37 research outputs found

    The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles

    Get PDF
    Background: The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Results: Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems. Conclusion: Our results reveal topological equivalences between the protein interaction network and the metabolic pathway network. Evolved protein interactions may contribute significantly towards increasing the efficiency of metabolic processes by permitting higher metabolic fluxes. Thus, our results shed further light on the unifying principles shaping the evolution of both the functional (metabolic) as well as the physical interaction network

    Biological Networks

    Get PDF
    Networks of coordinated interactions among biological entities govern a myriad of biological functions that span a wide range of both length and time scales—from ecosystems to individual cells and from years to milliseconds. For these networks, the concept “the whole is greater than the sum of its parts” applies as a norm rather than an exception. Meanwhile, continued advances in molecular biology and high-throughput technology have enabled a broad and systematic interrogation of whole-cell networks, allowing the investigation of biological processes and functions at unprecedented breadth and resolution—even down to the single-cell level. The explosion of biological data, especially molecular-level intracellular data, necessitates new paradigms for unraveling the complexity of biological networks and for understanding how biological functions emerge from such networks. These paradigms introduce new challenges related to the analysis of networks in which quantitative approaches such as machine learning and mathematical modeling play an indispensable role. The Special Issue on “Biological Networks” showcases advances in the development and application of in silico network modeling and analysis of biological systems

    Algorithms for 13C metabolic flux analysis

    Get PDF
    The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.Solun aineenvaihdunta koostuu verkostosta biokemiallisia reaktioita, jotka muuttavat pieniä molekyylejä, metaboliitteja toisiksi. Aineenvaihdunta tuottaa elämälle välttämättömiä yhdisteitä, kuten aminohappoja, pienempiä metaboliitteja yhdistelemällä. Lisäksi aineenvaihdunta tuottaa solulle energiaa metaboliitteja pilkkomalla. Solut reagoivat ympäristön ja genotyyppien muutoksiin säätelemällä aineenvaihduntaansa. Siten tieto aineenvaihdunnan reaktioiden nopeuksista on hyödyllistä mm. tutkittaessa organismin käyttäytymistä eri olosuhteissa tai sukulaisorganismien eroja vertailtaessa. Tietoa aineenvaihduntareaktioiden nopeuksista voidaan hyödyntää esim. muokattaessa mikrobeja tai kasveja tuottamaan tehokkaasti haluttuja lopputuotteita, kuten biopolttoainetta tai lääkeaineita. Informaatio aineenvaihduntareaktioiden nopeuksista voi auttaa myös ihmisen sairauksien ymmärtämisessä ja niiden hoidossa. Tässä tietojenkäsittelytieteen alaan kuuluvassa väitöskirjassa kehitetään laskennallisia menetelmiä aineenvaihduntareaktioiden nopeuksien päättelemiseksi. Väitöskirjan koeasetelmassa solulle syötetään hiilen 13C-isotoopein leimattua lähtöainetta. Isotooppileimattu lähtöaine leviää aineenvaihduntaverkostossa muihin metaboliitteihin aineenvaihduntareaktioiden nopeuksista riippuvalla tavalla. Metaboliittien leimausasteet voidaan mitata, mutta saatava mittaustieto on epätäydellistä. Väitöskirjassa esitetään laskennallisia menetelmiä, jotka pyrkivät epätäydellisen leimausmittausdatan avulla arvioimaan aineenvaihduntareaktioiden nopeudet mahdollisimman tarkasti. Menetelmiä on mahdollista soveltaa kaikille aineenvaihduntaverkoille sekä lähtöaineiden isotooppileimauskuvioille. Menetelmät kykenevät myös yhtäaikaisesti hyödyntämään eri mittalaitteiden tuottaman, toisiaan täydentävän informaation metaboliittien leimausasteista. Näin väitöskirjan laskennalliset menetelmät yleistävät aiempia, vain tietyille aineenvaihduntaverkon rakenteille, lähtöaineiden leimauskuvioille tai mittaustekniikoille räätälöityjä menetelmiä. Väitöskirjassa esitetään myös algoritmeja reaktionopeuksien arvioimisen kannalta tärkeimpien mitattavien metaboliittien valitsemiseksi sekä massaspektrometrin tuottaman raakadatan muokkaamiseksi paremmin aineenvaihduntareaktioiden nopeuden arvioimiseen sopivaan muotoon. Väitöskirjan menetelmät perustuvat aineenvaihduntaverkon rakenteen kombinatoriseen vuoanalyysiin sekä mittausdatan kuvaamiseen ja manipuloimiseen lineaarialgebran tekniikoin. Esitetyt menetelmät ovat laskennallisesti tehokkaita ja sopivat siten suurtenkin aineenvaihduntaverkkojen analysointiin

