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Abstract

The metabolism of an organism consists of a network of biochemical reac-
tions that transform small molecules, or metabolites, into others in order
to produce energy and building blocks for essential macromolecules. The
goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those
biochemical reactions. In a steady state, the sum of the fluxes that produce
an internal metabolite is equal to the sum of the fluxes that consume the
same molecule. Thus the steady state imposes linear balance constraints to
the fluxes. In general, the balance constraints imposed by the steady state
are not sufficient to uncover all the fluxes of a metabolic network. The
fluxes through cycles and alternative pathways between the same source
and target metabolites remain unknown.

More information about the fluxes can be obtained from isotopic labelling
experiments, where a cell population is fed with labelled nutrients, such as
glucose that contains 13C atoms. Labels are then transferred by biochem-
ical reactions to other metabolites. The relative abundances of different
labelling patterns in internal metabolites depend on the fluxes of pathways
producing them. Thus, the relative abundances of different labelling pat-
terns contain information about the fluxes that cannot be uncovered from
the balance constraints derived from the steady state. The field of research
that estimates the fluxes utilizing the measured constraints to the relative
abundances of different labelling patterns induced by 13C labelled nutrients
is called 13C metabolic flux analysis.
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There exist two approaches of 13C metabolic flux analysis. In the optimiza-
tion approach, a non-linear optimization task, where candidate fluxes are
iteratively generated until they fit to the measured abundances of different
labelling patterns, is constructed. In the direct approach, linear balance
constraints given by the steady state are augmented with linear constraints
derived from the abundances of different labelling patterns of metabolites.
Thus, mathematically involved non-linear optimization methods that can
get stuck to the local optima can be avoided. On the other hand, the direct
approach may require more measurement data than the optimization ap-
proach to obtain the same flux information. Furthermore, the optimization
framework can easily be applied regardless of the measurement technology
and with all network topologies.

In this thesis we present a formal computational framework for direct 13C
metabolic flux analysis. The aim of our study is to construct as many linear
constraints to the fluxes from the 13C labelling measurements using only
computational methods that avoid non-linear techniques and are indepen-
dent from the type of measurement data, the labelling of external nutrients
and the topology of the metabolic network. The presented framework is the
first representative of the direct approach for 13C metabolic flux analysis
that is free from restricting assumptions made about these parameters. In
our framework, measurement data is first propagated from the measured
metabolites to other metabolites. The propagation is facilitated by the
flow analysis of metabolite fragments in the network. Then new linear con-
straints to the fluxes are derived from the propagated data by applying
the techniques of linear algebra. Based on the results of the fragment flow
analysis, we also present an experiment planning method that selects sets
of metabolites whose relative abundances of different labelling patterns are
most useful for 13C metabolic flux analysis. Furthermore, we give compu-
tational tools to process raw 13C labelling data produced by tandem mass
spectrometry to a form suitable for 13C metabolic flux analysis.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.2.1 Combinatorics: Combinatorial algorithms
G.2.2 Graph theory: Graph algorithms
I.6.5 Model development
J.3 Life and medical sciences: Biology and genetics
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Mielikäinen has shown me creative science at its best. Paula Jouhten has
given me invaluable insight to common practices in metabolic modelling as
well as to actual biological processes behind the formal models. The solid
performance of Markus Heinonen and Arto Åkerlund in the development
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6 Contents

Mathematical notations for Part I

Mi Metabolite with index i
Mi = {c1, . . . , ck} Set of carbon locations of metabolite Mi

ρj = (αj , λj) Biochemical reaction with index j,
stoichiometric coefficients αj and carbon mapping λj

G = (C,R) Metabolic network, where C = {M1, . . . ,Mm} and
R = {ρ1, . . . , ρn}

M |F Fragment F of M , that is, a subset of carbons in M
M(b) Set of molecules that belong to b-isotopomer of M ,

b = (b1, . . . , bk) ∈ {0, 1}k, where bi = 0 denotes a 12C
and bi = 1 denotes a 13C in location ci

M(+p) Set of molecules that belong to mass isotopomer +p of M ,
that is, molecules of M that have p 13C labels

PM (b) Relative abundance of the isotopomer b in M
D(M) Isotopomer distribution of M
IM Isotopomer space of M
di,h Relative abundance of linear combination h

of the isotopomers of Mi

ιk,l
j Isotopomer mapping from the isotopomer space

of substrate fragment M |Fk of ρj to the isotopomer space
of product fragment M ′|Fl of ρj

IMMk,l
j Isotopomer mapping matrix from substrate fragment

M |Fk of ρj to product fragment M ′|Fl of ρj

βi Measured external inflow or outflow of Mi

Mij Subpool of Mi produced or consumed by ρj

Mi0 Subpool of Mi that is related to the external inflow or outflow
vj Flux of reaction ρj

v = [v1, . . . , vn] Flux distribution
F(G) Fragment flow graph of metabolic network G
T Dominator tree of F(G)
idom(F ) Immediate dominator of fragment F
⊗ Component-wise Kronecker product



Chapter 1

Introduction

This thesis presents novel algorithms for 13C metabolic flux analysis. The
thesis belongs to the field of computational biology where ”data-analytical
methods, mathematical modelling and computational simulation techniques
are developed and applied to study biological, behavioral, and social sys-
tems” [HDH+00]. The thesis is also a part of systems biology, ”the science
of discovering, modeling, understanding and ultimately engineering at the
molecular level the dynamic relationships between the biological molecules
that define living organisms” [Hoo].

The thesis consists of two parts, Part I and Part II. The main contribu-
tions are presented in the five publications constituting Part II. The aim of
the introductory Part I is to associate these contributions to the full process
of 13C metabolic flux analysis and compare the contributions to existing
methods. This first chapter of Part I briefly discusses the practical impor-
tance of metabolic flux analysis and then lists author’s contributions to the
subject. Chapter 2 formally defines the basic concepts used throughout the
thesis, introduce the concept of stoichiometric modelling of metabolic net-
works and the measurement technologies relevant to the thesis. In Chapter
3 common assumptions behind 13C metabolic flux analysis are listed and
existing computational methods are reviewed. In Chapter 4 a process for
13C metabolic flux analysis is proposed. Chapter 5 discusses the prepro-
cessing of measurement data for 13C metabolic flux analysis. Chapter 6
concludes Part I and sketches some directions for future work. The sec-
tions of Part I denoted with ”*” contain technical discussion that can be
skipped without great loss of continuity.

7



8 1 Introduction

1.1 Metabolic fluxes and the program of life

One of the most intriguing open questions in modern natural science is to
understand operational principles of living organisms. We know that most
functions sustaining life are executed by proteins that are molecules consist-
ing of chains of amino acids [AJL+02]. We also know that the instructions
for building proteins are coded to double-stranded DNA molecules with a
four-letter alphabet. The wealth of genome mapping projects continue to
provide us with these codes for different organisms [BKML+04], including
ourselves [Lea04]. We understand the processes of RNA and protein syn-
theses that transform the genetic information stored to DNA into proteins.
For many proteins, the genes coding them are known [BKML+04] and for
many – but not for all – of them also some function is annotated [Bea05].
But still the operational principles, or ”the program” of life, escapes our
comprehensive understanding. Knowing the DNA of an organism does not
decipher this program, it only gives us a coded list of parts used to construct
an immensely complex system – the system-wide mechanisms that regulate
the production of proteins and thus control the execution of the program
of life are still incompletely understood. Comparing the situation to com-
puter programming, we only have fragmentary and inaccurate knowledge
about the basic primitives (proteins) of a programming language used to
implement a very complex system but the control flow of the program is
largely unknown to us.

The difficulty of understanding the program of life stems from the fact
that neither the source code of the program nor the syntax of the program-
ming language are directly readable. To study an organism as a complete
system [Kit02] we can only perturb it and monitor its responses, that is,
read the outputs of the program when different inputs are given to it and
some parts of the code are (randomly or systematically) altered [IGH01].
The difficulties of this kind of an approach can be understood by thinking
of an analogous method for understanding the operational principles of a
radio, presented by Lazebnik [Laz04]: first a huge amount of working radios
are built. Then the radios are shot with a gun and the components that
were hit in malfunctioning samples are identified as essential parts that
should get all the attention in further studies.

The successful application of such a ”knowledge through perturbation”
method requires, among other things, a good modelling language to de-
scribe the hypotheses about the behaviour of the system [Laz04]. It should
also be helpful to be able to monitor the responses of an organism, or pheno-
type, from all relevant points of view [GWV03]. Nowadays the phenotype of
the perturbed subject of experiment can be investigated in different ”omics”
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levels. For example, in transcriptome profiling the abundances of mRNA
transcripts produced by RNA synthesis can be simultaneously measured
for thousands of genes [ESBB98, LW00]. Similarly, in proteome profiling
at least qualitative information on hundreds, even thousands of proteins
can be obtained [WWJ01]. Protein–protein, protein–DNA and protein–
RNA interactions, or interactome, of an organism can also be studied with
high throughput methods [Fea99, Hea02].

1.1.1 Metabolic fluxes are an important phenotype

Recently, the study of the metabolism has given us a chance to gain infor-
mation on the phenotype of an organism from a novel point of view [Fie02,
FTKL04, FGS05]. The metabolism of a living cell consists of biochemical
reactions transforming small molecules, metabolites to others by cleaving
and combining them. The reactions of a metabolism are interconnected
through common metabolites and thus form metabolic networks where the
products of one reaction act as substrates for another reaction. Figure (1.1)
depicts an example of a metabolic network.

Through its metabolism, an organism performs two fundamental tasks
[BTS02, AJL+02]:

1. Generation of energy by breaking down nutrient molecules,

2. Synthesization of building blocks of macromolecules, such as amino
acids, and eventually macromolecules themselves.

The metabolic reactions are significantly speeded up, or catalyzed by en-
zymes, proteins that bind to substrates and lower the activation energy of
the reactions [BTS02]. The velocity, or the flux, of a metabolic reaction
depends on the properties of enzymes catalyzing the reaction, and concen-
trations of substrates, products and other metabolites affecting the activity
of catalyzing enzymes. The concentrations of enzymes depend on the rate
of RNA and protein synthesis and degradation while the concentrations
of metabolites depend on the fluxes of reactions producing and consuming
them. By producing different amounts of enzymes at different times an or-
ganism can regulate its fluxes and adapt to different conditions by building
and breaking molecules most appropriate for the situation. Thus metabo-
lite levels and metabolic fluxes, or metabolome and fluxome, can be seen
as ”the ultimate” phenotype of an organism to genetic or environmental
changes [Fie02, Nie03]. Specifically, ”metabolic fluxes constitute a funda-
mental determinant of cell physiology because they provide a measure of
the degree of engagement of various pathways in overall cellular function
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and metabolic processes” [SAN98]. While the study of the steady state
metabolic fluxes alone is not enough to decode the program of life, when
combined with other types of information, they can give important insight
to the operational principles of an organism and its capabilities to adapt
to different conditions and help us to understand the function of genes
involving metabolic regulation [Nie03, WvWvGH05].

Figure 1.1: A part of the metabolic network of Saccharomyces cere-
visiae [BKS05]. Rectangles represent metabolites and circles reactions.

Currently, the metabolic fluxes are mostly analyzed in the field of meta-
bolic engineering, where microbial organisms are genetically modified to im-
prove the product formation or cellular properties [SAN98]. System-wide
flux information revealing the degree of the activity of metabolic pathways
can be utilized e.g. in the comparison of

1. the phenotypes of an organism in different environmental conditions
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[FW05, GMdSCN01, SMY+04],

2. different genetic strains of an organism [BKS05, EDP+02, GCNO05],

3. related species [BLS05], and

4. in vivo and in vitro behaviour of an enzyme [SAN98].

In addition to microbes, flux analysis of plants [RSH06] can applied with
analogous goals. In the study of mammalian cells, the information about
the metabolic fluxes can help in better understanding of diseases [TK96,
Hel03] and in more efficient drug design [BSCL04, Tur06].

1.2 13C metabolic flux analysis

In a steady state, the sum of the fluxes that produce an internal metabolite
is equal to the sum of the fluxes that consume the same molecule (see
Section 2.2). Thus, the steady state imposes linear balance constraints to
the fluxes. However, the balance constraints imposed by the steady state
are not sufficient to uncover all the fluxes of a metabolic network. The
fluxes through cycles, backward fluxes and the fluxes through alternative
pathways between source and target metabolites remain unknown.

More constraints to the fluxes can be obtained from isotopic labelling
experiments. In the isotopic labelling experiments a cell population is cul-
tivated with labelled nutrients, such as glucose that contains 13C atoms
(Section 2.3). Biochemical reactions then transfer the nutrient labels to
other metabolites in the network.

Different metabolic pathways manipulate the carbon chains of metabo-
lites in their characteristic ways and thus induce different kinds of labelling
patterns to their metabolites. The relative abundances of different labelling
patterns in metabolites depend on the fluxes of pathways producing them.
Thus, the relative abundances of different labelling patterns contain infor-
mation about the fluxes that is not present in the balance constraints de-
rived from the steady state. The abundances of different labelling patterns
— or constraints to them — can be measured either by mass spectrometry
(MS) or by nucleic magnetic resonance spectroscopy (NMR) (Section 2.4).
The field of research that estimates the fluxes utilizing the measured con-
straints to the relative abundances of different labelling patterns induced by
13C labelled nutrients is called 13C metabolic flux analysis. At a high level,
the process of 13C metabolic flux analysis consists of the following steps:
First, the model of a metabolic network is constructed. Then, a cell popu-
lation is cultivated with labelled nutrients and the abundances of different
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labelling patterns in metabolites are measured. Next, the raw measure-
ment data is preprocessed to the form that is suitable for 13C metabolic
flux analysis (Chapter 5). Finally, utilizing both the model of the metabolic
network and the preprocessed measurement data, metabolic fluxes are es-
timated. A more detailed description of the process of 13C metabolic flux
analysis proposed in this thesis is given in Chapter 4.

There exist two general approaches for 13C metabolic flux analysis (Sec-
tion 3.3) that differ in computational methods employed in the flux estima-
tion step. In the optimization approach, fluxes are estimated by construct-
ing and solving a non-linear optimization task, where candidate fluxes are
iteratively generated until they fit to the measured abundances of different
labelling patterns. In the direct approach, linear balance constraints given
by the steady state are augmented with linear constraints derived from the
abundances of different labelling patterns of metabolites. Thus, mathemat-
ically involved non-linear optimization methods that can get stuck to the
local optima can be avoided. On the other hand, the direct approach may
require more measurement data than the optimization approach to obtain
the same flux information. Also, the optimization framework can be easily
applied regardless of the quality of the 13C labelling measurements and with
all network topologies.

1.3 Contributions

This thesis presents a formal computational framework for direct 13C meta-
bolic flux analysis. The aim of our study is to construct a largest possible
number of linear constraints to the fluxes from the 13C labelling measure-
ments using only computational methods that avoid non-linear techniques
and are independent from the quality of measurement data, the labelling
of external nutrients and the topology of the metabolic network.

The main contributions of this thesis are given in five publications con-
stituting Part II. In Publication I we introduce a general framework for
13C metabolic flux analysis where incomplete isotopomer measurements
are interpreted as linear constraints to the isotopomer distributions of
metabolites. These linear constraints are propagated from the measured
metabolites to unmeasured ones. From the constraints to the isotopomer
distributions of metabolites linear constraints to the flux distribution are
then inferred. Together with stoichiometric constraints, these flux con-
straints form a linear equation system that is then solved to obtain an
estimate of the complete flux distribution. The framework of Publication I
can be applied to all network topologies and all isotopomer distributions of
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input substrates and can simultaneously take advantage of isotopomer in-
formation produced by mass spectrometry or by nucleic magnetic resonance
spectroscopy.

