facilities. We refer to Appendix C.1 for a

detailed description of the parameters used to generate the instances.

All mathematical models and the Lagrangian based heuristics have been imple-

mented in C/C++ using the IBM CPLEX 12.6.0 Callable Library. The code has been

compiled and executed on openSUSE 11.3. Each problem instance has been run on a

single Intel Xeon X5650 processor (2.67GHz), limited to 24GB of RAM.
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5.6.1 Integrality Gaps of the Test Instances

The integrality gap is defined as the difference between the optimal LP relaxation

solution value and the cost of an optimal integer solution, divided by the latter. For many

instances, the GMC models are very large and exceed the available memory of 24GB.

It was therefore not possible to find all of these optimal values. The integrality gap has

been exactly determined only for a subset of the 540 instances. Considering the best

lower and upper bounds obtained throughout all computational experiments, optimality

has been proved for 302, 388, 384 and 382 instances for the DFLPG, the DMCLFP_CR,

the DMCFLP_ER and the DMCFLP_CR_ER, respectively.

As observed in Jena et al. (2013), the integrality gap for the GMC based formulations

tend to be very small. This turns out to be useful for two reasons. First, when using

Lagrangian relaxation, the provided bounds are more meaningful. Low integrality gaps

may help to prove optimality within a certain tolerance. Second, the input data for multi-

period facility location problems usually comes from forecasts, and it is very likely that

the real data will slightly deviate from the forecast, especially for the last time periods.

An optimal solution may therefore not be more relevant in practice than a solution that

guarantees optimality within a certain tolerance. Melo et al. (2011a) therefore aim at

a finding solutions within 1% from the optimal solution. On the instances used in this

work, the integrality gap has been found to be smaller than or equal to 1% for a fairly

large part of the instances. To be precise, the integrality gap is smaller than or equal to

1% for at least 413, 397, 410 and 397 instances for each the four problems, respectively.

The Lagrangian relaxation may therefore prove optimality within a deviation of 1% for a

large part of the instances if its lower bounds are close to the LP relaxation bounds and its

generated upper bounds (i.e., the feasible solutions generated throughout the Lagrangian

relaxation) are close to optimal.

5.6.2 Comparison of Different Configurations for the Lagrangian Heuristics

We now compare the performance of different configurations for the Lagrangian

relaxation based heuristics. Section 5.4 discussed two different methods to solve the
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Lagrangian dual, the subgradient method and the bundle method. These methods can be

used to generate feasible solutions at each iteration. Furthermore, it has been shown in

Section 5.5 how information from the Lagrangian solutions and the convexified bundle

solutions can be collected throughout the solution of the Lagrangian dual, and then be

used to generate a restricted MIP to find solutions of even better quality.

Parameter Settings. The subgradient method is used with an initial scalar δ k = 2.0.

This scale factor halves every 25 consecutive iterations without improvement in the

lower bound. The algorithm terminates if δ k falls below 0.005. For the bundle method,

an implementation similar to the one described by Frangioni (2005) has been used as a

black box. The bundle implementation has four principal internal performance and ter-

mination criteria, which are set as follows. Parameters tStar, EpsLin have been set to 104

and 10−6, respectively. The long-term t-strategy has been set to “soft” with a parame-

ter value of 0.1. In addition to the stopping criteria mentioned above, a 1% optimality

stopping criterion has been used, i.e., the algorithms stop as soon as the best lower and

upper bounds found are within 1%. All experiments have been limited to a maximum of

2 hours of computing time.

5.6.2.1 Combining the Lagrangian Dual Solution Methods with a Restricted MIP

After performing the subgradient method, a restricted MIP can be solved based on the

Lagrangian solutions (see Section 5.5.1). When using the bundle method, the restricted

MIP can be generated based on either the Lagrangian solutions or on the convexified

bundle solution (see Section 5.5.2). We now compare the performance of different com-

binations for the heuristic, i.e., the use of the subgradient method and the bundle method

to solve the Lagrangian dual, and the use of the restricted MIP based on Lagrangian so-

lutions and the convexified solutions to further improve the solution quality. The bundle

method has shown significantly faster convergence than the subgradient method. We

therefore stop the method when a maximum of 500 iterations has been performed. For

the subgradient method, due to its slower convergence, we also tested configurations

with a maximum of 1000 iterations.
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Table 5.I summarizes the results for seven different solution strategies: the subgra-

dient method without (“only”) and with a restricted MIP based on the Lagrangian So-

lutions (“w/ LS R-MIP”), as well as the bundle method without (“only”) and with a

restricted MIP, based either on the Lagrangian solutions (“w/ LS R-MIP”) or on the

convexified bundle solution (“w/ CS R-MIP”). As mentioned above, the subgradient

method has been tested in two variants, stopping either after a maximum of 500 itera-

tions or after a maximum of 1000 iterations. When using the restricted MIP based on

the Lagrangian solutions, we use parameter values that have led to good performance

(see Section 5.6.2.2): pFix = 70% and nS = 3. For the bundle method with the restricted

MIP based on the convexified solutions, we used pFix = 0.85 and nS = 4, which led to

smaller average and maximum optimality gaps than setting pFix to 0.7, 0.8 or 0.9. Note

that for the restricted MIP based on the convexified solutions, we only tested nS values

of 2, 3 and 4.

The results take into account all 540 instances and are reported for each of the four

problem variants. We indicate the average and maximum gap (when compared to the

best lower bounds known for the instances), the average computing time and the number

of instances for which a 1% optimality has been proved (“# prov. 1% gap”).

The results are consistent for the four different problem variants. Solving only the

Lagrangian dual, the bundle method clearly stays ahead of the subgradient method.

Given its stronger convergence properties, it finishes, on average, in significantly shorter

computing times. For the subgradient method, allowing 1000 instead of 500 iterations

strongly improves the solution quality. After this first phase, a 1% optimality has been

proved for more than half of the instances.

Adding the Lagrangian solution based restricted MIP to the subgradient method sig-

nificantly improved the optimality gap when up to 1000 iterations are performed. With

only 500 iterations, the improvement is less significant. This illustrates the importance

of reasonably solving the Lagrangian dual before constructing a restricted MIP, because

“high-quality” decisions tend to appear in the later stage of the subgradient method.

For the bundle method, a larger improvement of the maximum optimality gap can

be observed. Both versions of the restricted MIP result in very competitive results. The
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Subgradient method Bundle method
500 max iter 1000 max iter 500 max iter
only w/ LS only w/ LS only w/ LS w/ CS

R-MIP R-MIP R-MIP R-MIP
DFLPG
Avg Gap % 3.01 0.81 1.67 0.72 1.64 0.76 0.72
Max Gap % 17.31 17.31 13.06 7.28 8.83 7.85 2.88
Avg Time (sec) 374.8 1,140.0 486.5 714.5 258.9 844.6 359.3
# prov. 1% gap 211 386 329 407 331 405 407
DMCFLP_CR
Avg Gap % 3.85 0.82 2.28 0.88 2.10 0.86 0.81
Max Gap % 22.26 12.96 14.38 9.73 10.39 10.39 3.78
Avg Time (sec) 846.9 1,532.2 1,130.1 1,447.2 617.8 1,370.0 884.6
# prov. 1% gap 160 378 287 385 292 392 397
DMCFLP_ER
Avg Gap % 3.18 0.78 1.72 0.70 1.64 0.74 0.69
Max Gap % 17.58 14.68 12.45 6.63 10.47 8.56 2.57
Avg Time (sec) 379.5 1,137.0 484.4 712.9 247.7 833.9 348.8
# prov. 1% gap 205 391 317 405 325 410 411
DMCFLP_CR_ER
Avg Gap % 3.77 0.87 2.11 0.82 1.96 0.83 0.77
Max Gap % 21.00 17.76 15.92 8.37 10.14 9.15 3.44
Avg Time (sec) 840.3 1,703.7 1,091.7 1,493.7 569.9 1,335.4 857.6
# prov. 1% gap 174 373 295 389 310 399 395

Table 5.I: Comparison of different configurations for the Lagrangian based heuristics for
the four problems.
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maximum optimality gap is always kept below 4.25%, while the average computing

time is very reasonable. Using the restricted MIP to improve the solution quality, the

number of instances where a 1% optimality gap could be proved increased to over 75%

of all instances. While both approaches show similar maximum optimality gaps, the

convexified solution presents better average gaps and is capable of proving a 1% gap for

more instances.

The results based on the bundle method are clearly better than those based on the

subgradient method, as the subgradient method itself already takes a significant portion

of the available computing time. Therefore, there is often not enough time left to solve

the restricted MIP. However, a heuristic based on the latter could still be effective. Tuning

the maximum number of subgradient iterations and the parameters used to define the

restricted MIP will hereby make the crucial difference. Such tuning is exemplified in the

next section.

5.6.2.2 Restricted MIP Parameter Tuning

The restricted MIP, performed after the solution of the Lagrangian dual, has to be

sufficiently restricted in a way in that it can be reasonably solved within the remaining

time. This is done by appropriately setting the two parameters nS and pFix, indicating

the maximum number of decisions considered for each location and time period, and the

percentage necessary to fix a decision, respectively.

Table 5.II summarizes the results for different parameter values, using the bundle

method with a restricted MIP based on the Lagrangian solutions applied to the DFLPG.

The results are given for all combinations between different pFix and nS values, report-

ing the average and maximum optimality gap, as well as the average computation time.

The average computation times increase due to two factors: more capacity level deci-

sions in the MIP (i.e., higher values of nS), and less variable fixing (i.e., higher values of

pFix). For the given time limit of 2 hours, well performing values can be found by bal-

ancing these two parameters. Setting nS to 3, 4 or even 10, and pFix between 80% and

90% results in a maximum optimality gap of around 3.36%, while other parameter val-

ues may result in gaps of up to 8.83%. Clearly, if more computing time is available, one
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pFix nS = 2 nS = 3 nS = 4 nS = 10
51% Avg / Max gap % 1.48 / 8.83 1.48 / 8.83 1.48 / 8.83 1.48 / 8.83

Avg time 233.3 sec 231.5 sec 231.2 sec 228.4 sec

70% Avg / Max gap % 0.82 / 5.37 0.80 / 5.37 0.80 / 5.37 0.80 / 5.37
Avg time 235.6 sec 239.3 sec 243.6 sec 242.3 sec

80% Avg / Max gap % 0.75 / 3.47 0.74 / 3.36 0.73 / 3.15 0.73 / 3.20
Avg time 286.6 sec 296.2 sec 301.1 sec 302.3 sec

90% Avg / Max gap % 0.74 / 7.85 0.72 / 3.35 0.71 / 3.35 0.71 / 3.35
Avg time 385.7 sec 415.0 sec 422.7 sec 419.6 sec

100% Avg / Max gap % 0.74 / 7.85 0.72 / 7.85 0.72 / 7.85 0.72 / 7.85
Avg time 597.7 sec 620.0 sec 623.3 sec 614.1 sec

No Avg / Max gap % 0.74 / 7.85 0.72 / 7.85 0.72 / 7.85 0.72 / 7.85
Fixing Avg time 582.2 sec 595.9 sec 613.6 sec 601.6 sec

Table 5.II: Comparison of results for different parameters for the bundle method with
MIP based on Lagrangian solutions, applied to the DFLPG.
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may allow higher values for these parameters, which may further improve the solution

quality.

Similar experiments were performed for different parameter values for the restricted

MIP based on the convexified bundle solutions. Not restricting the MIP at all resulted

in significantly better results than for the non-restricted MIP based on the Lagrangian

solutions. Furthermore, it was found that the restricted MIP based on the convexified

bundle solution is less sensitive to changes in the parameter value pFix than the one

based on the Lagrangian solutions. These results suggest that the decisions that are

part of solutions selected by the bundle are those which are also present in high quality

solutions.

5.6.3 Comparisons with CPLEX

The performance of one of the Lagrangian based heuristics is now compared to

CPLEX. We chose the configuration that provided the lowest average and maximum

optimality gaps: the bundle method with restricted MIP based on its convexified solu-

tion, with nS = 4 and pFix = 0.85. CPLEX has been used with standard parameters.

As in the previous experiments, a 1% optimality stopping criterion and a time limit of 2

hours have been applied.

Computational Results. Tables 5.III, 5.IV, 5.V and 5.VI summarize the results for

CPLEX, as well as for the Lagrangian based heuristic outlined above for the four dif-

ferent problems DFLPG, DMCLFP_CR, DMCFLP_ER and DMCFLP_CR_ER, respec-

tively. All results are grouped by the number of capacity levels q and the problem dimen-

sion defined by the number of candidate facility locations and the number of customers.

Each group given by such a combination includes 18 instances. The tables report the

average and maximum gaps of the best feasible integer solutions found by the algorithm

when compared to the best lower bound known for the corresponding problem instance,

as well as the average computing times. Note that the results shown in the Tables 5.III

– 5.VI only take into account the instances where CPLEX found a feasible integer so-

lution within the time limit of 2 hours. The number of instances for which CPLEX did
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not find any feasible solution is indicated by column “#ns”. Furthermore, column “#

prov. 1% gap” gives the number of instances (out of those for which CPLEX found a

feasible solution) where a 1% optimality gap has been proven by the algorithm. For the

Lagrangian heuristic, the number in brackets to the right represents the same count, but

for all instances.

The observations made for the results of CPLEX and the Lagrangian based heuristics

are similar for all four problems. The number of instances where CPLEX did not find

feasible solutions is fairly high, at least 25% of the instances for each of the four prob-

lems. In most of the cases, this happens due to memory limitations when the number

of capacity levels or the number of candidate facility locations is high. Even though the

average quality of solutions found by CPLEX is quite good, the solver provides large

optimality gaps on many instances. This is mostly the case when a large number of

capacity levels (q = 10) is available. As the solver constantly improves its bounds, the

optimality gaps proven by the algorithm (shown in brackets) are very close to the gaps

when compared to the best known lower bound for the instances. CPLEX is capable of

proving a 1% optimality gap for at least 342 out of the 540 instances for each of the four

problems.

The Lagrangian based heuristic provides stable results for each of the four problems.

When compared to the same instances, it provides an average gap lower than that of

CPLEX in computing times that are, on average, significantly lower. For the DFLPG

and the DMCFLP_ER, the Lagrangian heuristic is, on average, twelve times faster than

CPLEX. For the DMCFLP_CR and the DMCFLP_CR_ER, the heuristic is, on average,

five times faster. Most importantly, the maximum optimality gap is at most 3.78%. Due

to the strength of the GMC formulation, the maximum optimality gap proven by the

Lagrangian heuristic is 4.87%. Furthermore, considering the same set of instances, the

heuristic proves a 1% gap for almost the same number of instances as CPLEX. When

considering all 540 instances (even those for which CPLEX does not find feasible solu-

tions), the Lagrangian heuristic proves a 1% gap for 395 or more of the 540 instances

for each of the four problems.

Interestingly, the difficulty of a problem is not always linked to its dimension. In-
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stances where the number of customers is close to the number of candidate facility lo-

cations are significantly harder to solve than those where the number of customers is

higher. In particular, this can be observed for instances of dimension (50/50). An anal-

ysis showed that these instances tend to possess larger integrality gaps, which may be

linked to the fact that the more customers are available, the easier it is to make efficient

use of a facility (in terms of allocation costs and capacity usage) in an integer solution.

A Note on the Model Size. As the previous results show, general-purpose MIP solvers

such as CPLEX may perform very well on small instances, i.e., when the number of ca-

pacity levels is low (q ∈ {3,5}) and the number of candidate facility locations is small

(|J| ≤ 100). Clearly, adding the SIs (5.8) a priori to the model significantly increases the

number of constraints and, therefore, the memory requirements of the model. As noted

by Jena et al. (2013), the addition of the SIs to the GMC based models significantly fa-

cilitates the solution of the problems. In fact, for the instances used in this work, without

the use of the SIs, CPLEX provides very low solution quality even for small instances.

Other studies, such as the one by Gendron and Larose (2014) applied to a network design

problem, confirm that it may be beneficial to add these inequalities in a branch-and-cut

scheme. However, this only yields good performance if only a small number of SIs are

violated and therefore added to the model. In the case of the DFLPG, a significant num-

ber of SIs are violated in its LP relaxation. Adding the inequalities as CPLEX user cuts

to reduce the size of the model showed less competitive results. For more than 40% of

the instances, the solver could not find feasible solutions. When feasible solutions were

found, the average optimality gap was consistently high, on average, more than 10%.

We also note that, even though we use information from the Lagrangian solutions,

other mechanism could be used to rate the importance of opening decisions to generate

a MIP that is significantly restricted in its size. Theoretically, using the LP relaxation

solution would be one alternative. However, as the LP relaxation cannot be efficiently

solved (or not at all) for large instances, such a solution strategy would be applicable only

to small and medium sized instances, or in computing environments with significantly

larger memory and time resources.
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.26 0.99 531.7 18 0 0.44 1.32 6.7 7 [7]

50/200 0.02 0.12 15.1 18 0 0.43 0.92 7.6 18 [18]
100/100 0.11 0.51 54.1 18 0 0.43 0.95 13.0 17 [17]
100/400 0.04 0.37 63.9 18 0 0.58 0.95 39.7 18 [18]
150/150 0.13 0.76 82.4 18 0 0.38 0.87 33.3 18 [18]
150/600 0.06 0.64 179.7 18 0 0.66 0.96 104.6 18 [18]
200/200 0.17 0.86 116.3 18 0 0.51 0.98 49.2 18 [18]
200/800 0.09 0.52 370.1 12 6 0.67 0.90 184.1 12 [18]
250/250 0.04 0.37 179.7 18 0 0.44 0.92 88.8 18 [18]
250/1000 0.15 0.86 373.5 6 12 0.52 0.94 262.3 6 [18]
All 0.10 0.99 177.1 162 18 0.50 1.32 61.5 150 [168]

[0.18] [1.00] [0.67] [2.32]
5 50/50 0.71 2.11 3,122.8 13 0 0.88 2.06 28.4 3 [3]

50/200 0.17 0.79 90.7 18 0 0.48 0.89 17.5 16 [16]
100/100 0.46 1.30 1,268.3 16 0 0.64 1.26 36.8 9 [9]
100/400 0.04 0.16 145.8 18 0 0.55 0.87 58.3 18 [18]
150/150 0.39 1.13 1,106.5 15 1 0.61 1.24 98.5 12 [13]
150/600 0.08 0.67 255.0 12 6 0.63 0.96 116.2 12 [18]
200/200 0.22 0.84 762.6 16 2 0.52 0.92 89.3 15 [16]
200/800 0.06 0.20 552.0 6 12 0.53 0.89 243.8 6 [18]
250/250 0.15 0.52 885.7 17 1 0.46 0.95 151.2 17 [17]
250/1000 0.13 0.75 683.3 6 12 0.49 0.94 348.5 6 [18]
All 0.27 2.11 957.8 137 34 0.59 2.06 90.2 114 [146]

[0.39] [2.11] [0.86] [4.59]
10 50/50 23.11 92.72 6,472.0 2 0 1.90 2.88 282.7 0 [0]

50/200 0.86 2.19 2,823.1 12 3 0.73 1.28 108.0 8 [9]
100/100 3.03 14.82 5,312.7 4 7 1.26 2.44 131.1 2 [2]
100/400 0.30 1.44 991.3 10 7 0.55 0.91 123.4 11 [18]
150/150 2.59 11.93 5,014.6 3 11 0.85 1.31 105.0 2 [2]
150/600 0.07 0.17 541.2 6 12 0.43 0.67 125.2 6 [17]
200/200 0.88 1.66 3,400.7 4 12 0.80 1.62 193.3 3 [4]
200/800 0.12 0.12 1,743.0 1 17 0.15 0.15 681.0 1 [18]
250/250 0.20 0.36 1,052.7 3 15 0.27 0.40 171.3 3 [5]
250/1000 - - - 0 18 - - - - [18]
All 6.28 92.72 3,741.6 45 102 1.02 2.88 171.1 36 [93]

[6.36] [92.72] [1.18] [3.63]
All All 1.42 92.72 1,192.7 344 154 0.64 2.88 94.5 300 [407]

[1.51] [92.72] [0.90] [4.59]

Table 5.III: Comparison of CPLEX and Lagrangian based heuristics for the DFLPG: average and
maximum optimality gap when compared to the best known lower bound.
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.29 1.14 650.6 17 0 0.51 1.54 13.9 7 [7]

50/200 0.08 0.67 18.5 18 0 0.61 0.99 15.6 18 [18]
100/100 0.11 0.55 41.2 18 0 0.44 0.84 27.3 17 [17]
100/400 0.08 0.66 90.6 18 0 0.62 0.94 86.8 18 [18]
150/150 0.04 0.23 102.4 18 0 0.52 0.99 62.4 18 [18]
150/600 0.10 0.85 275.5 18 0 0.72 0.98 243.4 18 [18]
200/200 0.13 0.92 198.0 18 0 0.56 0.95 137.8 16 [16]
200/800 0.19 0.93 589.3 12 6 0.57 0.95 530.9 12 [18]
250/250 0.06 0.34 496.3 18 0 0.56 0.95 219.1 18 [18]
250/1000 0.15 0.73 791.0 6 12 0.67 0.96 596.7 6 [18]
All 0.12 1.14 281.1 161 18 0.57 1.54 151.0 148 [166]

[0.19] [1.27] [0.74] [2.75]
5 50/50 0.67 2.44 1,973.7 14 0 0.91 2.24 32.2 3 [3]

50/200 0.26 0.69 86.4 18 0 0.54 1.04 46.9 16 [16]
100/100 0.37 0.93 1,144.2 17 0 0.45 1.05 91.8 13 [13]
100/400 0.11 0.89 203.6 18 0 0.61 0.97 136.9 18 [18]
150/150 0.39 1.00 1,104.5 17 0 0.54 1.19 191.7 15 [15]
150/600 0.09 0.85 413.8 12 6 0.69 0.95 280.6 12 [18]
200/200 0.23 0.88 992.8 18 0 0.52 0.96 322.6 18 [18]
200/800 0.16 0.60 868.0 6 12 0.36 0.94 597.0 6 [18]
250/250 0.48 3.88 1,473.8 16 1 0.54 1.12 457.3 16 [17]
250/1000 0.16 0.81 1,214.5 6 12 0.64 0.98 734.3 6 [18]
All 0.32 3.88 950.4 142 31 0.59 2.24 227.7 123 [154]

[0.47] [3.95] [0.89] [3.70]
10 50/50 4.27 19.79 5,779.7 4.00 1 2.32 3.78 977.8 0 [0]

50/200 0.74 1.51 3,308.0 9 5 0.82 1.53 202.8 4 [4]
100/100 7.84 66.50 5,449.2 4 5 1.67 3.19 376.4 0 [0]
100/400 0.92 8.29 1,151.1 11 6 0.66 0.99 370.7 11 [15]
150/150 17.03 88.13 5,172.8 4 7 1.26 2.40 331.3 1 [1]
150/600 0.26 0.89 1,010.3 6 12 0.55 0.88 440.5 6 [15]
200/200 23.45 89.67 4,217.1 4 10 1.09 1.73 506.6 3 [3]
200/800 0.22 0.63 3,467.8 6 12 0.44 0.95 1,395.0 6 [17]
250/250 1.02 2.91 3,064.0 3 14 0.52 0.80 664.8 4 [6]
250/1000 - - - 0 18 - - - - [16]
All 6.41 89.67 3,951.9 51 90 1.23 3.78 555.2 35 [77]

[7.08] [100.00] [1.53] [4.50]
All All 1.61 89.67 1,353.7 354 139 0.72 3.78 270.2 306 [397]

[1.84] [100.00] [1.05] [4.50]

Table 5.IV: Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP_CR: average
and maximum optimality gap when compared to the best known lower bound.
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.25 0.94 779.8 17 0 0.25 0.86 6.7 11 [11]

50/200 0.01 0.10 20.5 18 0 0.59 0.97 6.9 18 [18]
100/100 0.17 0.67 40.7 18 0 0.37 0.94 13.8 17 [17]
100/400 0.04 0.37 89.0 18 0 0.65 0.99 40.7 18 [18]
150/150 0.20 0.74 120.3 18 0 0.46 0.96 26.4 18 [18]
150/600 0.01 0.17 263.9 18 0 0.67 0.95 105.0 18 [18]
200/200 0.06 0.43 189.7 18 0 0.31 0.86 46.3 18 [18]
200/800 0.11 0.76 466.3 12 6 0.75 0.96 190.3 12 [18]
250/250 0.04 0.40 393.0 18 0 0.50 0.91 97.1 18 [18]
250/1000 0.31 0.91 538.8 6 12 0.50 0.91 247.3 6 [18]
All 0.11 0.94 265.3 161 18 0.50 0.99 61.4 154 [172]

[0.20] [1.39] [0.68] [2.11]
5 50/50 0.56 1.60 2,521.3 15 0 0.85 1.79 34.7 3 [3]

50/200 0.19 0.65 100.7 18 0 0.48 0.86 18.3 15 [15]
100/100 0.44 1.83 1,376.8 15 0 0.58 1.35 35.1 10 [10]
100/400 0.10 0.45 240.1 18 0 0.57 0.83 58.2 18 [18]
150/150 0.43 1.44 1,286.9 16 0 0.50 1.21 91.9 13 [13]
150/600 0.01 0.11 393.4 12 6 0.67 0.97 118.4 12 [18]
200/200 0.38 2.58 1,061.8 16 1 0.53 0.98 113.6 16 [16]
200/800 0.05 0.11 796.5 6 12 0.51 0.94 239.0 6 [18]
250/250 0.17 0.63 1,211.4 16 2 0.51 0.91 174.9 16 [17]
250/1000 0.32 0.82 1,076.8 6 12 0.54 0.94 328.2 6 [18]
All 0.29 2.58 1,039.8 138 33 0.58 1.79 94.2 115 [146]

[0.43] [2.60] [0.87] [3.84]
10 50/50 6.31 87.99 5,595.0 6.00 0 1.44 2.57 149.9 1 [1]

50/200 0.83 5.76 2,029.6 15 1 0.64 1.19 125.5 9 [10]
100/100 8.18 91.36 4,867.1 6 3 1.22 2.43 157.3 2 [2]
100/400 0.23 0.63 1,012.0 11 7 0.51 0.86 125.1 11 [17]
150/150 11.78 95.92 5,188.2 4 9 1.06 1.92 570.4 2 [2]
150/600 0.09 0.31 1,139.2 6 12 0.44 0.67 154.3 6 [16]
200/200 0.61 1.91 2,713.2 4 13 0.80 1.48 166.0 2 [3]
200/800 3.20 6.33 3,544.0 1 16 0.02 0.04 507.0 2 [18]
250/250 0.10 0.19 1,570.0 3 15 0.40 0.84 165.3 3 [6]
250/1000 - - - 0 18 - - - - [18]
All 4.30 95.92 3,468.0 56 94 0.91 2.57 197.3 38 [93]