    Network Analysis and Modeling in Systems Biology

    Full text link
    This thesis is dedicated to the study and comprehension of biological networks at the molecular level. The objectives were to analyse their topology, integrate it in a genotype-phenotype analysis, develop richer mathematical descriptions for them, study their community structure and compare different methodologies for estimating their internal fluxes. The work presented in this document moves around three main axes. The first one is the biological. Which organisms were studied in this thesis? They range from the simplest biological agents, the viruses, in this case the Potyvirus genus to prokariotes such as Escherichia coli and complex eukariotes (Arabidopsis thaliana, Nicotiana benthamiana). The second axis refers to which biological networks were studied. Those are protein-protein interaction (PPIN) and metabolic networks (MN). The final axis relates to the mathematical and modelling tools used to generate knowledge from those networks. These tools can be classify in three main branches: graph theory, constraint-based modelling and multivariate statistics. The document is structured in six parts. The first part states the justification for the thesis, exposes a general thesis roadmap and enumerates its main contributions. In the second part important literature is reviewed, summarized and integrated. From the birth and development of Systems Biology to one of its most popular branches: biological network analysis. Particular focus is put on PPIN and MN and their structure, representations and features. Finally a general overview of the mathematical tools used is presented. The third, fourth and fifth parts represent the central work of this thesis. They deal respectively with genotypephenotype interaction and classical network analysis, constraint-based modelling methods comparison and modelling metabolic networks and community structure. Finally, in the sixth part the main conclusions of the thesis are summarized and enumerated. This thesis highlights the vital importance of studying biological entities as systems and how powerful and promising this integrated analysis is. Particularly, network analysis becomes a fundamental avenue of research to gain insight into those biological systems and to extract, integrate and display this new information. It generates knowledge from just data.Esta tesis está dedicada al estudio y comprensión de redes biológicas a nivel molecular. Los objetivos fueron analizar su topología, integrar esta en un análisis de genotipo-fenotipo, desarrollar descripciones matemáticas más completas para ellas, estudiar su estructura de comunidades y comparar diferentes metodologías para estimar sus flujos internos. El trabajo presentado en este documento gira entorno a tres ejes principales. El primero es el biológico. ¿Qué organismos han sido estudiados en esta tesis? Estos van desde los agentes biológicos mas simples, los virus, en este caso el género Potyvirus, hasta procariotas como Escherichia coli y eucariotas complejos (Arabidopsis thaliana, Nicotiana benthamiana). El segundo eje hace referencia a las redes biológicas estudiadas, que fueron redes de interacción de proteínas (PPIN) y redes metabólicas (MN). El eje final es el de las herramientas matemáticas y de modelización empleadas para interrogar esas redes. Estas herramientas pueden clasificarse en tres grandes grupos: teoría de grafos, modelización basada en restricciones y estadística multivariante. Este documento está estructurado en seis partes. La primera expone la justificación para la tesis, muestra un mapa visual de la misma y enumera sus contribuciones principales. En la segunda parte, la bibliografía relevante es revisada y resumida. Desde