Publication II gives an efficient algorithm to partition the fragments
of metabolites in the network to equivalence classes that have equal iso-
topomer distributions in every steady state. This partition facilitates a
more efficient method for propagating measured isotopomer information
in the metabolic network than the propagation method of Publication I.
Together, fragment equivalence classes and the framework of Publication
I generalize and formalize existing METAFoR methods for 13C metabolic
flux analysis [Szy95, SGH+99, MFC+01] that assume uniform labelling of
input substrates and compute only local ratios of fluxes producing the same
metabolite. The framework of Publication I and the fragment equivalence
classes also generalize the methods of 13C constrained flux balancing where
mass balances and flux ratios are combined to obtain the complete flux
distribution, but that are bound to certain measurement techniques and
input substrate labellings, such as uniform labelling of substrates and NMR
data [SHB+97] or MS data [FNS04]. Fragment equivalence classes also fa-
cilitate methods for structural identifiability analysis and for improving the
noise tolerance of flux estimations, as described in Part I.

The measurement of isotopomer distributions of internal metabolites is
a tedious and non-trivial task. Thus, it is worthwhile to concentrate the
measurement efforts to metabolites that are most useful for 13C metabolic
flux analysis, that is, to subsets of metabolites whose isotopomer distri-
butions give enough information to uncover the fluxes. With fragment
equivalence classes and certain assumptions about the quality of the mea-
surement data, the selection of most informative metabolites to measure
can be formulated as a variant of the classical set cover problem. The
experiment planning algorithms for selecting metabolites to measure are
given in Publication III.

Publication IV and Publication V describe algorithms to preprocess
raw data produced by tandem mass spectrometry (MS-MS) to a form suit-
able for 13C metabolic flux analysis. Publication IV extends the method
of Christensen and Nielsen [CN99] for computing constraints to the iso-
topomer distribution of a metabolite from data produced by GC-MS with
full scanning fragmentation method (see Section 2.4): the method of Pub-
lication IV can also be applied when MS-MS with daughter ion scanning
is used to fragment metabolite molecules. Compared to the full scanning
technique, daughter ion scanning has a potential to produce complemen-
tary constraints to the isotopomer distribution of a metabolite. Thus the
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contribution of Publication IV can help in 13C metabolic flux analysis. Pub-
lication V extends the method of Publication IV to utilize also information
in overlapping daughter ion spectra to compute even more constraints to
the isotopomer distributions of metabolites from MS-MS data.

Introductory Part I contains the following new contributions that gen-
eralize some results given in Part II to the complete computational pro-
cess for 13C metabolic flux analysis described in Chapter 4 of Part I.
In Section 4.4.1, upper bounds to flux information obtainable from iso-
topomer balance equations constraining the fluxes (see Section 2.3) are
derived. Then, in Section 4.4, the upper bounds are utilized in structural
identifiability analysis [IW03, vWHVG01], which studies, whether available
measurements can in principle give enough information to fix the values of
the fluxes in the network. Furthermore, in Section 4.7.4 we show how the
upper bounds to the flux information can be used to improve the tolerance
of the proposed flux analysis method to experimental errors. Another anal-
ysis technique of fragment equivalence classes to improve the propagation
of measurement data is given in Section 4.3.2.

For completeness, an unpublished software for constructing metabolic
network models for 13C metabolic flux analysis and a computational method
for identifying metabolite fragments produced by MS-MS [HRM+06] are
shortly described in Sections 4.2 and 5.1.

The results reported in the thesis were obtained, often in very close
collaboration, by the author and the other members of the computational
systems biology research group, lead by Juho Rousu and Esko Ukkonen.
The ideas behind publications I and V were developed jointly by the author
and Juho Rousu. The author implemented the methods of Publication I
and co-designed and conducted the experiments reported in the publica-
tion. The author supervised the implementation and partly implemented
the method and conducted the computational experiments described in
Publication V. The main technical ideas behind Publications II, III and IV
are due to the author. The author also implemented the methods of these
publications and designed and conducted the computational experiments
reported in the publications. The MILP program described in Section 4.3
of Publication III is co-designed by Taneli Mielikäinen and the author. The
author participated in the writing of all the papers.

The new results reported in Part I are due to the author with the
exception of the software for constructing metabolic network models (Sec-
tion 4.2) which was developed jointly by the author, Esa Pitkänen, and
Arto Åkerlund. In particular, the author designed and implemented the
software for metabolic flux estimation described in Sections 4.3 – 4.5 and
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4.7 of Part I as well as designed and conducted the flux analysis reported
in Section 4.8. The (unpublished) isotopomer data for the analysis was
provided by VTT. The model of the metabolism of Saccharomyces cere-
visiae used in Section 4.8 was established by Paula Jouhten and Hannu
Maaheimo.
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Chapter 2

Preliminaries

In this chapter we formally define basic concepts used throughout the thesis.
Then we introduce the stoichiometric modelling of metabolic networks, the
use of 13C labelling data to uncover information about the metabolic fluxes
and the measurement technologies for obtaining 13C labelling data.

2.1 Formal definitions

In 13C metabolic flux analysis the carbon atoms of metabolites are of special
interest. Thus we usually represent a k-carbon metabolite M as a set
of carbon locations M = {c1, . . . , ck}. For simplicity, also M is called
metabolite, when only carbons are of interest. A metabolic network G =
(C,R) is composed of a set C = {M1, . . . ,Mm} of metabolites and a setR =
{ρ1, . . . , ρn} of reactions that perform the interconversions of metabolites.
Here reaction ρ ∈ R represents a sum total of cellular reactions of the same
kind in the network and metabolite M ∈ C a pool of metabolite molecules
that have the same molecular structure. Fragments of metabolites are
subsets F = {f1, . . . , fh} ⊆ M of the metabolite. A fragment F of M
is denoted as M |F . Metabolites that are taken up into the cell from the
growth medium are called external substrates or external nutrients.

With isotopomers we mean molecules with similar element structure
but different combinations of 13C labels (see Figure 2.1). Isotopomers of
M = {c1, . . . , ck} are represented by binary sequences b = (b1, . . . , bk) ∈
{0, 1}k where bi = 0 denotes a 12C and bi = 1 denotes a 13C in location ci.
Molecules that belong to the b–isotopomer of M are denoted by M(b). Iso-
topomers of metabolite fragments M |F are defined in an analogous manner:
a molecule belongs to the F (b)–isotopomer of M , denoted M |F (b1, . . . , bh),
if it has a 13C atom in all locations fj that have bj = 1, and 12C in other

17
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locations of F . Isotopomers with equal numbers of labels belong to the
same mass isotopomer. We denote mass isotopers of M by M(+p), where
p ∈ {0, . . . , |M |} denotes the number of labels in isotopomers belonging to
M(+p).
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Figure 2.1: Eight possible isotopomers of alanine. The mass isotopomers
are: Ala(+0) = {Ala(000)}; Ala(+1) = {Ala(001), Ala(010), Ala(001)};
Ala(+2) = {Ala(011), Ala(101), Ala(110)}; Ala(+3) = {Ala(111)}. In
Ala(000), carbons enclosed by a rectangle constitute a fragment.

The isotopomer distribution D(M) of metabolite M gives the relative
abundances 0 ≤ PM (b) ≤ 1 of each isotopomer M(b) in the pool of M such
that ∑

b∈{0,1}|M|

PM (b) = 1.

The isotopomer distribution D(M |F ) of fragment M |F and the mass iso-
topomer distribution D(M)m of mass isotopomers M(+p) are defined anal-
ogously: D(M |F ) of metabolite M gives the relative abundances 0 ≤
PM |F (b) ≤ 1 of each isotopomer M |F (b) and D(M)m gives the relative
abundances 0 ≤ PM (+p) ≤ 1 of each mass isotopomer M(+p). By di,h we
denote the relative abundance of linear combination h of isotopomers of Mi

(the concept is elaborated in Section 2.4).
Reactions are pairs ρj = (αj , λj) where αj = (α1j , . . . , αmj) ∈ Zm is

a vector of stoichiometric coefficients—denoting how many molecules of
each kind are consumed and produced in a single reaction event—and λj

is a carbon mapping describing the transition of carbon atoms in ρj (see
Figure 2.2). If αij < 0, a reaction event of ρj consumes |αij | molecules
of Mij , and if αij > 0, it produces |αij | molecules of Mi. Metabolites Mi

with αij < 0 are called substrates and metabolites with αij > 0 are called
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products of ρj . If a metabolite is a product of at least two reactions, it is
called a junction.

In the following, we assume that the reactions have simple stoichiome-
tries αij ∈ {−1, 0, 1} and that the carbon mappings λj are bijections. Reac-
tions producing or consuming many copies of the same metabolite molecules
or symmetric metabolites can be modelled using simple stoichiometries by
a simple transformation given in Section 5 of Publication II. Bidirectional
reactions are modelled as a pair of reactions.

Figure 2.2: An example of a metabolic reaction. In 4-hydroxy-2-
oxoglutarate glyoxylate-lyase reaction a 4-hydroxy-2-oxoglutarate
(C5H6O6) molecule is split into pyruvate (C3H4O3) and glyoxylate
(C2H2O3) molecules. Carbon maps are shown with dashed lines (figure
from Publication II).

A pathway in network G from metabolite fragments {F1, . . . , Fp} to
fragment F ′ is a sequence of reactions that define a (composite) mapping
from the carbons of {F1, . . . , Fp} to the carbons of F ′.

It will be useful to distinguish between the subpools of a metabolite pool
produced by different reactions. Therefore, we denote by Mij , the subpool
of the pool of Mi produced (αij > 0) or consumed (αij < 0) by reaction ρj .

By Mi0 we denote the subpool of Mi that is related to the external
inflow or external outflow of Mi. We call the sources of external inflows
external substrates. Subpools of fragments are defined analogously.

In 13C metabolic flux analysis, the quantities of interest are the rates or
the fluxes vj ≥ 0 of the reactions ρj , giving the number of reaction events of
ρj per time unit. We denote by v the vector [v1, . . . , vn] of fluxes. Slightly
abusing terminology, v is often called a flux distribution.
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ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12

glucose -1 0 0 0 0 0 0 0 0 0 0 0
glucose-6-P 1 -1 0 0 0 0 0 0 -1 0 0 0
6-P-G-1,5-L 0 1 -1 0 0 0 0 0 0 0 0 0
6-P-gluconate 0 0 1 -1 0 0 0 0 0 0 0 0
ribulose-5-P 0 0 0 1 -1 0 0 0 0 0 0 0
xylulose-5-P 0 0 0 0 1 -2 0 0 0 0 0 0
S-7-P 0 0 0 0 0 1 -1 0 0 0 0 0
erythrose-4-P 0 0 0 0 0 0 1 -1 0 0 0 0
fructose-6-P 0 0 0 0 0 0 1 1 1 -1 0 0
fructose-1,6-P 0 0 0 0 0 0 0 0 0 1 -1 0
G-3-P 0 0 0 0 0 1 -1 0 0 0 1 -1

Table 2.1: The stoichiometric matrix of the model of Figure 1.1. 6-P-G-
1,5-L denotes 6-P-glucono-1,5; S-7-P denotes sedoheptulose-7-P and G-3-P
denotes glyceraldehyde-3-P. Reaction ρ6 requires two molecules of xylulose-
5-P to produce a sedoheptulose-7-P molecule and a glyceraldehyde-3-P
molecule.

2.2 Steady state metabolic flux analysis

The methods we propose for metabolic flux analysis belong to the stoi-
chiometric paradigm of metabolic modelling [KS03]. In the stoichiometric
model the total sum of cellular reactions of the same kind are lumped to-
gether to provide a comprehensive model of the metabolism [SAN98]. For
every lumped reaction its substrates and products as well as the molar ratios
in which substrates are consumed and products produced by the reactions
are specified. The stoichiometric model can be represented as a bipartite
graph that is composed of metabolite and reaction nodes (see Figure 1.1
for an example). It is useful to describe the stoichiometry of an organism
as a stoichiometric matrix that has a column for each reaction and a row
for each metabolite. Coefficients of the matrix then define the molar ratios
for consumption and production of metabolites in reactions. Formally, the
stoichiometric matrix A corresponding with a metabolic network G is a
matrix of m rows and n columns. The coefficients A(i, j) are equal to the
number αij of metabolite molecules Mi produced or consumed in a single
reaction event of ρj . Table 2.1 presents the stoichiometric matrix of the
metabolic network in Figure 1.1.

A major simplification made in the stoichiometric modelling paradigm
is to leave the reaction kinetics, that is, dynamics that describe the reac-
tion mechanisms, regulation and enzyme properties [HS96, Hei05, MK98,
MMB03] out of the model. This seriously limits the applicability of the
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modelling paradigm in the study of the regulation and the dynamic be-
haviour of metabolism. On the other hand, the stoichiometry of central
metabolism is relatively well understood for many organisms, while the
detailed reaction mechanisms and enzyme properties are not – at least
not in the systemic scale and the level required for quantitative mod-
elling [SAN98, PSP03, WT04]. Thus by leaving the kinetics out, stoi-
chiometric models can be based on more reliable information, with the
cost of giving up on the detailed dynamic modelling of metabolism and its
regulation.

Stoichiometric models have proven to be useful in many tasks of meta-
bolic modelling [KS03]. In metabolic pathway analysis, functional, bio-
chemically meaningful pathways are identified from stoichiometric mod-
els [PPW+03, SSPH99, SFD00]. Maximal yields of end products of a
metabolism, that is, the ratio of the amount of specific targets produced
and external substrates consumed, can be computed from the stoichio-
metric models [SKWP02]. Furthermore, based on the stoichiometry, it
is possible to design genetic modifications to an organism to improve the
yields of specific target metabolites [BM03, PBM04] and to approximate
the robustness of the metabolism to genetic mutations and to environmen-
tal changes [SKB+02].

In metabolic flux analysis, we usually assume that rates vj of reactions
ρj ∈ R and the sizes of metabolite pools stay constant over time, that is,
the metabolism of a cell is assumed to be in steady state. In such a state
the metabolite balance, or mass balance

n∑
j=1

αijvj = βi (2.1)

holds for each metabolite Mi. Here, βi is the measured external inflow
(βi < 0) or external outflow (βi > 0) of metabolite Mi. From balance
equations (2.1) defined for every metabolite Mi we will obtain a metabolite
balancing, or stoichiometric equation system

Av = β, (2.2)

constraining the fluxes v. For simple tree-like network topologies that do
not contain cycles, bidirectional reactions or alternative routes between
source and target metabolites, (2.2) is fully determined linear system and
fluxes v can be solved from it with standard matrix pseudoinverse. How-
ever, for realistic metabolic networks (2.2) is underdetermined. By analyz-
ing the null space of matrix A [KS02], it is possible to solve from the un-
derdetermined (2.2) some fluxes whose values are the same in every feasible
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ρ1 ρ2 ρ3 ρ4

M1 -1 -1 0 0
M2 1 0 -1 0
M3 1 0 -1 0
M4 0 1 0 -1
M5 0 0 1 1

Figure 2.3: Two competing pathways from metabolite M1 to M5 and the
corresponding underdetermined stoichiometric matrix.

flux distribution, but in general case solutions to (2.2) contain (n−rank(A))
free fluxes, whose values need to be fixed by some other means. Figure 2.3
depicts a small metabolic network with two alternative routes from M1 to
M5 and the corresponding stoichiometric matrix. The sum of columns 1
and 3 corresponding pathway (ρ1, ρ3) equals the sum of columns 2 and 4
corresponding pathway (ρ2, ρ4). Thus the linear equation system defined
by the stoichiometric matrix is underdetermined, even if the intake of M1

and the output of M5 can be measured.
One possibility to estimate the steady-state fluxes that are not fully con-

strained by (2.2) is to make an additional assumption that the metabolism
of a modelled organism has an objective, such as optimal growth, that
it tries to fulfill in the given conditions. In flux balance analysis [VP94,
BST97, ECP02] this objective is coded as a linear function of fluxes. The
task is then to maximimise the value of an objective function in the feasi-
ble space spanned by the stoichiometry and the constraints vmin

i and vmax
i

stating minimum and maximum allowable values for each flux vi. Thus we
obtain flux distribution v from a linear programming [Mar01] problem of
the following form:

max
v

∑
i

civi

s.t. Av = β (2.3)

vmin
i ≤ vi ≤ vmax

i ∀vi ∈ v.