[4.62] [100.00] [1.18] [3.83]
All All 1.09 95.92 1,250.8 355 145 0.62 2.57 103.2 307 [411]

[1.25] [100.00] [0.91] [3.84]

Table 5.V: Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP_ER: average
and maximum optimality gap when compared to the best known lower bound.
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.23 1.20 738.9 17 0 0.48 1.40 13.9 7 [7]

50/200 0.05 0.44 20.6 18 0 0.46 0.94 16.0 18 [18]
100/100 0.15 0.73 70.4 18 0 0.38 0.93 32.5 17 [17]
100/400 0.13 0.87 99.0 18 0 0.53 0.90 84.5 18 [18]
150/150 0.09 0.39 127.3 18 0 0.49 0.94 58.3 18 [18]
150/600 0.03 0.28 302.9 18 0 0.74 0.97 217.0 18 [18]
200/200 0.13 0.79 248.5 18 0 0.52 0.96 126.4 18 [18]
200/800 0.15 0.93 666.7 12 6 0.64 0.98 422.9 12 [18]
250/250 0.11 0.83 453.1 18 0 0.41 0.87 201.0 18 [18]
250/1000 0.04 0.12 812.3 6 12 0.69 0.95 428.2 6 [18]
All 0.12 1.20 308.4 161 18 0.52 1.40 130.5 150 [168]

[0.19] [1.23] [0.68] [2.39]
5 50/50 0.71 2.96 2,951.6 13 0 0.91 2.42 48.4 3 [3]

50/200 0.23 0.81 187.3 18 0 0.45 0.82 41.4 14 [14]
100/100 0.47 1.85 1,286.9 16 0 0.54 1.42 88.8 10 [10]
100/400 0.12 0.63 273.7 18 0 0.55 0.95 129.6 18 [18]
150/150 0.41 1.13 1,242.1 16 1 0.52 0.87 164.8 15 [15]
150/600 0.10 0.89 475.3 12 6 0.67 0.96 242.3 12 [18]
200/200 0.26 0.84 1,193.9 18 0 0.40 0.86 319.4 17 [17]
200/800 0.17 0.89 1,202.3 6 12 0.68 0.97 599.5 6 [18]
250/250 0.47 4.61 1,230.1 15 2 0.52 0.98 358.8 16 [17]
250/1000 0.03 0.15 1,347.3 6 12 0.66 0.86 640.3 6 [18]
All 0.33 4.61 1,142.0 138 33 0.57 2.42 205.3 117 [148]

[0.47] [4.61] [0.87] [4.00]
10 50/50 8.06 87.78 6,168.2 3.00 0 2.14 3.44 1,632.8 0 [0]

50/200 0.63 1.55 2,561.8 11 5 0.70 1.23 172.5 6 [7]
100/100 15.65 94.16 5,781.8 3 4 1.72 2.59 776.1 0 [0]
100/400 0.28 0.68 705.1 10 8 0.66 0.96 194.3 10 [14]
150/150 0.98 1.82 4,655.6 4 11 1.02 1.66 289.4 1 [1]
150/600 0.04 0.19 1,394.0 6 12 0.53 0.99 492.5 6 [15]
200/200 19.75 96.06 4,567.4 3 13 0.97 1.69 384.0 2 [2]
200/800 - - - 0 18 - - - - [17]
250/250 0.23 0.50 3,733.7 3 15 0.40 0.57 453.3 3 [6]
250/1000 - - - 0 18 - - - - [17]
All 6.34 96.06 4,043.6 43 104 1.24 3.44 693.4 28 [79]

[6.74] [100.00] [1.44] [4.87]
All All 1.43 96.06 1,364.1 342 155 0.68 3.44 270.2 295 [395]

[1.59] [100.00] [1.00] [4.87]

Table 5.VI: Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP_CR_ER:
average and maximum optimality gap when compared to the best known lower bound.
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We finally would like to remark that, even though the computational results are re-

ported using CPLEX v12.6, all experiments had previously been performed with v12.4.

We observed a significant improvement of the computing times: solving the models with

CPLEX was, on average, about 20% to 50% faster for each of the four problem variants.

The improvement for the Lagrangian heuristics has been found to be, on average, be-

tween 35% and 80%. This may be due to the fact that the solver improved particularly

for small problems, as it is the case for the restricted MIP used in the Lagrangian heuris-

tics.

5.7 Conclusions and Future Research

In this work, we have extended the Dynamic Facility Location Problem with Gen-

eralized Modular Capacities by considering demands for multiple commodities. We

addressed the solution of large-scale instances and proposed a heuristic based on two

optimization phases. First, the Lagrangian dual is solved, involving the iterated solution

of the Lagrangian subproblem. In this phase, feasible solutions of reasonable quality are

found in very short computing times. Then, a restricted MIP is generated taking into

consideration only decisions that have been found important during the solution of the

Lagrangian dual. Using this approach, the final solution quality is consistently within

3.78% from the best known lower bound, even for instances for which CPLEX does not

find feasible solutions due to the large memory and solution time required by the model.

The general cost structure of this problem allows for representing several existing

facility location problems. In addition to the DFLPG, in which the capacity change costs

are based on a cost matrix, this has been exemplified on three special cases. Given the

strength of the GMC formulation, the Lagrangian heuristic was able to prove optimality

within 1% for most of the small and medium sized instances. The proposed model and

solution method may be applied to other problems, especially to those where the model

size passes the limits of state-of-the-art MIP solvers. It may also be applied to larger

instances than those addressed in this work, as the method consumes very little memory.

The Lagrangian dual has been solved by the classical subgradient method and a bun-
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dle implementation. Although the bundle method requires more time to compute the

Lagrangian multipliers, it consistently outperformed the subgradient approach due to its

strong convergence properties. On average, it required half of the time and resulted in a

higher solution quality.

While local improvement heuristics such as tabu search have been common as a

second phase optimization, the use of a restricted MIP is an interesting alternative, as

general-purpose MIP solvers constantly improve. The implementation of a restricted

MIP is very simple. Furthermore, one can handle any kind of problem structure that can

be defined as a MIP. Even though one does not have to worry about finding the right

trade-off between size and inspection time of a neighborhood, the question of how to

significantly restrict the size of the original MIP is crucial. The bundle method with

restricted MIP resulted in very competitive results, especially since the use of the con-

vexified solutions already limits the decisions to those stored in the bundle. For the sub-

gradient method, a well performing filtering approach based on the Lagrangian solutions

may be designed, for example, by better tuning the maximum number of subgradient it-

erations and the parameter values for the restricted MIP.
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CHAPTER 6

LAGRANGIAN RELAXATION FOR DYNAMIC FACILITY LOCATION WITH

RELOCATION AND PARTIAL FACILITY CLOSING

6.1 Introduction

This chapter elaborates on Lagrangian heuristics for the Camp Size and Location

Problem. Chapter 3 introduced this problem and presented a MIP formulation. It has

been shown that generic MIP solvers can solve problems of reasonable size. However,

they fail to solve models for large instances. Furthermore, the model uses a simplified

representation of the cost structure, not taking into consideration the current capacity

level, but only the total capacity involved in the operation. The GMC model, presented

in Chapter 4, addresses this issue and allows to represent problems that involve such cost

structures. In Chapter 5, it has then been shown how the GMC model can be solved by

heuristics based on Lagrangian relaxation.

In this chapter, we develop an alternative formulation for the CSLP that is based on

the GMC modeling technique in order to obtain strong LP relaxation bounds and enable

the representation of a more realistic cost structure. In particular, we extend the DFLPG

to allow for partial facility closing and the relocation of facilities.

In the following, we discuss questions that arise when relocation is modeled in the

context of facility location, in particular in the case of the CSLP. Then, a mathematical

model for the CSLP with common capacity constraints is presented in Section 6.2. This

model is based on the GMC formulation and allows for the partial closing and reopening

of capacities, as well as for the relocation of facilities. Section 6.3 then illustrates how

this problem can be decomposed via Lagrangian relaxation. It elaborates on two differ-

ent relaxations, as well as on the combinatorial nature of the problem when round-up

capacity constraints are used. Computational results are presented in Section 6.4, in-
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cluding an analysis of the integrality gaps of the problems, a computational comparison

between the performance of the flow formulation presented in Chapter 3 and the GMC

based formulation. The results for the different variants of Lagrangian heuristics indi-

cate that these heuristics are a promising avenue to provide robust results, even for large

scale instances. Finally, Section 6.5 concludes this chapter and discusses future research

directions.

Preliminary Discussions Concerning Facility Relocation

When modeling relocation in facility location problems, several issues have to be

discussed in the context of the actual application context. In the Camp Size and Location

Problem, facilities have a particularly complex structure, which raises several questions.

To ensure an unambiguous modeling of facility relocation, we establish the following

assumptions, which are identical to those assumed for the CSLP in Chapter 3:

– Facilities can only be relocated as a whole, not partially.

– Before relocating a facility, its entire capacity has to be closed.

– After a facility has been relocated to another location, its capacity has to be re-

opened before it is available.

– Each location can only hold a single facility. A facility cannot be relocated to a

location with an already existing facility.

– In the same way, facilities cannot be merged.

– One may relocate a facility from a location a to another location and relocate a

facility to location a at the same time period.

– One may relocate a facility from a location a to another location and construct a

new facility at location a at the same time period.

6.2 GMC Based Mathematical Formulation

In this section, we develop a GMC based formulation for the CSLP, using common

capacity constraints instead of round-up capacity constraints. This problem extends the

DFLPG by including partial facility closing and relocation of facilities. It is denoted
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as the Dynamic Facility Location Problem with Relocation and Partial Facility Closing

(DFLP_RPC). The problem variant without relocation, a straight-forward simplification

of the DFLP_RPC, will be denoted as the Dynamic Facility Location Problem with Par-

tial Facility Closing (DFLP_PC).

Input Data. We consider the same input data as used for the CSLP. We denote by

J the set of potential facility locations and by L = {0,1,2, . . . ,q} the set of possible

capacity levels for each facility. We also denote by I the set of customer demand points

and by T = {1,2, . . . , |T |} the set of time periods in the planning horizon. We assume

throughout that the beginning of period t + 1 corresponds to the end of period t. The

set of different commodities is denoted by P. The demand of customer i for commodity

p ∈ P in period t is denoted by dipt , while gi j`pt denotes the cost to produce one unit of

commodity p∈P at a facility of size `∈ L at location j ∈ J and deliver it to customer i∈ I

at time period t ∈ T . The capacity of a facility of size ` at location j is given by u j` (with

u j0 = 0). Furthermore, we let J0 be the set of locations that already possess facilities at

the beginning of the planning horizon and ` j be the capacity level of an existing facility

at location j. The construction cost of a facility of size ` ∈ L at location j ∈ J is denoted

by cC
j`. The costs cTO

` and cTC
` are the costs to reopen and close ` capacity levels of

the same facility, respectively. The maintenance costs for a facility with ` open trailers

during period t is given by cM
`t .

Decision Variables and Aggregated Coefficients. The GMC formulation uses bi-

nary variables of type y j`1`2t to represent a capacity change from level `1 to `2. In the

DFLP_RPC, one needs to simultaneously manage capacity on two levels: the existing

capacity and the open capacity. We therefore extend this modeling technique and use

binary variables y j`1`2n1n2t that are 1 if a facility at location j changes its level of existing

capacity from n1 to n2 and its level of open capacity from level `1 to `2 at the beginning

of time period t. Clearly, variables are defined only for `1 ≤ n1 and `2 ≤ n2. Binary

variables wBO
j`nt indicate whether a facility of size n, open at capacity level `, is closed

and relocated from location j to another location before period t. Binary variables wBI
jnt
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indicate whether a facility of size n is relocated to location j before period t. The contin-

uous variables xi j`pt ∈ [0,1] denote the fraction of the demand dipt satisfied by a facility

at location j open at facility level `.

A cost matrix f j`1`2n1n2t describes the aggregated costs to change the open capacity

of a facility at location j from level `1 to `2 and the existing capacity from level n1 to n2

at the beginning of period t, as well as the costs to operate the facility at levels `2 and n2

throughout time period t. The number of capacity levels constructed (nFC), the number

of capacity levels reopened (nRE) and the number of capacity levels closed (nCL) that

are represented by a decision variable y j`1`2n1n2t can be computed as:

nFC = max{0,(n2−n1)}

nRE = max{0,(`2− `1)−nFC}

nCL = max{0,(`1− `2)+nFC}

The cost coefficients are then defined as:

f j`1`2n1n2t = cM
`2t + cC

(nFC)t + cTO
(nRE)t + cTC

(nCL)t

The costs to relocate a facility of size n are given by cR
n . Based on these definitions,

we define the following MIP model, referred to as the Generalized Modular Capacities
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formulation for the DFLP_RPC (RPC-GMC):

(RPC-GMC)

min ∑
j∈J

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

∑
t∈T

f j`1`2n1n2ty j`1`2n1n2t +∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

gi j`ptdiptxi j`pt

+ ∑
j∈J

∑
`∈L

∑
n∈L

∑
t∈T

(cTC
` +

cR
n
2
)wBO

j`nt + ∑
j∈J

∑
n∈L

∑
t∈T

cR
n
2

wBI
jnt (6.1)

s.t. ∑
j∈J

∑
`∈L

xi j`pt = 1 ∀i ∈ I, ∀p ∈ P, ∀t ∈ T (6.2)

∑
i∈I

∑
p∈P

diptxi j`pt ≤ ∑
`1∈L

∑
n1∈L

∑
n2∈L

u j`y j`1`n1n2t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (6.3)

∑
`1∈L

∑
n1∈L

y j`1`n1n(t−1) = ∑
`2∈L

∑
n2∈L

y j``2nn2t +wBO
j`nt

∀ j ∈ J, ∀` ∈ L\{0} , ∀n ∈ L\{0} , ∀t ∈ T\{1} (6.4)

∑
`1∈L

∑
n1∈L

y j`10n1n(t−1)+wBI
jnt = ∑

`2∈L
∑

n2∈L
y j0`2nn2t +wBO

j0nt ∀ j ∈ J, ∀n ∈ L\{0} , ∀t ∈ T\{1}

(6.5)

∑
`2∈L

∑
n2∈L

y j` j`2(n1=` j)n21 = 1 ∀ j ∈ J0 (6.6)

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

y j`1`2n1n2t ≤ 1 ∀ j ∈ J, ∀t ∈ T (6.7)

∑
j∈J

∑
`∈L

wBO
j`nt = ∑

j∈J
wBI

jnt ∀n ∈ L, ∀t ∈ T (6.8)

xi j`pt ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (6.9)

y j`1`2n1n2t ∈ {0,1} ∀i ∈ I, ∀ j ∈ J, ∀`1 ∈ L, ∀`2 ∈ L

, ∀n1 ∈ L≥`1, ∀n2 ∈ L≥`2, ∀t ∈ T (6.10)

wBO
j`nt ∈ {0,1} , ∀ j ∈ J, ∀` ∈ L, ∀n ∈ L, ∀t ∈ T (6.11)

wBI
jnt ∈ {0,1} , ∀ j ∈ J, ∀n ∈ L, ∀t ∈ T. (6.12)

The objective function (6.1) minimizes the total costs for changing the capacity lev-

els and allocating the demand. Note that the relocation costs cR
n are equally split on both

variables wBO and wBI . This way, we intend to better use both variables within the La-
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grangian relaxation in which the relocation linking constraints are relaxed. Constraints

(6.2) are the demand constraints for the customers. Constraints (6.3) are the capacity

constraints at the facilities. Constraints (6.4) and (6.5) are the flow conservation con-

straints that link the capacity change variables in consecutive time periods. Constraints

(6.6) are the flow initialization constraints that specify that exactly one capacity level is

chosen at the beginning of the planning horizon. Constraints (6.7) guarantee that exactly

one capacity change variable is selected at each time period. Finally, constraints (6.8)

are the relocation linking constraints, ensuring that all facilities of size ` that have been

removed from a location are located at another location at the same time period.

The DFLP_PC is modeled in the same manner, without the relocation linking con-

straints (6.8) and relocation variables as defined by (6.11) and (6.12). Furthermore,

equalities (6.6) have to be defined for all j ∈ J, and contain all possible capacity levels

on the left-hand side of the equation. Given that these constraints in combination with

the flow conservation constraints guarantee that a at most one y variable is selected at

each location and time period, constraints (6.7) become redundant. This formulation is

referred to as the PC-GMC formulation. The network structure used in both problems,

represented by the flow conservation constraints, is illustrated in Figure 6.1 for a small

example with four time periods and two capacity levels. Each node represents the num-

ber of open and existing capacity (open capacity level / existing capacity level). The

binary capacity change variables are represented by arcs, which allow for the construc-

tion of new capacity, as well as the closing and reopening of open capacity.

Valid Inequalities. We also adapt the Strong Inequalities and the Aggregated Demand

Constraints to the PC-GMC and RPC-GMC formulations:

xi j`pt ≤ ∑
`1∈L

∑
n1∈L

∑
n2∈L

y j`1`n1n2t ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (6.13)

∑
i∈I

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

u j`2y j`1`2n1n2t ≥ ∑
j∈J

∑
p∈P

dipt ∀t ∈ T. (6.14)
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Figure 6.1: Network model to manage partial facility closing and reopening used in the
PC-GMC and RPC-GMC models. Each node indicates the level of open and existing
capacity.

6.3 Lagrangian Heuristics

We now discuss how to apply Lagrangian relaxation to the GMC based formulation

with and without relocation. It has been shown in Chapter 5 that, when relaxing the

demand constraints in the DFLPG, the Lagrangian subproblem can be decomposed into

independent subproblems, one for each candidate facility location. These independent

subproblems can then be efficiently solved by dynamic programming.

When applying Lagrangian relaxation to the DFLPG_PC, relaxing the demand con-

straints also results in independent subproblems, which can be solved with a similar

algorithm. When the relocation of facilities is allowed, the relocation linking constraints

(6.8) are an additional link between the candidate facility locations. Therefore, relax-

ing the demand constraints in the DFLPG_RPC is not sufficient to decompose the La-

grangian subproblem into independent problems. We have two possibilities to apply

Lagrangian relaxation to the problem. We can relax both the demand constraints (6.2)

and the relocation linking constraints (6.8) in order to obtain a subproblem that can be
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decomposed by location. This approach is explained in Section 6.3.1. Alternatively, we

relax only the demand constraints (6.2). The remaining Lagrangian subproblem then

still includes the relocation linking constraints and, therefore, cannot be decomposed by

location. Instead, the subproblem may be transformed into an IP and be solved by a

generic MIP solver. This approach is discussed in Section 6.3.2.

6.3.1 Relaxation of Demand and Relocation Linking Constraints

We relax both the demand constraints (6.2) and the relocation linking constraints

(6.8). Let α be the vector of Lagrange multipliers associated to the relaxed demand

constraints and β the one associated to the relaxed relocation linking constraints. This

results in the Lagrangian subproblem, which, after rearranging the terms in the objective

function, can be stated as follows:

L(α,β ) = min ∑
j∈J

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

∑
t∈T

f j`1`2n1n2ty j`1`2n1n2t

+ ∑
j∈J

∑
`∈L

∑
n∈L

∑
t∈T

(cTC
` +

cR
n
2
−βnt)wBO

j`nt + ∑
j∈J

∑
n∈L

∑
t∈T

(
cR

n
2
+βnt)wBI

jnt

+∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

(gi j`ptdipt−αipt)xi j`pt

+∑
i∈I

∑
p∈P

∑
t∈T

αipt

s.t. (6.3)− (6.7),(6.9)− (6.12).

The Lagrangian dual problem is then solved to obtain the optimal Lagrange multipli-

ers. If solved to optimality, the lower bound provided is equivalent to the LP relaxation

bound:

max
α,β

L(α,β )

The subgradient direction is composed of the two vectors γipt and µnt , which rep-

resent the subgradients for the relaxed demand and relocation linking constraints, re-
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spectively. At the k− th iteration, they are computed as the derivative of the relaxed

constraints in α and β , respectively, with variables x, wBO and wBI fixed to the values

found in the Lagrangian subproblem:

γ
k
ipt = 1−∑

j∈J
∑
`∈L

xi j`pt ∀i ∈ I, ∀p ∈ P, ∀t ∈ T

µ
k
nt = ∑

j∈J
wBI

jnt−∑
j∈J

∑
`∈L

wBO
j`nt ∀n ∈ L\{0} , ∀t ∈ T.

We refer to Section 5.4 for more explanations on the subgradient and bundle meth-

ods.

6.3.1.1 Solution of the Lagrangian Subproblem

Let c̃i j`pt = gi j`ptdipt −αipt denote the modified variable coefficients for the x vari-

ables. We separate the Lagrangian subproblem into |J| independent subproblems, one

for each potential facility location for a fixed set of Lagrange multipliers α . The La-

grangian subproblem is then defined as L(α,β ) = ∑ j∈J L j(α,β )+∑i∈I ∑p∈P ∑t∈T αipt ,
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where L j(α,β ) is defined as follows:

L j(α,β ) =

min ∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

∑
t∈T

f j`1`2n1n2ty j`1`2n1n2t

+ ∑
`∈L

∑
n∈L

∑
t∈T

(cTC
` +

cR
n
2
−βnt)wBO

j`nt + ∑
n∈L

∑
t∈T

(
cR

n
2
+βnt)wBI

jnt

+∑
i∈I

∑
`∈L

∑
p∈P

∑
t∈T

c̃i j`ptxi j`pt +∑
i∈I

∑
p∈P

∑
t∈T

αipt

s.t. ∑
i∈I

∑
p∈P

diptxi j`pt ≤ ∑
`1∈L

∑
n1∈L

∑
n2∈L

u j`y j`1`n1n2t ∀` ∈ L, ∀t ∈ T (6.15)

∑
`1∈L

∑
n1∈L

y j`1`n1n(t−1) = ∑
`2∈L

∑
n2∈L

y j``2nn2t +wBO
j`nt ∀` ∈ L\{0} , ∀n ∈ L, ∀t ∈ T\{1}

(6.16)

∑
`1∈L

∑
n1∈L

y j`10n1n(t−1)+wBI
jnt = ∑

`2∈L
∑

n2∈L
y j0`2nn2t +wBO

j0nt ∀n ∈ L, ∀t ∈ T\{1}

(6.17)

∑
`2∈L

∑
n2∈L

y j` j`2(n1=` j)n21 = 1 ,∀ j ∈ J0 (6.18)

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

y j`1`2n1n2t ≤ 1 ∀t ∈ T (6.19)

xi j`pt ≥ 0 ∀i ∈ I, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (6.20)

y j`1`2n1n2t ∈ {0,1} ∀i ∈ I, ∀`1 ∈ L, ∀`2 ∈ L, ∀n1 ∈ L, ∀n2 ∈ L, ∀t ∈ T

(6.21)

wBO
j`nt ∈ {0,1} ∀` ∈ L, ∀n ∈ L, ∀t ∈ T (6.22)

wBI
jnt ∈ {0,1} ∀n ∈ L, ∀t ∈ T. (6.23)

The dynamic programming algorithm to solve this subproblem extends the one pre-

sented in Chapter 5. Let Oα,β
j (`,n, t) denote the value of the optimal opening schedule

from time period 1 to t, including the costs to satisfy the customer demand during these

time periods and assuming that a facility of size n, open at capacity level ` is available at

the end of time period t. To compute these values, one needs to evaluate the following
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four cases, where an “IN relocation” represents the case in which a facility is relocated to

the location and an “OUT relocation” represents the case in which a facility is relocated

from the location:

i. No IN relocation, no OUT relocation. In this standard case, the cheapest capacity

level is chosen, including the costs to satisfy demand until period t − 1 and the

costs for the capacity transition:

Ĉ1(`,n, t) = min
0≤n1≤n,0≤`1≤n1

{ f j`1`n1nt +Oα,β
j (`1,n1, t−1)}

ii. IN relocation, no OUT relocation. The location did not have a facility at period

t−1 (since no facility has been relocated from the location to another, and merging

of facilities is not allowed). A facility of size n1 has been relocated to location j

and possibly expanded by additional capacity, resulting in a final level of existing

capacity n. Furthermore, some unused capacity may have been closed, resulting

in a final level of open capacity `:

ĈRelocIN(`,n, t) = min
1≤n1≤n

{
cR

n1

2
+ cTO

(nRE)t + cTC
(nCL)t +βn1t + cc

j(n−n1)
|

nRE = max{0, `−n+n1} ,nCL = max{0,n−n1− `}}

Ĉ2(`,n, t) = ĈRelocIN(`,n, t)+ cM
`t +Oα,β

j (0,0, t−1)

iii. No IN relocation, OUT relocation. A facility of unknown size has been relocated

to another location. Since we know that currently a < `,n > facility is available, it

must have been constructed after the relocation of the outgoing facility:

ĈRelocOUT = min
1≤n1≤q,0≤`1≤n1

{cTC
`1t +

cR
n1

2
−βn1t +Oα,β

j (`1,n1, t−1)}

Ĉ3(`,n, t) = ĈRelocOUT + f j0`0nt

iv. IN relocation, OUT relocation. A facility of unknown size has been relocated to

another location. Furthermore, a facility has been located to the current location
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and/or capacity has been constructed such that now a facility of size n is available:

Ĉ4(`,n, t) = ĈRelocIN(`,n, t)+ĈRelocOUT + cM
`t

The optimal value for Oα
j (`,n, t) is then computed as follows:

Oα,β
j (`,n, t) = Lα

j (`,n, t)+min{Ĉ1(`,n, t),Ĉ2(`,n, t),Ĉ3(`,n, t),Ĉ4(`,n, t)}

If we assume that the location does not have existing facilities at the beginning of the

planning horizon, facility relocation is not possible at period 1 and the initial capacity

level is 0:

Oα
j (`,n,0) = Lα

j (`,n,0)+ f j(`1=0)`(n1=0)nt

We solve the subproblem for location j by selecting the minimum among all possible

facility sizes:

L j(α,β ) = min
0≤`≤q,`≤n≤q

{
Oα

j (`,n, |T |)
}

For each cell < j, `,n, t >, its predecessors < j, `′,n′, t−1 > of the optimal opening

schedule are stored. In addition, the following information are stored, indicating whether

relocations are part of the optimal schedule:

– A flag (yes/no), indicating whether a facility of size n has been relocated to this

location.