el nacimiento y desarrollo de la Biología de Sistemas hasta una de sus ramas más populares: el análisis de redes biomoleculares. Especial interés es puesto en PPIN y MN: su estructura, representación y características. Finalmente, un resumen general de las herramientas matemáticas usadas es presentado. Los capítulos tercero, cuarto y quinto representan el cuerpo central de esta tesis. Estos tratan respectivamente sobre la interacción de genotipo-fenotipo y análisis topolólogico clásico de redes, modelos basados en restricciones y modelización de redes metabólicas y su estructura de comunidades. Finalmente, en la sexta parte las principales conclusiones de la tesis son resumidas y expuestas. Esta tesis pone énfasis en la vital importancia de estudiar los fenómenos biológicos como sistemas y en la potencia y prometedor futuro de este análisis integrativo. En concreto el análisis de redes supone un camino de investigación fundamental para obtener conocimiento sobre estos sistemas biológicos y para extraer y mostrar información sobre los mismos. Este análisis genera conocimiento partiendo únicamente desde datos.Aquesta tesi està dedicada a l'estudi i comprensió de xarxes biològiques a nivell molecular. Els objectius van ser analitzar la seva topologia, integrar aquesta en una anàlisi de genotip-fenotip, desenvolupar descripcions matemàtiques més completes per a elles, estudiar la seva estructura de comunitats o modularitat i comparar diferents metodologies per estimar els fluxos interns. El treball presentat en aquest document gira entorn de tres eixos principals. El primer és el biològic. ¿Què organismes han estat estudiats en aquesta tesi? Aquests van des dels agents biològics mes simples, els virus, en aquest cas el gènere Potyvirus, fins procariotes com Escherichia coli i eucariotes complexos (Arabidopsis thaliana, Nicotiana benthamiana). El segon eix fa referència a les xarxes biològiques estudiades, que van ser les xarxes d'interacció de proteïnes (PPIN) i les xarxes metabòliques (MN). L'eix final és el de les eines matemàtiques i de modelització emprades per interrogar aquestes xarxes. Aquestes eines poden classificarse en tres grans grups: teoria de grafs, modelització basada en restriccions i estadística multivariant. Aquest document està estructurat en sis parts. La primera exposa la justificació per a la tesi, mostra un mapa visual de la mateixa i enumera les seves contribucions principals. A la segona part, la bibliografia rellevant és revisada i resumida. Des del naixement i desenvolupament de la Biologia de Sistemes fins a una de les seves branques més populars: l'anàlisi de xarxes moleculars. Especial interès és posat en PPIN i MN: la seva estructura, representació i característiques. Finalment, un resum general de les eines matemàtiques utilitzades és presentat. Els capítols tercer, quart i cinquè representen el cos central d'aquesta tesi. Aquests tracten respectivament sobre la interacció de genotip-fenotip i anàlisi topolólogico clàssic de xarxes, models basats en restriccions i modelització de xarxes metabòliques i la seva estructura de comunitats. Finalment, en la sisena part les principals conclusions de la tesi són resumides i exposades. Aquesta tesi posa èmfasi en la vital importància d'estudiar els fenòmens biològics com sistemes i en la potència i prometedor futur d'aquesta anàlisi integratiu. En concret l'anàlisi de xarxes suposa un camí d'investigació fonamental per obtenir coneixement sobre aquests sistemes biològics i per extreure i mostrar informació sobre els mateixos. Aquest anàlisi genera coneixement partint únicament des de dades.Bosque Chacón, G. (2017). Network Analysis and Modeling in Systems Biology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/79082TESI