It has been empirically shown that in certain conditions, the biomass
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yield, i.e. the growth, of bacteria E. coli is indeed optimal within the con-
straints posed by the stoichiometry [EIP01]. The flux balance framework
has also been successfully applied to predict the lethality of gene deletions
by computing the optimal growth rates for networks without reactions cat-
alyzed by genes whose lethality is to be tested [EP00]. Recently, flux bal-
ance analysis was used to predict gene interaction networks by computing
growth optimal fluxes for all single and double knockouts of 890 metabolic
genes of Saccharomyces cerevisiae [SDCK05].

However, flux balance analysis alone is not the ultimate tool for meta-
bolic flux analysis [ECP02, FS05, MH03]: First, the behaviour of cells is not
necessarily stoichiometrically optimal. Second, the true objectives might
be unknown for every condition or after every genetic modification. Third,
in general the flux vector maximizing (2.3) is not unique. More information
is thus required to obtain knowledge about the fluxes in given conditions.

2.3 Isotopic labelling experiments

Currently, the most accurate estimates of the fluxes in a metabolic net-
work are gained when the stoichiometric information is augmented with
information obtained from isotopic labelling experiments. In an isotopic
labelling experiment a cell population is fed with labelled nutrients, such
as glucose containing 13C atoms. Labels are then transferred by chemical
reactions to other metabolites where they induce different isotopomer dis-
tributions depending on the rates and the carbon mappings of reactions in
the network.

If in addition to the reaction rates, isotopomer distributions of metabo-
lites remain constant, the metabolic network is in an isotopomeric steady
state. In such a state, the rate of production and consumption of each iso-
topomer Mi(b) of each metabolite Mi satisfies the isotopomer balance (cf.
(2.1))

n∑
j=1

αijvjPMij (b) = βiPMi0(b) (2.4)

for any b ∈ {0, 1}|Mi|.
In (2.4), the isotopomer distributions of the outflow subpools of Mij

(αij < 0) are always identical to the distribution of the whole mixed
metabolite pool Mi as we assume that reactions uniformly sample their
reactant pools (see Section 3.1). If, however, the pathways leading to a junc-
tion metabolite—a metabolite with more than one producer—manipulate
the carbons of the metabolite differently, then the isotopomer distributions
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of the inflows (αij > 0) often have differences. Because of these differences
equations of (2.4) can be linearly independent, and constrain the fluxes
more than mass balance equations (2.1) alone. If, for example, in Fig-
ure 2.3 P (M1(00)) = 0.9 and P (M1(11)) = 0.1, subpools M53 and M54

will get different isotopomer distributions, because pathway (ρ1, ρ3) cleaves
the carbon chain and thus mixes the fragments of unlabelled and totally
labelled metabolite molecules, while pathway (ρ2, ρ4) transports molecules
intact from M1 to M5. For example, P (M53(00)) = 0.9 · 0.9 = 0.81 and
P (M54(00)) = 0.9. If we add a constraint

n∑
j=1

α5jvjPM5j (00) = β5PM50(00)⇔

v3 · 0.81 + v4 · 0.9 = β5PM50(00)

to the stoichiometric system of Figure 2.3, and are able to measure PM50(00)
and inflow of M1 or the outflow M5, the system will be fully determined
and all fluxes can be solved.

Thus, by measuring the isotopomer distributions from metabolites, in-
formation about the fluxes of competing pathways, cycles and bidirectional
reactions can be obtained.

2.4 Measurement technologies

Today, isotopomer distributions can be measured with two basic tech-
nologies, by nucleic magnetic resonance spectroscopy (NMR) [MdGW+96,
SGH+99] or mass spectrometry (MS) [CN00, DS00, FNS04, WH99]. In this
section we shortly describe the type of constraints these instruments can
measure to isotopomer distributions. The emphasis of the introduction is
in MS, which is more central to this thesis.

2.4.1 Nucleic magnetic resonance spectroscopy

In a widely applied 2D [13C ,1H] COSY (HSQC) technique of NMR, 13C
atoms coupled to an observed 13C atom through one-bond couplings or
long-range couplings give rise to characteristic signal fine structure in a
NMR spectrum [Szy95] (see Figure 2.4 for an example). By analyzing the
relative intensities of the signal fine structures from different combinations
of the coupled 13C atoms, constraints to the isotopomer distribution of the
metabolite measured can be inferred [SGH+99, vWSVH01].
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Figure 2.4: Different combinations of 13C and 12C atoms that are coupled
to an observed 13C atom (in the middle) give rise to characteristic signal
fine structures in NMR spectrum. The heights of the peaks (y-axis) are
proportional to the relative intensity of the corresponding isotopomer.

For example, for metabolite Mi with carbon chain of length three, the
following constraints to D(Mi) can be inferred:

PMi(b
′1b′′)∑

b1,b3∈{0,1} PMi(b11b3)
= di,(b′1b′′) (2.5)

for each label combination M(b′1b′′), where di,(b′1b′′) is the measured relative
intensity of a peak in an NMR spectrum corresponding isotopomer (b′1b′′).
Using 2D [13C ,1H] COSY NMR measurements different label combinations
can be observed around 13C atoms bound to at least one hydrogen atom.
Thus, neither the 12C atoms and their adjacent carbons nor the labelling
status of the carbons adjacent to the carboxyl group (COOH) carbon can
be observed. Thus, the complete isotopomer distributions cannot be un-
covered in general. (With small, isolated metabolites, this problem can
be circumvented by applying 1H heteronuclear spin difference NMR spec-
troscopy [dGMM+00].) Furthermore, the sensitivity usually limits the ap-
plicability of NMR spectroscopy to detection of proteinogenic amino acids
abundant in the cell biomass while the isotopomer distributions of the in-
ternal primary metabolites remain undetectable due to their low concen-
trations in cells.

2.4.2 Mass spectrometry

Mass spectrometer (MS) measures the abundances of molecules with dif-
ferent masses in a sample with very high precision [MZSL98]. There exist
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many different mass spectrometry techniques that all contain the same ba-
sic steps. First molecules are ionized by an ion source. Ionization gives
molecules an electric charge so they can be moved with electronic fields.
Then the mass analyzer separates ions according to their mass-to-charge
ratio (m/z)1. In the third phase of MS measurement the detector records
the charge induced or the current produced when an ion passes by or hits
a surface from which the number of ions with specific m/z value can be
deduced.

In tandem MS (MS-MS) [McL80] two or more mass analyzers are used
in succession to fragment molecules and to also measure the abundances of
the fragments with different weights. The fragmentation of molecular ions
can be achieved by many techniques. In a common collision-induced dissoci-
ation (CID) method [Mar98] metabolite molecules are collided with neutral
gas which results in bond breakage and the fragmentation of a molecular
ion. For the purposes of this thesis, two different modes of fragmentation
are distinguished. In full scanning mode all mass isotopomers of a metabo-
lite are simultaneously fragmented. In daughter ion scanning mode every
mass isotopomer of the metabolite can be separately fragmented and the
mass isotopomer distributions of fragments measured. In general, this sep-
aration produces more constraints to the isotopomer distribution, as shown
in Publication IV and Publication V. It also affects the computation of con-
straints to the isotopomer distribution from MS-MS data (see Chapter 5 for
more details). Figure 2.5 depicts a daughter ion spectrum of 13C labelled
alanine.

Figure 2.5: Daughter ion spectrum of 13C labelled alanine (fragmentation
at m/z 91 Da, figure from Publication IV).

1Small molecules such as metabolites are usually single charged. Thus the mass-to-
charge ratio can be thought to be equal to the mass of an ion.
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Before entering MS, metabolite molecules are usually separated by their
chemical properties (liquid chromatography, LC), their boiling points (gas
chromatography, GC) or by their mobility in a capillary (capillary elec-
trophoresis, CE). Thus in 13C metabolic flux analysis, MS can be used
to measure the mass isotopomer distributions of a metabolite Mi [CN99,
FNS04], that is, constraints

PMi(+k) = di,k (2.6)

to D(Mi), where di,k is the relative intensity of a peak in MS spectrum cor-
respondingMi(+k). More information about the isotopomer distributions
can be acquired by applying MS-MS to obtain analogous constraints

PMi|Fj
(+k) = di,j,k (2.7)

to isotopomer distributions of fragments Fj emerging in MS-MS. Chapter 5
of this thesis introduces methods to compute constraints to the isotopomer
distribution D(Mi) of the carbon chain ofMi from (2.6) and (2.7). The sen-
sitivity of MS-MS methods is generally better than NMR’s, but still some
metabolites cannot be reliably analyzed because of the low abundance or
chemical properties of the compound. The amount of independent con-
straints obtained to isotopomer distribution depends on the fragmentation
pattern of a metabolite in MS-MS. In general, full isotopomer distributions
are not uncovered.

2.5 General model for measurement data

Above we learned that neither NMR nor MS-MS can measure full iso-
topomer distributions D(Mi) for each metabolite Mi in the network. Thus
(2.4) cannot be directly applied to solve the fluxes. Instead, both technolo-
gies measure linear constraints∑

b

sb,i,hPMi(b) = dih, (2.8)

to D(Mi), where dih is the measured relative abundance of the specified
linear combination of isotopomers. The coefficients sb,i,h ∈ R depend on
the measurement technique and the metabolite. We apply this simple, yet
general model of isotopomer measurement data to develop computational
methods that can simultaneously make use of NMR and MS-MS measure-
ments — or linear constraints to isotopomer distributions obtained by some
other means.
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Finally, a geometrical interpretation of linear constraints to the iso-
topomer distribution will be useful later in the thesis. Isotopomer distri-
bution D(M) defines a point in the isotopomer space IM spanned by the
standard vectors ib ∈ {0, 1}2|M | that contain 0’s in all other components
except in the b’th location. More generally, a set of linear constraints to
the isotopomer distribution D(M), such as mass isotopomer distribution
D(M)m or general measurement constraints (2.8), defines a linear subspace
of IM .



Chapter 3

13C metabolic flux analysis

This chapter introduces the basic assumption behind 13C metabolic flux
analysis and define the problem of 13C metabolic flux estimation. Also, ex-
isting computational methods for 13C metabolic flux analysis are reviewed.

3.1 Modelling assumptions

13C metabolic flux analysis is commonly based on a few key assumptions
about the modelled metabolism (cf. [Wie02]).

1. A cell population has reached isotopomeric steady state before the
isotopomer measurements are conducted.

2. The state of individual cells in the population is not too different from
the population average.

3. The model of metabolism is complete, that is, all reactions with
nonzero flux of an organism that produce or consume the metabo-
lites in the model are present and the carbon mappings are correct
for each reaction in the model.

4. Metabolites and enzymes are fully mixed in the cell compartments.

5. Reactions sample substrate pools uniformly, thus different isotopomers
are consumed in the proportion of their abundances.

6. Reactions in the model are simple, that is, they do not contain hidden
intermediate steps where substrate molecules are drawn from mixed
pools.

29
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Together, these assumptions justify the writing of flux balance equa-
tions (2.4). They also facilitate the propagation of measurement data in
the metabolic network with methods described later in the thesis. Accord-
ing to assumption (1), isotopomer distributions of metabolites stay constant
over time (for techniques to avoid this assumption, see [NW06]). Assump-
tion (2) makes it possible to state that the flux estimations based on the
measurements from a cell population hold reasonably well for individual
cells, too. Assumption (4) is the basic assumption behind the lumping
of reactions in stoichiometric modelling. It implies a ”Markov property”
of a metabolic network: reactions that have the same substrates sample
them from a common pool, disregarding the history of specific substrate
molecules. Assumption (5) states that extra labels in metabolite molecules
have no effect on the use of molecules as substrates. Assumption (6) re-
quires that all reaction steps that affect on labelling patterns of metabolite
molecules are explicitly modelled.

3.2 Problem of 13C flux estimation

As mentioned in Section 2.4, current measurement technologies can only
measure linear constraints to isotopomer distributions of some metabolites
in the network. Thus isotopomer balances (2.4) cannot be directly ap-
plied to uncover the fluxes of a metabolic network. A general formulation
for the problem of 13C flux estimation that allows missing measurement
data models a metabolic network as the nonlinear system of fluxes and
isotopomer distributions. In this system, the stoichiometry of the network
and measured external flows and constraints to the isotopomer distribu-
tions of metabolites in the network need to be described. Furthermore,
the carbon mappings of reactions and the random, unbiased sampling of
different isotopomers of substrates by the reactions need to be modelled.

For the modelling of the random sampling of the substrate isotopomers
and the carbon mappings, two technical concepts need to be introduced.
In reaction ρj , the carbon mapping λj between substrate and product
metabolites of ρj also defines a carbon mapping λk,l

j : M |Fk → M ′|Fl,

where M is a substrate and M ′ a product of ρj . Furthermore, λk,l
j in-

duces an isotopomer mapping ιk,l
j : IM |Fk

→ IM ′|Fl
of the isotopomers of

substrate fragment M |Fk to the isotopomers of product fragment M ′|Fl.
In ιk,l

j isotopomer Fk(b) is mapped to Fl(b′) if λj(b) = b′. In the ex-
ample of Figure 3.1, substrates M1 and M2 are mapped to fragments
M3|F2 and M3|F1 of product M3. In the example, ιM1,M3|F2(01) = 10
and ιM2,M3|F1(0) = 0. Thus, PM3(010) = PM2(0) · PM1(01). An isotopomer
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Figure 3.1: An example of isotopomer mappings.

mapping matrix IMMk,l
j [SCNV97b] of fragments Fk and Fl is a square

binary matrix with 2|Fk| rows and columns. Coefficient IMMk,l
j (b, b′) = 1

if ιk,l
j (b) = b′, otherwise IMMk,l

j (b, b′) = 0. Second, let Mm|G and Mn|H
be substrate fragments mapped to Mij by reaction ρj , |Mij | = |G| + |H|.
Now, because of the random and unbiased sampling of different substrate
isotopomers by the reactions, the abundance of an isotopomer Mij(b) can be
computed by multiplying the abundances of isotopomers G(b′) and H(b′′)
that make up Mij(b), after appropriate isotopomer mappings are first ap-
plied to substrate fragments. That is,

PMij (b) = PMm|G(b′) · PMn|H(b′′)|ιj(G(b′) ∪H(b′′)) = M(b). (3.1)

More generally, the isotopomer distribution of the product metabolite is
computed by taking component-wise Kronecker product⊗ of the isotopomer
distributions of the substrate fragments 1.