– The size and number of open capacity levels of a facility that has been relocated

from the current to another location.

The solution provided by this algorithm contains, for each time period, one decision

for facility closing, facility opening and facility maintenance (each indicating the size `

of the corresponding facility).
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6.3.1.2 Generation of Upper Bounds

Feasible solutions for the DFLP_PC and the DFLP_RPC are generated in a similar

fashion as for the DFLPG (see Section 5.4.3). First, redundant demand is reduced as it is

the case for the DFLPG. If, at a certain time period, capacity is missing, we increase the

open capacity level ` of the facilities until the total demand can be met or the existing

capacity level n is reached. Note that facilities are considered without a specific order.

If the total demand can still not be covered by the available (i.e., open) capacity, we

consider locations without facilities and increase both ` and n until the missing capacity

is covered or the maximum capacity level for this facility is reached. Missing demand

allocation is then increased as it has been shown for the DFLPG. Afterwards, unused ca-

pacities are closed using a dynamic programming algorithm similar to the one shown for

the solution of the Lagrangian subproblem. In a final step, the optimal demand allocation

for the current opening schedule is computed using the CPLEX network algorithm.

For the DFLP_RPC, the relocation decisions provided by the Lagrangian solution

can be used to generate a feasible solution. This requires to match the wBO
j`nt and wBI

jnt

variables. However, experiments showed that these pairs rarely match in the Lagrangian

solutions, i.e., the number of selected wBO
j`nt variables does not necessarily equal the num-

ber of selected wBI
jnt variables for each facility size n and time period t. We therefore

apply the following procedure to select feasible pairs of outgoing and incoming reloca-

tions. For each pair of facility size n and time period t, we collect the maximum number

of facility matches j′ and j′′ (with j′ 6= j′′) such that wBO
j′`nt and wBI

j′′nt are part of the La-

grangian solution. To find those pairs, facilities are considered without a specific order.

The procedure excludes configurations that may lead to an infeasible opening schedule

at each of the facility locations. To be precise, we ensure that no outgoing relocation

of a facility is smaller than a previous incoming relocation and that multiple incoming

relocations at the same location are separated by outgoing relocation.

For locations for which no relocation pairs have been selected, we use the Lagrangian

solution for the problem variant without relocation.
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6.3.2 Relaxation of the Demand Constraints

When relaxing only the demand constraints, the relocation linking constraints still

provide a link between the different facility locations. To the best of our knowledge,

this problem cannot be decomposed by location. A feasible solution can be obtained by

solving a MIP model in which all demand allocation variables are eliminated. This is

explained next.

The Lagrangian subproblem is transformed into an integer problem as follows. The

demand allocation variables x can be eliminated by observing that the optimal solution

values for x variables linked to a facility opening decision ( j, `, t) can be easily obtained

by solving a fractional knapsack, taking into consideration the modified cost vector c̃

as OF coefficients for the x variables and assuming that facility j has an open capacity

of level ` at time period t. The procedure is equivalent to the one outlined in Section

5.4.1. The solution value of the knapsack is then added to the OF coefficient of the

corresponding facility opening decisions, i.e., all y j`1`2n1n2t variables with `2 = ` and

n2 = n. The resulting problem is a pure IP, consisting only of the y j`1`2n1n2t binary

variables. To ensure feasibility in the original problem, we also add the Aggregated

Demand Constraints (ADC). The problem is then solved by a MIP solver.

6.3.2.1 Generation of Upper Bounds

If the ADCs are added to the problem formulation, the solution obtained by the La-

grangian subproblem is feasible for the DFLPG_RPC. The Lagrangian solution provides

an opening schedule for the facilities, as well as their relocation decisions. Given that

the demand allocation in this solution has been computed based on demand allocation

costs that have been modified by the Lagrange multipliers α , we first remove the current

demand allocation suggested by the Lagrangian solution and then compute the optimal

demand allocation for the given opening schedule based on the original allocation costs.
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6.3.3 Using Round-up Capacity Constraints

It has been shown how Lagrangian relaxation can be applied to dynamic facility

location problems that involve partial facility closing and reopening, as well as facility

relocation. We now address the last particularity of the CSLP, namely the round-up

capacity constraints (see Section 3.5.2). These constraints assume that demand can be

satisfied only in batches, i.e., facilities produce entire batches of products, even when the

requested quantity is less (and fractional). We denote by nSp the number of units within

a produced batch of commodity type p. We introduce new integer variables z j`pt ∈ Z+,

which represent the total number of batches of product type p assigned to a size ` facility

at location j ∈ J. The DFLP_RPC with RUC constraints is then given by (6.1), (6.2),

(6.4) - (6.12), with the following RUC constraints that substitute the former capacity

constraints (6.3):

∑
i∈I

diptxi j`pt ≤ z j`pt ∀ j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (6.24)

∑
p∈P

nSpz j`pt ≤ ∑
`1∈L

∑
n1∈L

∑
n2∈L

u j`y j`1`n1n2t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (6.25)

z j`pt ∈ Z+
0 ∀ j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T. (6.26)



163

The Lagrangian Subproblem

Relaxing the demand and relocation linking constraints, the Lagrangian subroblem

is as follows:

L(α,β ) = min ∑
j∈J

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n1∈L

∑
t∈T

f j`1`2n1n2ty j`1`2n1n2t

+ ∑
j∈J

∑
`∈L

∑
n∈L

∑
t∈T

(cTC
` +

cR
n
2
−βnt)wBO

i`nt + ∑
j∈J

∑
n∈L

∑
t∈T

(
cR

n
2
+βnt)wBI

int

+∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

(gi j`ptdipt−αipt)xi j`pt

+∑
i∈I

∑
p∈P

∑
t∈T

αipt

s.t. (6.4)− (6.12),(6.24)− (6.26).

Note that, using the RUC constraints, the Lagrangian subproblem does not have the

integrality property. The lower bound provided by the Lagrangian subproblem may thus

be better than the bound provided by the LP relaxation of the original problem.

Solution of the Lagrangian Subproblem

As has been shown for the case with common capacity constraints, the Lagrangian

subproblem can be decomposed into |J| independent problems, one for each candidate

facility location. These problems are equivalent to finding the optimal opening sched-

ule for each facility location. With common capacity constraints, the optimal demand

allocation for each location, time period and capacity level can be found by solving a

fractional knapsack problem. When using RUC constraints, the optimal demand alloca-
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tion is obtained by solving problems of the following type, with j, ` and t fixed:

min∑
i∈I

∑
p∈P

c̃i j`ptxi j`pt

s.t. ∑
i∈I

diptxi j`pt ≤ z j`pt ∀p ∈ P

∑
p∈P

nSpz j`pt ≤ u j`

xi j`pt ≤ 1 ∀i ∈ I, ∀p ∈ P

xi j`pt ∈ R+ ∀i ∈ I, ∀p ∈ P

z j`pt ∈ Z+
0 ∀p ∈ P.

The problem contains two encapsulated knapsack problems: for each p, an integer

value for z j`pt has to be selected such that the total capacity is respected and the costs

are minimal. However, the cost for choosing a certain integer value is not linear, but

depends on the choice of x. For each integer value of z j`pt , a continuous knapsack has to

be solved to choose a number of x variables such that the total costs are minimal.

The steps to solve this problem are as follows:

i. In a first step, we identify all feasible integer values for z j`pt . These values are

bounded by u j`
nSp

. For each p, we then have a number of integer values that z j`pt

may take, represented by set Ωp =
{

0,1,2, ...,
⌊

u j`
nSp

⌋}
.

ii. The costs for each of the integer values of z j`pt are computed by solving a con-

tinuous knapsack problem, just as performed in the Lagrangian Relaxation for the

version with common capacity constraints. Thus, for each p ∈ P, we solve such a

continuous knapsack. The capacity of the knapsack is given by the integer value of

z j`pt , which we denote by cap j`pt . Note that the weight of each object is given by

dipt . Thus, for each p ∈ P, we solve a continuous knapsack for each cap j`pt ∈Ωp

as follows:

We choose the x variables with the lowest ratio between its coefficient within the

objective function and the coefficient within the constraint, i.e., c̃i j`pt
dipt

. To be pre-

cise, we choose the xi∗ j`p∗t variable that has the most negative ratio c̃i j`pt
dipt

and has
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not yet been chosen:

i∗ = min
i∈I

{
i :

c̃i j`pt

dipt

}
Let cap′j`pt be the remaining capacity. We then increase the value of the x variable

to the maximum value possible, i.e., either until the entire demand is met or the

capacity limit is reached:

xi∗ j`pt = min

{
1.0,

cap′j`pt

di∗pt

}

All other x variables are set to 0. Clearly, only x variables with negative ratios are

considered.

iii. The cost coefficients for each z j`pt are given by the solution of the previously

solved continuous knapsack for z j`pt . In the following knapsack problem, each

integer value for a z j`pt variable represents an object. The weight of object z j`pt is

given by nSpz j`pt . The total capacity is given by u j`. In this type of integer knap-

sack, we need to choose exactly one object for each p ∈ P. This knapsack variant

is also known as the Multiple-Choice Knapsack Problem (MCKP), presented by

Martello and Toth (1990), and is solved by a Dynamic Programming algorithm.

Note that, in step (ii), solving the series of continuous knapsacks, one for each value

of z j`pt , for a given p can be performed efficiently by noting that the optimal solution

for the continuous knapsack of a capacity z′ is necessarily part of an optimal solution for

any capacity higher than z′.

Upper Bound Generation

Generating upper bounds for the problem variant with RUC constraints is similar to

the one without RUC constraints. However, the integer-rounding needs to be taken into

account in several situations. When increasing capacities, the capacity for each product

is given by the value of the current z j`pt value. Furthermore, the integer-rounding need

to be considered when closing unused capacities.



166

6.3.4 Restricted MIP model

We may use a restricted MIP similar to the one introduced in Section 5.5 to improve

the final solution quality. For the DFLPG, we consider a restricted MIP based on the

convexified solutions provided by the bundle method (see Section 5.5.2). In contrast to

the restricted MIP model for the DFLPG, the restricted MIP models for the DFLP_PC

and DFLP_RPC need to decide for the level of open and existing capacity levels for each

location and time period. We therefore define the restricted MIP in terms of capacity

level pairs (`,n) instead of a capacity level ` only.

As explained in Section 5.4.2, the bundle method provides a multiplier θ s for each

Lagrangian solution s such that ∑s θ s = 1. The value θ s can be seen as a probability

that solution s provides a good opening schedule. We may therefore derive probabilities

for each of the opening decisions ỹ j`nt = ∑s θ sys
j`nt , where ys

j`nt is 1 if solution s selects

capacity level pair (`,n) for location j at period t. Furthermore, let LR
jt be the set of (`,n)

pairs for location j and period t available in the restricted MIP. The restricted MIP is

then defined as follows:

– Decision fixing. For each j and t, a decision is fixed to capacity level pair (`,n) if

ỹ j`nt ≥ pFix, where pFix ∈]0.5,1].
– Selection of available capacity levels. If the decision for location j and period

t is not fixed, LR
jt is composed by the nS capacity level pairs (`,n) that have the

highest ỹ j`nt values, with ỹ j`nt > 0.001.

– Defining the set of capacity transitions. Decisions y j`1`2n1n2t are defined for

all combinations between (`1,n1) and (`2,n2), with (`1,n1) ∈ LR
jt and (`2,n2) ∈

LR
j(t+1), if available in the original PC-GMC or RPC-GMC formulation.

For the DFLP_RPC, we additionally consider relocation decisions in the restricted

MIP. Probabilities for outgoing and incoming relocations w̃BO
j`nt and w̃BI

jnt , respectively,

can be computed as follows. We set w̃BO
j`nt = ∑s θ swBOs

j`nt , where wBOs
j`nt is 1 if solution s

relocates a facility of size n open at level ` from location j to another location at period t.

In the same way, we set w̃BI
jnt = ∑s θ swBIs

jnt , where wBIs
jnt is 1 if solution s relocates a facility

of size n open at level ` from location j to another location at period t. All relocation
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variables with their corresponding w̃BOs
j`nt and w̃BI

jnt greater or equal to 0.001 are added to

the restricted model. To ensure their feasibility with respect to the flow conservation

constraints, certain capacity levels are added to the sets of available capacity levels LR.

To be precise, when adding a relocation decision wBI
jnt to the restricted MIP, capacity level

pair (0,n) is added to LR
j(t−1) and capacity level pairs (0,n) and (n,n) are added to LR

jt

to ensure that the flow conservation constraints contain the capacity transition variables

y j`1`2n1n2t that either maintain the facility closed or reopen it at its maximum capacity

level n.

6.4 Computational Results

This section focuses on the computational results concerning the models and La-

grangian based heuristics for the DFLP_PC and DFLP_RPC. Section 6.2 introduced the

GMC based models for both problem variants, referred to as the PC-GMC and RPC-

GMC formulations, respectively. Note that these problem variants do not involve the

round-up capacity constraints.

A flow formulation for the CSLP has been introduced in Section 3.5. As the CSLP

corresponds to the DFLP_RPC, but with round-up capacity constraints (see Section

3.5.2), one obtains similar flow formulations for the DFLP_PC and the DFLP_RPC.

We denote the corresponding formulation for the DFLP_RPC as the RPC-2i formula-

tion, which is defined by (3.12) – (3.13), (3.16) – (3.36) and the common capacity con-

straints, which replace the round-up capacity constraints (3.14) – (3.15) and are defined

as follows (note the inverse notation of sets I and J, as well as the use of K instead of L

for the set of capacity levels):

∑
j∈J

∑
p∈P

xi jkpt ≤ uikyikt ∀i ∈ I, ∀k ∈ K, ∀t ∈ T. (6.27)

The corresponding flow formulation for the DFLP_PC, referred to as the PC-2i for-

mulation, is defined in a similar manner, but without the relocation linking constraints

(3.26) and without the relocation variables wBO
jkt and wBI

jkt .



168

In the following, computational results are presented to evaluate both formulations

for the DFLP_PC and the DFLP_RPC. For each problem variant, the integrality gaps and

the performance of CPLEX to find optimal integer solutions are investigated, taking into

consideration the two different formulations. Then, results are presented that indicate

the potential of the Lagrangian heuristics.

Note that all computational experiments have been performed on the instance set

used in Chapter 5. We refer to Appendix C.1 for a detailed description of the parame-

ters used to generate the instances. All mathematical models and the Lagrangian based

heuristics have been implemented in C/C++ using the IBM CPLEX 12.6.0 Callable Li-

brary. The code has been compiled and executed on openSUSE 11.3. Each problem

instance has been run on a single Intel Xeon X5650 processor (2.67GHz), limited to

24GB of RAM.

6.4.1 Computational Results for the DFLP_PC

We now present computational results for the DFLP_PC, including an analysis of the

integrality gap for the PC-2i and PC-GMC formulations, the performance of CPLEX to

find optimal integer solutions and results for the Lagrangian heuristics.

Integrality gaps

We now elaborate on the average integrality gaps of the proposed formulations. Ta-

ble 6.I summarizes the deviation of the LP relaxation values from the best known upper

bounds for two sets of instances: in the first set, instances are considered if their best

known upper bounds are within 0.1% of the optimal solution. In the second set, in-

stances are considered regardless of the quality of the available upper bound. Given that

the models become very large, CPLEX could not solve all LP relaxations within the

available memory of 24 gigabyte and time limit of 12 hours computing time. The table

therefore considers only those instances for which the LP relaxation of both formula-

tions has been solved by CPLEX. CPLEX was not able to solve the LP relaxation for the

majority of the large instances with q = 10, mostly due to memory limitations.



169

Integr. Gap % compared to Integr. Gap % compared to
best known UB < 0.1% from opt best known UB

q Instance # inst. Integr. Gap* % # inst. Integr. Gap* %
size PC-2i PC-GMC PC-2i PC-GMC

3 50/50 15 3.64 0.70 18 3.87 0.89
50/200 18 1.06 0.04 18 1.06 0.04
100/100 18 2.54 0.13 18 2.54 0.13
100/400 18 0.98 0.01 18 0.98 0.01
150/150 18 2.09 0.08 18 2.09 0.08
150/600 18 0.94 0.01 18 0.94 0.01
200/200 18 1.91 0.05 18 1.91 0.05
200/800 12 0.85 0.01 18 1.06 0.18
250/250 18 1.72 0.02 18 1.72 0.02
250/1000 6 0.74 0.02 16 1.29 0.42
Avg All 159 1.71 0.11 178 1.75 0.18

5 50/50 9 5.91 1.38 18 7.13 1.99
50/200 16 1.90 0.17 18 1.98 0.22
100/100 11 3.83 0.30 18 4.58 0.59
100/400 18 1.65 0.03 18 1.65 0.03
150/150 13 3.49 0.21 18 3.70 0.33
150/600 12 1.50 0.01 18 1.76 0.22
200/200 14 3.11 0.13 18 3.26 0.21
200/800 6 1.29 0.02 12 1.70 0.29
250/250 10 2.56 0.02 15 2.92 0.09
250/1000 5 1.24 0.02 6 1.30 0.06
Avg All 114 2.65 0.21 159 3.18 0.44

10 50/50 2 11.97 2.33 16 12.48 2.86
50/200 4 4.39 0.46 13 4.93 0.82
100/100 0 - - 11 10.03 2.05
100/400 5 2.98 0.04 5 2.98 0.04
150/150 0 - - 5 7.08 1.02
150/600 1 3.57 0.05 1 3.57 0.05
200/200 1 4.78 0.21 2 5.64 0.53
200/800 0 - - 0 - -
250/250 0 - - 0 - -
250/1000 0 - - 0 - -
Avg All 13 4.98 0.53 53 8.29 1.61

All Avg All 286 2.23 0.17 390 3.22 0.48

Table 6.I: Deviations of LP relaxation values from best known upper bounds for the two
formulations of the DFLP_PC.
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When the LP relaxation has been solved and the (near) optimal solutions are known,

the PC-GMC clearly dominates the PC-2i flow formulation, presenting an average inte-

grality gap more than 10 times lower than the one given by the flow formulation.

CPLEX Optimization for the DFLP_PC

Table 6.II summarizes the results given by CPLEX, using the PC-2i and the PC-

GMC formulations. For each of the two formulations, the table summarizes the number

of instances where feasible solutions have been found (“# inst.”), as well as the average

and maximum deviation from the best known lower bounds. Given that the models

generated by the PC-2i formulation are smaller than those generated by the PC-GMC

formulation, this formulation finds feasible solutions for slightly more (323 vs. 291)

instances. However, the PC-GMC formulation provides a significantly better solution

quality.

Table 6.III reports a direct comparison between both formulations for the instances

where both formulations found feasible solutions. Here, the PC-GMC formulation con-

firms its advantage when compared to the 2i formulation: computing times and solution

quality are significantly better.

Performance of the Lagrangian Heuristic for the DFLP_PC

The Lagrangian heuristic for the DFLP_PC relaxes the demand constraints. The re-

sulting Lagrangian subproblem is identical to the one presented in Section 6.3.1. How-

ever, it does neither contain the relocation variables nor the relocation linking constraints.

Feasible solutions are generated based on the Lagrangian solutions by adapting the steps

indicated in Section 5.4.3. A 0.01% optimality stopping criteria has been used. Further-

more, the Lagrangian dual is solved by the bundle method, limited to a maximum of 500

iterations.

Table 6.IV compares the performance of two different configurations of the La-

grangian heuristic. The first heuristic only uses the bundle method, whereas the second

heuristic adds the solution of the restricted MIP model based on the convexified solu-
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PC-2i PC-GMC
q Instance # inst. Avg % Max % # inst. Avg % Max %

size Gap* Gap* Gap* Gap*
3 50/50 18 0.13 1.15 18 0.11 1.09

50/200 18 0.00 0.01 18 0.00 0.01
100/100 18 0.03 0.41 18 0.01 0.09
100/400 18 0.00 0.01 18 0.00 0.01
150/150 18 0.15 2.73 18 0.00 0.01
150/600 18 0.00 0.01 18 0.00 0.01
200/200 18 0.30 5.14 18 0.00 0.01
200/800 11 0.43 3.39 9 0.00 0.01
250/250 16 0.01 0.16 18 0.01 0.06
250/1000 6 7.40 35.80 6 0.00 0.01
Avg All 159 0.38 35.80 159 0.02 1.09

5 50/50 18 0.96 6.15 18 0.56 2.38
50/200 18 0.05 0.51 18 0.05 0.45
100/100 18 0.27 1.53 18 0.22 1.14
100/400 18 0.00 0.01 12 0.00 0.01
150/150 14 0.13 0.75 18 0.22 1.38
150/600 12 0.01 0.04 6 0.00 0.01
200/200 14 0.14 0.66 11 0.04 0.39
200/800 2 3.24 5.21 0 - -
250/250 12 0.12 0.57 6 0.00 0.01
250/1000 0 - - 0 - -
Avg All 126 0.28 6.15 107 0.18 2.38

10 50/50 11 19.36 90.83 15 2.26 3.78
50/200 10 10.39 80.50 6 0.15 0.60
100/100 7 2.62 10.06 4 0.58 1.50
100/400 7 0.16 1.09 0 - -
150/150 2 0.73 1.28 0 - -
150/600 1 0.01 0.01 0 - -
200/200 0 - - 0 - -
200/800 0 - - 0 - -
250/250 0 - - 0 - -
250/1000 0 - - 0 - -
Avg All 38 8.89 90.83 25 1.48 3.78

All Avg All 323 1.34 90.83 291 0.20 3.78

Table 6.II: CPLEX optimization, using the PC-2i and PC-GMC formulations for the
DFLP_PC.
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PC-2i PC-GMC
q Instance # inst. Avg % Max % Time Avg % Max % Time

size Gap* Gap* (sec) Gap* Gap* (sec)
3 50/50 18 0.13 1.15 2,171.1 0.11 1.09 1,436.6

50/200 18 0.00 0.01 233.6 0.00 0.01 101.2
100/100 18 0.03 0.41 868.9 0.01 0.09 550.2
100/400 18 0.00 0.01 268.4 0.00 0.01 173.0
150/150 18 0.15 2.73 1,634.1 0.00 0.01 404.7
150/600 18 0.00 0.01 1,116.3 0.00 0.01 498.9
200/200 18 0.30 5.14 2,578.4 0.00 0.01 707.9
200/800 9 0.52 3.39 4,984.6 0.00 0.01 1,119.4
250/250 16 0.01 0.16 2,104.6 0.00 0.01 681.6
250/1000 6 7.40 35.80 6,881.3 0.00 0.01 1,880.0
Avg All 157 0.38 35.80 1,780.2 0.02 1.09 649.5

5 50/50 18 0.96 6.15 5,298.3 0.56 2.38 4,042.3
50/200 18 0.05 0.51 2,499.5 0.05 0.45 1,476.7
100/100 18 0.27 1.53 4,207.6 0.22 1.14 3,455.7
100/400 12 0.00 0.01 653.8 0.00 0.01 442.8
150/150 14 0.13 0.75 3,362.4 0.06 0.74 2,343.1
150/600 6 0.00 0.01 2,694.3 0.00 0.01 641.5
200/200 10 0.12 0.66 3,390.1 0.01 0.01 1,317.8
200/800 0 - - - - - -
250/250 6 0.08 0.26 5,006.8 0.00 0.01 1,159.8
250/1000 0 - - - - - -
Avg All 102 0.26 6.15 3,442.4 0.15 2.38 2,192.6

10 50/50 11 19.36 90.83 7,200.1 2.07 3.78 6,911.6
50/200 6 0.18 0.58 6,072.5 0.15 0.60 3,541.7
100/100 4 0.72 1.93 7,200.0 0.58 1.50 7,200.3
100/400 0 - - - - - -
150/150 0 - - - - - -
150/600 0 - - - - - -
200/200 0 - - - - - -
200/800 0 - - - - - -
250/250 0 - - - - - -
250/1000 0 - - - - - -
Avg All 21 10.33 90.83 6,877.9 1.23 3.78 6,003.8

All Avg All 280 1.09 90.83 2,768.1 0.16 3.78 1,613.2

Table 6.III: CPLEX results comparing the the two DFLP_PC formulations, considering
instances where both formulations found feasible solutions.



173

tions. The restricted MIP model has been used with parameter nS = 3 and does not apply

decision fixing. The table reports, for each of the two configurations, the average and

maximum deviations of the obtained upper bounds from the best known lower bounds, as

generated by the Lagrangian heuristic. Note that these results contain all 540 instances.

We observed that the lower bound provided by the bundle method is very close to the LP

relaxation bound. For the upper bounds, the use of the restricted MIP model significantly

improves the final solution quality, generating solutions of reasonable quality even for

larger instances. The maximum deviation from the best known lower bound is 3.72%,

while the average deviation is 0.77%.

Table 6.V compares the performance of CPLEX and the Lagrangian heuristic (bundle

with restricted MIP model) for the instances for which CPLEX found feasible solutions.

The table reports the number of instances where CPLEX does not find feasible solutions

(“# ns”), as well as the average and maximum gaps from the best known lower bounds.

The results indicate that the Lagrangian heuristic provides competitive results with a

maximum optimality gap from the best known lower bounds lower than CPLEX.

6.4.2 Computational Results for the DFLP_RPC

We now present computational results for the DFLP_RPC, including an analysis of

the integrality gaps for the RPC-2i and RPC-GMC formulations, the performance of

CPLEX to find optimal integer solutions and results for the Lagrangian heuristics.

Integrality gaps

Table 6.VI provides information on the integrality gap for the two formulations. As

for the DFLP_PC, the results only include instances where the LP relaxation has been

solved for both formulations. The table summarizes the deviation of the LP relaxation

values from the best known upper bounds for two sets of instances: in the first set,

instances are considered if their best known upper bounds are within 0.1% of the optimal

solution. In the second set, instances are considered regardless of the quality of the

available upper bound. The results show similar trends as observed for the DFLP_PC.



