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Networks of coordinated interactions among biological entities govern a myriad of biological
functions that span a wide range of both length and time scales—from ecosystems to individual
cells, and from years (e.g., the life cycle of periodical cicadas) to milliseconds (e.g., allosteric enzyme
regulation). For these networks, the concept of “the whole is greater than the sum of its parts” is
often the norm rather than the exception. Meanwhile, continued advances in molecular biology
and high-throughput technology have enabled a broad and systematic interrogation of whole-cell
networks, allowing for the investigation of biological processes and functions at unprecedented
breadth and resolution, even down to the single-cell level. The explosion of biological data, especially
molecular-level intracellular data, necessitates new paradigms for unraveling the complexity of
biological networks and for understanding how biological functions emerge from such networks.
These paradigms introduce new challenges related to the analysis of networks in which quantitative
approaches such as machine learning and mathematical modeling play an indispensable role.
The Special Issue on “Biological Networks” showcases advances in the development and application
of in silico network modeling and analysis of biological systems. The Special Issue is available online
at: https://www.mdpi.com/journal/processes/special_issues/Biological_Networks.

Identifiability and Design of Experiments for Biological Network Models

A well-known challenge in the development of computational models of biological networks
is the identifiability of model parameters. A model is said to be structurally identifiable when its
parameters can, in principle, be extracted from measurements of the output responses of the model.
The lack of structural identifiability implies that any attempt to determine model parameters from
measurement data is futile. The paper by Villaverde and Banga [1] focuses on assessing structural
identifiability by using the concept of observability. More specifically, for certain initial conditions,
structurally unidentifiable models can mistakenly be ascertained to be identifiable. The paper provides
illustrations of such challenges through biochemical model examples and proposes a procedure to
overcome this complication.

Even in cases where a model is structurally identifiable, the accuracy of parameter estimates can
remain poor. A concept related to structural identifiability is practical identifiability, which addresses
concerns of parameter uncertainty. A key factor that controls parameter uncertainty is the design of
experiments. Two papers in this Special Issue explore the model-based optimal design of experiments
(MBDOE) via the Fisher information matrix (FIM). The paper by Sinkoe and Hahn [2] showcases the
importance of optimizing experiments for improving the practical identifiability of model parameters,
especially in connection to dynamic biological data and modeling. More specifically, the paper
describes the application of the FIM-based D-optimality criterion and the Morris method for computing
parametric sensitivities, to optimize dynamic input functions to the interleukin-6 signaling model.

Processes 2018, 6, 242; doi:10.3390/pr6120242 www.mdpi.com/journal/processes1
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In silico implementations of the optimal input functions show great promise in significantly reducing
parametric uncertainty.

A high degree of model nonlinearity (curvatures) can negatively affect the performance of
FIM-based experimental designs. The paper by Manesso et al. [3] addresses this issue by introducing
a new multi-objective optimization (MOO) framework. This framework identifies Pareto optimal
experiments that balance maximizing the information content of experimental data through the FIM
with minimizing model curvatures. A proof of concept using a biochemical network model of baker’s
yeast fermentation illustrates the benefits of using the proposed MOO MBDOE over a number of
FIM-based optimal designs and other experimental designs that also consider model curvatures.

Dynamic Biological Network Modeling

Two papers in the Special Issue present new biological network models that span multiple scales.
The paper by Ruggiero et al. [4] presents a dynamic model of tuberculosis (TB) granuloma activation
describing host-TB pathogen interactions. The model captures the local immune system response to
Mycobacterium tuberculosis, the dynamics of matrix metalloproteinase-1 and collagen in granuloma,
and the leakage of bacteria from granuloma. By changing the values of parameters in the model,
the authors are able to assess how perturbations in the immune response (as well as HIV co-infection)
affect granuloma activation.

The paper by Lee et al. [5] looks at the modeling of NF-κb signaling dynamics induced by
lipopolysaccharide (LPS) in the presence of a cytokine secretion blocker. Parameter estimation based
on average single-cell flow cytometry data points to a previously unidentified action of the cytokine
secretion blocker, which was validated in additional experiments and subsequent model refinement.
The iterations between computational modeling and experimental design highlight how the process of
inferring biological networks can lead to new testable hypothesis and insights.

Network-Based Biological Systems Analysis and Optimization

Biological network models enable a systematic and comprehensive analysis and optimization
of biological systems, as showcased by three papers in the Special Issue. The paper by Perumal
and Gunawan [6] introduces a new dynamic sensitivity analysis that can account for cellular
heterogeneity. The analysis, termed molecular density function perturbation (MDFP), introduces
time-dependent in silico perturbations to the molecular concentrations of biological species in the
network. The application of MDFP to a mathematical model of programmed cell death signaling
stimulated by a tumor necrosis factor ligand points to key events in the signaling pathway that
determine the cell-to-cell variability in the response to the stimulus.