1The result of m⊗ n is a matrix formed from all possible products of the elements of
m with those of n. If m is l-by-k and n is p-by-q, then m⊗ n is lp-by-kq. The elements
are arranged in the following order:

[m(1, 1) ∗ n m(1, 2) ∗ n . . . m(1, k) ∗ n

. . .

m(l, 1) ∗ n m(l, 2) ∗ n . . . m(l, k) ∗ n].
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Problem 1 (13C Flux Estimation Problem). Solve the flux distribution
v = (v1, . . . , vn) from the equation system

n∑
j=1

αijvjPMij (b) = βiPMi0(b) ∀Mi (3.2)

Mij = Mi ∀Mij : αij < 0 (3.3)

D(Mij) =
⊗

αkj<0

IMMk,i
j D(Mk|Fij) ∀Mij : αij > 0 (3.4)

∑
b

sb,i,hPMi(b) = di,h ∀Mi, h (3.5)

where di,h’s denote measured isotopomer constraints, Mk|Fij denotes a frag-
ment of metabolite Mk that is mapped to metabolite Mi by reaction ρj and⊗

denotes a series of consecutive pairwise Kronecker products ⊗.

Bilinear equation (3.2) models the isotopomeric steady state. Equa-
tion (3.3) states that the isotopomer distributions of outflow subpools are
identical to the isotopomer distribution of the mixed pool of a metabo-
lite. Nonlinear equation (3.4) states that the isotopomer distribution of a
product metabolite pool of reaction ρj is the product of the isotopomer
distributions of the substrates of ρj . Equation (3.5) integrates isotopomer
measurements to the model.

3.3 Existing approaches of 13C metabolic flux anal-
ysis

At high level, there exist two approaches to tackle Problem (1). These
approaches are introduced next.

3.3.1 Optimization methods for 13C metabolic flux analysis

A popular approach for 13C metabolic flux analysis formulates Problem
(1) as a constrained least-squares minimization problem, where the differ-
ence between the observed and simulated isotopomer measurements is mini-
mized [AKS06, SCNV97a, WdG97, WMdG01, YWH04]. Let x = (D(Mi))i

denote a vector collecting the relative abundances of every isotopomer of
every metabolite in the network. It has been shown [WW01] that, for any
given steady-state flux distribution v and any practically relevant meta-
bolic network, there exists exactly one isotopomer steady state xv. Let
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xinp denote a vector of relative abundances of the isotopomers of exter-
nal substrates and let xobs denote a vector of measured constraints to the
isotopomer distributions of the metabolites. Let yobs = [xobsβ] denote a
vector where measured inflows and outflows for each metabolite are con-
catenated to xobs, let βv denote inflows and outflows defined by v and
let yv = [xvβv]. Then a solution to Problem (1) is found by solving a
least-squares minimization problem

min
v
‖yobs − yv‖22. (3.6)

As isotopomer distributions xv depend from fluxes v in nonlinear fashion,
the minimization problem (3.6) is typically solved with iterative methods.
At each step of the iteration, fluxes are fixed to some candidate values
and isotopomer distributions of metabolites are computed from the net-
work model. By a proper transformation of isotopomer data, xv can be
computed analytically from known v and xobs, by solving a sequence of
linear equation systems [WMI+99]. If the least squares difference (3.6) is
small enough, candidate fluxes are returned as a result. Otherwise some
optimization method, such as a gradient-based method [WMdG01] or an
evolutionary or simulated annealing algorithm [DBS01, SNV99] is used to
select new candidate fluxes that are likely to produce smaller difference and
the iteration is continued. We call methods for 13C metabolic flux anal-
ysis that apply this general strategy optimization methods. More detailed
descriptions of the optimization methods are available in the introductory
texts [WMdG01] and [Wie02].

The optimization approach for 13C metabolic flux analysis is applicable
to all network topologies, it can give separate estimations for both direc-
tions of reversible fluxes and it can easily utilize all the measurement data
available. There also exists a widely used implementation of an optimiza-
tion framework, 13C-FLUX [WMdG01]. A faster version of the general
optimization framework is also tailored for NMR measurements and uni-
form substrate labellings [vWHV02].

As a drawback the optimization framework shares the problems of gen-
eral nonlinear optimization methods. First, it is hard to make sure that
an optimization process has converged to a global instead of a local min-
imum [GZG+05]. Second, if measurement data does not fully determine
the flux distribution, optimization methods will merely sample the solution
space, and cannot return the set of all feasible solutions. By performing
an a priori identifiability analysis [IW03, vWHVG01] and analyzing the
sensitivity of a point solution [MWKdG99] or computing the confidence in-
tervals for estimated fluxes [AKS06] it is possible to examine the uniqueness
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of the solution. The mathematical complexity of these statistical analysis
methods is quite high.

3.3.2 Direct methods for 13C metabolic flux analysis

Another, ”direct” approach 2 for 13C metabolic flux analysis is based on
the general idea that some ratios of fluxes producing the same junction
metabolite can be inferred from isotopomer data without iterative fitting of
the fluxes to isotopomer measurements. Together with mass balances (2.1)
defined by the stoichiometry of the network, these flux ratios can give
enough information about the fluxes and nonlinear optimization can be
avoided.

The ratios of fluxes producing metabolite Mi are derived from iso-
topomer balances (2.4) constraining the fluxes around Mi. According to
(2.4), the mass balance (2.1) holds for each isotopomer separately. Thus
the similar balance holds for any linear combination of isotopomers, too.
Formally,

n∑
j=1

αijvjdijh = βidi0h, (3.7)

for all metabolites Mi, where dijh is a linear combination (cf. (2.8)) from∑
b

sb,i,hPMij (b) = dijh, (3.8)

of isotopomer abundances known for subpool Mij . We note that coefficient
sb,i,h is the same for all subpools Mij , that is, all dijh’s define points from
the same subspace of isotopomer space IM . If enough independent equa-
tions of the form (3.7) can be written, the ratios of fluxes producing Mi

can be solved from the resulting linear equation system. In the best case,
all flux ratios are uncovered. In that case, all information about the flux
distribution obtainable from isotopomer measurements is also uncovered.
Thus, direct methods for 13C metabolic flux analysis that avoid difficulties
of nonlinear optimization can be as powerful as optimization methods for
estimating steady state fluxes. On the other hand, in order to write (3.7)
to junction metabolite Mi, we need to know (3.8) for identical linear com-
bination sb,i,h of isotopomers of Mi for each subpool Mij . Thus a direct
framework might require more measurement data than an iterative frame-
work to estimate the complete flux distribution. The central question for

2Here, ”direct” refers only to the general strategy to obtain and utilize flux ratios
directly, instead of iterative fitting of fluxes to the measurements. Methods labelled here
as ”direct” may also use iterative optimization methods in some of their stages.
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direct methods of 13C metabolic flux analysis – and also for this thesis –
then is: How to obtain enough common isotopomer constraints (3.8) for all
subpools of junction metabolites from incomplete measurements to uncover
the fluxes of interest?

METAFoR analysis

The origins of the direct approach for 13C metabolic flux analysis lie in
METAFoR (Metabolic Flux Ratio) analysis [Szy95, SGH+99]. In MeTAFoR
analysis, the ratios of fluxes producing a junction metabolite are studied lo-
cally, in separation from the rest of the network. In traditional METAFoR
analysis, a uniform labelling of external substrates that consists of a mix-
ture of unlabelled and fully labelled molecules is applied and NMR is used
as a measurement technique. The flux ratios are then computed for junc-
tion metabolites Mi produced by two competing pathways P1 and P2 of
which P1 keeps carbon–carbon bond (ck, cl) of Mi intact all the way from
an external substrate while in P2, bond (ck, cl) is created by a reaction of
the pathway. Thus the ratio of intact fragments (ck, cl) corresponds to the
relative flux through P1. The constraints (2.5) measurable by NMR fit well
for uncovering this ratio of intact fragments. Intuitively, if the label of ck

differs from the label of cl, bond (ck, cl) is biosynthetically created and the
metabolite molecule produced by P2, while if the labels of ck and cl are the
same, it is more probable that bond (ck, cl) has stayed intact and a molecule
is produced by P1. With careful modelling [Szy95] that takes into account
that also P2 can produce molecules that have the same labels in ck and cl

and that unlabelled external substrates contain 13C atoms in their natural
abundance, the ratios of fluxes through P1 and P2 can be accurately com-
puted. For example, let Pn(0) Pn(1) denote the relative natural abundance
of 12C and 13C atoms, respectively. Let v1 ∈ P1 and v2 ∈ P2 be fluxes of
reactions producing Mi = (ck, cl, ∗) (∗ denotes some unspecified chain of
carbon atoms) and let v3 be the flux of the only reaction consuming Mi.
Let PS(13C) be the fraction of totally labelled and PS(12C) = 1−PS(13C)
the fraction of unlabelled substrate molecules. Because of the uniform la-
belling of substrates, the relative abundance Pc(1) of labels in every carbon
c in the network is the same.

An NMR measurement observing carbon ck ∈ Mi that is connected to
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only one other carbon gives isotopomer constraints (cf. 2.5)

PMi|(ck,cl)(10)
N

= di1

PMi|(ck,cl)(11)
N

= di2,

where N = PMi|(ck,cl)(10) + PMi|(ck,cl)(11) = Pc(1). Let di = [di1di2]. From
the properties of pathways P1 and P2 we can deduce similar isotopomer
constraints for subpools Mi1|(cj , ck) and Mi2|(cj , ck):

di11 =
PMi1|(ck,cl)(10)

N
=

PS(12C)Pn(1)Pn(0)
Pc(1)

di12 =
PMi1|(ck,cl)(11)

N
=

PS(13C) + PS(12C)Pn(1)2

Pc(1)

di21 =
PMi2|(ck,cl)(10)

N
=

Pc(1)Pc(0)
Pc(1)

di22 =
PMi2|(ck,cl)(11)

N
=

Pc(1)Pc(1)
Pc(1)

Thus we can construct generalized isotopomer balances (cf. (3.7))

αi1di1v1 + αi2di2v2 − αi3div3 = 0
αi1v1 + αi2v2 − αi3v3 = 0

bounding the ratios of fluxes v1 and v2. Analogous equations can be written
also for central carbons of metabolites, such as cl ∈Mi [Szy95].

As the flux ratios are computed for every junction separately in METAFoR,
global flux distribution is not obtained. In traditional METAFoR, flux ra-
tios are computed for the junctions that are produced by competing path-
ways of which some cleave and recombine the external substrates while some
do not. More generally, the METAFoR approach can be applied, if the frac-
tion of fragments that have stayed intact from external substrates can be
inferred from the measurements for each subpool of a junction metabolite
(see e.g.[MFC+01]). However, for large models containing bidirectional re-
actions and cycles these junctions are nontrivial to find manually. The lim-
ited sensitivity of NMR usually restricts the set of measurable metabolites
to amino acids abundant in the cell. Also, uniform labelling of external sub-
strates is not optimal for solving all the fluxes in metabolic networks [FS03].
Because of these properties, METAFoR from NMR measurements is not al-
ways able to uncover all the flux ratios of interest.
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13C constrained flux balancing

Local flux ratios of METAFoR (or constraints to them) can be easily com-
bined with stoichiometric constraints ([SHB+97] and Publication I). With
the above notation, it is enough to augment a stoichiometric equation
system containing mass balances (2.1) for each metabolite with general-
ized isotopomomer balances (3.7) constraining the flux ratios of (some)
junctions. This kind of approaches are sometimes called the methods of
13C constrained flux balancing [SHB+97]. Recently, a method for 13C
metabolic flux analysis where (2.1)’s are augmented with flux ratios de-
rived from gas chromatography mass spectrometer (GS-MS) data was pre-
sented [FS03, FNS04]. Also, a software called FiatFlux implementing the
method was provided [FNS05]. In FiatFlux, mass isotopomer distributions
of intermediate precursor metabolites are propagated from the mass iso-
topomer distributions of the fragments of amino acids subjected to GC-MS.
After the propagation of mass isotopomer data the flux ratios are computed
by applying (3.7) where each dijk corresponds to the abundance of the same
mass isotopomer +k of subpool Mij , that is,

PMij (+k) = dijk,

for each relevant mass isotopomer Mij(+k). Finally, the computed flux
ratios are combined with (2.1)’s for each metabolite. The authors solve
the flux distribution from the resulting equation system by formulating
the problem as a nonlinear least squares optimization problem where the
computed flux ratios are weighted with their experimental variances and
their magnitude [FNS04]. Formally, let Ri = ρi

1, . . . , ρ
i
k denote reactions

producing metabolite Mi and let Rmb = Av − β be a residual error of the
equation system (2.2). Let fi denote the computed ratio of the sums of
fluxes of two subsets Ri

1 and Ri
2, Ri

1

⋃
Ri

2 = Ri and let residual Ri be
defined as

Ri = fi

∑
ρp∈Ri

2

αipvp −
∑

ρq∈Ri
1

αiqvq. (3.9)

Then in FiatFlux, the fluxes are obtained by solving a problem

min
v

(Rmb)2

(σmb)2
+

∑
i

(Ri)2

(σi)2(∂Ri
∂fi

)2
, (3.10)

where experimental variances σ are either estimated from the measure-
ments or assigned a priori (for handling of upper bounds to the flux ratios,
see [FNS04]).
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In FiatFlux, mass isotopomer distributions of internal metabolites are
derived from the measured mass isotopomer distributions of amino acid
fragments by constructing a nonlinear equation system constraining the
components of precursor mass isotopomer distributions [FS03]. If, for ex-
ample, a measured amino acid AA originates from precursors M1 and M2,
the mass isotopomer distributions D(M1)m and D(M2)m are obtained by
constructing and solving a bilinear equation system that has an equation

PAA(+k) =
∑

i+j=k

PM1(+i)PM2(+j) (3.11)

for each mass isotopomer PAA(+k) of AA. As a general propagation
method, this technique is powerful and applicable with all labellings of
external nutrients. However, the technique is not free from the problems
of multiple optimal solutions and convergence to a local optima. In the
worst case, computed flux ratios can be spurious due to the convergence to
a wrong optimum during the computation of mass isotopomer distributions
of precursors. The possibility of selecting the wrong optimum can be illus-
trated with an (pathologic) example where two carbon amino acid AA is
produced by combining two one-carbon precursors M1 and M2. Let us as-
sume that all molecules of AA have exactly one 13C label in their backbone,
thus PAA(+1) = 1. Now, either PM1(+1) = 1 or PM2(+1) = 1. Both alter-
natives are equally good solutions of (3.11), but only one of them can be
correct. If the wrong solution is selected, the flux ratios that are computed
based on D(M1) and D(M2) can also be wrong (for further discussion,
see [WDW04]).

Starting from the next chapter of the thesis, we present a framework
for 13C constrained flux balancing. Like FiatFlux, our method consists
of three main steps: 1) the propagation of measurement information in
a metabolic network 2) augmentation of mass balances (2.1) with general-
ized isotopomer balances (3.7) and 3) solving the resulting equation system.
However, in the propagation step we apply only techniques that are ”safe”,
that is, we only propagate isotopomer constraints if we can be sure that
the propagated constraints must hold, if our modelling assumptions are
correct. Also, our method is not tied to any specific type of measurement
technology but can simultaneously utilize all isotopomer data that can be
described as linear constraints to the isotopomer distribution. For example,
measurements produced by common NMR, MS and tandem MS techniques
can be simultaneously utilized. Thus, our method can be seen as a gen-
eralization of previous methods for direct 13C metabolic flux analysis that
are suitable only for a certain kind of data, such as mass isotopomer or
NMR data, or for specific substrate labellings, such as uniform labelling.
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The proposed computational methods are efficient and can be used with
all network topologies. Thus they can be applied with detailed models of
metabolism.