174

Bundle only Bundle + R-MIP
q Instance Avg Max Avg UB* Max Avg

size Gap % Gap % Time Gap % Gap % Time
3 50/50 1.47 3.86 7.2 0.39 1.16 22.3

50/200 0.53 0.99 9.0 0.57 0.95 11.4
100/100 0.74 2.55 14.6 0.41 0.97 15.7
100/400 0.59 0.94 48.7 0.62 0.86 48.1
150/150 1.24 9.00 32.4 0.57 0.99 32.2
150/600 0.73 0.97 129.5 0.71 0.98 129.9
200/200 1.46 6.82 76.2 0.46 0.90 81.9
200/800 0.93 2.39 307.8 0.53 0.95 306.6
250/250 1.03 3.85 118.1 0.52 0.95 119.3
250/1000 1.11 2.63 684.4 0.67 0.98 740.1
Avg All 0.98 9.00 143.9 0.54 1.16 150.8

5 50/50 3.66 6.64 13.3 0.72 2.43 883.4
50/200 0.49 1.25 25.0 0.39 0.90 26.1
100/100 2.20 5.25 41.9 0.40 1.00 183.3
100/400 0.66 0.98 80.0 0.65 0.95 69.8
150/150 2.38 6.01 91.2 0.48 0.93 117.9
150/600 0.72 0.95 193.7 0.73 0.95 185.3
200/200 2.07 7.70 169.6 0.49 0.88 163.2
200/800 0.89 2.10 420.3 0.65 1.00 418.7
250/250 1.93 5.28 239.9 0.54 0.99 268.2
250/1000 1.10 2.66 953.6 0.69 0.96 925.8
Avg All 1.61 7.70 223.2 0.57 2.43 324.2

10 50/50 5.35 8.00 39.1 2.15 3.07 3,169.7
50/200 2.13 3.41 111.0 0.77 1.48 2,185.6
100/100 7.45 9.18 111.4 2.08 3.72 4,971.2
100/400 1.45 3.90 289.5 0.76 0.99 469.1
150/150 6.86 8.29 245.3 1.66 2.50 5,350.0
150/600 1.56 4.01 716.4 0.71 1.00 1,036.3
200/200 7.47 12.30 421.2 1.45 2.10 5,293.8
200/800 1.71 3.41 1,238.3 0.58 0.99 1,653.0
250/250 7.15 10.47 576.4 1.19 2.33 4,665.2
250/1000 1.23 2.96 1,614.1 0.62 0.99 1,779.1
Avg All 4.23 12.30 536.3 1.20 3.72 3,057.3

All Avg All 2.28 12.30 301.9 0.77 3.72 1,177.4

Table 6.IV: Results of the Lagrangian Heuristic for all 540 instances of the DFLP_PC.
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CPLEX Lagrangian Heuristic
q Instance # Avg Max Avg Max

size ns Gap % Gap % Gap % Gap %
3 50/50 0 0.11 1.09 0.39 1.16

50/200 0 0.00 0.01 0.57 0.95
100/100 0 0.01 0.09 0.41 0.97
100/400 0 0.00 0.01 0.62 0.86
150/150 0 0.00 0.01 0.57 0.99
150/600 0 0.00 0.01 0.71 0.98
200/200 0 0.00 0.01 0.46 0.90
200/800 9 0.00 0.01 0.44 0.95
250/250 0 0.01 0.06 0.52 0.95
250/1000 12 0.00 0.01 0.45 0.96
Avg All 21 0.02 1.09 0.52 1.16

5 50/50 0 0.56 2.38 0.72 2.43
50/200 0 0.05 0.45 0.39 0.90
100/100 0 0.22 1.14 0.40 1.00
100/400 6 0.00 0.01 0.68 0.95
150/150 0 0.22 1.38 0.48 0.93
150/600 12 0.00 0.01 0.62 0.82
200/200 7 0.04 0.39 0.38 0.78
200/800 18 - - - 0.00
250/250 12 0.00 0.01 0.47 0.94
250/1000 18 - - - 0.00
Avg All 73 0.18 2.38 0.51 2.43

10 50/50 3 2.26 3.78 2.10 3.04
50/200 12 0.15 0.60 0.35 0.61
100/100 14 0.58 1.50 0.65 1.54
100/400 18 - - - 0.00
150/150 18 - - - 0.00
150/600 18 - - - 0.00
200/200 18 - - - 0.00
200/800 18 - - - 0.00
250/250 18 - - - 0.00
250/1000 18 - - - 0.00
Avg All 155 1.48 3.78 1.45 3.04

All Avg All 249 0.20 3.78 0.60 3.04

Table 6.V: Comparison of solution quality for CPLEX and the Lagrangian heuristic for
the DFLP_PC, considering instances where CPLEX found feasible solutions.
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However, the problem seems to be more difficult to solve. CPLEX was not able to solve

the LP relaxation for most of the large instances with q = 5 and q = 10. When the LP

relaxation has been solved and the (near) optimal solutions are known, the RPC-GMC

formulation clearly dominates the flow formulation, presenting an average integrality

gap more than 20 times lower than the one given by the 2i formulation.

CPLEX Optimization for the DFLP_RPC

Tables 6.VII and 6.VIII summarize the results given by CPLEX. Tables 6.VII sum-

marizes, for each of the two formulations, the number of instances where feasible so-

lutions have been found, as well as the average and maximum deviation from the best

known lower bounds. Interestingly, the observations regarding the number of instances

where feasible solutions are found are now opposed to those made for the DFLP_PC.

Here, the RPC-GMC formulation finds feasible solutions for siginificantly more in-

stances (285 vs. 179).

Table 6.VIII reports a direct comparison between both formulations for the instances

where both formulations found feasible solutions. The RPC-GMC formulation confirms

its advantage: computing times and solution quality are significantly better.

As the DFLP_PC seems to be significantly easier to solve, one may expect that the

quality of solutions obtained from the DFLP_PC may be better than the quality of solu-

tions obtained by the DFLP_RPC. However, a comparison of the solution values from

the two problem variants did not confirm this hypothesis. Using the 2i formulations, the

DFLP_PC resulted in an average deviation of 2.85% from the best known lower bound

of the DFLP_RPC, whereas the DFLP_RPC solutions averaged a 0.44% deviation. For

the GMC based formulations, the DFLP_PC resulted in an average deviation of 3.14%

from the best known lower bound of the DFLP_RPC, whereas the DFLP_RPC solutions

averaged a 0.52% deviation. Note that this comparison only considers instances where

feasible solutions have been found for both formulations.
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Integr. Gap % compared to Integr. Gap % compared to
best known UB < 0.1% from opt best known UB

q Instance # inst. Integr. Gap % # inst. Integr. Gap* %
size RPC-2i RPC-GMC RPC-2i RPC-GMC

3 50/50 14 5.06 0.66 18 5.38 0.93
50/200 18 1.52 0.05 18 1.52 0.05
100/100 18 3.97 0.11 18 3.97 0.11
100/400 18 1.45 0.01 18 1.45 0.01
150/150 18 3.48 0.06 18 3.48 0.06
150/600 18 1.45 0.01 18 1.45 0.01
200/200 18 3.19 0.03 18 3.19 0.03
200/800 14 1.42 0.01 18 1.49 0.09
250/250 18 3.02 0.02 18 3.02 0.02
250/1000 9 1.32 0.03 15 1.57 0.21
Avg All 163 2.62 0.09 177 2.67 0.15

5 50/50 5 6.77 1.00 18 8.35 2.15
50/200 14 2.34 0.16 18 2.46 0.25
100/100 9 4.86 0.22 18 5.83 0.65
100/400 13 2.08 0.02 18 2.12 0.08
150/150 10 4.52 0.15 18 4.97 0.35
150/600 9 2.03 0.03 18 2.25 0.23
200/200 9 3.89 0.04 18 4.48 0.26
200/800 6 2.07 0.05 10 2.18 0.14
250/250 7 3.27 0.05 18 4.19 0.21
250/1000 2 2.16 0.03 4 1.94 0.08
Avg All 84 3.28 0.15 158 4.14 0.49

10 50/50 0 - - 18 12.74 3.30
50/200 1 4.02 0.31 16 5.42 1.13
100/100 0 - - 16 11.05 2.57
100/400 2 3.19 0.03 6 3.55 0.20
150/150 0 - - 11 8.68 1.83
150/600 1 3.94 0.09 1 3.94 0.09
200/200 0 - - 5 6.74 8.88
200/800 0 - - 0 - -
250/250 0 - - 5 5.78 0.95
250/1000 0 - - 0 - -
Avg All 4 3.58 0.11 78 8.67 2.43

All Avg All 251 2.86 0.11 413 4.36 0.71

Table 6.VI: Deviations of LP relaxation values from best known upper bounds of the
RPC-2i and RPC-GMC formulations for the DFLP_RPC.
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RPC-2i RPC-GMC
q Instance # inst. Avg % Max % # inst. Avg % Max %

size Gap* Gap* Gap* Gap*
3 50/50 17 0.33 0.92 18 0.33 0.99

50/200 18 0.17 0.87 18 0.11 0.98
100/100 18 0.31 0.68 18 0.16 0.71
100/400 18 0.33 0.92 18 0.17 0.78
150/150 17 0.25 0.49 18 0.16 0.65
150/600 16 0.75 4.83 18 0.34 0.84
200/200 14 0.25 0.61 18 0.16 0.43
200/800 2 0.53 0.92 9 1.14 5.24
250/250 13 0.78 2.60 18 0.22 0.83
250/1000 0 - - 2 0.03 0.04
Avg All 133 0.39 4.83 155 0.26 5.24

5 50/50 5 0.75 2.12 18 1.00 3.50
50/200 10 0.43 1.42 18 0.36 0.81
100/100 10 0.86 3.61 18 0.45 1.41
100/400 7 0.53 0.86 12 0.18 0.98
150/150 8 0.54 1.65 18 0.42 0.91
150/600 1 0.45 0.45 6 1.20 5.75
200/200 3 0.53 0.61 12 0.35 0.87
200/800 0 - - 1 0.40 0.40
250/250 1 2.10 2.10 6 2.51 13.53
250/1000 0 - - - - -
Avg All 45 0.64 3.61 109 0.64 13.53

10 50/50 0 - - 11 2.65 4.12
50/200 1 0.53 0.53 6 0.69 1.05
100/100 0 - - 4 1.38 1.92
100/400 0 - - - - -
150/150 0 - - - - -
150/600 0 - - - - -
200/200 0 - - - - -
200/800 0 - - - - -
250/250 0 - - - - -
250/1000 0 - - - - -
Avg All 1 0.53 0.53 21 1.85 4.12

All Avg All 179 0.45 4.83 285 0.52 13.53

Table 6.VII: CPLEX optimization, using the RPC-2i and RPC-GMC formulations for
the DFLP_RPC.



179

RPC-2i RPC-GMC
q Instance # inst. Avg % Max % Time Avg % Max % Time

size Gap* Gap* (sec) Gap* Gap* (sec)
3 50/50 17 0.33 0.92 821.9 0.67 0.99 144.9

50/200 18 0.17 0.87 215.8 0.16 0.99 64.1
100/100 18 0.31 0.68 363.9 0.26 0.86 77.6
100/400 18 0.33 0.92 1,292.5 0.17 0.79 407.6
150/150 17 0.25 0.49 994.6 0.22 0.69 217.9
150/600 16 0.75 4.83 3,452.4 0.30 0.85 1,610.5
200/200 14 0.25 0.61 2,499.4 0.15 0.48 570.6
200/800 2 0.53 0.92 4,058.0 0.00 0.00 1,839.0
250/250 13 0.78 2.60 4,173.5 0.21 0.84 1,067.0
250/1000 0 - - - - - -
Avg All 133 0.39 4.83 1,633.0 0.27 0.99 496.4

5 50/50 5 0.75 2.12 2,997.2 0.93 1.39 1,934.2
50/200 10 0.43 1.42 1,382.1 0.37 0.97 228.6
100/100 10 0.86 3.61 4,107.0 0.52 0.97 570.7
100/400 7 0.53 0.86 3,185.4 0.18 0.36 950.0
150/150 8 0.54 1.65 3,177.3 0.29 0.90 1,062.1
150/600 1 0.45 0.45 7,058.0 0.00 0.00 2,406.0
200/200 3 0.53 0.61 3,494.3 0.24 0.64 1,072.3
200/800 0 - - - - - -
250/250 1 2.10 2.10 7,201.0 - - -
250/1000 0 - - - - - -
Avg All 45 0.64 3.61 3,163.0 0.41 1.39 871.7

10 50/50 0 - - - - - -
50/200 1 0.53 0.53 865.0 0.46 0.46 1,241.0
100/100 0 - - - - - -
100/400 0 - - - - - -
150/150 0 - - - - - -
150/600 0 - - - - - -
200/200 0 - - - - - -
200/800 0 - - - - - -
250/250 0 - - - - - -
250/1000 0 - - - - - -
Avg All 1 0.53 0.53 865.0 0.46 0.46 1,241.0

All Avg All 179 0.45 4.83 2,013.3 0.30 1.39 592.3

Table 6.VIII: CPLEX results comparing the two DFLP_RPC formulations, considering
instances where both formulations found feasible solutions.
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Performance of the Lagrangian Heuristic for the DFLP_RPC Relaxing Demand

Constraints

Solution Strategy. Solving the Lagrangian problem with a MIP solver such as CPLEX

can consume significant computing times. We observed that the solution of the La-

grangian problem is significantly easier when the Lagrange multipliers, which directly

impact the OF coefficients of the problem, are well chosen. This may take a considerable

number of iterations, often several hundreds. We therefore initialize the Lagrange multi-

pliers by using the bundle method for a certain number of iterations on a problem variant

that can be decomposed, which is relatively quick. Clearly, that may be the DFLP_RPC

with relaxed demand and relocation constraints. Furthermore, the DFLP_PC can be seen

as a special case of the DFLP_RPC and it is likely that good Lagrange multipliers for

one problem perform well for the other. Therefore, we may also use the DFLP_PC to

initialize the Lagrange multipliers. After that initialization phase, the best multipliers

found are used to initialize the bundle method on the DFLP_RPC where we solve the

subproblem with CPLEX. In case we have found good multipliers, the resulting IP is not

that hard to solve.

Note that, even though we are not decomposing the original problem, the problem

solved in each iteration is significantly smaller than the original problem, because we do

not explicitly use the demand allocation variables x.

Computational Results. In the computational experiments, we allocate up to 40% of

the maximum number of iterations to the initialization phase. Interestingly, using the

initialization phase based on the DFLP_PC resulted in slightly better results than using

the initialization based on the DFLP_RPC. As in previous experiments, a 1% optimality

stopping criterion has been used. Furthermore, the Lagrangian dual is solved by the

bundle method, limited to a maximum of 1000 iterations. CPLEX is used with standard

parameters.

Table 6.IX compares the performance of CPLEX and the Lagrangian heuristic for the

instances for which CPLEX found feasible solutions. The table reports the number of

instances where CPLEX did not find feasible solutions (“# ns”), as well as the average



181

and maximum gaps from the best known lower bounds. For the instances for which

CPLEX found feasible solutions, the Lagrangian heuristic provides similar results. Even

though the average optimality gap is higher, the maximum optimality gap is slightly

lower than for CPLEX.

Table 6.X reports the average and maximum deviations of the obtained upper bounds

from the best known lower bounds, as generated by the Lagrangian heuristic. Note that

these results contain all 540 instances. The heuristic generates solutions of reasonable

quality even for larger instances. The maximum deviation from the best known lower

bound is 15.42%, while the average deviation is 3.08%.

Performance of the Lagrangian Heuristic Relaxing Demand and Relocation Link-

ing Constraints

When demand and relocation linking constraints are relaxed, the Lagrangian sub-

problem can be efficiently solved. Feasible solutions are constructed taking into consid-

eration the relocation decisions suggested by the Lagrangian solutions. Table 6.XI shows

the results for the bundle method, as well as for the bundle method with the subsequent

solution of a restricted MIP model. The latter has been used with parameter nS = 4 and

without decision fixing. For each configuration of the Lagrangian heuristic, the table

reports the average and maximum deviations of the obtained upper bounds from the best

known lower bounds, as generated by the Lagrangian heuristic. Note that these results

contain all 540 instances. The results are similar to those observed for the DFLP_PC.

Whereas the bundle method itself may produce solutions with high optimality gaps, the

Lagrangian heuristic using the restricted MIP model generates solutions of reasonable

quality even for larger instances. The maximum deviation from the best known lower

bound is 5.43%, while the average deviation is 0.96%.

Table 6.XI compares the performance of CPLEX and the Lagrangian heuristic (bun-

dle with restricted MIP model) for the instances for which CPLEX found feasible solu-

tions. The table reports the number of instances where CPLEX does not find feasible

solutions (“# ns”), as well as the average and maximum gaps from the best known lower

bounds. The results indicate that the Lagrangian heuristic provides competitive results
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CPLEX Lagrangian Heuristic
q Instance # Avg Max Avg Max

size ns Gap % Gap % Gap % Gap %
3 50/50 0 0.33 0.99 0.69 2.30

50/200 0 0.11 0.98 0.60 0.89
100/100 0 0.16 0.71 0.57 1.00
100/400 0 0.17 0.78 0.83 1.98
150/150 0 0.16 0.65 0.78 2.19
150/600 0 0.34 0.84 0.85 1.87
200/200 0 0.16 0.43 1.04 4.42
200/800 9 1.14 5.24 1.14 2.91
250/250 0 0.22 0.83 0.79 1.98
250/1000 16 0.03 0.04 0.96 1.22
Avg All 25 0.26 5.24 0.79 4.42

5 50/50 0 1.00 3.50 2.73 5.91
50/200 0 0.36 0.81 0.69 1.72
100/100 0 0.45 1.41 1.61 4.16
100/400 6 0.18 0.98 0.78 2.02
150/150 0 0.42 0.91 1.55 4.97
150/600 12 1.20 5.75 0.97 2.03
200/200 6 0.35 0.87 1.51 4.99
200/800 17 0.40 0.40 1.44 1.44
250/250 12 2.51 13.53 1.90 3.21
250/1000 18 - - - 0.00
Avg All 71 0.64 13.53 1.51 5.91

10 50/50 7 2.65 4.12 8.31 10.22
50/200 12 0.69 1.05 2.37 3.89
100/100 14 1.38 1.92 9.50 11.18
100/400 18 - - - 0.00
150/150 18 - - - 0.00
150/600 18 - - - 0.00
200/200 18 - - - 0.00
200/800 18 - - - 0.00
250/250 18 - - - 0.00
250/1000 18 - - - 0.00
Avg All 159 1.85 4.12 6.84 11.18

All Avg All 255 0.52 13.53 1.51 11.18

Table 6.IX: Comparison of solution quality for CPLEX and the Lagrangian heuris-
tic based on the relaxation of the demand constraints, considering instances for the
DFLP_RPC where CPLEX found feasible solutions.
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Lagrangian Heuristic
q Instance Avg Max Avg

size Gap % Gap % Time
3 50/50 0.69 2.30 590.5

50/200 0.60 0.89 86.3
100/100 0.57 1.00 620.2
100/400 0.83 1.98 480.0
150/150 0.78 2.19 674.4
150/600 0.85 1.87 1,313.9
200/200 1.04 4.42 1,735.2
200/800 1.00 2.91 2,890.6
250/250 0.79 1.98 2,452.0
250/1000 1.20 3.29 4,990.3
Avg All 0.83 4.42 1,583.4

5 50/50 2.73 5.91 4,945.4
50/200 0.69 1.72 1,221.7
100/100 1.61 4.16 5,116.3
100/400 0.74 2.02 1,794.0
150/150 1.55 4.97 5,879.0
150/600 0.87 2.03 3,558.2
200/200 1.59 4.99 5,334.7
200/800 1.10 2.67 5,603.8
250/250 1.62 3.21 6,051.3
250/1000 1.67 3.31 6,700.8
Avg All 1.42 5.91 4,620.5

10 50/50 9.16 14.21 7,495.4
50/200 3.43 5.39 7,283.1
100/100 12.12 14.89 7,377.6
100/400 2.82 6.09 7,386.3
150/150 11.11 15.42 7,394.3
150/600 2.86 5.16 7,404.1
200/200 11.84 15.36 7,626.7
200/800 2.96 4.41 7,542.3
250/250 11.27 15.28 7,623.0
250/1000 2.31 3.74 7,526.0
Avg All 6.99 15.42 7,465.9

All Avg All 3.08 15.42 4,556.6

Table 6.X: Results of the Lagrangian Heuristic based on the relaxation of the demand
constraints for all 540 instances for the DFLP_RPC.
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Bundle only Bundle + R-MIP
q Instance Avg Max Avg Avg Max Avg

size Gap % Gap % Time Gap % Gap % Time
3 50/50 3.39 10.45 10.4 0.25 0.96 22.3

50/200 0.79 2.04 21.9 0.56 0.93 11.4
100/100 1.76 5.99 30.2 0.33 0.85 15.7
100/400 0.85 2.67 95.7 0.65 0.92 48.1
150/150 2.39 6.43 67.8 0.31 0.98 32.2
150/600 1.07 3.21 217.5 0.58 0.97 129.9
200/200 2.07 6.84 121.6 0.49 0.97 81.9
200/800 1.55 4.82 418.3 0.65 0.99 306.6
250/250 1.79 6.42 178.2 0.50 0.90 119.3
250/1000 1.84 4.67 917.3 0.50 0.98 740.1
Avg All 1.75 10.45 207.9 0.48 0.99 150.8

5 50/50 8.11 18.95 17.7 1.16 2.53 883.4
50/200 1.33 4.01 58.3 0.45 0.91 26.1
100/100 5.78 16.18 59.2 0.58 1.80 183.3
100/400 1.25 3.52 170.1 0.65 0.98 69.8
150/150 5.16 10.60 131.5 0.51 1.70 117.9
150/600 1.15 3.16 373.6 0.67 0.94 185.3
200/200 4.23 7.66 237.7 0.42 0.99 163.2
200/800 1.63 5.16 693.9 0.58 0.95 418.7
250/250 3.47 8.01 340.9 0.33 0.92 268.2
250/1000 1.88 5.76 1,256.9 0.42 0.95 925.8
Avg All 3.40 18.95 334.0 0.58 2.53 324.2

10 50/50 14.45 20.19 62.4 3.07 5.32 3,169.7
50/200 6.34 12.55 144.7 1.65 4.52 2,185.6
100/100 14.26 24.62 168.7 2.94 4.65 4,971.2
100/400 3.99 8.61 498.1 0.78 1.64 469.1
150/150 14.59 23.05 329.6 2.77 5.37 5,350.0
150/600 3.28 6.19 1,023.8 1.03 5.41 1,036.3
200/200 14.55 21.81 508.7 2.36 5.02 5,293.8
200/800 3.39 6.58 1,638.2 0.89 5.43 1,653.0
250/250 11.89 17.91 719.8 1.97 4.36 4,665.2
250/1000 2.63 5.38 2,216.3 0.62 3.44 1,779.1
Avg All 8.94 24.62 731.0 1.81 5.43 3,057.3

All Avg All 4.70 24.62 424.3 0.96 5.43 1,177.4

Table 6.XI: Results of the Lagrangian Heuristic, relaxing demand and relocation linking
constraints, for all 540 instances for the DFLP_RPC.
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with a maximum optimality gap from the best known lower bounds significantly lower

than CPLEX.

6.4.3 Computational Results for the DFLP_RPC with RUC Constraints

When adding the RUC constraints to the DFLP_RPC, the problem becomes signifi-

cantly more difficult to solve. In the following, we will perform a similar analysis as has

been done for the DFLP_PC and DFLP_RPC. We compare the integrality gaps for the

two different formulations, the performance of CPLEX to find optimal integer solutions

and we present results for the Lagrangian heuristics.

Integrality gaps

Table 6.XIII provides information on the integrality gap for the two formulations.

As before, the results only include instances where the LP relaxation has been solved

for both formulations. The table summarizes the deviation of the LP relaxation values

from the best known upper bounds for two sets of instances: in the first set, instances are

considered if their best known upper bounds are within 0.1% of the optimal solution. In

the second set, instances are considered regardless of the quality of the available upper

bound. The results show similar trends as observed for the DFLP_RPC without RUC

constraints. When the LP relaxation has been solved and the (near) optimal solutions

are known, the RPC-GMC formulation clearly dominates the flow formulation, present-

ing an average integrality gap more than 10 times lower than the one given by the 2i

formulation.

CPLEX Optimization

Tables 6.XIV and 6.XV summarize the results given by CPLEX. Tables 6.XIV sum-

marizes, for each of the two formulations, the number of instances where feasible so-

lutions have been found, as well as the average and maximum deviation from the best

known lower bounds. Interestingly, the observations regarding the number of instances

where feasible solutions are found are now opposed to those made for the DFLP_PC.
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CPLEX Lagrangian Heuristic
q Instance # Avg Max Avg Max

size ns Gap % Gap % Gap % Gap %
3 50/50 0 0.33 0.99 0.25 0.96

50/200 0 0.11 0.98 0.56 0.93
100/100 0 0.16 0.71 0.33 0.85
100/400 0 0.17 0.78 0.65 0.92
150/150 0 0.16 0.65 0.31 0.98
150/600 0 0.34 0.84 0.58 0.97
200/200 0 0.16 0.43 0.49 0.97
200/800 9 1.14 5.24 0.42 0.82
250/250 0 0.22 0.83 0.50 0.90
250/1000 16 0.03 0.04 0.08 0.11
Avg All 25 0.26 5.24 0.45 0.98

5 50/50 0 1.00 3.50 1.16 2.53
50/200 0 0.36 0.81 0.45 0.91
100/100 0 0.45 1.41 0.58 1.80
100/400 6 0.18 0.98 0.60 0.98
150/150 0 0.42 0.91 0.51 1.70
150/600 12 1.20 5.75 0.48 0.89
200/200 6 0.35 0.87 0.33 0.99
200/800 17 0.40 0.40 0.26 0.26
250/250 12 2.51 13.53 0.09 0.34
250/1000 18 - - - -
Avg All 71 0.64 13.53 0.58 2.53

10 50/50 7 2.65 4.12 2.59 4.04
50/200 12 0.69 1.05 0.63 0.82
100/100 14 1.38 1.92 1.54 2.31
100/400 18 - - - -
150/150 18 - - - -
150/600 18 - - - -
200/200 18 - - - -
200/800 18 - - - -
250/250 18 - - - -
250/1000 18 - - - -
Avg All 159 1.85 4.12 1.83 4.04

All Avg All 255 0.52 13.53 0.60 4.04

Table 6.XII: Comparison of solution quality for CPLEX and the Lagrangian heuris-
tic, relaxing demand and relocation linking constraints, considering instances for the
DFLP_RPC where CPLEX found feasible solutions.
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Integr. Gap % compared to Integr. Gap % compared to
best known UB < 0.1% from opt best known UB

q Instance # inst. Integr. Gap % # inst. Integr. Gap* %
size RPC-2i RPC-GMC RPC-2i RPC-GMC

3 50/50 13 4.97 0.60 18 5.42 0.97
50/200 18 1.52 0.05 18 1.52 0.05
100/100 17 3.93 0.09 18 3.97 0.12
100/400 18 1.45 0.01 18 1.45 0.01
150/150 17 3.46 0.05 18 3.49 0.07
150/600 14 1.46 0.01 15 1.53 0.07
200/200 17 3.16 0.03 18 3.19 0.04
200/800 9 1.40 2.77 12 1.62 2.29
250/250 17 2.97 0.02 18 3.05 0.06
250/1000 6 1.32 0.03 9 1.50 0.19
Avg All 146 2.66 0.26 162 2.80 0.33

5 50/50 5 6.76 0.98 18 8.59 2.40
50/200 11 2.30 0.11 18 2.51 0.30
100/100 9 4.86 0.22 18 5.95 0.78
100/400 11 2.07 0.01 17 2.20 0.16
150/150 6 4.55 0.07 18 5.05 0.44
150/600 5 2.11 0.01 15 2.32 0.30
200/200 7 3.95 0.02 18 4.55 0.32
200/800 3 2.13 0.02 11 2.33 0.35
250/250 6 3.79 0.02 15 4.20 0.16
250/1000 2 2.16 0.03 5 1.89 0.08
Avg All 65 3.46 0.14 153 4.25 0.59

10 50/50 0 - - 18 13.54 4.18
50/200 0 - - 18 6.11 1.83
100/100 0 - - 17 11.65 3.13
100/400 1 3.14 0.04 6 3.56 0.21
150/150 0 - - 11 9.10 2.06
150/600 0 - - 0 - -
200/200 0 - - 6 6.57 1.17
200/800 0 - - 0 - -
250/250 0 - - 5 5.88 1.00
250/1000 0 - - 0 - -
Avg All 1 3.14 0.04 81 9.16 2.44

All Avg All 212 2.91 0.22 396 4.66 0.86

Table 6.XIII: Deviations of LP relaxation values from best known upper bounds of the
RPC-2i and RPC-GMC formulations for the DFLP_RPC with RUC constraints.
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Here, the RPC-GMC formulation finds feasible solutions for significantly more instances

(251 vs. 131).