    Disentangling ecological networks in marine microbes

    Get PDF
    There is a myriad of microorganisms on Earth contributing to global biogeochemical cycles, and their interactions are considered pivotal for ecosystem function. Previous studies have already determined relationships between a limited number of microorganisms. Yet, we still need to understand a large number of interactions to increase our knowledge of complex microbiomes. This is challenging because of the vast number of possible interactions. Thus, microbial interactions still remain barely known to date. Networks are a great tool to handle the vast number of microorganisms and their connections, explore potential microbial interactions, and elucidate patterns of microbial ecosystems. This thesis locates at the intersection of network inference and network analysis. The presented methodology aims to support and advance marine microbial investigations by reducing noise and elucidating patterns in inferred association networks for subsequent biological down-stream analyses. This thesis’s main contribution to marine microbial interactions studies is the development of the program EnDED (Environmentally-Driven Edge Detection), a computational framework to identify environmentally-driven associations inside microbial association networks, inferred from omics datasets. We applied the methodology to a model marine microbial ecosystem at the Blanes Bay Microbial Observatory (BBMO) in the North-Western Mediterranean Sea (ten years of monthly sampling). We also applied the methodology to a dataset compilation covering six global-ocean regions from the surface (3 m) to the deep ocean (down to 4539 m). Thus, our methodology provided a step towards studying the marine microbial distribution in space via the horizontal (ocean regions) and vertical (water column) axes.Hi ha una infinitat de microorganismes a la Terra que contribueixen als cicles biogeoquímics mundials i les seves interaccions es consideren fonamentals pel funcionament dels ecosistemes. Estudis previs ja han determinat les relacions entre un nombre limitat de microorganismes. Tot i això, encara hem d’entendre un gran nombre d’interaccions per augmentar el nostre coneixement dels microbiomes complexos. Això és un repte a causa del gran nombre d'interaccions possibles. Per això, les interaccions microbianes encara són poc conegudes fins ara. Les xarxes són una gran eina per tractar el gran nombre de microorganismes i les seves connexions, explorar interaccions microbianes potencials i dilucidar patrons d’ecosistemes microbians. Aquesta tesi es situa a la intersecció de la inferència de xarxes i l’anàlisi de la xarxes. La metodologia presentada té com a objectiu donar suport i avançar en investigacions microbianes marines reduint el soroll i dilucidant patrons en xarxes d’associació inferides per a posteriors anàlisis biològiques. La principal contribució d’aquesta tesi als estudis d’interaccions microbianes marines és el desenvolupament del programa EnDED (Environmentally-Driven Edge Detection), un marc computacional per identificar associacions impulsades pel medi ambient dins de xarxes d’associació microbiana, inferides a partir de conjunts de dades òmics. S’ha aplicat la metodologia a un model d’ecosistema microbià marí a l’Observatori Microbià de la Badia de Blanes (BBMO) al mar Mediterrani nord-occidental (deu anys de mostreig mensual). També s’ha la metodologia a una recopilació de dades que cobreix sis regions oceàniques globals des de la superfície (3 m) fins a l'oceà profund (fins a 4539 m).Hay una gran cantidad de microorganismos en la Tierra que contribuyen a los ciclos biogeoquímicos globales, y sus interacciones se consideran fundamentales para la función del ecosistema. Estudios previos ya han determinado relaciones entre un número limitado de microorganismos. Sin embargo, todavía necesitamos comprender una gran cantidad de interacciones para aumentar nuestro conocimiento de los microbiomas más complejos. Esto representa un gran desafío debido a la gran cantidad de posibles interacciones. Por lo tanto, las interacciones microbianas son aun poco conocidas. Las redes representan una gran herramienta para analizar la gran cantidad de microorganismos y sus conexiones, explorar posibles interacciones y dilucidar patrones en ecosistemas microbianos. Esta tesis se ubica en la intersección entre la inferencia de redes y el análisis de redes. La metodología presentada tiene como objetivo avanzar las investigaciones sobre interacciones microbianas marinas mediante la reducción del ruido en las inferencias de redes y elucidar patrones en redes de asociación permitiendo análisis biológicos posteriores. La principal contribución de esta tesis a los estudios de interacciones microbianas marinas es el desarrollo del programa EnDED (Environmentally-Driven Edge Detection), un marco computacional para identificar asociaciones generadas por el medio ambiente en redes de asociaciones microbianas, inferidas a partir de datos ómicos. Aplicamos la metodología a un modelo de ecosistema microbiano marino en el Observatorio Microbiano de la Bahía de Blanes (BBMO) en el Mar Mediterráneo Noroccidental (diez años de muestreo mensual). También, aplicamos la metodología a una compilación de conjuntos de datos que cubren seis regiones oceánicas globales desde la superficie (3 m) hasta las profundidades del océano (hasta 4539 m). Por lo tanto, nuestra metodología significa un paso adelante hacia de los patrones temporales microbianos marinos y el estudio de la distribución microbiana marina en el espacio a través de los ejes horizontal (regiones oceánicas) y vertical (columna de agua). Para llegar a hipótesis de interacción precisas, es importante determinar, cuantificar y eliminar las asociaciones generadas por el medio ambiente en las redes de asociaciones microbianas marinas. Además, nuestros resultados subrayaron la necesidad de estudiar la naturaleza dinámica de las redes, en contraste con el uso de redes estáticas únicas agregadas en el tiempo o el espacio. Nuestras nuevas metodologías pueden ser utilizadas por una amplia gama de investigadores que investigan redes e interacciones en diversos microbiomas.Postprint (published version