As METAFoR, the methods behind FiatFlux and our method share the
idea of augmenting stoichiometric constraints with flux ratios, the methods
are complementary and can be applied in tandem. The (constraints to)
flux ratios produced by the methods can all be collected together and the
fluxes that satisfy all constraints be computed.
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Chapter 4

A direct framework for 13C
metabolic flux analysis

In this chapter we propose a framework for direct 13C metabolic flux anal-
ysis and associate our contributions to the components of this framework.
The contributions presented in Part II of thesis will only be described
briefly, while new results will be elaborated on more.

4.1 Process of 13C metabolic flux analysis

In the previous chapter approaches for 13C metabolic flux analysis were
categorized based on the computational techniques they apply when con-
structing and solving an equation system constraining the flux distribution.
In addition, a complete framework for 13C metabolic flux analysis contains
other important steps. In Figure 4.1 the view of a process for direct 13C
metabolic flux analysis proposed in this thesis is given (cf. a process view
for optimization approach proposed in [WMdG01] and [Wie02]). In the
next sections we describe the process in detail.

4.2 Model construction

Before any computational analysis the model of the metabolism of an or-
ganism has to be fixed. As described in Chapter 3, in 13C metabolic flux
analysis this model consists of the metabolites and the chemical reactions
in the metabolic network. For each reaction, carbon mappings from sub-
strates to products and the stoichiometric coefficients describing the molar
ratios of substrates and products have to be specified.

41
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Figure 4.1: Process of 13C metabolic flux analysis.
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Public databases such as KEGG LIGAND [GOH+02] contain a lot of
biochemical reactions discovered from a multitude of organisms. The ARM
database [ARM] augments LIGAND reactions with automatically recon-
structed atom mappings [Ari99, Ari03]. It makes sense to utilize this avail-
able information to ease the model construction. Unfortunately, matching
the reactions of a metabolic network given by a user with reactions in LIG-
AND and ARM is nontrivial due to diverse naming conventions of metabo-
lites. For example, in a user model d-xylulose 5-phosphate might be called
”XU5P-D” while in the database a longer name for the same metabolite
is used. Furthermore, the user model might contain ”glucose” as a carbon
source, but in the database reactions might consume ”d-glucose”, or vice
versa.

To solve the problem arising from the different naming conventions we
have developed a software tool called ReMatch to assist the construction
of metabolic network models. The tool matches the reactions of a user
model with the reactions in LIGAND and ARM stored to a local database.
In the matching, metabolite names used in the user model are automat-
ically compared with the different synonyms used for metabolites. Syn-
onyms for metabolite names are obtained from LIGAND and from Meta-
Cyc [KZM+04] databases. If the perfect match between a user reaction
and a database reaction is not found, a user can easily browse database
reactions that partially match the user reaction and select the correct one
from the candidates. Furthermore, a user can easily add her own reactions,
together with carbon mappings, to the local database. After the matching,
ReMatch outputs the stoichiometric matrix of the constructed metabolic
network, mappings between the metabolite names used in user model and
in the reactions of KEGG and ARM and 13C-FLUX [WMdG01] compat-
ible input file for 13C metabolic flux analysis. The model is also stored
to the local database for the methods presented in the thesis. Thanks to
ReMatch, it is easy to construct models for 13C metabolic flux analysis
as the laborious tasks of metabolite name matching and the construction
of the carbon mappings of reactions are handled (mostly) automatically.
ReMatch is freely available as a web service at http://www.cs.helsinki.
fi/group/sysfys/software/rematch/index.html.

4.3 Flow analysis of metabolic network

After its construction, the model of metabolic network is examined with the
flow analysis techniques introduced in Publication II. The goal of the flow
analysis is to partition the fragments of the metabolites in the network to
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equivalence classes such that fragments in the same equivalence class have
identical isotopomer distributions in every steady state, when the (joint)
isotopomer mappings induced by the network are taken into account (see
Figure 4.2 for an example). In abstract terms, equivalence of two fragments
follows from their similiar history in the metabolic network. For example,
fragments F and F ′ are necessarily equivalent, if

1. |F | = |F ′|;

2. all carbons of F originate always from the carbons of F ′;

3. carbon of F ′ stay connected to each other via all pathways from F ′

to F ;

4. composite carbon mappings are the same in all pathways from F ′ to
F .

Figure 4.2: An example of equivalence classes of fragments. Grey and white
fragments constitute two equivalence classes {1, 3, 5, 7} and {2, 4, 6, 8}.
Dashed lines illustrate carbon mappings.

Fragment equivalence classes have many uses (Publication II, Section
5). Most importantly, measured isotopomer constraints to fragment F can
be directly propagated to another fragment F ′ in the same equivalence
class, by applying the joint isotopomer mappings between F and F ′. This
helps in the construction of generalized balance equations (3.7) where iso-
topomer information is required for each subpool of junction metabolites.
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The equivalence classes also facilitate the selection of metabolites that need
to be measured to obtain maximal flux information (see Section 4.5) and
help in the structural identifiability analysis (Section 4.4) and in the regu-
larization of an equation system constraining the fluxes (Section 4.7.4).

We construct the fragment equivalence classes by first transforming
metabolic network G to fragment flow graph F(G) that better models the
transfer of metabolite fragments in the network and the cleavage and for-
mation of carbon-carbon bonds during the transfer. F(G) has connected
fragments of all metabolites as nodes. The edges of F(G) are derived from
the reactions of the network: If some reaction maps a substrate fragment
M |F ′ to a product fragment M ′|F , a directed edge from F ′ to F is inserted
to F(G). If product fragment M ′|F is composed from carbons of more than
one substrate molecule by some reaction, a directed edge from root node
∆ of F(G) to F is inserted. Also, there exist directed edges from ∆ to all
fragments of external substrates in F(G).

Next the dominator tree [AHU74] of F(G) is constructed. We say that
fragment F ′ dominates, or is a dominator of fragment F in F(G), if every
path from the root node ∆ to F goes through F ′ and the composite carbon
mappings defined by all pathways from F ′ to F in metabolic network G are
the same. F ′ is an immediate dominator of F , denoted by F ′ = idom(F ),
if

1. F 6= F ′,

2. F ′ dominates F ,

3. F ′ does not dominate any other dominator of F (cf. [App98]).

In dominator tree T corresponding to F(G) there exists a directed edge
from idom(F ) to F for each fragment F ∈ F(G). As ∆ dominates every
fragment in F(G), it is the root of T . Now the fragments belonging to
the same subtree of ∆ in T are equivalent (Publication II, Theorem 3).
Thus, subtrees of T define a partition of fragments in G to the required
equivalence classes. Figure 4.3 presents a small metabolic network, the cor-
responding fragment flow graph and the dominator subtrees corresponding
to equivalence classes.

The fragment flow graph F(G) constructed above is quite large as it
contains O(2|M |) nodes for each metabolite M . In Section 4 of Publica-
tion II we show that it is enough to add only nodes corresponding to one
carbon and connected two carbon fragments to F(G) and construct domi-
nance relations of other fragments by intersecting nodes of dominator tree
T corresponding to F(G) that share a carbon. Thus it is enough to add
O(|M |2) nodes for each metabolite M to F(G).
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Figure 4.3: A metabolic network (left), the corresponding fragment flow
graph (up right) and the subtrees of the dominator tree (down right).

4.3.1 Computation of dominator tree*

Our definition of dominator tree deviates from the general dominator trees
[App98] only in the requirement that the composite carbon mappings de-
fined by all pathways from idom(F ) to F have to be the same. We call a
dominator tree without this additional requirement a weak dominator tree
(see Figure 4.4 for illustration). Another way to formulate the requirement
of the equal composite carbon mappings is to require that every carbon of
F is dominated by a carbon in idom(F ). Thus we can apply well-known
algorithms [LT79] to first construct a weak dominator tree of fragment
flow graph F(G) and then check for each edge in the weak dominator tree
whether it also belongs to the dominator tree by inspecting if the carbons
of the dominated fragment are also dominated.

A description of a relatively simple algorithm for the computation of
weak dominator tree with the time complexity of O(m log n), where m
is the number nodes and n the number of edges in a flow graph, is given
in [App98]. The algorithm is originally due to Lengauer and Tarjan [LT79],
who also give an asymptotically faster version with time complexity
O(mα(m,n)), where α is a (slowly growing) inverse-Ackermann function.
Also, more complicated — and in practice slower — algorithms for linear
time construction of weak dominator tree [AHWT99, BKRW98] have been
presented.
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Figure 4.4: Example of weak domination. In a), carbon mappings from
fragment 1 to 7 and from fragment 2 to 8 are the same on both pathways.
Thus 1 dominates 7 and 2 dominates 8. In b), carbon mappings of reactions
ρ3 and ρ4 are not the same. Thus metabolite 1 only weakly dominates
metabolite 4 (figure from Publication II).

In the Lengaeur-Tarjan algorithm, the concept of semidominator is ap-
plied. Let S be a depth-first spanning tree of F(G) (a recursion tree tra-
versed by the basic depth-first search algorithm). The semidominator of F
(semi(F )) is a node F ′ ∈ S with the smallest depth-first number such that
there exists a path from F ′ to F in F(G) that does not contain any ances-
tors of F in S. Now, on the spanning tree path below semi(F ) and above or
including F , let F ′ be the node with the smallest numbered semidominator.
Then [App98, LT79],

idom(F ) =

{
semi(F ) if semi(F ′) = semi(F )
idom(F ′) if semi(F ′) 6= semi(F ).

(4.1)

The above conditions can be utilized by visiting the nodes of F(G) in depth-
first order, starting from the node with the highest depth-first number, and
gradually constructing a spanning tree and computing semidominators of
nodes. The semidominators can be found by noting that a set of candi-
dates for semi(F ) consists of 1) predecessors F ′ of F in F(G) that are also
ancestors of F in S and 2) nodes that are ancestors of F ′ in S, if F ′ is a
predecessor of F in F(G), but not its ancestor in S [App98, LT79]. Simul-
taneously with the computation of semidominators, immediate dominators
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that fill the first condition of (4.1) are computed. Finally, the missing im-
mediate dominators are computed based on the second condition of the
theorem.

Algorithms 1, 2 and 3 constitute an O(n log m) time algorithm by Lean-
gauer and Tarjan [LT79] for the computation of a weak dominator tree. The
presentation of the algorithm is due to Appel [App98].

4.3.2 Independence analysis of fragments

The fragment flow analysis presented above partitions a metabolic network
to equivalence classes of fragments that have identical isotopomer distribu-
tions, regardless of the steady state flux distribution of the network. With
further analysis it is also possible to know if the isotopomer distribution
D(Mi|E ∪Mi|F ) of the union of the two fragments Mi|E and Mi|F that
do not share carbons depends only from D(Mi|E) and D(Mi|F ) but not
from the fluxes. This is the case if

1. Mi|E and Mi|F are dominated by some fragments of the metabolic
network and

2. the carbons of E have been disconnected from the carbons of F , that
is, carbons of E reside in different metabolite than carbons of F , in
some stage of all pathways producing M from their dominators.

(This is another example of ”similar history” of fragments E and F in
metabolic network. See Section 4.3.) If, however, carbons of E and F
have stayed intact in some, but not all pathways from dominators of E and
F , D(M |E ∪M |F ) can depend on the relative fluxes through competing
pathways (cf. Figure 2.3 and the end of Section 2.3).

We say that fragment M |F is intact in pathway P if carbons of F are
in each step of P mapped to the same metabolite, i.e. the carbons stay
together. If M is not a substrate of P, M |F is intact in P if and only if
a substrate fragment M ′|H of P is intact in pathway P ′ ∈ P from M ′ to
M , P ′ maps H to F , and M |F is intact the rest of the pathway P. In
the proof of the following theorem, the concept of fragment is used loosely
to aid readability. When we say that carbon e of fragment E resides in a
different metabolite than carbons of F in pathway Pl, we mean that e is
mapped to E by Pl and that e belongs to a metabolite in Pl that does not
contain carbons that are mapped to F by Pl.

Theorem 1. Let Mi|E and Mi|F , E∩F = ∅, be fragments in the metabolic
network G and let Mp|H and Mq|J be some dominators of Mi|E and Mi|F ,
respectively. If there does not exist a pathway Pk producing Mi|E ∪ F
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Algorithm 1 An algorithm for computing a weak dominator tree [App98].
Input: flow graph F(G) and its root ∆
Output: dominator tree T of F(G)

function Dominators(F(G),∆)
N ← 0
for n← 0 to |V (F(G)| − 1 do

bucket[n]← {}
dfnum[n]← semi[n]← ancestor[n]← idom[n]← null
samedom[n]← null

end for
DepthFirstNumber(null,∆)
for i← N − 1 downto 1 do

n← vertex[i]; p← parent[n]; s← p
for each predecessor v of n do . compute semidominators

if dfnum[v] ≤ dfnum[n] then
s′ ← v

else
s′ ← semi[ancestorWithLowestSemi]

end if
if dfnum[s′] < dfnum[s] then

s← s′

end if
end for
semi[n]← s
bucket[s]← bucket[s] ∪ n
Link(p, n)
for each v ∈ bucket[p] do

y ← AncestorWithLowestSemi(v)
if semi[y] = semi[v] then . first clause of 4.1

idom[v]← p
else

samedom[v]← y
end if

end for
bucket[p]← {}

end for
for i← 1 to N − 1 do

n← vertex[i]
if samedom[n] 6= null then . second clause of 4.1

idom[n]← idom[samedom[n]]
end if

end for
return idom

end function
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Algorithm 2 An algorithm for computing depth-first numbering to nodes
of F(G).
Input: root ∆ of flow graph F(G)
Output: depth-first numbering of F(G)

function DepthFirstNumber(p, n)
if dfnum[n] = 0 then

dfnum[n]← N ; vertex[N ]← n; parent[n]← p
N ← N + 1
for each successor w of n do

DepthFirstNumber(n, w)
end for

end if
end function

Algorithm 3 Algorithms for finding an ancestor of node v in a spanning
tree, represented by an array ancestor, that has the semidominator with
lowest depth-first number and for maintaining the spanning tree.

function AncestorWithLowestSemi(v)
a← ancestor[v]
if ancestor[a] 6= null then

b← AncestorWithLowestSemi(a)
ancestor[v]← ancestor[a]
if dfnum[semi[b]] < dfnum[semi[best[v]]] then

best[v]← b
end if

end if
return best[v]

end function
function Link(p, n)

ancestor[n]← p
best[n]← n

end function
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from the external substrates such that carbon pair (a, b), where a ∈ E and
b ∈ F , stays intact in a subpathway of Pk from Mp or Mq to Mi, then
D(E ∪ F ) = D(E)⊗D(F ).

Proof. By the definition of domination, all pathways producing Mi from
the external substrates of G produce Mi|E from Mp|H and Mi|F from
Mq|J . Furthermore, in all pathways Pl from the external substrates to Mi,
H (resp. J) is transported intact to E (F ) and the joint carbon mappings
between H and E (J and F ) are the same. We assume that in some
stage including and after Mp or Mq of all pathways Pl, every carbon of E
resides in the different metabolite than all carbons of F . In Mi, however,
E and F reside in the same metabolite. Thus, for every Pl, there exists a
reaction ρl that combines E and F to fragment E ∪ F of metabolite My

such that E ∪ F travels intact to Mi. Thus, D(E ∪ F ) = D(E) ⊗ D(F )
for Mi molecules produced by Pl (Assumption 5 in Section 3.1). Because
D(E ∪ F ) = D(E)⊗D(F ) holds for molecular fragments E ∪ F produced
by every pathway Pl, it holds also for the total pool of Mi.