Table 6.XV reports a direct comparison between both formulations for the instances

where both formulations found feasible solutions. The RPC-GMC formulation confirms

its advantage: computing times and solution quality are significantly better.

Performance of the Lagrangian Heuristic

When using RUC constraints, the Lagrangian subproblem is more difficult to solve,

since the demand allocation has to take into consideration the integer rounding and is

solved by a multiple-choice integer knapsack. The solution of the subproblem therefore

consumes significantly more time. Even though the problem variant with RUC con-

straints may select different opening schedules than the problem variant without RUC

constraints, it is likely that both variants select similar facility locations in their optimal

solutions.

The Lagrangian heuristics presented in this section are therefore based on a hybrid

solution strategy combining both problem variants. In a first step, the Lagrange multipli-

ers are initialized by solving a certain number of iterations solving the problem variant

without RUC constraints. Then, the problem variant with RUC constraints is solved.

The initialization phase is terminated after a maximum of 300 iterations without RUC

constraints or when the best found upper bound lays within 1% of the best known lower

bound. Note that, in the initialization phase, we solve the subproblem for the problem

variant without RUC constraints, but generate upper bounds for the problem variant with

RUC constraints (as described in Section 6.3.3). Furthermore, note that the lower bound

founds from the initialization phase are also valid for the problem variant with RUC

constraints. The Lagrangian dual is solved by the bundle method, limited to a maximum

of 500 iterations (including the iterations performed in the initialization phase). In a final

optimization phase, we use a restricted MIP model, taking into consideration the RUC

constraints, to improve the solution quality.

Given the difficulty to solve the problem with RUC constraints, the following ex-

periments allow for a total of 180 minutes computing time, instead of 120 minutes as it
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RPC-2i formulation RPC-GMC formulation
q Instance # inst. Avg % Max % # inst. Avg % Max %

size Gap* Gap* Gap* Gap*
3 50/50 16 1.48 0.20 18 1.50 0.25

50/200 18 0.01 0.00 18 0.01 0.00
100/100 16 1.22 0.08 18 0.21 0.02
100/400 12 1.92 0.16 18 0.01 0.00
150/150 13 0.02 0.01 18 1.06 0.06
150/600 6 4.75 1.65 17 0.04 0.01
200/200 13 0.20 0.04 18 2.79 0.16
200/800 - - - 9 3.71 0.43
250/250 7 1.29 0.33 18 2.71 0.16
250/1000 - - - 2 0.01 0.01
Avg All 101 4.75 0.19 154 3.71 0.10

5 50/50 6 2.32 0.52 15 8.39 2.31
50/200 8 0.01 0.00 16 0.92 0.19
100/100 5 0.01 0.01 14 9.44 0.94
100/400 3 0.35 0.12 11 0.03 0.01
150/150 5 1.20 0.29 10 6.60 0.82
150/600 - - - 5 0.19 0.04
200/200 2 0.00 0.00 8 0.30 0.05
200/800 - - - 1 0.01 0.01
250/250 - - - 6 13.59 2.29
250/1000 - - - - - -
Avg All 29 2.32 0.17 86 13.59 0.85

10 50/50 - - - 6 3.26 1.69
50/200 1 0.28 0.28 2 0.51 0.42
100/100 - - - 3 3.33 2.16
100/400 - - - - - -
150/150 - - - - - -
150/600 - - - - - -
200/200 - - - - - -
200/800 - - - - - -
250/250 - - - - - -
250/1000 - - - - - -
Avg All 1 0.28 0.28 11 3.33 1.59

All Avg All 131 4.75 0.19 251 13.59 0.43

Table 6.XIV: CPLEX optimization, using the RPC-2i and RPC-GMC formulations for
the DFLP_RPC with RUC constraints.
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RPC-2i formulation RPC-GMC formulation
q Instance # inst. Avg % Max % Time Avg % Max % Time

size Gap* Gap* (sec) Gap* Gap* (sec)
3 50/50 16 0.20 1.48 2,561.5 0.17 1.50 2,393.1

50/200 18 0.00 0.01 1,398.4 0.00 0.01 733.3
100/100 16 0.08 1.22 1,795.3 0.02 0.21 854.9
100/400 12 0.16 1.92 2,968.2 0.00 0.01 529.3
150/150 13 0.01 0.02 2,324.5 0.00 0.01 459.8
150/600 6 1.65 4.75 7,200.5 0.01 0.02 2,682.5
200/200 13 0.04 0.20 3,547.5 0.22 2.79 1,721.2
200/800 0 - - - - - -
250/250 7 0.33 1.29 5,403.0 0.00 0.01 1,443.4
250/1000 0 - - - - - -
Avg All 101 0.19 4.75 2,850.1 0.06 2.79 1,248.2

5 50/50 6 0.52 2.32 3,819.7 0.19 0.61 2,607.5
50/200 8 0.00 0.01 1,762.8 0.00 0.01 347.1
100/100 5 0.01 0.01 1,972.6 0.01 0.01 369.6
100/400 3 0.12 0.35 3,744.3 0.00 0.00 745.0
150/150 4 0.06 0.22 4,819.3 0.04 0.15 2,395.5
150/600 0 - - - - - -
200/200 2 0.00 0.00 3,705.0 0.00 0.01 1,245.5
200/800 0 - - - - - -
250/250 0 - - - - - -
250/1000 0 - - - - - -
Avg All 28 0.13 2.32 3,028.7 0.05 0.61 1,234.9

10 50/50 0 - - - - - -
50/200 1 0.28 0.28 7,201.0 0.34 0.34 7,200.0
100/100 0 - - - - - -
100/400 0 - - - - - -
150/150 0 - - - - - -
150/600 0 - - - - - -
200/200 0 - - - - - -
200/800 0 - - - - - -
250/250 0 - - - - - -
250/1000 0 - - - - - -
Avg All 1 0.28 0.28 7,201.0 0.34 0.34 7,200.0

All Avg All 130 0.18 4.75 2,922.0 0.06 2.79 1,291.1

Table 6.XV: CPLEX results comparing the two formulations for the DFLP_RPC with
RUC constraints, considering instances where both formulations found feasible solu-
tions.
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has been the case in the previous experiments. For all experiments, a 0.01% optimality

stopping criteria has been used.

Table 6.XVI compares the performance of three different configurations of the La-

grangian heuristic for all 540 instances. For the first configuration (“LH-RUC1”) the

restricted MIP has been used with parameter nS = 10 and does not apply decision fix-

ing. The second configuration (“LH-RUC2”) uses a restricted MIP with nS = 3 and

pFix = 0.7. Both configurations have a time limit of 180 minutes and the restricted MIP

is started after 120 minutes at the latest. Finally, the third configuration (“LH-RUC3”) is

identical to LH-RUC2, but we allow for a total of 360 minutes, also starting the restricted

MIP after 120 minutes at the latest.

We observed that the lower bound provided by the bundle method is very close to

the LP relaxation bound. Finding high quality upper bounds is difficult in particular for

q = 10. Decision fixing in the restricted MIP only slightly improves the final solution

quality and even allowing 4 hours to solve the restricted MIP is often not sufficient

to solve the problem. An analysis showed that, for most of the instances with high

optimality gaps, the MIP model has been too large to be reasonably solved. Often, the

available computing time was not sufficient to solve the LP relaxation of the restricted

MIP.

Table 6.XVII compares the performance of CPLEX and the Lagrangian heuristic for

the instances for which CPLEX found feasible solutions within 180 minutes comput-

ing time. Note that, even though LH-RUC2 performed slightly better than LH-RUC1

for the entire set of 540 instances, LH-RUC1 performed better for the instances where

CPLEX found feasible solutions. We therefore report the results for LH-RUC1. The

table shows the number of instances where CPLEX does not find feasible solutions (“#

ns”), as well as the average and maximum gaps from the best known lower bounds. The

results indicate that the Lagrangian heuristic provides competitive results with a maxi-

mum optimality gap from the best known lower bounds significantly lower than CPLEX.

Furthermore, we emphasize that the Lagrangian heuristic finds feasible solution for all

instances, even for those where CPLEX does not find feasible solutions, as shown in

Table 6.XVI.
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LH-RUC1 (3hs) LH-RUC2 (3hs) LH-RUC3 (6hs)
q Instance Avg Max Avg Max Avg Max

size Gap % Gap % Gap % Gap % Gap % Gap %
3 50/50 0.31 1.22 0.44 1.31 0.44 1.31

50/200 0.53 0.96 0.52 0.96 0.52 0.96
100/100 0.40 0.87 0.40 0.87 0.40 0.87
100/400 0.59 0.92 0.60 0.92 0.60 0.92
150/150 0.29 0.99 0.31 0.99 0.31 0.99
150/600 0.70 0.98 0.69 0.98 0.69 0.98
200/200 0.42 0.94 0.41 0.94 0.41 0.94
200/800 0.51 1.00 0.53 1.00 0.54 1.00
250/250 0.40 0.93 0.39 0.93 0.39 0.93
250/1000 0.29 1.00 0.37 1.00 0.36 1.00
Avg All 0.44 1.22 0.47 1.31 0.47 1.31

5 50/50 1.70 4.57 1.99 5.27 1.87 4.91
50/200 0.49 1.32 0.55 1.76 0.55 1.76
100/100 0.73 2.26 0.88 3.31 0.88 3.31
100/400 0.50 0.99 0.49 0.99 0.50 0.99
150/150 0.60 1.50 0.65 1.65 0.65 1.65
150/600 0.43 0.95 0.45 0.95 0.44 0.95
200/200 0.45 1.20 0.51 1.35 0.51 1.35
200/800 0.53 0.98 0.53 0.98 0.53 0.98
250/250 0.35 0.98 0.46 0.98 0.46 0.99
250/1000 0.30 0.97 0.32 0.97 0.31 0.97
Avg All 0.60 4.57 0.68 5.27 0.66 4.91

10 50/50 6.38 20.19 6.38 23.78 5.84 23.78
50/200 3.45 18.18 2.90 10.61 2.79 10.61
100/100 4.99 20.86 4.50 11.38 4.30 11.63
100/400 2.24 13.43 1.23 3.64 1.08 3.08
150/150 6.04 29.05 3.84 8.10 3.67 8.34
150/600 2.88 10.94 1.67 10.94 0.81 2.52
200/200 5.16 26.26 4.00 19.65 3.03 7.46
200/800 2.96 11.91 1.59 11.91 1.02 7.84
250/250 6.26 27.29 3.86 27.29 2.43 4.98
250/1000 0.86 5.68 0.28 0.74 0.29 0.81
Avg All 4.11 29.05 3.00 27.29 2.37 23.78

All Avg All 1.72 29.05 1.37 27.29 1.13 23.78

Table 6.XVI: Results for different configurations of the Lagrangian heuristic, relaxing
demand and relocation linking constraints, for all 540 instances for the DFLP_RPC with
RUC constraints.
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CPLEX (3hs) LH-RUC1 (3hs)
q Instance # Avg Max Avg Max

size ns Gap % Gap % Gap % Gap %
3 50/50 0 0.23 1.21 0.31 1.22

50/200 0 0.00 0.01 0.53 0.96
100/100 0 0.01 0.18 0.40 0.87
100/400 0 0.00 0.01 0.59 0.92
150/150 0 0.02 0.26 0.29 0.99
150/600 1 0.01 0.02 0.69 0.98
200/200 0 0.12 2.04 0.42 0.94
200/800 9 0.40 3.48 0.22 0.81
250/250 0 0.10 1.79 0.40 0.93
250/1000 15 0.84 2.51 0.05 0.11
Avg All 25 0.10 3.48 0.43 1.22

5 50/50 3 2.15 8.39 1.19 3.28
50/200 0 0.45 3.43 0.49 1.32
100/100 4 0.36 1.48 0.42 1.29
100/400 7 0.01 0.03 0.48 0.97
150/150 7 0.92 7.56 0.34 0.89
150/600 12 0.04 0.19 0.20 0.77
200/200 10 0.09 0.39 0.16 0.50
200/800 17 0.01 0.01 0.84 0.84
250/250 12 0.04 0.14 0.18 0.73
250/1000 18 - - - -
Avg All 90 0.63 8.39 0.50 3.28

10 50/50 12 1.78 4.07 1.85 2.81
50/200 15 0.71 1.51 0.60 1.21
100/100 13 2.88 8.82 1.92 3.14
100/400 18 - - - -
150/150 18 - - - -
150/600 18 - - - -
200/200 18 - - - -
200/800 18 - - - -
250/250 18 - - - -
250/1000 18 - - - -
Avg All 166 1.94 8.82 1.61 3.14

All Avg All 281 0.38 8.82 0.52 3.28

Table 6.XVII: Comparison of solution quality for CPLEX and the Lagrangian heuris-
tic, relaxing demand and relocation linking constraints, considering instances for the
DFLP_RPC with RUC constraints where CPLEX found feasible solutions.
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6.5 Conclusions and Future Research

In this chapter, we investigated alternative solution approaches for the CSLP. We

proposed an alternative model for the CSLP with and without relocation, based on the

GMC modeling technique. The GMC based models have shown to provide significantly

lower integrality gaps. On average, these gaps are more than 10 times lower than those

of the 2i formulation based on the formulation presented in Chapter 3. However, the

resulting models are too large to be solved by generic MIP solvers such as CPLEX,

exceeding the available memory resources. The low integrality gaps for the GMC based

formulations suggest that this formulation is an appropriate candidate for Lagrangian

relaxation, resulting in strong lower bounds for the problem. Lagrangian heuristics have

therefore been proposed, based on similar concepts as presented in Chapter 5.

For the problem variant without relocation, the relaxation of the demand constraints

results in a Lagrangian subproblem that can be decomposed and solved in a similar

manner as for the DFLPG. The maximum deviation of the final solution value from

the best known lower bound is 3.72% and the average deviation is 0.77% among all

540 instances, whereas CPLEX does not find feasible solutions for about half of the

instances.

For the problem variant with relocation, two relaxations are proposed: one that re-

laxes only the demand constraints, and one that relaxes the demand constraints and the

relocation constraints. Computational results for heuristics based on both relaxations

indicate that relaxing both the demand and the relocation linking constraints results in

a higher solution quality. Taking into consideration the relocation decisions from the

Lagrangian solutions to generate upper bounds at each iteration, as well as the use of the

restricted MIP in a second optimization phase, yield competitive results for all instances

with a maximum deviation of less than 5.5% and an average deviation of 0.96%.

Finally, adding the RUC constraints to the DFLP_RPC significantly complicates the

solution of the problem. CPLEX does not find feasible solutions for more than half of

the instances, in particular when a high number of capacity levels is used (i.e., q = 10).

For the instances where CPLEX finds feasible solutions within the given time limit, the
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Lagrangian heuristics provides a significantly lower maximum optimality gap. Further-

more, the heuristic provides robust results for all other instances. The average deviation

of 1.37% is quite low. For some instances, the maximum deviation from the best known

lower bounds is about 27% when a time limit of 3 hours is used. To decrease the opti-

mality gaps for those instances, it may be promising to tune the MIP parameters better.

Furthermore, it may be possible to solve the subproblem in a more efficient way.



CHAPTER 7

CONCLUSIONS

In this chapter, the contributions made in the thesis are summarized. Then, promising

future research directions are discussed.

7.1 Summary

This thesis has investigated dynamic facility location problems that involve complex

cost structures for the adjustment of capacities over time. Chapter 3 reported on an

industrial application found in the forestry sector. The multi-period facility location

problem considered in this application contains three interesting extensions of classical

facility location problems: partial facility closing and reopening, economies of scale for

capacity changes that depend on the total capacity involved in the operation and on the

current capacity level, and capacity constraints that involve rounding of the total demand

allocated to a facility. We have shown how to model the problem as a MIP model and

demonstrated its usefulness on two case studies based on real data from a Canadian

logging company.

Chapter 4 presented a MIP model that is capable to represent detailed cost structures

as the one mentioned above. This model, referred to as the GMC, is very versatile and

generalizes several classical facility location problems. It is shown that its LP relaxation

is stronger than those of specialized formulations, derived from the existing literature.

As the proposed modeling technique also performs better to find optimal solutions using

generic MIP solvers, it is a promising alternative to model any location problem that

involves modular capacities and their dynamic adjustment along time.

In Chapter 5, we developed Lagrangian relaxation heuristics based on the GMC for-

mulation. They outperform state-of-the-art MIP solvers and are capable to find high

quality solutions for large instances with up to 250 candidate facility locations and 1000

customers. Due to the strength of the used model, the heuristics provide very good
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bounds on the optimal value. Given the generality of the GMC model, the proposed

heuristic can handle an entire family of problems, consisting of all those that can be

modeled by the DFLPG. This type of heuristics can also be used to evaluate “what-if”

scenarios, which require repeatedly solving the problem under different scenarios, and

perform re-optimization.

Finally, we have shown in Chapter 6 how the Lagrangian heuristics can be used in the

context of the industrial application, a much more complex problem. The GMC mod-

eling technique is extended to match the case where capacity changes are registered on

two different levels: the existing capacity and the open capacity. Given that the resulting

models are strong, but very large, they provided an ideal base to apply mathematical

decomposition. Two different Lagrangian relaxations have been tested. Computational

results demonstrate their usefulness in practice, as the heuristics provide high quality so-

lutions for all instances, while generic MIP solvers fail on most of the tested problems.

Adding the RUC constraints significantly complicates the problem. For test instances

where generic MIP solvers find feasible solutions, the Lagrangian heuristic performs

significantly better. The heuristic also provides very low average gaps for all other in-

stances.

We believe that this dissertation has contributed to dynamic facility location and

filled a gap in the landscape of problem variants by providing effective techniques to

model and to solve problems with complex cost structures and capacity adjustment over

time. We hope it will stimulate other researchers to build upon these results.

7.2 Future Research Directions

The results presented in this thesis open up future research directions on several

levels. Those that seem most important are now discussed. On the level of the industrial

application, the presented model assumed a few simplifications that can be addressed in

future works. Camps may be composed by trailers of different capacities. Clearly, this

increases the complexity of the cost structure. Furthermore, relocation has only been

considered for entire facilities. Enabling the model to relocate parts of a camp to another
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location and even merge two camps may lead to solutions that are more cost efficient.

However, a corresponding model has to be capable of supporting such a cost structure,

which most probably has to simultaneously keep track of the number of hosting trailers

and supporting trailers. These suggestions may be reformulated in the context of general

facility location problems and therefore contribute interesting extensions to the classical

problems, such as partial relocation of facilities under the consideration of a cost matrix.

The CSLP also involved capacity constraints with rounding of the total demand allo-

cated to a facility. Such constraints may be found in other applications, but are currently

ignored in their corresponding models. The valid inequalities presented in this thesis

are very effective and therefore encouraging to use these types of capacity constraints in

other models without expecting a significant increase in the difficulty to solve the new

model.

Another promising direction for future research is the modeling technique used in

the GMC formulation. This technique has resulted in very strong models and may be

used for different types of location problems where modular capacity adjustments are

performed. Two strong candidates for that are multi-period hub location problems where

hubs may adjust their capacities, and multi-period network design problems where arcs

may adjust their capacities.

Finally, much can be done to improve the solution of these problems. Other de-

composition techniques such as Benders decomposition seem very promising for the

DFLPG. The Lagrangian relaxation heuristics to solve the CSLP may yield better re-

sults by improving the way the restricted MIP model is constructed to find solutions

of better quality. The presented heuristics have been capable to solve instances with

250 candidate facility locations, 1000 customers and 10 capacity levels. However, de-

composition methods definitively hold the potential to go further. Generally speaking,

making use of restricted MIP models and solving them by generic MIP solvers may be

a successful strategy, since one can benefit from the constant improvement of the latter.
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APPENDIX A

SUPPLEMENT TO CHAPTER 3

In this section, we show how the relocation of facilities can be modeled in two dif-

ferent ways: by direct arcs, one for each direction between two locations, and by central

hub nodes that redistribute facilities relocated from certain locations to other locations.

We then prove that the models based on the two techniques are equally strong in the

sense that their LP relaxation provides the same lower bound.

A.1 Relocation for the CSLP: Models

A.1.1 Relocation via Hub Nodes

The model for the CSLP, given by (3.12) - (3.36) (see Section 3.5), uses hub nodes

to relocate facilities. In the model, flow variables wO
it and wI

it are used to relocate ca-

pacity from and to a location i, respectively. Binary variables wBO
ikt are linked to the

flow variables wO
it and have value 1 if a facility of size k is relocated, from location i in

the beginning of time period t. In the same way, binary variables wBI
ikt are linked to the

flow variables wI
it and have value 1 if a facility of size k is relocated to location i in the

beginning of time period t.

A.1.2 Relocation via Direct Arcs

An alternative to using hub nodes is to use direct arcs between the locations to per-

form facility relocation. An advantage of this technique is that the information of origin

and destination is still available and may be used to better represent the costs involved in

the facility location, e.g., by considering distance dependent costs.

To model relocation by the use of direct arcs, we replace the relocation variables

mentioned above by the following two variables:

– wi1i2t ∈ Z+
0 - number of trailers that are moved from location i1 ∈ I to location

i2 ∈ I before time period t ∈ T .
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– wB
i1i2kt ∈{0,1} - 1, if a camp with k trailers is moved from location i1 ∈ I to location

i2 ∈ I before time period t ∈ T .

In the objective function, the new term that represents the relocation costs is as fol-

lows:

∑
i1∈I

∑
i2∈I

∑
k∈K

∑
t∈T

cR
k wB

i1i2kt

The network flow structure using direct relocation arcs is illustrated in Figure A.1.
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Figure A.1: Network flow structure for managing the number of open and closed trailers
at each location as well as the camp relocation by direct arcs.

This results in the following model:

min∑
i∈I

∑
k∈K

∑
t∈T

cM
kt yikt +∑

i∈I
∑
j∈J

∑
k∈K

∑
p∈P

∑
t∈T

cV
i jkptxi jkpt (A.1)

+∑
i∈I

∑
q∈K

∑
t∈T

cC
iqsiqt + ∑

i1∈I
∑
i2∈I

∑
k∈K

∑
t∈T

cR
k wB

i1i2kt

+∑
i∈I

∑
k∈K

∑
t∈T

cTO
k vBCO

ikt +∑
i∈I

∑
k∈K

∑
t∈T

cTC
k vBOC

ikt

s.t. (3.13)− (3.18),(3.20),(3.22),(3.23),(3.27),(3.28),

(3.31)− (3.34),
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lCi(t−1)+ vOC
it = vCC

it + ∑
i2∈I

wii2t ;∀i ∈ I ;∀t ∈ T (A.2)

vCC
it + ∑

i1∈I
wi1it = vCO

it + lCit ;∀i ∈ I ;∀t ∈ T (A.3)

vCC
it + vOO

it ≤ K

(
1−∑

i2∈I
∑
k∈K

wB
ii2kt

)
;∀i ∈ I ;∀t ∈ T (A.4)

vCC
it + vOO

it − ∑
q∈K

qsiqt ≤ K

(
1−∑

i1∈I
∑
k∈K

wB
i1ikt

)
;∀i ∈ I ;∀t ∈ T (A.5)

∑
k∈K

kwB
i1i2kt = wi1i2t ;∀i1 ∈ I ;∀i2 ∈ I ;∀t ∈ T (A.6)

wi1i2t ∈ Z+
0 ;∀i1 ∈ I ;∀i2 ∈ I ;∀t ∈ T (A.7)

lO
it , l

C
it ,v

CC
it ,vCO

it ,vOO
it ,vOC

it ∈ Z+ ;∀i ∈ I ;∀t ∈ T (A.8)

wB
i1i2kt ∈ {0,1} ;∀i1 ∈ I ;∀i2 ∈ I ;∀k ∈ K ;∀t ∈ T (A.9)

vBCO
ikt ,vBOC

ikt ∈ {0,1} ;∀i ∈ I ;∀k ∈ K ;∀t ∈ T (A.10)

A.2 Relocation for the CSLP: Strength of the LP relaxations

We will now compare the strength of both formulations. We will prove that both

formulations are equally strong in the sense that their LP relaxations provide the same

bound. For any integer linear programming model P, let P be the corresponding LP

relaxation. For any model P, we denote by v(P) its optimal value.

We denote by DR the MIP formulation of the CSLP with relocation by direct arcs as

indicated in Section A.1.2 and we denote by DR its linear programming relaxation. In

the same way, we denote by HR the MIP formulation of the CSLP with relocation using

hub nodes as stated in Section A.1.1 and we denote by HR its LP relaxation.

Theorem A.2.1. v(DR) = v(HR)

Proof The proof consists of two parts: first, it is proven that all feasible solutions for DR

have an equivalent solution that is feasible in HR. Second, we show how to construct a
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feasible solution for DR from any feasible solution of HR and that both solutions have

the same objective function value.