    Book of abstracts

    Get PDF

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Antioxidant and DPPH-Scavenging Activities of Compounds and Ethanolic Extract of the Leaf and Twigs of Caesalpinia bonduc L. Roxb.

    Get PDF
    Antioxidant effects of ethanolic extract of Caesalpinia bonduc and its isolated bioactive compounds were evaluated in vitro. The compounds included two new cassanediterpenes, 1α,7α-diacetoxy-5α,6β-dihydroxyl-cass-14(15)-epoxy-16,12-olide (1)and 12α-ethoxyl-1α,14β-diacetoxy-2α,5α-dihydroxyl cass-13(15)-en-16,12-olide(2); and others, bonducellin (3), 7,4’-dihydroxy-3,11-dehydrohomoisoflavanone (4), daucosterol (5), luteolin (6), quercetin-3-methyl ether (7) and kaempferol-3-O-α-L-rhamnopyranosyl-(1Ç2)-β-D-xylopyranoside (8). The antioxidant properties of the extract and compounds were assessed by the measurement of the total phenolic content, ascorbic acid content, total antioxidant capacity and 1-1-diphenyl-2-picryl hydrazyl (DPPH) and hydrogen peroxide radicals scavenging activities.Compounds 3, 6, 7 and ethanolic extract had DPPH scavenging activities with IC50 values of 186, 75, 17 and 102 μg/ml respectively when compared to vitamin C with 15 μg/ml. On the other hand, no significant results were obtained for hydrogen peroxide radical. In addition, compound 7 has the highest phenolic content of 0.81±0.01 mg/ml of gallic acid equivalent while compound 8 showed the highest total antioxidant capacity with 254.31±3.54 and 199.82±2.78 μg/ml gallic and ascorbic acid equivalent respectively. Compound 4 and ethanolic extract showed a high ascorbic acid content of 2.26±0.01 and 6.78±0.03 mg/ml respectively.The results obtained showed the antioxidant activity of the ethanolic extract of C. bonduc and deduced that this activity was mediated by its isolated bioactive compounds

    Faculty Publications and Creative Works 1997

    Get PDF
    One of the ways we recognize our faculty at the University of New Mexico is through this annual publication which highlights our faculty\u27s scholarly and creative activities and achievements and serves as a compendium of UNM faculty efforts during the 1997 calendar year. Faculty Publications and Creative Works strives to illustrate the depth and breadth of research activities performed throughout our University\u27s laboratories, studios and classrooms. We believe that the communication of individual research is a significant method of sharing concepts and thoughts and ultimately inspiring the birth of new of ideas. In support of this, UNM faculty during 1997 produced over 2,770 works, including 2,398 scholarly papers and articles, 72 books, 63 book chapters, 82 reviews, 151 creative works and 4 patents. We are proud of the accomplishments of our faculty which are in part reflected in this book, which illustrates the diversity of intellectual pursuits in support of research and education at the University of New Mexico. Nasir Ahmed Interim Associate Provost for Research and Dean of Graduate Studie
    corecore