Theorem 1 gives us tools for more efficient propagation of isotopomer
data: it allows us to derive new constraints to fragment Mi|E ∪Mi|F , if
some constraints to D(E) and D(F ) are known. Let Mp|H and Mq|J be
dominators of Mi|E and Mi|F that dominate all other dominators Mi|E
and Mi|F . The applicability of Theorem 1 can be checked with a relatively
simple algorithm: First we construct a graph Gp that has a labelled node
corresponding each carbon pair (a, b) of every metabolite and its inflow
subpools. If there exists a reaction in the metabolic network where carbons
a and b of metabolite Mj are mapped to carbons a′ and b′ of metabolite Mk

a directed edge (a, b)→ (a′, b′) is inserted to G. Now, if there exists a path in
G from Mp or Mq to node (a, b) in Gp, the label L(a, b) equals ”connected”.
Otherwise L(a, b) equals ”disconnected”. Then, D(F ∪F ′) = D(F )⊗D(F ′)
if there does not exist a carbon pair (a, b), a ∈ F∧b ∈ F ′, whose state equals
”connected”.

4.4 Structural identifiability analysis

The (structural) identifiability analysis of a metabolic network tries to find
out how much information about the fluxes can be obtained from the avail-
able measurements, in the best case. The goal of the analysis is to study
whether the measurements have potential to reveal the fluxes of interest.
If not, it is not worthwhile to conduct wet lab experiments. Identifiabil-
ity analysis is related to the experiment planning of the next section: one



52 4 A direct framework for 13C metabolic flux analysis

should plan such experiments so that maximal flux information is poten-
tially obtainable with reasonable measurement cost.

For optimization approach of 13C metabolic flux analysis, techniques for
identifiability analysis are given in [vWHVG01] and [IW03]. In the context
of direct 13C metabolic flux analysis also identifiability analysis can be
tackled with the help of equivalence classes. The flux distribution can be
fully solved with direct methods only if the linear equation system Av = e
containing mass balances (2.1) and generalized isotopomer balances (3.7)
contain as many linearly independent constraints as there are fluxes in the
model. In other words, coefficient matrix A has to be of full rank. If we have
n fluxes and the rank of the stoichiometric matrix containing (2.1)’s equals
k, we need at least (n−k) more constraints from isotopomer measurements
to obtain rank(A) = n.

In the next subsection we derive upper bounds to the number of inde-
pendent flux constraints (3.7) written for each junction Mi by analyzing
the equivalence classes. If the total sum of these constraints in the network
is less than (n− k), we know that all fluxes cannot be solved with the help
of isotopomer data alone (cf. [vWHVG01]). The same upper bounds for
independent flux constraints are also useful in the stability analysis of an
equation system constraining the fluxes (see Section 4.7.4).

4.4.1 Upper bounds to flux information of generalized iso-
topomer balance equations*

Let Mi be a junction metabolite produced by k reactions.

Observation 1 ([vWHVG01]). Isotopomer balances (3.7) for Mi contain
at most (k−1) constraints that are independent from the mass balance (2.1)
of Mi. These constraints can give new information only about the relative
fluxes of reactions producing Mi, not about the relative fluxes of reactions
consuming Mi.

Proof. From the construction of balance equations (2.1) and (3.7) we see
that in the coefficient matrix Ai of the linear equation system containing
the balance equations (2.1) and (3.7) for Mi, columns corresponding to
the reactions consuming Mi are linearly dependent from the columns cor-
responding reactions producing Mi. Thus, balances (2.1) and (3.7) can
together contain at most k linearly independent constraints to Mi and,
compared to the mass balance (2.1), isotopomer balances (3.7) can give
new independent constraints only to the fluxes of the reactions producing
Mi.
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Observation 2 ([vWHVG01]). Isotopomer balances (3.7) for Mi con-
tain at most 2|Mi| − 1 constraints that are independent from the mass bal-
ance (2.1) of Mi.

Proof. There exists 2|Mi| components in the isotopomer distribution of Mi.
As the sum of abundances of all isotopomers is equal to 1, the mass bal-
ance (2.1) and 2|Mi| − 1 linearly independent isotopomer balances fix the
value of the remaining isotopomer balance.

Observation (1) can be generalized by taking into account the partition
of metabolite fragments to equivalence classes. Let PF be a partition of
subpools Mij |F of fragment Mi|F to subsets such that Mij |F and Mik|F
belong to the same subset if and only if Mij |F and Mik|F are equivalent.
Let |PF | denote the number of subsets in PF .

Observation 3. Isotopomer balances (3.7) based on isotopomer constraints
known for subpools of F ′ ⊆ F contain at most |PF | − 1 constraints to the
fluxes producing Mi that are independent from the mass balance (2.1).

Proof. If Mij |F and Mik|F belong to the same equivalence class, coefficients
dijh and dikh of (3.7) are always identical. Thus, in the coefficient matrix
Ai of the linear system containing the balance equations (2.1) and (3.7)
for Mi, the column corresponding to reaction ρj is linearly dependent from
the column corresponding to reaction ρk. From this and Observation 1 the
result follows.

Corollary 1. If (mixed pool) Mi|F is dominated by some fragment, iso-
topomer balances (3.7) of Mi|F reduce to mass balance (2.1) of Mi.

Observation 2 can also be generalized by taking the equivalence classes
into account. If M |F has a dominator fragment and no E ⊇ F has a dom-
inator fragment, we say that F is a maximal dominated fragment. Let Di

contain all maximal dominated fragments of Mi (here also maximal frag-
ments obtained from the independence analysis (Section 4.3.2) are consid-
ered as maximal dominated fragments but their subfragments are not). For
each fragment Mi|Fl ∈ Di, let Cl denote a binary matrix of size 2|Fl|×2|Mi|.
Each row of Cl corresponds to a component in the isotopomer distribution
of Fl and column to a component in the isotopomer distribution of Mi.
Cl(m,n) = 1 if and only if Mi(n) belongs to Fl(m). Let matrix C be con-
structed by vertically concatenating matrices Cl . Let C denote a subspace
of IM i spanned by C.
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Theorem 2. Isotopomer balances (3.7) for Mi contain at most

2|Mi| −
∑

Fl∈Di

2|Fl| − 1

constraints to the fluxes producing Mi that are independent from the mass
balance (2.1) of Mi.

Proof. From Corollary 1 we know that the projection of the isotopomer
constraints of subpools Mij to subspace Cl, spanned by any Cl, does not
contain any flux information additional to the mass balance (2.1) of Mi.
Then, also the projection of the isotopomer constraints of subpools Mij to
subspace C can not contain any flux information additional to (2.1). This
is because the projection is a linear combination of isotopomer constraints
projected to subspaces Cl ( maximal dominated fragments Fl do not share
carbons). Thus, only the projection of isotopomer information of Mij ’s to
the orthogonal complement C⊥ of C can contain flux information. The rank
of C⊥ equals 2|M | − rank(C).

As fragments Fl do not share carbons, rows of matrices Cl are all linearly
independent. Thus rank(C) =

∑
Fl∈Di

2|Fl|.

4.5 Planning carbon labelling experiments

As stated in Section 3.2 it is very nontrivial to measure isotopomer distri-
butions of intermediate metabolites with current technologies. In (tandem)
mass spectrometer, it is necessary to separate metabolites in the cell ex-
tract. Also, for each metabolite or metabolite group a specific experimental
protocol has to be developed. In NMR, spectral overlap, large differences in
concentration and available spectral edition techniques make the labelling
information of some metabolites more accessible than others. Furthermore,
the labelling of external substrates has a great effect on the flux information
that is obtained from the isotopomer measurements.

Thus it is worthwhile to carefully plan the isotopomer tracer experi-
ments before conducting them. The planning has two general questions
to answer: 1) What is the optimal labelling of external substrates for flux
estimation? 2) Which metabolites of the network are the most important
to measure, that is, which metabolites carry the most flux information in
their isotopomer distribution. Question 1) is studied in the context of op-
timization approach for 13C metabolic flux analysis in [MWKdG99] and
in [ABS03].

Answers to the question 2) help us to select small subsets of metabo-
lites to measure that give us enough information to solve the fluxes of the
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network and thus reduce the experimental effort needed. In [AKS06], this
question is touched in the context of optimization approach by studying
which measurements contribute significantly to the variance of the esti-
mated fluxes. Publication III concentrates on this question in the context
of a direct approach for 13C metabolic flux analysis. In Publication III we
model the situation at the beginning of the process of the development of
measurement technologies. In that stage we do not yet know, what kind of
constraints are in practice measurable for each metabolite in the network
but want to concentrate the development of measurement technologies on
the most promising metabolites. In this situation we need to make some
assumptions about the quality of the measurement data eventually avail-
able. In Publication III we assume that either positional enrichments, that
is, the labelling degrees of (some) carbons of (some) metabolites in the net-
work or the full isotopomer distributions are in principle measurable. With
these assumptions we can model the problem of selecting a minimal set of
informational metabolites to measure as a set cover problem [ACK+99]. As
shown in Section (4.7.1), isotopomer constraints can be propagated from
one fragment to another inside the same equivalence class. Thus to obtain
as many (3.7)’s as the measurement of every metabolite in the network
would allow, every carbon ck in each junction metabolite and in their in-
flow subpools has to be ”covered” with at least one measurement from the
equivalence class of ck. In other words, at least one fragment from each
equivalence class containing junction fragments has to be measured.

4.6 Cultivations, measurements and preprocess-
ing of measurement data

If the identifiability analysis shows that it is possible to obtain the required
flux information, cultivations are carried out with the planned labelling of
input substrates. Then samples are collected and prepared for NMR and
mass spectrometry measurements. NMR and mass spectrometry do not di-
rectly output constraints to the isotopomer distribution of the carbon chain
of a measured metabolite, as required by (3.7). Thus the raw measurement
data has to be preprocessed before it can be utilized in 13C metabolic flux
analysis. For NMR, computational tools for obtaining isotopomer con-
straints from raw spectra are introduced in [WMWdG96],[SGH+99] and
[vWSVH01]. Preprocessing of MS-MS data for 13C metabolic flux analysis
is discussed more thoroughly in the next chapter.
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4.7 Metabolic flux estimation

After the raw measurement data is converted to linear constraints to the iso-
topomer distributions of metabolites in the network, we are finally ready to
estimate the flux distribution of a metabolic network. In our direct method
for 13C metabolic flux analysis the flux estimation algorithm divides into
three main steps:

1. propagation of the measurement data,

2. construction of the linear equation system constraining the fluxes and

3. solving the equation system and analyzing the sensitivity of the result.

4.7.1 Propagation of measurement data

The aim of the propagation of measurement data is to infer from the
isotopomer constraints of measured metabolites as many isotopomer con-
straints as possible to unmeasured metabolites. As a rule of thumb, more
constraints the unmeasured metabolites will get, more generalized iso-
topomer balance equations (3.7) bounding the fluxes can be written. By
definition, fragment equivalence classes can be utilized in the measurement
propagation. From isotopomer constraints known for fragment Mi|F iso-
topomer constraints for other fragments Ml|Fk in the equivalence class of F
can be computed by applying joint isotopomer mappings defined by path-
ways between F and Fk.The equivalence classes can contain fragments from
the opposite sides of a junction metabolite and thus facilitate the propa-
gation of isotopomer information also through junction metabolites (see
Figure 4.3 and Section 5 of Publication II). Thus the measurement propa-
gation with the help of equivalence classes improves the basic propagation
method given in Publication I.

Before measurements can be propagated from fragment M |F of mea-
sured metabolite M to other fragments in the equivalence class of F , we
need to infer isotopomer constraints to F from the constraints measured
to the whole metabolite M . In this projection of measurements from M
to M |F we want to avoid any unnecessary loss of measurement informa-
tion, that is, we want to obtain as many linearly independent constraints
to the isotopomer distribution of F as possible. For example, if we have
measured that a two-carbon metabolite M has the isotopomer distribu-
tion PM (00) = 0.2, PM (01) = 0.3, PM (10) = 0.4, PM (11) = 0.1 and require
isotopomer constraints for fragment M |F consisting of the first carbon of
M , we should obtain PF (0) = PM (0∗) = PM (00) + PM (01) = 0.5 and
PF (1) = PM (1∗) = PM (10) + PM (11) = 0.5.
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For the general model of isotopomer measurements (2.8) the projection
of measurement information from a metabolite to its fragments can be
done by the techniques of linear algebra introduced in Publication I. These
techniques are recapitulated in the next subsection.

Projecting measurements to fragments

Let Si denote a matrix with 2|Mi| columns, one column for each isotopomer
b of Mi. Each row h of Si corresponds to a measured isotopomer constraint
(2.8) such that Si(h, b) = sb,i,h. Now the rows of Si span subspace Si ⊆ IM i

where the measurement data for Mi lie (See Section 3 of Publication I).
On the other hand, let Uk denote a matrix with also a column for each
isotopomer Mi(b) and a row for each isotopomer Fk(b′) of Mi|Fk, that is,

Uk(b′, b) =

{
1 if bj = b′j for all carbon positions j ∈ Fk

0 otherwise.

(4.2)
Now the rows of Uk span another subspace Uk ⊆ IM i where isotopomer

constraints for Fk have to lie. To obtain isotopomer constraints for fragment
Mi|Fk from a measurement SiD(Mi) = di, we need to compute the vector
space intersection Yi,k = Si ∩ Uk and project the measurement to Yi,k.
This can be done by applying the techniques of linear algebra described in
more detail in Section 3.1 of Publication I and Section 3.2, A.1 and A.2 of
[RRU02].

Let Yi,k be a matrix with row space Yi,k. As soon as we know isotopomer
constraints

Yi,kD(Mi|Fk) = dfk

to fragment Fk of a measured metabolite Mi, we can easily propagate the
projected measurement to other fragments Mj |Fl in the equivalence class
of Fk: we only need to compute a (composite) isotopomer mapping matrix
IMMk,l from Fk to Fl by successively applying isotopomer mapping matrices
in some pathway between Fk and Fl and then multiplying Yi,k by IMMk,l

to obtain Yj,l such that Yj,lD(Mj |Fl) = dfk
.

After the propagation of measurement data inside the fragment equiv-
alence classes, new isotopomer constraint for unions of some fragments of
the same metabolite can be derived, as described in Section 4.3.2.

4.7.2 Construction of generalized isotopomer balances

In the second step of our metabolic flux estimation algorithm a linear equa-
tion system containing flux constraints obtained from mass balances (2.1)
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and generalized isotopomer balances (3.7) is constructed. After the propa-
gation step of Section 4.7.1 we have some isotopomer constraints
SijD(Mij) = dij for each subpool j of every junction metabolite Mi. (For
non-junction metabolites, isotopomer balance equations do not contain any
additional flux information compared to the mass balances. See Observa-
tion 1.) In the best case we know complete isotopomer distribution D(Mij),
in the worst case we have only trivial constraints stating that the sum of
relative abundances of all isotopomers equals one. However, the isotopomer
constraints of different subpools do not yet conform to (3.7) as the matrices
Sij are not necessarily the same. Thus we still need to compute a common
subspace Yi =

⋂
j Sij (Sij is spanned by the rows of Sij) of the isotopomer

constraints known for each subpool Mij and project subpool constraints
SijD(Mij) = dij to Yi (see Section 3.3 of Publication I). This can be done
with the same techniques that were applied to project measured isotopomer
information of a metabolite to its fragments in Section 4.7.1. Let Yi be
a matrix with row space Yi. After the projection we obtain isotopomer
constraints YiD(Mij) = zij for each subpool Mij . Now the isotopomer
constraints of all the subpools lie in the same subspace of IM i and we are
ready to write the system of generalized isotopomer balance equations (3.7)
for every junction Mi :

n∑
j=1

αijvjzij = βizi0, (4.3)

that is (cf. Equation (8) of Publication I),

AiV =

α1i(z1i)1 · · · αni(zni)1
...