(A) Construction of a feasible HR solution from any DR solution

Consider any solution{
xi jkpt ,yikt ,zikpt ,siqt , lO

it , l
C
it ,v

CC
it ,vCO

it ,vOC
it ,vOO

it ,wi1i2t ,vBCO
ikt ,vBOC

ikt ,wB
i1i2kt

}
that is feasible for DR. We next show that an equivalent solution{

xi jkpt ,yikt ,zikpt ,siqt , lO
it , l

C
it ,v

CC
it ,vCO

it ,vOC
it ,vOO

it ,wO
it ,w

I
it ,v

BCO
ikt ,vBOC

ikt ,wBO
ikt ,w

BI
ikt

}
can be constructed that is feasible in HR.

For all variables in HR except wO
it , wI

it , wBO
ikt and wBI

ikt , we set the values as in the

corresponding variables for the DR solution. The relocation variables are set as follows:

∑
i2∈I

wii2t = wO
it ;∀i ∈ I ;∀t ∈ T (R1)

∑
i1∈I

wi1it = wI
it ;∀i ∈ I ;∀t ∈ T (R2)

∑
i2∈I

wB
ii2kt = wBO

ikt ;∀i ∈ I ;∀k ∈ K ;∀t ∈ T (R3)

∑
i1∈I

wB
i1ikt = wBI

ikt ;∀i ∈ I ;∀k ∈ K ;∀t ∈ T (R4)

The constraints (3.19), (3.21), (3.24) and (3.25) are satisfied by the use of (R1), (R2),

(R3) and (R4), as they will equal constraints (A.2), (A.3), (A.4) and (A.5), respectively.

Equalities (3.26) are satisfied as can be seen by replacing the relocation variables using

(R3) and (R4). Finally, to show that (3.29) and (3.30) are also satisfied, we transform
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equality (A.6) of the DR model:

∑
k∈K

kwB
i1i2kt = wi1i2t (A.6)

∀i1∈I⇒ ∑
i1∈I

∑
k∈K

kwB
i1i2kt = ∑

i1∈I
wi1i2t

⇔ ∑
k∈K

k ∑
i1∈I

wB
i1i2kt = ∑

i1∈I
wi1i2t

(R2)and(R4)⇔ ∑
k∈K

kwBI
i2kt = wI

i2t (3.30)

which then equal equalities (3.30). We proceed in a similar manner to transform equality

(A.6) into equality (3.29):

∑
k∈K

kwB
i1i2kt = wi1i2t (A.6)

∀i2∈I⇒ ∑
i2∈I

∑
k∈K

kwB
i1i2kt = ∑

i2∈I
wi1i2t

⇔ ∑
k∈K

k ∑
i2∈I

wB
i1i2kt = ∑

i2∈I
wi1i2t

(R1)and(R3)⇔ ∑
k∈K

kwBO
i1kt = wO

i1t (3.29)

which then equal equalities (3.29). All constraints are thus satisfied. As the solution

value in the objective function is the same in both solutions (this can be verified by using

(R3) and (R4) in the objective function), we can conclude that v(DR)≥ v(HR).

(B) Construction of a feasible DR solution from any HR solution

Consider any solution{
xi jkpt ,yikt ,zikpt ,siqt , lO

it , l
C
it ,v

CC
it ,vCO

it ,vOC
it ,vOO

it ,wO
it ,w

I
it ,v

BCO
ikt ,vBOC

ikt ,wBO
ikt ,w

BI
ikt

}
that is fea-

sible in HR. We now construct an equivalent solution{
xi jkpt ,yikt ,zikpt ,siqt , lO

it , l
C
it ,v

CC
it ,vCO

it ,vOC
it ,vOO

it ,wi1i2t ,vBCO
ikt ,vBOC

ikt ,wB
i1i2kt

}
that is feasible

in DR and has the same objective function value.
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For all variables in DR except wi1i2t and wB
i1i2kt , we set the values as in the corre-

sponding variables for the HR solution. The solution values for the wB
i1i2kt variables are

computed as outlined by Algorithm A.1, which proceeds as follows for each k ∈ K and

t ∈ T . All wB
i1i2kt variables are initialized with 0 and execute the following steps for each

pair of k ∈ K and t ∈ T . For each arc wB
i1i2kt , the corresponding flow based on the solu-

tion values of wBO
i1kt and wBI

i2kt are computed. Clearly, the maximum flow possible from i1

to i2 is α = min(wBO
i1kt ,w

BI
i2kt). We thus set wB

i1i2kt = α . If we subtract α from wBO
i1kt and

wBI
i2kt , one of the two variables will become 0. If wBO

i1kt = 0, then we proceed to the next

variable wBO
i′kt and we set the next variable wB

i′i2kt to α = min(wBO
i′kt ,w

BI
i2kt). In the same

way, if wBI
i2kt = 0, then we proceed to the next wBI variable wBI

i′kt and set the next variable

wB
i1i′kt to α = min(wBO

i1kt ,w
BI
i′kt). We proceed in this way until all wBO and wBI variables

have been considered. At the end of the algorithm, the entire flow from the wBO and wBI

variables has been attributed to the wB variables.
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Algorithm A.1 Flow Distribution
1: Input: k ∈ K, t ∈ T

Variables: wBO
ikt ,w

BI
ikt ,∀i ∈ I

2: wB
i1i2kt = 0 ;∀i1 ∈ I ,∀i2 ∈ I.

3: i1 = 1.

4: i2 = 1.

5: rO = wBO
i1kt .

6: rI = wBO
i2kt .

7: repeat

8: if rO = 0 then

9: i1 = i1 +1.

10: rO = wBO
i1kt .

11: end if

12: if rI = 0 then

13: i2 = i2 +1.

14: rI = wBI
i2kt .

15: end if

16: α = min(rO,rI).

17: wB
i1i2kt = α .

18: rO = rO−α .

19: rI = rI−α .

20: until i1 = |I| & i2 = |I|
21: return wB

i1i2kt .

Constraints (3.26) ensure that both rO and rI are 0 by the end of the algorithm, i.e.,

all flow has been distributed to the wB arcs. Equalities (R3) and (R4) hold because flow

from variables wBO
it is only distributed to the variables wB

ii2kt (i2 ∈ I) and flow from wBI
it

variables is only distributed to the variables wB
i1ikt (i1 ∈ I). As (R3) and (R4) hold, con-

straints (A.4) and (A.5) may be transformed to equivalent constraints (3.24) and (3.25)

and are therefore also satisfied.

The solution values for the wi1i2t variables are computed according to equalities

(A.6), which are therefore satisfied. Finally, we need to show that constraints (A.2) and

(A.3) are satisfied. This is true if (R1) and (R2) are valid, which is proved by considering
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the following equations:

∑
i2∈I

wi1i2t
(A.6)
= ∑

i2∈I
∑
k∈K

kwB
i1i2kt

= ∑
k∈K

k ∑
i2∈I

wB
i1i2kt

(R3)
= ∑

k∈K
kwBO

i1kt

(3.29)
= wO

i1t ,

which then equal equalities (R1). In the same way, we show that equalities (R2) hold:

∑
i1∈I

wi1i2t
(A.6)
= ∑

i1∈I
∑
k∈K

kwB
i1i2kt

= ∑
k∈K

k ∑
i1∈I

wB
i1i2kt

(R4)
= ∑

k∈K
kwBI

i2kt

(3.30)
= wI

i2t ,

which then equal (R2). Hence, constraints (A.2) and (A.3) are satisfied. The solution is

therefore feasible in DR. As equalities (R3) and (R4) hold, it can be verified that both

solutions have the same objective function value. Therefore, v(HR)≥ v(DR).

From the two parts (A) and (B) above, it follows that v(DR) = v(HR).

A.3 Relocation for the CSLP: Computational Experiments

Computational experiments have been performed to assess the performance of the

two modeling techniques when using a generic MIP solver. We used CPLEX v12.4 to

solve the LP of both formulations for a total of 288 instances. These instances include the

216 instances reported in Chapter 3, as well as 72 instances that correspond to variations

of the real-world instance used in the second case study of the chapter.

The results are summarized in Table A.I. For each of the two formulations (relocation
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by the use of direct arcs and relocation by the use of hub nodes), two values are reported:

the average time to solve the LP relaxation and the number of instances where the LP

relaxation has not been solved (# ns) in the given time limit of 6 hours. In addition,

the last columns of the table indicate the average and standard deviation of the relative

improvement of the solution time.

Direct arcs Hub nodes Sol time improvement
Instance set time (sec) # ns time (sec) # ns % Std dev
10/20 35 0 30 0 11.5 25.1
10/50 3836 5 3205 3 -1.8 48.4
29/29 108 0 72 0 29.5 19.5
All 1936 5 1617 3 11.0 36.7

Table A.I: Computing times to solve the LP relaxation: direct arcs vs. hub nodes.

The results indicate that the LP relaxation of the formulation using hub nodes is in

particular effective for the instance sets (10/20) and (29/29). However, the solution time

improvement strongly varies, as can be observed in the high standard deviation. Figure

A.2 illustrates the improvements for each of the 288 instances. For most of the instances,

the solution time decreased.

Figure A.2: Relative improvement of time to solve the LP relaxation for each of the
instances when hub node relocation is used instead of direct arcs.
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Table A.II compares the average optimality gaps, solution times and number of in-

stances where no feasible solutions have been found when solving the problem with

CPLEX, limited to one hour of computing time. Note that the averages are computed

over all instances for which a feasible solution has been found. One observes that the

model using hub nodes performs significantly better than the model using direct arcs,

given that the number of instances where no feasible integer solution has been found is

much lower.

Direct arcs Hub nodes
Instance set Opt gap % # ns time (sec) Opt gap % # ns time (sec)
10/20 27.0 8 3,178 28.5 0 3,165
10/50 11.8 101 3,600 39.6 67 3,600
29/29 26.6 21 3,209 28.7 1 3,311
All 26,2 131 3,206 30,6 68 3,293

Table A.II: Computing time to solve problems: direct arcs vs. hub nodes.



APPENDIX B

SUPPLEMENT TO CHAPTER 4

B.1 Theoretical Results

B.1.1 Theoretical Results for the DMCFLP_CR formulations

We now prove the dominance relationships between the three formulations presented

for the DMCFLP_CR. For any integer linear programming model P, let P denote the

corresponding LP relaxation. For any model P, we denote by v(P) its optimal value.

B.1.1.1 CR-GMC and CR-1I are equally strong

We prove that the LP relaxations of the formulations CR-GMC and CR-1I provide

the same lower bound.

Theorem B.1.1. v(CR-GMC) = v(CR-1I).

Proof. The proof consists of two parts: First, we show how to construct a feasible

solution for CR-1I from any feasible solution for CR-GMC and that both solutions have

the same objective function value. Then, we show the same, constructing an equivalent

and feasible CR-GMC solution from any feasible CR-1I solution.

To facilitate the proof, we first write the CR-GMC in its explicit form as it is defined

in Section 4.4.2. As previously defined, we let L = {0,1,2, ..,q} be the set of available

capacity levels to define the facility size. For each open capacity level ` ∈ L\{0}, we let
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` denote a closed facility of capacity level `. The model is:

(CR-GMC) min ∑
j∈J

∑
`2∈L

∑
t∈T

( f o
j`2

+Fo
j`2
)y j0`2t +∑

i∈I
∑
j∈J

∑
`∈L

∑
t∈T

gi j`tditxi j`t

+ ∑
j∈J

∑
`1∈L\{0}

∑
t∈T

cc
j`1

y j`1`1t + ∑
j∈J

∑
`1∈L\{0}

∑
t∈T

(co
j`1

+Fo
j`1
)y j`1`1t

s.t. ∑
j∈J

∑
`∈L

xi j`t = 1 ∀i ∈ I, ∀t ∈ T (B.1)

∑
i∈I

ditxi j`t ≤ u j`(y j``t + y j``t + y j0`t) ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (B.2)

y j0`(t−1)+ y j``(t−1)+ y j``(t−1) = y j``t + y j``t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T\{1}

(B.3)

y j``(t−1)+ y j``(t−1) = y j``t + y j``t ∀ j ∈ J, ∀` ∈ L\{0} , ∀t ∈ T\{1}

(B.4)

∑
`2∈L

y j0`21 = 1 ∀ j ∈ J (B.5)

xi j`t ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T (B.6)

y j0`2t ∈ {0,1} ∀ j ∈ J, ∀`2 ∈ L, ∀t ∈ T (B.7)

y j`1`1t ∈ {0,1} ∀ j ∈ J, ∀`1 ∈ L\{0}, ∀t ∈ T (B.8)

y j`1`1t ∈ {0,1} ∀ j ∈ J, ∀`1 ∈ L\{0}, ∀t ∈ T (B.9)

y j`1`1t ∈ {0,1} ∀ j ∈ J, ∀`1 ∈ L\{0}, ∀t ∈ T (B.10)

y j`1`1t ∈ {0,1} ∀ j ∈ J, ∀`1 ∈ L\{0}, ∀t ∈ T. (B.11)

(A) Construction of a feasible CR-1I solution from any CR-GMC solution

Consider any solution
{

xi j`t ,y j`1`2t
}

that is feasible in CR-GMC. We now construct

an equivalent solution
{

xi j`t ,y j`t ,s j`t ,vo
j`t ,v

c
j`t

}
that is feasible in CR-1I and has the

same objective function value.

We set the values for the xi j`t variables identical to those in the CR-GMC solution.

The values for the variables y j`t , s j`t , vo
j`t and vc

j`t are set by establishing the following
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relations ∀ j ∈ J,∀` ∈ L,∀t ∈ T :

s j`t = y j0`t (CR.R1)

vo
j`t = y j``t (CR.R2)

vc
j`t = y j``t (CR.R3)

y j`t = y j0`t + y j``t + y j``t . (CR.R4)

According to these relations and the way the objective function coefficients are com-

posed (see Section 4.4.2), it can easily be verified that both solutions have the same

objective function value. Constraints (4.11) are satisfied, as they contain the same vari-

ables with the same values in both models. Replacing the right-hand side in constraints

(4.12) by (CR.R4) results in constraints (B.2). Therefore, constraints (4.12) are also

satisfied. We show that constraints (4.13) hold by using the relationships defined above:

y j`t = y j`(t−1)+ s j`t + vo
j`t− vc

j`t

(4.13)
(CR.R1) - (CR.R4)⇔ y j0`t + y j``t + y j``t = y j0`(t−1)+ y j``(t−1)+ y j``(t−1)+ y j0`t + y j``t− y j``t

cancel y j0`t & y j``t⇔ y j``t = y j0`(t−1)+ y j``(t−1)+ y j``(t−1)− y j``t .

(B.3)

As equalities (B.3) necessarily hold, constraints (4.13) are also satisfied. In a similar

way, we show that constraints (4.14) hold:

t

∑
t ′=1

vo
j`t ′ ≤

t

∑
t ′=1

vc
j`t ′ (4.14)

(CR.R2) & (CR.R3)⇔
t

∑
t ′=1

y j``t ′ ≤
t

∑
t ′=1

y j``t ′

replace LHS by (B.4)⇔
t

∑
t ′=1

y j``(t ′−1)+
t

∑
t ′=1

y j``(t ′−1)−
t

∑
t ′=1

y j``t ′ ≤
t

∑
t ′=1

y j``t ′

cancel y j``t ′ & y j``t ′⇔ −y j``t ≤ y j``t ,
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which is true, since the y variables are non-negative. Finally, to show that constraints

(4.15) are also satisfied, note that constraints (B.3) - (B.5) ensure that the y j`1`2t variables

sum to 1 at each location j and time period t. This flow also contains the case where no

facility exits, i.e., `= 0. Furthermore, once a facility is constructed, the flow in the GMC

network cannot return to capacity level 0, since, according to (B.7) - (B.11), y j`1`2t is not

defined for `2 = 0. Therefore, ∑
|T |
t=1 y j`1`2t ≤ 1 which proves that constraints (4.15) are

satisfied.

If the SIs are used, they are also feasible in the CR-1I model. They can be deduced

by replacing (CR.R4) in the SIs of the CR-GMC.

(B) Construction of a feasible CR-GMC solution from any CR-1I solution

Consider any solution
{

xi j`t ,y j`t ,s j`t ,vo
j`t ,v

c
j`t

}
that is feasible in CR-1I. We now

construct an equivalent solution
{

xi j`t ,y j`1`2t
}

that is feasible in CR-GMC and has the

same objective function value.

The values for the xi j`t variables are set identical to those in the CR-1I solution. The

arcs for constructing a facility (y j0`t), closing an open facility (y j``t) and reopening a

closed facility (y j``t) are set by using the equalities (CR.R1) - (CR.R3) and therefore

satisfy their domain constraints. The solution values for the arcs to keep a facility open

(y j``t) are set by replacing (CR.R1) and (CR.R2) in equality (CR.R4):

y j`t = y j0`t + y j``t + y j``t (CR.R4)
(CR.R1),(CR.R2)⇔ y j`t = s j`t + y j``t + vo

j`t

⇔ y j``t = y j`t− s j`t− vo
j`t .

The variables are non-negative, as can be verified in equalities (4.13). According to in-

equalities (4.15), the total flow for capacity construction does not exceed 1 for the entire

planning horizon. For the first time period, y j0`1 is set to s j`1, resulting in ∑`2∈L\{0} y j0`21≤
1 for each location j. Furthermore, we set y j001 = 1−∑`2∈L\{0} y j0`21. Therefore, the

flow initialization constraints (B.5) are satisfied.
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Constraints (B.1) and (B.2) are satisfied, as they contain the same variables with the

same values in both models. As shown above in part (A), we can transform equalities

(4.13) into equalities (B.3), and vice-versa, by using (CR.R1)-(CR.R2). This proves

the feasibility of constraints (B.3). Finally, we compute the values for y j``t by using

equalities (B.4), sequentially from time period 1 to |T |:

y j``t = y j``(t−1)+ y j``(t−1)− y j``t (B.4)
(CR.R2),(CR.R3)⇔ y j``t = y j``(t−1)+ vc

j`(t−1)− vo
j`t .

Note that, due to (4.14), the variables have non-negative values. Furthermore, their sum

never exceeds 1, because the only way how to insert flow into the vo and vc variables is

by using the s variables, whose total sum is strictly limited to 1 by inequalities (4.15).

We note that the constructed solution has the same value, as can be verified by the

used relationships (CR.R1)-(CR.R4) as well as the way the variables’ coefficients are

composed (see Section 4.4.2).

From the two parts (A) and (B) above, it follows that v(CR−GMC) = v(CR−1I).

B.1.1.2 CR-GMC and CR-1I are stronger than CR-2I

We next prove that the CR-GMC and CR-1I formulations provide stronger LP bounds

than the CR-2I formulation.

Theorem B.1.2. v(CR-1I)≥ v(CR-2I).

Proof. The proof consists of two parts: First, we show how to construct a feasible

solution for CR-2I from any feasible solution of CR-1I and that both solutions have the

same objective function value. Then, we describe a small problem instance where the

CR-1I formulation provides a better LP relaxation bound than the CR-2I formulation.
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(A) Construction of a feasible CR-2I solution from any feasible CR-1I solution

We first set the solution values for the s j`t1t2 and y j`t1t2 variables. For each j and `,

we consider the diagram that describes the opening schedule of a facility of size ` in the

CR-1I solution. We separate the opening schedules for each capacity level ` into blocks,

as described by the following algorithm:
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Algorithm 1.

Input: A facility opening schedule, consisting of a value between 0 and 1,

indicating the fraction at which the facility is open for each of the |T | time

periods (indicated by the value of y j`t).

Output: The opening schedule horizontally cut into blocks. Each block is

defined by a starting and ending period as well as a value between 0 and 1,

indicating the fraction at which the block represents the open facility.

Description: The opening schedule, as shown in Figure 4.1 (a), is horizon-

tally cut into blocks whenever the value of the opening fraction increases

or decreases. Doing this, the increase and/or decrease of capacity may be

split into several increases and/or decreases, respectively. This results in a

representation as in Figure 4.1 (b). In this example, the capacity increase

at the beginning of period 3 is split into two capacity increases of half size

each, while the capacity decrease at the beginning of period 6 is split into

two capacity decreases. To be precise, the algorithm separates the opening

schedules into three capacity blocks: the first block spans periods 2 to 5,

the second block spans periods 3 to 5 and the third block spans periods 3

to 4. It is easy to see that this kind of division is unambiguous, i.e., there

is only one way to separate into blocks. The design of an algorithm to find

this division is straightforward. We therefore do not explicitly state such an

algorithm.

Note that, in the opening schedule, a capacity increase at time period t is always

caused by the use of the variables s j`t or vo
j`t . A capacity decrease at time period t is

caused by the use of variable vc
j`t .
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After division, we have a number of separate blocks (each spanning one or more time

periods). We divide these blocks into two groups: blocks where the capacity increase

is originated from a variable s j`t and blocks where the capacity increase is originated

from reopening variables vo
j`t . Each block originated from a variable s j`t represents a

s j`t1t2 variable and each block originated from a vo
j`t variable represents a variable y j`t1t2 .

The value for these variables is set equal to the fraction of value represented by the

corresponding variables s j`t and vo
j`t .

The following relationships then hold, since the solution value of y j`t is the sum of

all capacity blocks at time period t:

t

∑
t1=1

|T |

∑
t2=t

(
s j`t1t2 + y j`t1t2

)
= y j`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T. (CR.R5)

Furthermore, the following relationships hold, since the solution value of s j`t is dis-

tributed over all s j`t1t2 variables that originate from t1 = t. The same relation is valid

between the variables vo
j`t and y j`t1t2:

|T |

∑
t2=t

s j`tt2 = s j`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T. (CR.R6)

All xi j`t variables are set as given in the CR-1I solution. Thus, constraints (4.19) are

satisfied. Inequalities (4.14) guarantee that, at any time period t, variable vo
j`t does not

hold more capacity than has been previously constructed. Thus, constraints (4.20) also

hold. Using (CR.R6) in (4.15) shows that constraints (4.21) are satisfied. Inequalities

(4.22) are also satisfied. To show this, first replace the terms by (CR.R5). Then, recog-

nize that (4.15) limits the entire facility construction to 1. As y j`t is linked to the facility

construction in equalities (4.13), its sum over all capacity levels can never exceed 1. Fi-

nally, the capacity constraints (4.23) are feasible. This is shown by replacing (CR.R5)

in constraints (4.23), which then equal the capacity constraints of the CR-1I. If SIs are

used, the feasibility of the SIs in the CR-2I formulation can be shown by replacing its

RHS terms by (CR.R5).



232

We note that the constructed solution has the same value as the CR-1I solution. This

can be seen by recognizing that the s j`t1t2 and y j`t1t2 blocks in the CR-2I solution have

been constructed following the corresponding solution values of s j`t and y j`t and consid-

ering how the cost coefficients are set as described in Section 4.5.1.2.

(B) Problem instance where CR-1I is stronger

Consider the following example instance. We consider a planning over three time

periods. A single customer exists with demands of 15, 15 and 20 units for each of the

time periods, respectively. Two locations can be used to construct facilities. A single

capacity level is available, providing a capacity of 10 units. The construction costs

are 100$ and the maintenance costs for an open facility are set to 500$ for one time

period. Facility closing and reopening is free. The same holds for the production and

transportation of the commodity. For the given instance, the CR-1I provides a better

bound than the CR-2I formulation. The solution of the CR-1I model is y j0`1t0 = 1.0,

y j0`1t1 = 0.5, y j0`1t2 = 1.0, y j1`1t0 = 0.5, y j1`1t1 = 1.0, y j1`1t2 = 1.0, s j0`1t0 = 1.0, s j1`1t0 =

0.5, s j1`1t1 = 0.5, vc
j0`1t1

= 0.5, vo
j0`1t2

= 0.5. The demand allocation variables have the

values xi0 j0`1t0 = 0.66, xi0 j1`1t0 = 0.33, xi0 j0`1t1 = 0.33, xi0 j1`1t1 = 0.66, xi0 j0`1t2 = 0.5,

xi0 j1`1t2 = 0.5. The cost of this solution is 2700$.

In the solution of the CR-2I model, the binary decision variables have the following

values: s j0`1t0t2 = 1.0, s j1`1t0t0 = 0.5, y j1`1t1t2 = 0.5, y j1`1t2t2 = 0.5. The demand allocation

variables are as follows: xi0 j0`1t0 = 0.66, xi0 j1`1t0 = 0.33, xi0 j0`1t1 = 0.66, xi0 j1`1t1 = 0.33,

xi0 j0`1t2 = 0.5, xi0 j1`1t2 = 0.5. The cost of this solution is 2650$.

From the two parts (A) and (B) above it follows that v(CR-1I)≥ v(CR-2I).

Theorem B.1.3. v(CR-GMC)≥ v(CR-2I).

Proof. The result follows by transitivity from Theorems B.1.1 and B.1.2.

B.1.1.3 CR-2I+ is equally strong as CR-GMC and CR-1I

Theorem B.1.4. v(CR-1I) = v(CR-2I+).
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Proof. It has already been shown that we can construct an equivalent and feasible

CR-2I solution from any CR-1I solution. Due to the way the described algorithm assigns

the values to the s j`t1t2 and y j`t1t2 variables as well as the direct relationship between these

variables and the vc and vo variables, it can be shown that the new constraints (4.26) are

also satisfied.

(A) Construction of a feasible CR-1I solution from any feasible CR-2I+ solution

Consider any solution
{

xi j`t ,s j`1t1t2 ,y j`1t1t2
}

that is feasible in CR-2I+. We now con-

struct an equivalent solution
{

xi j`t ,y j`t ,s j`t ,vo
j`t ,v

c
j`t

}
that is feasible in CR-1I and that

has the same value.

We set the values for the xi j`t variables identical to those in the CR-2I+ solution.

The values for the variables y j`t , s j`t , vo
j`t and vc

j`t are set by establishing the following

relations ∀ j ∈ J,∀` ∈ L,∀t ∈ T :

s j`t =
|T |

∑
t2=t

s j`tt2 (CR.R7)

y j`t =
t

∑
t1=1

|T |

∑
t2=t

s j`t1t2 +
t

∑
t1=1

|T |

∑
t2=t

y j`t1t2 (CR.R8)

vo
j`t =

|T |

∑
t2=t

y j`tt2 (CR.R9)

vc
j`t =

t−1

∑
t1=1

s j`t1(t−1)+
t−1

∑
t1=1

y j`t1(t−1) (CR.R10a)

⇔ vc
j`(t+1) =

t

∑
t1=1

s j`t1t +
t

∑
t1=1

y j`t1t (CR.R10)

Constraints (4.11) are equivalent to constraints (4.19) and are thus satisfied. By

using (CR.R8), constraints (4.12) correspond to constraints (4.23). Constraints (4.15)

correspond to constraints (4.21) by using (CR.R7).
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Replacing (CR.R9) and (CR.R10) in constraints (4.14) gives, ∀ j ∈ J,∀` ∈ L,∀t ∈ T :

t

∑
t ′=1

vo
j`t ′ ≤

t

∑
t ′=1

vc
j`t ′ (4.14)

⇔
t

∑
t ′=1

vo
j`t ′ ≤

t−1

∑
t ′=0

vc
j`(t ′+1)

(CR.R9)&(CR.R10)⇔
t

∑
t ′=1

|T |

∑
t2=t ′

y j`t ′t2 ≤
t−1

∑
t ′=0

t ′

∑
t1=1

s j`t1t ′+
t−1

∑
t ′=0

t ′

∑
t1=1

y j`t1t ′

⇔
t

∑
t ′=1

|T |

∑
t2=t ′

y j`t ′t2 ≤
t−1

∑
t1=1

t−1

∑
t ′=t1

s j`t1t ′+
t−1

∑
t1=1

t−1

∑
t ′=t1

y j`t1t ′,

which is true due to constraints (4.26). Thus, constraints (4.14) also hold. The feasibility

of the flow conservation constraints (4.13) can be shown by replacing the variables by

the terms given in the relations (CR.R7), (CR.R9) and (CR.R10a). By doing so, all terms

on the LHS and RHS will cancel each other.

Given the relations (CR.R7)-(CR.10a) and the way the variable coefficients are com-

posed in both formulations, it can easily be verified that both solutions have the same

value. Both formulations are thus equally strong.

Theorem B.1.5. v(CR-GMC) = v(CR-2I+).

Proof. The result follows by transitivity from Theorems B.1.1 and B.1.4.

B.1.2 Theoretical Results for the DMCFLP_ER formulations

We now prove the dominance relationships for the three formulations presented for

the DMCFLP_ER. Let ER-GMC be the linear programming relaxation of ER-GMC. In

the same way, we denote ER-1I the linear programming relaxation of ER-1I and ER-2I

the linear programming relaxation of ER-2I.

B.1.2.1 ER-1I and ER-2I are equally strong

We first prove that the LP relaxations of the formulations ER-1I and ER-2I provide

the same lower bound.
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Theorem B.1.6. v(ER-1I) = v(ER-2I).

Proof. The proof consists of two parts: First, we show how to construct a feasible

solution for ER-1I from any feasible solution of ER-2I and that both solutions have the

same objective function value. Then, we show the same, constructing an equivalent

ER-2I solution based on any feasible ER-1I solution.

(A) Construction of a feasible ER-1I solution from any ER-2I solution

Consider any solution
{

xi j`t ,y′j`t1t2,y j`t ,s j`t ,w j`t

}
that is feasible in ER-2I. We now

construct an equivalent solution
{

xi j`t ,y j`t ,s j`t ,w j`t
}

that is feasible in ER-1I and has

the same objective function value.

We set all variables xi j`t ,y j`t , s j`t and w j`t in the ER-1I formulation as given in the

ER-2I solution. Given that both formulations have the same objective function, the solu-

tion value is also the same. Also observe that the formulations have the same constraints

except for constraints (4.28) in the ER-1I and constraints (4.35) - (4.37) in the ER-2I

formulation. The constraints that are part of both models (including the SIs) have the

same variables with the same solution values in both solutions and are thus feasible.

Therefore, we only have to show that constraints (4.28) are also feasible. We do so by

replacing (4.35) - (4.37) in (4.28) for ∀ j ∈ J,∀t ∈ T :

∑
`∈L

`y j`t = ∑
`∈L

`y j`(t−1)+ ∑
`∈L

`s j`t−∑
`∈L

`w j`t

(4.28)

(4.35)−(4.37)⇔ ∑
`∈L

t

∑
t1=1

|T |

∑
t2=t

`y′j`t1t2 = ∑
`∈L

t−1

∑
t1=1

|T |

∑
t2=t−1

`y′j`t1t2 + ∑
`∈L

|T |

∑
t2=t

`y′j`tt2−∑
`∈L

t−1

∑
t1=1

`y′j`t1(t−1)

⇔ ∑
`∈L

t−1

∑
t1=1

|T |

∑
t2=t

`y′j`t1t2 + ∑
`∈L

|T |

∑
t2=t

`y′j`tt2

= ∑
`∈L

t−1

∑
t1=1

|T |

∑
t2=t−1

`y′j`t1t2 + ∑
`∈L

|T |

∑
t2=t

`y′j`tt2−∑
`∈L

t−1

∑
t1=1

`y′j`t1(t−1).
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The remaining terms now cancel each other and therefore constraints (4.28) hold.

(B) Construction of a feasible ER-2I solution from any ER-1I solution

Consider any solution
{

xi j`t ,y j`t ,s j`t ,w j`t
}

that is feasible in ER-1I. We now con-

struct an equivalent solution
{

xi j`t ,y′j`t1t2,y j`t ,s j`t ,w j`t

}
that is feasible in ER-2I and has

the same objective function value.

We set the values for the xi j`t ,y j`t , s j`t and w j`t variables in the ER-2I formulation

as given in the ER-1I solution. Given that both formulations have the same objective

function, the solution value in the objective function is also the same. All constraints

(including the SIs), except for constraints (4.35) - (4.37), are the same as in formulation

ER-1I and are therefore feasible.

We now set the solution values for the y′j`t1t2 variables. For each ` ∈ L, we consider

the diagram that describes the opening schedule of a facility of size `. Each opening

schedule is horizontally cut into blocks as described by Algorithm 1. Note that in the

optimal solution, due to (4.28), an increase in y j`t by an amount of α necessarily means

that s j`t = α and w j`t = 0, whereas a decrease in y j`t by an amount of α necessarily

means that w j`t = α and s j`t = 0. After separation, each of the separated blocks rep-

resents a variable y′j`t1t2 with a solution value greater than 0. The solution value of s j`t

will be distributed over all y′j`t1t2 variables that start at t1 = t, the solution value of w j`t

will be distributed over all y′j`t1t2 variables that terminate at the end of t2 = t and the

solution value of y j`t will be distributed over all y′j`t1t2 variables that start at or before t

and terminate at or after t. Therefore, the following relationships hold:

|T |

∑
t2=t

y′j`tt2 = s j`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T

t−1

∑
t1=1

y′j`t1(t−1) = w j`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T

t

∑
t1=1

|T |

∑
t2=t

y′j`t1t2 = y j`t ∀ j ∈ J, ∀` ∈ L, ∀t ∈ T.

Replacing these relationships in the constraints (4.35) - (4.37), respectively, shows that
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these constraints remain feasible.

From the two parts (A) and (B) above it follows that v(ER−1I) = v(ER−2I).

B.1.2.2 ER-GMC is stronger than ER-1I and ER-2I

We now compare the strength of the ER-GMC and ER-1I formulations. We will

prove that the ER-GMC formulation is at least as strong (strictly stronger for some in-

stances) as the ER-1I formulation in the sense that its linear programming relaxations

provides a better bound. By transitivity, the same result follows for the relation between

the ER-GMC and ER-2I.

The ER-GMC formulation has the following form. Its objective function contains

the costs for capacity expansion, capacity reduction and remaining at the same capacity

level. Its constraints are the same as defined by the GMC:

(ER-GMC) min ∑
j∈J

∑
`1∈L

∑
`2∈L,
`1>`2

∑
t∈T

(
f c

j(`1−`2)
+Fo

j`2

)
y j`1`2t

∑
j∈J

∑
`1∈L

∑
`2∈L,
`1<`2

∑
t∈T

(
f o

j(`2−`1)
+Fo

j`2

)
y j`1`2t

∑
j∈J

∑
`1∈L

∑
t∈T

Fo
j`1

y j`1`1t +∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

gi j`tditxi j`t

s.t. (4.2)− (4.7).

Theorem B.1.7. v(ER-GMC)≥ v(ER-1I).

Proof. The proof consists of two parts: First, we show how to construct a feasi-

ble solution for ER-1I from any feasible solution of ER-GMC and that both solutions

have the same objective function value. Second, we provide a problem instance where

ER-GMC provides a better bound than ER-1I.

(A) Construction of a feasible ER-1I solution from any ER-GMC solution

Consider any solution
{

xi j`t ,y j`1`2t
}

that is feasible in ER-GMC. We now construct

an equivalent solution
{

xi j`t ,y j`t ,s j`t ,w j`t
}

that is feasible in ER-1I and has the same
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objective function value.

We deduce the values for the new variables from those of the existing solution vari-

ables y j`1`2t . Equalities (4.4) in the ER-GMC formulation conserve the flow for open

facilities as it is found at the end of each planning period. They can be used to deduce

the values for the y variables ∀ j ∈ J,∀` ∈ L,∀t ∈ T :

y j`t = ∑
`1∈L

y j`1`t . (ER.R1)

The same equalities (4.4) also lead to the following result:

y j`(t−1)
(ER.R1)
= ∑

`1∈L
y j`1`(t−1)

(4.4)
= ∑

`2∈L
y j``2t . (ER.R2)

Furthermore, we set s j`t and w j`t as follows:

s j`t = ∑
`1∈L

y j`1(`1+`)t (ER.R3)

w j`t = ∑
`1∈L

y j`1(`1−`)t . (ER.R4)

Having set the variables for the ER-1I formulation, we now show that the equalities

(4.28) still hold. We replace the variables by the deduced values according to (ER.R1)-

(ER.R4):

∑
`∈L

`y j`t + ∑
`∈L

`w j`t = ∑
`∈L

`y j`(t−1)+ ∑
`∈L

`s j`t ∀ j ∈ J, ∀t ∈ T (4.28)

(ER.R1)−(ER.R4)⇔ ∑
`1∈L

∑
`2∈L

`2y j`1`2t + ∑
`1∈L

∑
`∈L

`y j`1(`1−`)t

= ∑
`1∈L

∑
`2∈L

`1y j`1`2t + ∑
`1∈L

∑
`∈L

`y j`1(`1+`)t ∀ j ∈ J, ∀t ∈ T. (B.12)

In the following, we prove that (B.12) is true by using the principle of induction:
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Proposition: Equalities (B.12) are true for all sizes of L.

Basic cases: We start with the trivial case of q = 1, i.e., L = {0,1}. Note that, for

the sake of simplicity, we suppress the variable indices j and t, but indicate only the

values for the indices `1 and `2:

LHS : ∑
`1∈L

∑
`2∈L

`2y j`1`2t → 0y00 +1y01 +0y10 +1y11

∑
`1∈L

∑
`∈L

`y j`1(`1−`)t → 1y10

RHS : ∑
`1∈L

∑
`2∈L

`1y j`1`2t → 0y00 +0y01 +1y10 +1y11

∑
`1∈L

∑
`∈L

`y j`1(`1+`)t → 1y01

It can be easily verified that the terms on the LHS equal the terms on the RHS. The

proposition is thus true for q = 1.

Inductive step: We now show that the proposition also holds for q = q+ 1. For

q+1, the LHS and RHS include the same terms as in the previous step. In addition,

the following terms are added:

LHS :
q+1

∑
`2=0

`2y j(q+1)`2t +
q

∑
`1=0

(q+1)y j`1(q+1)t +
q+1

∑
`2=0

(q+1− `2)y j(q+1)`2t

RHS :
q+1

∑
`2=0

(q+1)y j(q+1)`2t +
q

∑
`1=0

`1y j`1(q+1)t +
q+1

∑
`1=0

(q+1− `1)y j`1(q+1)t

Summing up all terms on the LHS and all terms on the RHS shows that both sides

are equivalent. Hence the result follows by induction.
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Therefore, constraints (4.28) are satisfied. For the xi j`t variables, we choose the same

solution values as in the ER-GMC solution. Constraints (4.11) are therefore necessarily

satisfied. In addition, the demand allocation contributes equally to the objective func-

tion in both formulations. Constraints (4.12) are also satisfied, as can be verified by

replacing the y j`1`2t variables in constraints (4.3) by (ER.R1). The limiting constraints

(see Section 4.5.2) are also satisfied by noting that each of the variables can be replaced

by corresponding y j`1`2t variables and the sum of all y j`1`2t variables never exceeds 1.

Finally, the SIs are feasible due to relationship (ER.R1).

The contribution of the variables y j`t , s j`t and w j`t to the total solution costs is equiv-

alent to that of the y j`1`2t variables. This can be easily shown by verifying the equalities

(ER.R1)-(ER.R4) and the costs attributed to the y j`1`2t in Section 4.4.2.

(B) Problem instance where ER-GMC is stronger

We now explain, by the use of a small problem instance, under which circumstances

the ER-GMC provides a better LP bound than the ER-1I and ER-2I formulations.

This instance contains one potential facility location and one client. The planning

horizon contains one time period, in which the customer has a demand of 10 units.

Production and transportation of the commodities is free. The maximum capacity level

is 2. The capacity expansion costs 200$ for one capacity level and 350$ for two capacity

levels. The capacity reduction costs are set to 20$ for one capacity level and to 35$

for two capacity levels. The maintenance costs for a facility is 300$ at capacity level

1 and 500$ at capacity level 2. The facility capacity is 10 at level 1 and 11 at level 2.

Therefore, the costs to provide and maintain a certain amount of capacity do not follow

the principle of economies of scale.

The ER-GMC formulation provides a better bound than the other formulations. The

LP relaxation for the ER-GMC sets y j0`0`1t0 = 1.0 and xi0 j0`1t0 = 1.0, resulting in a solu-

tion with a total cost of 500$. For the ER-1I and ER-2I formulations, with and without

the SIs, the optimal LP relaxation solution constructs half a level 2 facility, while allo-

cating demand to a full level 1 facility. The decision variables linked to the objective

function thus have the solution values y j0`1t0 = 1.0 and s j0`2t0 = 0.5. This solution has a
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total cost of 475$.

From the two parts (A) and (B) above, it follows: v(ER-GMC)≥ v(ER-1I).

Theorem B.1.8. v(ER-GMC)≥ v(ER-2I).

Proof. The result follows by transitivity from Theorems B.1.6 and B.1.7.

B.1.3 Theoretical Results for the DMCFLP_CRER formulations

Sections 4.6.3 and 5.3.2 referred to the special case DMCFLP_CRER. It has been

outlined how this problem can be modeled by using the general DFLPG model, result-

ing in a model denoted to the CRER-GMC. The performance of this model has then

been compared to an alternative model for the DMCFLP_CRER, using classical flow

conservation constraints We now explicitly state this specialized formulation. To model

the problem variant in which facilities can be closed and reopened, as well as expand or

reduce their capacities, the flow conservation constraints are divided into two sets: one

to manage the open facilities and one to manage the closed facilities. In the resulting

network, nodes are thus given for open and closed capacities at each time period and

each location (see Figure B.1). Note that the arcs which represent capacity closing link

to the nodes for the subsequent time period to avoid cycles in the network structure. The

network is therefore slightly different from the one used in the CSLP.

Period t0

L
o
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ti
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n

 i
0 Open

capacity

Closed
capacity

y

z

s s

v v

y

z

v C OO v C

y

z

s

v O v C

Period t1 Period t2

w w w

Figure B.1: Network flow to manage open and closed capacities at each facility for the
DMCFLP_CRER.

Consider the variables xi j`t , y j`t , s j`t , w j`t , vo
j`t and vc

j`t as they are defined in Chapter

4. In addition, consider the binary variables z j`t which are 1, if a facility of size ` located
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at j is temporarily closed at period t−1 and remains closed during period t. The model,

denoted as the Single time-index flow formulation (CRER-1I), is given by:

(CRER-1I) min ∑
j∈J

∑
`∈L

∑
t∈T

(
f o

j`s j`t + f c
j`w j`t +Fo

j`y j`t + co
j`v

o
j`t + cc

j`v
c
j`t

)
+∑

i∈I
∑
j∈J

∑
`∈L

∑
t∈T

ditgi j`txi j`t (B.13)

s.t. ∑
i∈I

∑
`∈L

xi j`t = 1 ;∀ j ∈ J ;∀t ∈ T (B.14)

∑
i∈I

ditxi j`t ≤ u j`y j`t ;∀ j ∈ J ;∀` ∈ L ;∀t ∈ T (B.15)

∑
`∈L

(
`y j`(t−1)+ `s j`t + `vo

j`t

)
= ∑

`∈L

(
`y j`t + `w j`t + `vc

j`t

)
;∀ j ∈ J ;∀t ∈ T

(B.16)

∑
`∈L

(
`z j`(t−1)+ `vc

j`(t−1)

)
= ∑

`∈L

(
`z j`t + `vo

j`t

)
;∀ j ∈ J ;∀t ∈ T

(B.17)

∑
`∈L

(
y j`t + z j`t + vc

j`t

)
≤ 1 ;∀ j ∈ J ;∀t ∈ T (B.18)

w j`t ,s j`t ,vo
j`t ,v

c
j`t ,y j`t ,z j`t ∈ {0,1} , xi j`t ≥ 0

Equalities (B.16) and (B.17) are the new flow conservation constraints for open and

closed facilities, respectively. Inequalities (B.18) ensure that facilities can be closed

and reopened only as a whole, but not partially. Note that these inequalities also imply

that capacity can only be extended at open facilities. Finally, we also add the limiting

constraints for the s and w variables as shown in Section 4.5.2 to ensure that feasible

solutions only use one active variable of each type s and w at each location and time

period (note that the y variables are already limited by constraints (B.18)).

Dominance Relationships. We now prove that the CRER-GMC formulation is at least

as strong (strictly stronger for some instances) as the CRER-1I formulation in the sense

that its LP relaxation provides a better bound.

Theorem B.1.9. v(CRER-GMC)≥ v(CRER-1I)
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Proof The proof consists of two parts: First, we show how to construct a feasible so-

lution for CRER-1I from any feasible solution of CRER-GMC and that both solutions

have the same objective function value. Second, we give a problem instance where

CRER-GMC provides a better bound than CRER-1I.

(A) Construction of feasible CRER-1I solution from any CRER-GMC solution

Consider any solution
{

xi j`t ,y j`1`2t
}

that is feasible in CRER-GMC. We now con-

struct an equivalent solution
{

xi j`t ,y j`t ,z j`t ,s j`t ,w j`t ,vo
j`t ,v

c
j`t

}
that is feasible in CRER-1I

and has the same objective function value. Note that we denote the set of open capacity

levels by L and the set of closed capacity levels by L′.

We set the values for the xi j`t variables to those in the CRER-GMC solution. The val-

ues for the variables y j`t , s j`t , w j`t , vo
j`t , vc

j`t and z j`t are set by establishing the following

relations. ∀ j ∈ J,∀` ∈ L,∀t ∈ T :

y j`t = ∑
`1∈L′

y j`1`t
+ ∑

`1∈L
y j`1`t (CRER.R1)

s j`t = ∑
`1∈L′

y j`1(`2=`1+`)t + ∑
`1∈L

y j`1(`2=`1+`)t + ∑
`1∈L

y j`1(`2=`1+`)t (CRER.R2)

w j`t = ∑
`1∈L

y j`1(`2=`1−`)t + ∑
`1∈L′

y j`1(`2=`1−`)t + ∑
`1∈L

y j`1(`2=`1−`)t (CRER.R3)

vo
j`t = ∑

`2∈L
y j``2t (CRER.R4)

vc
j`t = ∑

`1∈L
y j`1`t

(CRER.R5)

z j`t = y j``t (CRER.R6)

In other words, y j`t is the sum of capacity that reopens and changes from any level

to level `, plus the capacity that has already been open and changes from any level to

level `. z j`t is the capacity that has been closed at t− 1 and remains closed at t. s j`t is

the sum of all facility expansions of ` capacity levels for the following three cases: a

facility has been open at t− 1 and remains open at t, a facility reopens and expands its
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capacity, and a facility closes right after having expanded its capacity. w j`t is the sum of

all facility reductions of ` capacity levels for the following three cases: a facility reduces

its capacity and remains open, a facility reduces its capacity and closes, and a facility

reopens and reduces its capacity. vo
j`t is set to the sum of facility reopenings at capacity

level ` (and may have changed capacity afterwards). vc
j`t is set to the sum of facility

closings at capacity level ` (and possibly changed capacity before).

Note that the flow initialization and conservation constraints (4.4) and (4.5) guarantee

that all variables as set above respect their domains, i.e., they do not exceed value 1.

Demand constraints (B.14) hold, as all x variables have the same solution values in the

solutions for both models. Replacing relation (CRER.R1) in inequalities (4.3) shows

that constraints (B.15) are respected.

Due to equalities (4.4) in the GMC formulation as well as the relationships above,

the following relations also hold ∀ j ∈ J,∀` ∈ L,∀t ∈ T :

y j`(t−1)
(CRER.R1)

= ∑
`1∈L′

y j`1`(t−1)+ ∑
`1∈L

y j`1`(t−1)
(4.4)
= ∑

`2∈L
y j``2t + ∑

`2∈L
y j``2t (CRER.R7)

l j`(t−1)+ vc
j`(t−1)

(CRER.R5)&(CRER.R6)
= y j``(t−1)+ ∑

`1∈L
y j`1`(t−1)

(4.4)
= y j``t + ∑

`2∈L
y j``2t

(CRER.R8)

We can now show that the flow conservation constraints (B.16) and (B.17) hold,

by using the relationships defined above. To prove that the former one is satisfied, we
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proceed as follows:

∑
`∈L

`y j`(t−1)+ ∑
`∈L

`s j`t + ∑
`∈L

`vo
j`t = ∑

`∈L
`y j`t + ∑

`∈L
`w j`t + ∑

`∈L
`vc

j`t

(B.16)
(CRER.R1)−(CRER.R5)⇔ ∑

`1∈L
∑
`2∈L′

`1y j`1`2t + ∑
`1∈L

∑
`2∈L

`1y j`1`2t

+ ∑
`1∈L′

∑
`∈L

`y j`1(`1+`)t + ∑
`1∈L

∑
`∈L

`y j`1(`1+`)t + ∑
`1∈L

∑
`∈L

`y j`1(`1+`)t

+ ∑
`1∈L

∑
`2∈L

`2y j`1`2t

= ∑
`1∈L′

∑
`2∈L

`2y j`1`2t + ∑
`1∈L

∑
`2∈L

`2y j`1`2t

+ ∑
`1∈L

∑
`∈L

`y j`1(`1−`)t + ∑
`1∈L

∑
`∈L

`y j`1(`1−`)t + ∑
`1∈L′

∑
`∈L

`y j`1(`1−`)t

+ ∑
`1∈L

∑
`2∈L

`2y j`1`2t ;∀i ∈ I ;∀t ∈ T (B.19)

The resulting equalities (B.19) contains all terms of equalities (B.12) (which have

been proven to be true). We may therefore eliminate all terms of (B.12) from equalities

(B.19), resulting in the following equalities:

∑
`1∈L

∑
`2∈L′

`1y j`1`2t

+ ∑
`1∈L′

∑
`∈L

`y j`1(`1+`)t + ∑
`1∈L

∑
`∈L

`y j`1(`1+`)t

+ ∑
`1∈L

∑
`2∈L

`2y j`1`2t

= ∑
`1∈L′

∑
`2∈L

`2y j`1`2t

+ ∑
`1∈L

∑
`∈L

`y j`1(`1−`)t + ∑
`1∈L′

∑
`∈L

`y j`1(`1−`)t

+ ∑
`1∈L

∑
`2∈L

`2y j`1`2t ;∀i ∈ I ;∀t ∈ T (B.20)
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In the following, we prove that (B.20), and therefore (B.19) and (B.16) as well, are

true by using the principle of induction:

Induction - Proposition: Equalities (B.20) are true for all sizes of L.

Induction - Basic cases: We start with the trivial case of q = 1, i.e., L = {0,1}. Note

that, for sake of simplicity, we suppress the variable indices j and t, but indicate only the

values for the indices `1 and `2:

LHS : ∑
`1∈L

∑
`2∈L′

`1y j`1`2t → 0y01 +1y11

∑
`1∈L′

∑
`∈L

`y j`1(`1+`)t → 0y11

∑
`1∈L

∑
`∈L

`y j`1(`1+`)t → 0y11 +1y01

∑
`1∈L

∑
`2∈L

`2y j`1`2t → 0y10 +0y11 +1y10 +1y11

RHS : ∑
`1∈L′

∑
`2∈L

`2y j`1`2t → 0y10 +1y11

∑
`1∈L

∑
`∈L

`y j`1(`1−`)t → 0

∑
`1∈L′

∑
`∈L

`y j`1(`1−`)t → 0y11 +1y10

∑
`1∈L

∑
`2∈L

`2y j`1`2t → 1y01 +1y11

It can easily be verified that the terms on the LHS equal the terms on the RHS. The

proposition is thus true for q = 1.

Inductive step: We now show that the proposition also holds for q = q+ 1. For

q+1, the LHS and RHS include the same terms as in the previous step. In addition, the
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following terms are added:

LHS :
q

∑
`1=0

`1y j`1(q+1)t +
q

∑
`2=0

(q+1)y j(q+1)`2t +(q+1)y j(q+1)(q+1)t

+
q

∑
`1=0

(q+1− `1)y j`1(q+1)t +
q

∑
`1=0

(q+1− `1)y j`1(q+1)t

q

∑
`1=0

`1y j`1(q+1)t +
q

∑
`2=0

(q+1)y j(q+1)`2t +(q+1)y j(q+1)(q+1)t

RHS :
q

∑
`1=1

(q+1)y j`1(q+1)t +
q

∑
`2=0

`2y j(q+1)`2t +(q+1)y j(q+1)(q+1)t

+
q

∑
`2=0

(q+1− `2)y j(q+1)`2t +
q

∑
`2=0

(q+1− `2)y j(q+1)`2t

q

∑
`1=0

(q+1)y j`1(q+1)t +
q

∑
`2=0

`2y j(q+1)`2t +(q+1)y j(q+1)(q+1)t

Summing up all terms on the LHS and all terms on the RHS shows that both sides

are equivalent, namely:

LHS = RHS =
q

∑
`2=1

(q+1)y j(q+1)`2t +
q

∑
`1=0

(q+1)y j`1(q+1)t +(q+1)y j(q+1)(q+1)t

+
q

∑
`2=0

(q+1)y j(q+1)`2t +
q

∑
`1=1

(q+1)y j`1(q+1)t +(q+1)y j(q+1)(q+1)t

Hence the result follows by induction.