. . .
...

α1i(z1i)r · · · αni(zni)r

 ·
v1

...
vn

 = gi, (4.4)

where gi = βizi0. (As a trivial isotopomer constraint stating that iso-
topomer abundances sum to 1 is contained in generalized balance equation,
we do not need to explicitly add mass balance (2.1) to (4.4) of a junction.)

When (4.4)’s of all junction metabolites are combined with the mass
balances (2.1) of non-junctions, we obtain a linear equation system

Av =

A1
...

Am

 ·
v1

...
vn

 =

g1
...

gm

 = g (4.5)

constraining the fluxes v of the network that contains a block (junctions)
or a row (non-junctions) Ak for each metabolite Mk.
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4.7.3 Solving the system

If (4.5) is of full rank, the fluxes can be (in principle) solved with stan-
dard linear algebra [Sch89] (See also 4.7.4). If the system is of less than
full rank, a single flux distribution can not be pinpointed. Instead, (4.5)
defines the space of feasible flux distributions, that are all equally good
solutions. In that case we can apply techniques developed for the analysis
of stoichiometric matrices to determine as many fluxes as possible [KS02]
from (4.5). More generally, by linear programming we can obtain maximum
(resp. minimum) values for each flux vi:

For each vi :
max vi

s.t. Av = g (4.6)

vmin
i ≤ vi ≤ vmax

i ∀vi ∈ v,

where vmin
i and vmax

i are predetermined minimum and maximum allowable
values for vi By altering vmin

i ’s and vmax
i ’s it is possible to see how different

hypotheses about the value of an unconstrained flux vi affect to the feasible
values of the other fluxes.

Furthermore, it is possible to search for an optimal flux distribution
from the feasible space defined by (4.5) by solving a linear program anal-
ogous to (2.3). In that case isotopomer data constrain the feasible space
more than the stoichiometric information would alone do, thus possibly
allowing more accurate estimations of the real flux distribution.

4.7.4 Stability analysis

When equation systems based on the measurement data are solved, some
estimates on the effect of measurement errors to the result are required.
In this subsection we first show how to decrease the effect of measurement
errors by regularization techniques based on the singular values and con-
dition numbers of the coefficient matrices defining the systems. Then we
sketch a conceptually simple Monte Carlo method to assess the sensitivity
of estimated fluxes to measurement errors.

Regularization

In (4.5) coefficients of A originate from isotopomer measurements and com-
ponents of g from measured external flows of metabolites. Thus both A and
g inevitably contain measurement errors. The errors in isotopomer mea-
surements may make linearly dependent constraints only ”almost linearly
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dependent” and transform an underdetermined A to fully (or less under-)
determined, nearly singular matrix.

Unfortunately, if a linear system is nearly singular, small perturbations
on data can affect greatly to the solution of the system. Furthermore, due
to measurement errors the solution produced by numerical computations
can be far from the correct one if the system is solved with standard meth-
ods [Mol04]. Thus we need to regularize (4.5) before solving it.

The need for regularization can be illustrated with a small example con-
sisting of four reactions and metabolites shown in Figure 4.5. Let D(M1) =

Figure 4.5: An example network.

D(M41) = [0.3, 0.2, 0.4, 0.1], D(M2) = D(M42) = [0.2, 0.1, 0.5, 0.2] D(M3) =
D(M43) = [0.1, 0.5, 0.1, 0.3] and let the flux v1 = v2 = 1, v3 = 2 and v4 = 4.
Now D(M4) = [0.175, 0.325, 0.275, 0.225]. Let us assume that we are able to
measure the mass isotopomer distributions of metabolites, as well as flux v4.
The isotopomer measurements should give D(M1)m = [0.300, 0.600, 0.100],
D(M2)m = [0.200, 0.600, 0.200], D(M3)m = [0.100, 0.600, 0.300] and
D(M4)m = [0.175, 0.600, 0.225]. Now (4.4) can be written as

A∗v =


0.300 0.200 0.100 −0.175
0.600 0.600 0.600 −0.600
0.100 0.200 0.300 −0.225

1 1 1 −1
0 0 0 1




v1

v2

v3

v4

 =


0
0
0
0
4

 , (4.7)

where the first three constraints originate from isotopomer measurements
and the fourth states the mass balance (2.1). The rank of A equals 3, thus
(4.7) is underdetermined. Let us assume that the measurements introduce



4.7 Metabolic flux estimation 61

small errors to mass isotopomer distributions. So instead of (4.7) we obtain

Av =


0.310 0.190 0.09 −0.177
0.580 0.610 0.605 −0.595
0.110 0.200 0.295 −0.228

1 1 1 −1
0 0 0 1




v1

v2

v3

v4

 =


0
0
0
0
4

 , (4.8)

Now the rank of A equals 4 and (4.8) seems to be fully determined (and
inconsistent). When (4.8) is solved numerically in Matlab 6.5 environment,
a result v1 = 1.8, v2 = −0.67, v3 = 2.82, v4 = 3.99 is obtained. The
residual of the given result is small, but still the result is not the correct
flux distribution.

There exists many methods regularize a linear equation system [Neu98].
One of the conceptually simplest of these methods is singular value trun-
cation. In short, by analyzing the singular values of coefficient matrices
Ai of (4.4) it is possible to detect the situations where the rank of Ai is
higher than it should be due to almost dependent constraints caused by
measurement noise. These almost dependent constraints can then be re-
moved from (4.4). The removal decreases the rank of Ai but makes (4.4)
more tolerant to measurement noise. In the next subsection the technique
of singular value truncation is described in more detail.

Singular value truncation*

The singular value decomposition of matrix A ∈ Rm,n, m ≥ n, is of the
form

A = UΣW T =
n∑

i=1

uiσiwT
i , (4.9)

where U and W are orthonormal matrices, UUT = WW T = In and
where Σ is a diagonal matrix with diagonal elements (σ1, . . . , σn) such that
σ1 ≥ σ2 ≥ . . . σn ≥ 0. The numbers σi are the singular values of A. The
columns ui|σi > 0 of U span the range of A while the columns wi|σi = 0
span the null space of A [PTV92]. Thus the rank of A is equal to the
number of non-zero singular values of A. The condition number κ of A is
defined as

κ(A) = σ1/σn. (4.10)

Large but finite κ(A) indicates that A is ill-conditioned: there exists
columns of A that are nearly linearly dependent and Ax = b is essentially
underdetermined, but due to measurement errors etc. it looks like fully
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determined. When the equation system is solved without taking care of
ill-conditioness, the nearly dependent constraints pull the solution towards
the infinity in the direction almost identical to some vector from the null
space of A [PTV92].

The idea of singular value truncation is to transform an equation sys-
tem Ax = b containing an ill-conditioned matrix A to another system
A′x = b such that the new system does not contain nearly dependent con-
straints. The goal is that the rank of A′ represent the ”true rank” of A,
when measurement errors are discarded. The closest approximation A′

k of
A, rank(A′) = k in least squares sense can be obtained by taking the singu-
lar value decomposition A = UΣW T , zeroing singular values σk+1, . . . , σn

of Σ and then multiplying back A′
k = UΣW T . Furthermore, least squares

estimate x∗ for A′x = b′ can be directly computed from singular value
decomposition by zeroing the small singular values and noting that

x∗ = W [diag(1/σi)]UT b, (4.11)

where [diag(1/σi)] denotes a diagonal matrix with diagonal values 1/σi. If
σi = 0, the corresponding diagonal element is set to zero.

Singular value truncation by zeroing the small singular values can also
be used to regularize matrices with fewer constraints than unknowns. How-
ever, an open question remains: how to decide what is a cut-off for ”too
small” singular values. Unfortunately, no simple answer to this instance
of noise versus signal question exists. As a general rule of thumb we can
try to find a large gap between successive singular values and decide that
the gap defines the threshold. For example, the singular values of (4.8)
are [2.46, 0.85, 0.20, 0.01]. The last singular value σ4 is considerably smaller
than the others, suggesting that the corresponding vector u4 ∈ U represents
noise and σ4 should be zeroed. There also exists more general methods,
such as the computation of L-curves [HO93], to find a good cut-off thresh-
old.

Interestingly, Observations 1, 2 and 3 and Theorem 2 immediately give
more domain specific upper bounds to the rank of (4.4) and thus act as safe
cut-off thresholds. For example, in (4.8) junction metabolite M4 was pro-
duced by three reactions. Thus according to Observation (1), rank(A) ≤ 3
in (4.8).

The singular value truncation technique introduced above to regularize
(4.4) constraining the fluxes of a junction can also be applied to regularize
(4.5) that constraints the complete flux distribution.
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Sensitivity analysis

For experimentalist, it is very important to know how sensitive the obtained
estimation of fluxes is to measurement errors. In the previous section we
showed how to decrease the sensitivity by regularization, in this section
we give techniques for sensitivity analysis that can be applied after reg-
ularization. In the non-linear optimization framework for 13C metabolic
flux analysis, mathematically involved methods to obtain local linearized
estimations for the covariance matrix, standard deviations and confidence
intervals of the estimated fluxes [ABS03, DBS01, WSdGM97] or nonlinear
heuristics [AKS06] to obtain more accurate estimates on the confidence in-
tervals have been developed. As our direct method for 13C metabolic flux
analysis is computationally relatively efficient, we can afford to a simple,
yet powerful Monte Carlo procedure to obtain estimates on the variability
of individual fluxes:

1. For each measured metabolite Mi: By studying the variability in
the repeated measurements, fix the distribution Ωi from which the
measurements of Mi are sampled.

2. Repeat k times:

(a) For each measured metabolite Mi: sample a measurement from
Ωi.

(b) Estimate fluxes vl from the sampled measurements.

3. Compute appropriate statistics from the set V = {v1, . . . ,vk} to
describe the sensitivity of fluxes to measurement errors.

Possible statistics that can be applied in the last step of the above algo-
rithm include standard deviation, empirical confidence intervals [AKS06],
kurtosis, standard error etc. of each individual flux vj and measures of
”compactness” of V , such as (normalized) average distance of items of V
from the sample average.

4.8 Experiments

In this section we present the initial results of a proof-of-concept demon-
stration where the direct method of 13C metabolic flux analysis introduced
above was applied to estimate the fluxes of the central metabolism of Sac-
charomyces cerevisiae. The goal of this demonstration is to show the prac-
tical feasibility of the method.
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compound # of observed carbons
alanine 2
arginine 1
aspartate 2
glutamate 3
glycine 1
histidine 3
isoleucine 5
leucine 5
lysine 5
methionine 1
phenylalanine 2
proline 4
serine 2
threonine 3
tyrosine 3
valine 4

Table 4.1: Detected amino acids and the number of observed carbons in
2D[13C ,1H] COSY spectrum for each measured amino acid .

Isotopomer data for the demonstration originated from an experiment
where S. cerevisiae was grown in a glucose-limited continuous cultivation
on minimal medium [VSvD92]. After reaching the steady state, controlled
by constant physiological parameters, 10% of the carbon source glucose was
replaced by fully labelled glucose for approximately 1.5 residence times, so
that about 78% of the biomass was labelled. 2D[13C ,1H] COSY spectra of
the hydrolyzed biomass sample were acquired with Varian Inova 600 MHz
NMR spectrometer. The software FCAL v.2.3.0 [SGH+99] was used to
compute constraints (2.5) to the isotopomer distributions of 16 amino acids
from the spectra. Table 4.1 lists the detected amino acids. For each amino
acid, a number of carbons observed with NMR is also listed (cf. Section 2.4).
In the computational analysis we used a slightly modified model of the cen-
tral carbon metabolism of S. cerevisiae from [BKS05] (See Figure 4.6).
Simplified pathways producing amino acids were taken from [MFC+01].
The model was constructed with ReMatch (Section 4.2), the carbon map-
pings of the reactions were provided by the ARM project [ARM]. Bidi-
rectional reactions were modelled as two separate reactions. For technical
reasons, each amino acid was represented by two metabolite nodes, inter-
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nal and external. Cofactor metabolites that do not exchange carbons with
primary metabolites and carbon dioxide were excluded from the model.
The relative abundances of proteinogenic amino acids and the precursor
requirements for the yeast biomass synthesis were obtained from the lit-
erature [GMdSCN01, LH01, Our72]. This data was used as an additional
constraint to the stoichiometry. Furthermore, the measured consumption
of glucose and the production of ethanol were used to further constrain
the stoichiometry. After the addition of these constraints, the rank of the
stoichiometric matrix of the model was 86. In total, the model contained
104 reactions and 86 metabolites in three cellular compartments (cytosol,
mitochondria, external). Thus, there remained (104 − 86 = 18) degrees of
freedom in the equation system defined by the augmented stoichiometric
matrix.

In the fragment flow analysis of the metabolic network, an extra ”la-
belling node” modelling the equal labelling degree of every carbon of ex-
ternal substrate glucose was inserted to the fragment flow graph between
start node ∆ and every carbon of glucose, as sketched in Section 5 of Pub-
lication II. The fragment flow analysis revealed four completely dominated
junction metabolites. From these completely dominated junction metabo-
lites, acetaldehyde and acetate reside in the same unbranched pathway
from pyruvate to acetyl-CoA, in cytosol. Acetaldehyde and acetate are
junctions only because of the bidirectionality of the reactions that consume
the metabolites in the pathway. For these reactions, it is impossible to
estimate separate forward and backward fluxes. We removed these back-
ward reactions from the model and treated the fluxes of remaining forward
reactions as net fluxes through the metabolites. Thus, there remained
102 fluxes in the model. When constructing the equation system (4.5),
the coefficient matrices of equation systems (4.4) constraining the fluxes
of the same junction were regularized by applying upper bounds to flux
information (Section 4.4.1) as described in Section 4.7.4. Furthermore, the
singular values of the coefficient matrices of (4.4)’s, (4.5) and the matrices
representing the basis of a common isotopomer subspace Yi known for the
isotopomer constraints of the each subpool of Mi (Section 4.7.2) that were
smaller than a predetermined cut-off threshold were truncated. Figure 4.7
depicts the rank of (4.5) with different cut-off thresholds for small singular
values.

We also compared the fluxes estimated by our method with the flux
ratios computed by METAFoR analysis techniques [MFC+01, Szy95] from
the data produced by FCAL. For example, the ratio of the fluxes producing
serine either from glycine or glyceraldehyde 3-P was 0.36 : 0.64, according
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Figure 4.6: The model of the central carbon metabolism of S. cerevisiae
used in the experiments. To reduce cluttering, external metabolites are
excluded from the figure.
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Figure 4.7: The rank of the coefficient matrix of linear equation system
(4.5) constraining the fluxes (y-axis) when different cut-off values for small
singular values (x-axis) were applied.

to METAFoR analysis techniques. According to our method, the same flux
ratio was 0.35 : 0.65.
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Chapter 5

Preprocessing MS-MS data

In this chapter we introduce computational methods to preprocess MS-
MS data to a form suitable for 13C metabolic flux analysis framework of
Chapter 4. The methods are described in detail in Publication IV and
Publication V. A reader is assumed to be familiar with the basic concepts
of MS-MS introduced in Section 2.4.