The flow conservation constraints (B.16) are thus satisfied. The flow conservation

constraints (B.17) are also satisfied. This can be easily verified by replacing the variables

by relations (CRER.R4), (CRER.R6) and (CRER.R8).

Constraints (B.18) and the limiting constraints for the s and w variables (see Sec-

tion 4.5.2) also hold. This can be verified by replacing the variables by relationships

(CRER.R1), (CRER.R2), (CRER.R3), (CRER.R5) and (CRER.R6).

Finally, both solutions have the same value, as can be verified by the way the CRER-

GMC (see Section 4.4.2) and CRER-1I variable OF coefficients are composed.
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(B) Problem instance where CRER-GMC is stronger

Consider the problem instance presented in Section B.1.2.2. Additionally assume

that the facility closing and reopening costs are sufficiently high such that they are not

part of the optimal LP solution. For both formulations, the given problem instance thus

produces the same results as already observed in Section B.1.2.2. The CRER-GMC

formulation provides a better bound, since it combines the decisions of construction

and maintenance in a single variable. In contrast, the CRER-1I formulation uses two

different variables for construction and maintenance decisions and thus constructs half a

facility of size 2 while maintaining an entire facility of size 1.

From the two parts (A) and (B) above, it follows that v(CRER-GMC)≥ v(CRER-1I).
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B.2 Test Instances

Instances for multi-period facility location problems essentially contain information

about the customer demand for each time period, the construction costs of the facilities

and the costs to allocate demand between customers and facilities. The DFLPG and

the three special cases additionally involve capacity changes. Due to the lack of openly

available instance sets that include these properties, a large set of problem instances

has been generated to test the proposed models. The instances can be divided into five

different sets, each with a different number of time periods. Each of these sets contains

a total of 288 instances, 96 for each capacity level.

In the following we present how the instance properties are generated and which

parameters are used.

B.2.1 Number of time periods

Instances have been generated with different lengths of the planning horizon |T |,
chosen such that |T | ∈ {6,8,10,12,14}. Most of the computational results in this work

are based on the instances with |T | = 12, as this is a very common discretization in

practice, for example for a monthly representation of an entire year.

B.2.2 Problem dimension

Instances have been generated with different numbers of customers |I| and candidate

facility locations |J|. We considered the following dimensions (|J|/|I|), always assuming

that |J| ≤ |I|: (10/20), (10/50), (50/50), (50/100), (50/250), (100/250), (100/500) and

(100/1000).

B.2.3 Number of capacity levels

The number of capacity levels q also impacts on the size of the models. Instances

are generated with a maximum of 3, 5 and 10 capacity levels, which are assumed to be

reasonable values for a broad variety of different application contexts.
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The capacities u j` are generated based on the total number of customers and are

chosen such that a considerably large number of facilities (about half of the candidate

locations) is selected, resulting in instances that tend to be difficult to solve. The larger

the set of customers, the higher is the capacity of each level. To be precise, we set

u j1 = 150 if the instance covers 20 customers, u j1 = 300 if the instance covers 50 cus-

tomers, u j1 = 600 if the instance covers 100 customers, u j1 = 1200 if the instance covers

250 customers, u j1 = 2500 if the instance covers 500 customers and u j1 = 5000 if the

instance covers 1000 customers. The capacities of higher capacity levels `≥ 2 are set as

multiples of the first capacity level, i.e., u j` = ` ·u j1.

Note that we assume that the problem instances do not contain initially existing fa-

cilities, i.e., the initial capacity level of each facility is 0.

B.2.4 Customer/facility locations

For each of the different problem sizes, |I| customer demand points have been ran-

domly generated following a continuous uniform distribution, rounding the x and y co-

ordinates to the next lowest integer value. The first |J| points of |I| customer locations

have additionally been defined as candidate facility locations and therefore coincide with

the customer demand points. The networks were generated on squares of the following

three sizes: 300km, 380km and 450km.

B.2.5 Demand allocation costs

Costs are divided into fixed and variable costs and are based on those given in an

industrial application (Jena et al., 2012). Fixed costs are given by the construction of

facilities and the change of their capacity levels. Variable costs are composed of the

costs to produce and transport the commodities.

Transportation costs have been computed based on the Euclidean distance between

the points, including a small modification that results in a slight clustering effect of the

customers close to a facility. The transportation costs are composed of two components:

i. A cost that depends on the total distance, referred to as the vehicle cost. The
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vehicle cost is linear in function of the Euclidean distance between the two points

on the network (5$/km).

ii. A cost that depends on the travel time, referred to as the driver’s payment. The

driver’s payment is 0 if the two points are within one hour of transportation dis-

tance (assuming an average vehicle speed of 62km/h) and linear in function of the

Euclidean distance if the two points are at more than one hour of driving distance

(50$/h).

Let disti j denote the distance between facility location j and customer i. The costs

to transport one unit of demand from facility j to customer i is therefore set to:

gT
i j = 5 ·disti j +50 ·max

(
0,

disti j

62
−1
)

The variable and fixed costs include economies of scale in function of the size of the

facility. These costs are therefore described by concave cost functions, as explained in

the following. The production costs for each unit served from a facility to a customer

is defined as the cost to operate a facility and depends on the size of the facility. The

cost to produce one commodity unit at capacity level 1 is set to 20.90$. At each higher

capacity level, the production cost is 3% cheaper than at the previous level:

gP
j0 = 20.90

gP
j` = 0.97 ·gp

j(`−1)

Note that the production costs are added to the transportation costs to determine the

total demand allocation costs gi j`t to serve the customer demands:

gi j`t = gT
i j +gP

j`

In addition to the demand allocation costs as discussed above, a second set of in-

stances was generated with five times higher transportation costs.
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B.2.6 Fixed costs

The construction cost, also referred to as capacity expansion cost, is set to 100,000$

for a facility of level 1. Each additional capacity level is 10% cheaper than the previ-

ous one. The construction costs for facilities of different capacity levels are therefore

computed according to the following formula:

f o
j0 = 0

f o
j1 = 100,000

f o
j2 = 190,000

f o
j` = f o

j(`−1)+0.9 · ( f o
j(`−1)− f o

j(`−2))

The maintenance costs for a facility of a certain size are computed in a similar fash-

ion. They are set relatively high to motivate capacity changes. The maintenance costs

for a facility of capacity level 1 are set to 51,000$. The maintenance costs for each

additional capacity level are 15% cheaper than the previous ones:

Fo
j0 = 0

Fo
j1 = 51,000

Fo
j2 = 94,350

Fo
j` = Fo

j(`−1)+0.85 · (Fo
j(`−1)−Fo

j(`−2))

The cost to reduce the capacity of a facility by ` capacity levels is set to 10% of

the costs to expand the capacity of a facility by ` capacity levels. Finally, the costs

for reopening and closing existing facilities have been adopted from the input data the

industrial application mentioned above (Jena et al., 2012). Although being strictly in-

creasing, these costs do not necessarily represent economies of scale. The costs to re-

open a closed facility of capacity level 1, . . . ,10 are 3,138.34$, 4,084.69$, 4,924.58$,
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5,693.26$, 7,085.07$, 7,727.50$, 8,342.34$, 8,933.68$, 10,057.70$ and 10,594.80$, re-

spectively. The costs to temporarily close an open facility of capacity level 1, . . . ,10 are

8,624.93$, 11,595.80$, 14,305.60$, 16,836.50$, 21,524.10$, 23,727.90$, 25,858.30$,

27,925.70$, 31,901.10$ and 33,820.70$, respectively.

B.2.7 Demand distribution

We consider two different demand scenarios. In both scenarios, the demand for each

of the customers is randomly generated and randomly distributed over time. The two

scenarios differ in their total demand summed over all customers in each time period.

In the first scenario (regular), the total demand is similar in each time period. We set

the average demand for a customer to 12 units per time period. The total demand for all

customers is therefore approximately 12 · |I| units at each time period. The second sce-

nario (irregular) assumes that the total demand follows strong variations along time and

therefore varies at each time period. In this scenario, the total demand for all customers

is multiplied by a random distortion factor at each time period. This random distortion

factor is set to the absolute value of a normal random variable with mean value 1.0 and

standard deviation 0.6 (note that this procedure produced distortion factors from 0.14

to 2.24). Let totDemt be the total customer demand for time period t, computed as

explained above for one of the two scenarios.

We now explain how the individual demands for each of the customers are generated

and distributed on the different time periods such that its total sum equals approximately

the value of totDemt at each of the time periods. For all customers and all time periods,

the total demand covers approximately 12 · |I| · |T | units. In a first step, this total de-

mand is randomly distributed on each of the customers. In a second step, each customer

demand is distributed on different time periods:

i. Let totRemDem denote the total demand for all customers and time periods that

has not yet been allocated to any customer. Furthermore, let numRemCust indicate

the number of customers that have not yet been allocated any demand. For each

customer, its total demand for all time periods, denoted to totJDem j, is computed
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as a random normal variable with a mean µ = totRemDemand/numRemCust and

standard deviation σ = µ/2. Note that this method did not produce any negative

value in the course of our instance generation.

ii. The total demand for each customer, totJDem j is then divided into four equal

parts. One part of the demand is allocated to a time period that is randomly selected

following a uniform distribution. Each of the other three parts is allocated to the

time period t that has the highest gap between the total demand yet allocated to

period t and its value totDemt .

Note that the choice of allocating demand to only a few of the time periods is mo-

tivated by the aforementioned industrial application in the forest industry, where each

logging region is harvested, on average, about four seasons over a ten-period planning

horizon. Furthermore, it results in a geographically more dispersed distribution of the

demand which creates the need to adjust capacities at the facilities.
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B.3 Model Sizes

This section summarizes the model sizes expected for each of the problem variants

and formulations. Tables B.I, B.II and B.III show the model sizes for problem vari-

ants DMCFLP_CR, DMCFLP_ER and DMCFLP_CR_ER, respectively. All instances

possess twelve time periods.

The number of continuous x variables (Cont. vars / SIs) is identical for all formu-

lations of the same problem variant. This number also represents the number of Strong

Inequalities, as there is exactly one SI for each x variable. For each of the formulations,

the number of additional binary variables (Bin. var.) and the number of constraints

(Constr.) is given.

When the instances are generated, the total demand for each customer is randomly

distributed on four time periods. For some customers, a time period may be selected

more than once. Therefore, some customers may have less than four time periods with

non-zero demands and the total number of non-negative demands may not necessarily

equal 4 · |I| · |T |. The total number of non-negative customer demands directly impacts

the number of continuous x variables and the number of demand constraints. Thus,

for some of the instances, the number of continuous variables and constraints may be

slightly smaller than the numbers indicated in the tables. As demands are generated

independently for each of the three networks (see Section B.2.4), instances with the same

numbers of customers may have different numbers of x variables and demand constraints

for each network. An analysis showed that each of the instances possesses at least 90%

of the 4 · |I| · |T | non-negative customer demands.

Finally, note that the number of Aggregated Demand Constraints is always equal to

the number of time periods (i.e., in this case 12).
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CR-GMC CR-1I CR-2I+
q Instance Cont. vars Bin. Bin. Bin.

size / SIs var. Constr. var. Constr. var. Constr.
3 10/20 2,400 1,920 1,280 1,440 1,160 4,680 930

10/50 6,000 1,920 1,400 1,440 1,280 4,680 1,050
50/50 30,000 9,600 6,200 7,200 5,600 23,400 4,450
50/100 60,000 9,600 6,400 7,200 5,800 23,400 4,650
50/250 150,000 9,600 7,000 7,200 6,400 23,400 5,250
100/250 300,000 19,200 13,000 14,400 11,800 46,800 9,500
100/500 600,000 19,200 14,000 14,400 12,800 46,800 10,500
100/1000 1,200,000 19,200 16,000 14,400 14,800 46,800 12,500

5 10/20 4,000 3,120 2,000 2,400 1,880 7,800 1,410
10/50 10,000 3,120 2,120 2,400 2,000 7,800 1,530
50/50 50,000 15,600 9,800 12,000 9,200 39,000 6,850
50/100 100,000 15,600 10,000 12,000 9,400 39,000 7,050
50/250 250,000 15,600 10,600 12,000 10,000 39,000 7,650
100/250 500,000 31,200 20,200 24,000 19,000 78,000 14,300
100/500 1,000,000 31,200 21,200 24,000 20,000 78,000 15,300
100/1000 2,000,000 31,200 23,200 24,000 22,000 78,000 17,300

10 10/20 8,000 6,120 3,800 4,800 3,680 15,600 2,610
10/50 20,000 6,120 3,920 4,800 3,800 15,600 2,730
50/50 100,000 30,600 18,800 24,000 18,200 78,000 12,850
50/100 200,000 30,600 19,000 24,000 18,400 78,000 13,050
50/250 500,000 30,600 19,600 24,000 19,000 78,000 13,650
100/250 1,000,000 61,200 38,200 48,000 37,000 156,000 26,300
100/500 2,000,000 61,200 39,200 48,000 38,000 156,000 27,300
100/1000 4,000,000 61,200 41,200 48,000 40,000 156,000 29,300

Table B.I: Model sizes for the formulations CR-GMC, CR-1I and CR-2I+.
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ER-GMC ER-1I ER-2I
q Instance Cont. vars Bin. Bin. Bin.

size / SIs var. Constr. var. Constr. var. Constr.
3 10/20 2,400 1,920 920 1,080 920 3,420 1,160

10/50 6,000 1,920 1,400 1,080 2,000 3,420 1,280
50/50 30,000 9,600 6,200 5,400 9,200 17,100 5,600
50/100 60,000 9,600 6,400 5,400 9,400 17,100 5,800
50/250 150,000 9,600 7,000 5,400 10,000 17,100 6,400
100/250 300,000 19,200 13,000 10,800 19,000 34,200 11,800
100/500 600,000 19,200 14,000 10,800 20,000 34,200 12,800
100/1000 1,200,000 19,200 16,000 10,800 22,000 34,200 14,800

5 10/20 4,000 4,320 2,000 1,800 1,160 5,700 1,400
10/50 10,000 4,320 2,120 1,800 3,200 5,700 1,520
50/50 50,000 21,600 9,800 9,000 15,200 28,500 6,800
50/100 100,000 21,600 10,000 9,000 15,400 28,500 7,000
50/250 250,000 21,600 10,600 9,000 16,000 28,500 7,600
100/250 500,000 43,200 20,200 18,000 31,000 57,000 14,200
100/500 1,000,000 43,200 21,200 18,000 32,000 57,000 15,200
100/1000 2,000,000 43,200 23,200 18,000 34,000 57,000 17,200

10 10/20 8,000 6,120 3,800 3,600 1,760 11,400 2,000
10/50 20,000 6,120 3,920 3,600 6,200 11,400 2,120
50/50 100,000 30,600 18,800 18,000 30,200 57,000 9,800
50/100 200,000 30,600 19,000 18,000 30,400 57,000 10,000
50/250 500,000 30,600 19,600 18,000 31,000 57,000 10,600
100/250 1,000,000 61,200 38,200 36,000 61,000 114,000 20,200
100/500 2,000,000 61,200 39,200 36,000 62,000 114,000 21,200
100/1000 4,000,000 61,200 41,200 36,000 64,000 114,000 23,200

Table B.II: Model sizes for the formulations ER-GMC, ER-1I and ER-2I.
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CRER-GMC CRER-1I
q Instance Cont. vars Bin. Bin.

size / SIs var. Constr. var. Constr.
3 10/20 2,400 3,720 1,280 2,160 1,040

10/50 6,000 3,720 1,400 2,160 1,160
50/50 30,000 18,600 6,200 10,800 5,000
50/100 60,000 18,600 6,400 10,800 5,200
50/250 150,000 18,600 7,000 10,800 5,800
100/250 300,000 37,200 13,000 21,600 10,600
100/500 600,000 37,200 14,000 21,600 11,600
100/1000 1,200,000 37,200 16,000 21,600 13,600

5 10/20 4,000 8,520 2,000 3,600 1,280
10/50 10,000 8,520 2,120 3,600 1,400
50/50 50,000 42,600 9,800 18,000 6,200
50/100 100,000 42,600 10,000 18,000 6,400
50/250 250,000 42,600 10,600 18,000 7,000
100/250 500,000 85,200 20,200 36,000 13,000
100/500 1,000,000 85,200 21,200 36,000 14,000
100/1000 2,000,000 85,200 23,200 36,000 16,000

10 10/20 8,000 28,920 3,800 7,200 1,880
10/50 20,000 28,920 3,920 7,200 2,000
50/50 100,000 144,600 18,800 36,000 9,200
50/100 200,000 144,600 19,000 36,000 9,400
50/250 500,000 144,600 19,600 36,000 10,000
100/250 1,000,000 289,200 38,200 72,000 19,000
100/500 2,000,000 289,200 39,200 72,000 20,000
100/1000 4,000,000 289,200 41,200 72,000 22,000

Table B.III: Model sizes for the formulations CRER-GMC and CRER-1I.



APPENDIX C

SUPPLEMENT TO CHAPTER 5

C.1 Test Instances

Instances for multi-period facility location problems essentially contain information

about the customer demand for each time period, construction costs of the facilities and

the costs to allocate demand between customers and facilities. The DFLPG and the three

special cases additionally involve a detailed cost structure for the capacity changes. Due

to the lack of openly available instance sets that include these properties, we generated

a total of 540 instances, 180 for each capacity level, to test the presented models. These

essentially extend the instances used by Jena et al. (2013) by adding multiple commodi-

ties, the use of a cost matrix for capacity changes and a larger set of candidate facility

locations. In the following we present how these instance properties are generated and

which parameters are used.

C.1.1 Problem dimension

Instances were generated with different numbers of candidate facility locations |J|
and customers |I|, combining all pairs of J ∈{50,100,150,200,250} and I ∈{|J|,4 · |J|}.
To be precise, the instance dimensions are: (10/20), (50/50), (50/200), (100/100), (100/400),

(150/150), (150/600), (200/200), (200/800), (250/250) and (250/1000).

C.1.2 Number of capacity levels

The number of capacity levels q also impacts on the size of the models. Instances

are generated with a maximum of 3, 5 and 10 capacity levels, which are assumed to be

reasonable values for a broad variety of different application contexts.

The capacities u j` are generated based on the total number of customers and are

chosen such that a considerably large number of facilities (about half of the candidate

locations) is selected. The larger the set of customers, the higher is the capacity of each
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level. To be precise, we set u j1 = 300 if the instance covers 50 customers, u j1 = 600

if the instance covers 100 customers, u j1 = 800 if the instance covers 150 customers,

u j1 = 1000 if the instance covers 200 customers, u j1 = 1200 if the instance covers 250

customers, u j1 = 2000 if the instance covers 400 customers, u j1 = 2500 if the instance

covers 600 customers, u j1 = 3000 if the instance covers 800 customers and u j1 = 5000

if the instance covers 1000 customers. The capacities of higher capacity levels `≥ 2 are

set as multiples of the first capacity level, i.e., u j` = ` ·u j1. Note that we assume that the

problem instances do not contain initially existing facilities, i.e., the initial capacity level

of each facility is 0.

C.1.2.1 Number of time periods

All generated instances contain ten time periods, which is found to be sufficient to

demonstrate capacity changes along time and small enough to not increase the size of

the models too much. It is also very close to a monthly discretization of an entire year,

which is very common in practice.

C.1.3 Customer/facility locations

For each of the different problem sizes, |I| customer demand points have been ran-

domly generated following a continuous uniform distribution, rounding the x and y co-

ordinates to the next lowest integer value. The first |J| points of |I| customer locations

have additionally been defined as candidate facility locations and therefore coincide with

the customer demand points. The networks were generated on squares of the following

three sizes: 300km, 380km and 450km.

C.1.4 Demand allocation costs

Costs are divided into fixed and variable costs. Fixed costs are given by the construc-

tion of facilities and the change of their capacity levels. Variable costs are composed of

the costs to produce and transport the commodities.

Transportation costs have been computed based on the Euclidean distance between
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the points, including a small modification that results in a slight clustering effect of the

customers close to a facility. The transportation costs are composed of two components:

i. A cost that depends on the total distance, referred to as the vehicle cost. The

vehicle cost is linear in function of the Euclidean distance between the two points

on the network (5$/km).

ii. A cost that depends on the travel time, referred to as the driver’s payment. The

driver’s payment is 0 if the two points are within one-hour of transportation dis-

tance (assuming an average vehicle speed of 62km/h) and linear in function of the

Euclidean distance if the two points are at more than one hour of driving distance

(50$/h).

Let disti j denote the distance between facility location j and customer i. The costs

to transport one unit of demand from facility j to customer i is therefore set to:

gT
i j = 5 ·disti j +50 ·max

(
0,

disti j

62
−1
)

The variable and fixed costs include economies of scale in function of the size of the

facility. These costs are therefore described by concave cost functions, as explained in

the following. The production costs for each unit served from a facility to a customer

is defined as the cost to operate a facility and depends on the size of the facility. The

cost to produce one commodity unit at capacity level 1 is set to 20.90$. At each higher

capacity level, the production cost is 3% cheaper than at the previous level:

gP
j0 = 20.90

gP
j` = 0.97 ·gp

j(`−1)

Note that the production costs are added to the transportation costs to determine the

total demand allocation costs gi j`t to serve the customer demands:

gi j`t = gT
i j +gP

j`
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In addition to the demand allocation costs as discussed above, a second set of in-

stances was generated with five times higher transportation costs.

C.1.5 Fixed costs

The construction cost, also referred to as capacity expansion cost, is set to 100,000$

for a facility of level 1. Each additional capacity level is 10% cheaper than the previ-

ous one. The construction costs for facilities of different capacity levels are therefore

computed according to the following formula:

f o
j0 = 0

f o
j1 = 100,000

f o
j2 = 190,000

f o
j` = f o

j(`−1)+0.9 · ( f o
j(`−1)− f o

j(`−2))

The maintenance costs for a facility of a certain size are computed in a similar fash-

ion. They are set relatively high to motivate capacity changes. The maintenance costs

for a facility of capacity level 1 are set to 51,000$. The maintenance costs for each

additional capacity level are 15% cheaper than the previous ones:

Fo
j0 = 0

Fo
j1 = 51,000

Fo
j2 = 94,350

Fo
j` = Fo

j(`−1)+0.85 · (Fo
j(`−1)−Fo

j(`−2))

Fixed Costs for the Special Cases. For the three special cases, i.e., the DMCFLP_CR,

DMCFLP_ER and the DMCFLP_CR_ER, the cost to reduce the capacity of a facility

by ` capacity levels is set to 10% of the costs to expand the capacity of a facility by `
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capacity levels.

Finally, the costs for reopening and closing existing facilities were taken from the

input data of the previously mentioned industrial application introduced by Jena et al.

(2012). Although being strictly increasing, these costs do not necessarily represent

economies of scale. The costs to reopen a closed facility of capacity level 1, . . . ,10 are

3,138.34, 4,084.69, 4,924.58, 5,693.26, 7,085.07, 7,727.50, 8,342.34, 8,933.68, 10,057.70

and 10,594.80, respectively. The costs to close an open facility of capacity level 1, . . . ,10

are 8,624.93, 11,595.80, 14,305.60, 16,836.50, 21,524.10, 23,727.90, 25,858.30, 27,925.70,

31,901.10 and 33,820.70, respectively.

Fixed Costs for the DFLPG. For the DFLPG, the construction costs are as indicated

above, i.e., the costs to construct a facility of size ` and its maintenance costs at time

period t are set to: f j0`t = f o
j`+Fo

j`.

The costs to change capacity levels for this problem are based on a cost matrix, and,

therefore, differ from the costs for capacity expansion and reduction shown above for the

special cases. The cost to completely remove a facility are set to 25% of the construction

costs of a facility of the same size: f j`0t = f o
j`/4.

Finally, the cost to change the capacity level from `1 ≥ 1 to `2 ≥ 1 are set to the

difference of their construction costs, scaled by 50%:

f j`1`2t =

 1.5 · ( f o
j`2
− f o

j`1
) , if `1 < `2

1.5 · ( f o
j`1
− f o

j`2
) , if `1 > `2.

C.1.6 Demand distribution

We consider two different demand scenarios. In both scenarios, the demand for each

of the customers is randomly generated and randomly distributed over time. The two

scenarios differ in their total demand summed over all customers in each time period.

In the first scenario (regular), the total demand is similar in each time period. We set

the average demand for a customer to 12 units per time period. The total demand for all
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customers is therefore approximately 10 · |I| units at each time period. The second sce-

nario (irregular) assumes that the total demand follows strong variations along time and

therefore varies at each time period. In this scenario, the total demand for all customers

is multiplied by a random distortion factor at each time period. This random distortion

factor is set to the absolute value of a normal random variable with mean value 1.0 and

standard deviation 0.6 (note that this procedure produced distortion factors from 0.14

to 2.24). Let totDemt be the total customer demand for time period t, computed as

explained above for one of the two scenarios.

We now explain how the individual demands for each of the customers are generated

and distributed on the different time periods such that its total sum equals approximately

the value of totDemt at each of the time periods. For all customers and all time periods,

the total demand covers approximately 12 · |I| · |T | units. In a first step, this total de-

mand is randomly distributed on each of the customers. In a second step, each customer

demand is distributed on different time periods:

i. Let totRemDem denote the total demand for all customers and time periods that

has not yet been allocated to any customer. Furthermore, let numRemCust indicate

the number of customers that have not yet been allocated any demand. For each

customer, its total demand for all time periods, denoted to totJDem j, is computed

as a random normal variable with a mean µ = totRemDemand/numRemCust and

standard deviation σ = µ/2. Note that, throughout our instance generation, this

method did not produce any negative value.

ii. The total demand for each customer, totJDem j is then divided into four equal

parts. One part of the demand is allocated to a time period that is randomly selected

following a uniform distribution. Each of the other three parts is allocated to the

time period t that has the highest gap between the total demand yet allocated to

period t and its value totDemt .

The demands for the second to fifth commodity are computed based on the demand of

the first commodity. To be precise, the demand dipt for p≥ 2 is computed as dipt = di1t ·
rand(1.0,0.2) · avgDemp/avgDem1, where avgDem1 = 10, avgDem2 = 6, avgDem3 =
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9, avgDem4 = 5, avgDem5 = 8 and rand(1.0,0.2) is a random variable with normal

distribution, a mean of 1.0 and a standard deviation of 0.2.

Note that the choice of allocating demand to only a few of the time periods is mo-

tivated by the aforementioned industrial application in the forest industry, where each

logging region is harvested, on average, about four seasons over the ten-period planning

horizon. Furthermore, it results in a geographically more dispersed distribution of the

demand which creates the need to adjust capacities at the facilities.
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