Before isotopomer distributions of metabolites are measured with MS-
MS, the molecules of different metabolites are separated. In the following
we assume that a sample subjected to MS-MS contains only molecules of a
single metaboliteM (note thatM refers to the whole metabolite, not only
to its carbon locations M). We also assume that low level analysis of MS-
MS data, such as peak detection [KO05], is already carried out. Thus MS-
MS produces spectra whose peaks correspond to the relative abundances
of different mass isotopomers of M and its different fragments M|F i that
were cleaved from M during the fragmentation phase (see Section 2.4).
However, in the method of direct 13C metabolic flux analysis described in
Chapter 4 constraints (2.8) to the isotopomer distribution of the carbon
part of a metabolite are required.

The computation of constraints (2.8) to the isotopomer distribution
of carbon chain M of metabolite M from MS-MS spectra contains the
following steps:

1. Identification of fragmentsM|F i. This step consists of finding the el-
ement composition of eachM|F i and the mapping from the elements
ofM|F i to corresponding elements inM.

2. Computation of mass isotopomer distributions D(M)m and D(M |Fi)m

of carbon chains M and M |Fi from the spectra describing the mass
isotopomer distributions D(M)m and D(M|F i)

m. Here, the effect of

69
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naturally occurring heavy isotopes of other elements than carbon is
removed from M and D(M |Fi)m.

3. Based on D(M)m and D(M |Fi)m, forming and solving a linear equa-
tion system constraining the isotopomer distribution D(M) of carbon
chain M .

M|F

C

H

O
N

O

O

C

H H

H

C H

H

H
_

M

C

H

O
N

O

O

C

H H

H

C H

H

H

C

H

O
N

O

O

C

H H

H

C H

H

H

O

C

H

N

O

O

C

H H

H

C H

H

H

M|F M|F ∩ F

Figure 5.1: Different partitions of molecule M: fragment M|F (top left);
carbon part M of molecule M (top right); carbon part M |F of fragment
M|F (bottom left); non-carbon partM|F ∩ F of fragmentM|F (bottom
right).

In the next sections we describe computational methods for these steps.
(As shown in Publication V, steps 2) and 3) can be merged. Here the steps
are described separately for better readability.) Figure 5.1 illustrates the
different partitions of molecule M utilized during computation.

5.1 Identification of metabolite fragments

To obtain constraints D(M) from the mass isotopomer distributions
D(M|F i) of fragments M|F i produced by MS-MS, we first need to know
which elements of M belong to each M|F i. In other words, we have to
model the fragmentation ofM in MS-MS.

The fragmentation of a molecule is a complex and stochastic process
that can contain many intermediate steps. The accurate modeling of this
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process is very tedious [RHO00, SHS01] and is not done in practice when
fragments are identified in everyday laboratory work.

In [HRM+06] we propose an ab initio method for the identification
of MS-MS fragments, that is based on the combinatorial analysis of the
2D structures of molecules. Shortly, we model molecule M as a graph,
where nodes correspond to elements of M and edges the bonds between
the elements. Furthermore, we model fragments ofM produced in MS-MS
as connected subgraphs of M. By depth first traversal algorithm [RR00]
we first generate all possible candidate fragments of the molecule whose
masses correspond to the base masses of observed fragment peaks. Then
we rank the candidate fragments according to the energy in the bonds that
are cleaved when the fragment is produced from the molecule.

Figure 5.2: Two alternative fragments of mass 42 of serine.

Figure 5.2 depicts an example graph representing serine molecule
(C3H7NO3). Let us assume, that a peak with integer weight 42 is observed
in fragment spectrum of serine. There exists many ways of cleaving a
fragment with weight 42 from serine molecule, of which two are visible in
the figure. In candidate fragment a) (C2H4N) three bonds are cleaved. The
sum of the energies of cleaved bonds is 1096 J/mol and the strongest cleaved
bond is C−O bond of 360 kJ. In candidate fragment b) (C2H2O) also three
bonds are cleaved. However, the sum of the energies of cleaved bonds is
1396 J/mol and cleaved bonds contain a double bond of 743 J/mol between
carbon and oxygen. As we assume that strong double bonds are not likely
to break, we rank candidate fragment a) ahead of candidate fragment b).

Software implementing our ab initio method for MS-MS fragment identi-
fication is freely available at http://www.cs.helsinki.fi/group/sysfys/
software/fragid/index.html.
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5.2 Removing the effect of natural abundance of
heavy isotopes

After the identification of fragments produced by MS-MS, we are ready
to compute the isotopomer distribution D(M) of the carbon part M of
metabolite M, as shown in Publication IV and Publication V. As a first
step of the computation, the effect of naturally occurring heavy isotopes in
other elements than carbon (2H,18 O, etc.) is removed from the measured
mass isotopomer distributions of M and fragments M|F i. This can be
accomplished by a methodology introduced by Lee et al. [LBB91]. Let
M denote the non-carbon part of M (thus M = M ∪M). Then the mass
isotopomer distribution D(M)m of the carbon chain ofM can be computed
from the linear equation system, that contains an equation

PM(+l) =
∑

h+j=l

PM (+h)PM (+j) (5.1)

for each observed component (that is, peak in mass spectrum) l in D(M).
In (5.1), each component of D(M) is stated as a sum of abundances of every
possible combination of distributing l extra neutrons to carbon and non-
carbon parts of M. The abundances PM (+h) can be computed utilizing
tables of natural abundances of isotopes (See (1) and (2) of Publication
IV). Thus (5.1) is triangular and can be solved with standard techniques.

The above method can be applied also to correct mass isotopomer dis-
tributions of fragments produced by MS-MS in full scanning mode. With
daughter scanning, where only a selected mass isotopomers of M are fur-
ther fragmented, we have to be more careful. Let M|F ∩ F denote non-
carbon part of fragment F . Heavy mass isotopomers of M contain more
heavy natural isotopes than M molecules on the average do. Thus the
abundance of heavy isotopes in M|F ∩ F can not be directly computed
using tables of natural abundances. In Publication IV we show how to
compute the abundances of heavy natural isotopes in fragments produced
by daughter ion scanning mode. By applying Bayes rule, we compute for
each relevant k and l conditional probabilities PM|F∩F (+k|M(+l)) of the
occurrence of k extra neutrons in non-carbon part ofM|F , when only mass
isotopomers M(+l) are fragmented ((4) of Publication IV). These condi-
tional probabilities can then be used instead of natural abundances when
daughter ion spectra are corrected by the method of Lee et al. [LBB91]. In
Publication V we extend the method of Publication IV to handle also over-
lapping daughter ion spectra, as long as the base masses of the fragments
are different (see Section 3.3 of Publication V).
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5.3 Constraints to isotopomer distribution from
MS-MS data

Mass isotopomer distributions D(M)m and D(M |F )m of carbons chains of
moleculeM and its fragments F give constraints to isotopomer distribution
D(M) of carbon chain of M. From D(M)m and D(M |F )m of fragments
produced by full scanning, the constraints to D(M) can be stated easily.
For D(M)m,

PM (+k) =
∑

P
t bt=k

PM (b), (5.2)

that is, mass isotopomer M(+k) consists of those isotopomers of M that
has exactly k labels. Fragments M |F produced by full scanning can be
dealt with analogously [CN99]:

PM |F (+k) =
∑

P
t∈F bt=k

PM (b), (5.3)

that is, mass isotopomer M |F (+k) consists of those isotopomers of M that
have exactly k labels in carbons that belong to F .

With daughter ion scanning, situation is again more complicated. When
only mass isotopomers M(+l) are fragmented, the fragment spectrum of
M|F contains only those isotopomers of M whose mass do not exceed
M(+l). Furthermore, only a fraction of isotopomer M(b) belongs to the
mass isotopomerM(+l) and is thus fragmented. These fractions

ikjl =
PM (b|M(+l))

PM (b)
(5.4)

have to be included as coefficients to equations constraining D(M):

PM |F (+k|M(+l)) =
∑

P
t∈F bt≤l

ikjlPM (b). (5.5)

Fortunately, fractions (5.4) can be precomputed (see Equation (9) of Pub-
lication IV).

Finally, all constraints (5.2), (5.3) and (5.5) can be collected to the same
system and solved simultaneously to get (linear constraints to) D(M) in a
form compatible with(2.8).

In Publication V we rigorously formalize the computational steps re-
quired for removal of the effect of natural heavy isotopes and computa-
tion of constraints to isotopomer distribution of the carbon chain of a
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metabolite. We also merge these steps to the construction of a single lin-
ear equation system. Matlab software implementing the above method
for computing constraints to the isotopomer distribution of the carbon
chain of a molecule from MS-MS data is freely available at http://www.
cs.helsinki.fi/group/sysfys/software/pidc/index.html.



Chapter 6

Summary and conclusion

In this thesis we have described computational methods for 13C metabolic
flux analysis. The methods are based on the rigorous analysis of the com-
binatorics of 13C labelling systems and linear algebra. The methods can be
applied with all metabolic network topologies and labellings of input sub-
strates. The manipulation of isotopomer measurements as linear subspaces
facilitates the simultaneous use of measurement data produced by different
measurement techniques. On the other hand, partition of metabolic frag-
ments to equivalence classes with the help of the flow analysis techniques
facilitates automatic, safe and efficient propagation of measurement data
in the network thereby making it possible to constrain the fluxes more effi-
ciently. Equivalence classes also give insight to metabolic network models
with respect to 13C metabolic flux analysis. They reveal redundant mea-
surements and can explain why some fluxes cannot be identified, regardless
of the analysis techniques used. Thanks to the automatic measurement
propagation and generation of an equation system constraining the fluxes –
as well as the wide applicability of the methods with all network topologies,
substrate labellings and measurement techniques – the proposed method
can be immediately applied as a new model of metabolic network is con-
structed, without any need for manual inspection of the properties of the
network. Thus methods can be seen as generalizations and formalizations of
existing methods for direct 13C metabolic flux analysis that are tailored for
specific measurement technologies, substrate labellings or network topolo-
gies. The proposed methods are computationally efficient.
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6.1 Future work

The methods of 13C metabolic flux analysis – also those presented in this
thesis – are based on the assumptions given in Section 3.1. However, not
all of these assumptions are trouble-free [vWVH01]. Complete metabolic
networks of relative simple organisms such as Saccharomyces cerevisiae con-
tain hundreds of reactions [DHP04]. The reconstruction of these networks
is tedious, even if carbon atom mappings and reaction reversibility infor-
mation needed for 13C metabolic flux analysis is ignored. Furthermore,
when models are built for 13C metabolic flux analysis, a trade-off between
the completeness and identifiability is faced. On the one hand, a model
should contain all the reactions producing or consuming the metabolites
in the model, otherwise the balance equations are not valid. On the other
hand, if the model contains too many reactions, usually limited amount of
measurement data cannot identify the fluxes. Thus, the correctness and
the completeness of the model are not trivial objectives in 13C metabolic
flux analysis.

Because of the limited amount measurement data, further constraints
to the fluxes are often obtained by fixing the ratios of the fluxes produc-
ing the biomass to values found from an earlier literature or by assuming
that some reactions are unidirectional and that the isotopomer distribu-
tions of some metabolite pools are equivalent. These assumptions can be
problematic, especially if constraints originate from different experimental
conditions and different strains than used in the current experiments. Fur-
thermore, the assumption that metabolite molecules are fully mixed in the
compartments in the cell is problematic. In a mechanism called metabolic
channelling the products of a reaction are transferred to the next reaction
without (completely) mixing them to a common pool [KWC96, SO99]. The
metabolic channelling can lead to microcompartmentation, where reactions
in the same cellular compartment do not sample different isotopomers of
the same metabolite from the same distribution [vWVH01]. Microcom-
partmentation is not usually included in the models used in 13C metabolic
flux analysis.

In addition to the further development of computational methods rely-
ing on the common assumptions of 13C metabolic flux analysis, it might be
worthwhile to develop computational tools for testing these assumptions.
In this task, the fragment equivalence classes introduced in the thesis might
be helpful. By definition, isotopomer distributions of fragments in the same
equivalence class are equal. If competing models of the metabolic network
of an organism lead to different partitions of equivalence classes, it should
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be possible to come up with an experiment planning algorithm that sug-
gests substrate labellings and metabolites to measure in such a way that
only a fraction of the competing models can be consistent with the mea-
surements (cf. [ESR+06, ZPG+03]). This task, like most other tasks of
13C metabolic flux analysis, would greatly benefit from improvements in
measurement technology that would allow routine measurements of inter-
mediate metabolites [vWvDR+05].

A technical continuation to the contributions of the thesis would be the
generalization of the given notion of equivalence. Currently, the equivalence
relation between the fragments is derived from the dominance concept intro-
duced in Section 4.3. However, the weak dominance defined in Section 4.3.1
is also sufficient for preserving some constraints to the isotopomer distri-
bution. More specifically, if fragment F weakly dominates fragment E, it
is guaranteed that carbons of F are transported to E as an intact frag-
ment via all pathways, but the carbon mappings, that is, the orientation
of fragments might be different in different pathways. The intactness of
the fragment guarantees that labelling patterns of molecular fragments do
not change. Thus, if we computed all possible joint isotopomer mappings
between F and E, we would know which sums of isotopomer abundances
are necessarily the same in F and E. As a safe shortcut, we could prop-
agate mass isotopomer distributions between F and E: mass isotopomer
E(+k) contains all possible ways to distribute k labels to F , thus it also
contains all possible images of isotopomers belonging to F (+k), if F weakly
dominates E.

In the 13C metabolic flux analysis procedure proposed in Chapter 4, at
least the very important questions of structural identifiability of the fluxes
and the sensitivity of the estimated fluxes to measurement errors deserve
further attention. Preprocessing methods for MS-MS data described in
Publication IV and Publication V would benefit from the analysis of con-
sistency of computed isotopomer constraints (cf. [WDW04]). Last, but
certainly not least, the proposed framework for 13C metabolic flux analysis
should be applied (and possibly tuned) to complex, real world flux analysis
tasks.
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[NW06] K. Nöh and W. Wiechert. Experimental design princi-
ples for isotopically instationary 13C labeling experiments.
Biotechnology and Bioengineering, 94(2):234–251, 2006.

[Our72] E. Oura. Reactions leading to the formation of yeast cell
material from glucose and ethanol. Alkon Keskuslaborato-
rio, Report 8078, 1972.

[PBM04] P. Pharkya, A. P. Burgard, and C. D. Maranas. Opt-
strain: A computational framework for redesign of microbial
production systems. Genome Research, 14(11):2367–2376,
2004.

[PPW+03] J. A. Papin, N. D. Price, S. J. Wiback, D. A. Fell, and
B. Ø. Palsson. Metabolic pathways in the post-genome era.
Trends in Biochemical Sciences, 28(5):250–258, 2003.

[PSP03] N. D. Price, C. H. Schilling, and B. Ø. Palsson. Genome-
scale microbial in silico models: the constraints-based ap-
proach. Trends in Biotechnology, 21(4):162–169, 2003.

[PTV92] W. H. Press, S. A. Teukolsky, and W. T. Vetterling. Numer-
ical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, second edition, 1992.

[RHO00] F. Rogalewicz, Y. Hoppiliard, and G. Ohanessian. Frag-
mentation mechanisms of α-amino acids protonated under



88 References

electrospray ionization: a collision activation and ab initio
theoretical study. International Journal of Mass Spectrom-
etry, 195/196:565–590, 2000.
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