The paper by Widiastuti et al. [7] outlines a model-driven strategy to estimate and improve the
production capability of microbes based on an in silico analysis of genome-scale metabolic networks.
The strategy explores the use of Zymomonas mobilis to produce succinic acid. The genome-scale
metabolic network model enables a combinatorial deletion analysis, leading to the identification of
four gene deletions that would amplify succinic acid molar yield by 15 times.

The review paper by Faraji and Voit [8] focuses on the metabolic modeling of crop science with a
specific focus on bioenergy crops. In comparison to microbes and animal cells, mathematical modeling
of plant metabolisms is still in its infancy, but is expected to become a standard tool in the future.
The paper delves into unique challenges and constraints in modeling plant metabolic networks,
as well as limitations and mitigating strategies in using popular modeling formalisms to capture the
physiological characteristics of plant systems. A case study involving lignin biosynthesis in switchgrass
illustrates how mathematical modeling can serve as a powerful tool for strain improvement through
the generation of a library of virtual strains.

2



Processes 2018, 6, 242

Network-Based Biological Data Analytics

Biological networks are crucial in the interpretation and analysis of biological data. The paper
by Vargason et al. [9] demonstrates how univariate (one variable at a time) statistical analysis is often
suboptimal as it does not account for the correlation of data structure arising from an underlying
biological network. By using clinical data for autism spectrum disorder as case studies, multivariate
analyses were demonstrated to be much more efficacious than univariate approaches.

The paper by Padmanabhan et al. [10] highlights how the network of cellular pathway crosstalk
can provide better biomarkers with improved diagnosis and prognosis accuracy. The work presents
a procedure to construct a cellular pathway crosstalk reference map, by combining information on
chemical, genetic and domain interactions and transcription factors. The reference map is personalized
by utilizing each patient’s single nucleotide polymorphisms. In the application to the Alzheimer’s
disease (AD) dataset from the Alzheimer’s Disease Neuroimaging Initiative, the authors show how
using the patient-specific cellular pathway crosstalk as an additional feature significantly improves the
accuracy in assessing the risk of mild cognitive impairment progression to AD.

Funding: There are no funding supports.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Dynamic modelling is a powerful tool for studying biological networks. Reachability
(controllability), observability, and structural identifiability are classical system-theoretic properties
of dynamical models. A model is structurally identifiable if the values of its parameters can in
principle be determined from observations of its outputs. If model parameters are considered as
constant state variables, structural identifiability can be studied as a generalization of observability.
Thus, it is possible to assess the identifiability of a nonlinear model by checking the rank of its
augmented observability matrix. When such rank test is performed symbolically, the result is of
general validity for almost all numerical values of the variables. However, for special cases, such as
specific values of the initial conditions, the result of such test can be misleading—that is, a structurally
unidentifiable model may be classified as identifiable. An augmented observability rank test that
specializes the symbolic states to particular numerical values can give hints of the existence of this
problem. Sometimes it is possible to find such problematic values analytically, or via optimization.
This manuscript proposes procedures for performing these tasks and discusses the relation between
loss of identifiability and loss of reachability, using several case studies of biochemical networks.

Keywords: identifiability; controllability; reachability; observability; parameter estimation; nonlinear
systems; differential geometry

1. Introduction

The study of parametric identifiability is a fundamental task of system identification, which can
be approached from structural or practical viewpoints [1–3]. Practical identifiability analysis aims
at characterizing the uncertainty in parameter estimates taking into account the deficiencies in the
data used for model calibration. Structural identifiability is a prerequisite for practical identifiability,
and seeks to establish whether the model parameters can be uniquely determined from observations
of the input-output behaviour of the model—that is, from the model equations only. The concept of
structural identifiability was coined in [4] and initially introduced in the context of linear systems.
It was soon extended to the nonlinear case and many methods were subsequently developed for
its study [3,5,6]. In parallel, the classic dual concepts of observability and controllability were also
extended from linear [7] to nonlinear [8]. The relationships between these properties make it natural
to study structural identifiability with the tools of nonlinear observability [9]. Indeed, it is possible
to check simultaneously the observability and structural identifiability of a model by including
its parameters in the state variables vector, and calculating the rank of the resulting (augmented)
observability matrix. Several computational methods that build on this idea have been presented in
the last decade [10–13].

Processes 2017, 5, 29; doi:10.3390/pr5020029 www.mdpi.com/journal/processes4
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However, the results of these methods should be taken with caution. As emphasized by
Denis-Vidal et al. [14], identifiability may depend on the initial conditions. Saccomani et al. [15] noted
that differential algebra methods can incorrectly classify an unidentifiable model as identifiable for
certain initial conditions (a detailed distinction between “structural”, “geometric”, and “algebraic”
identifiability can be found in [16]).

Here we show that the differential geometry approach (which assesses local structural
identifiability by checking the rank of the augmented observability matrix) has in principle the
same limitation as the differential algebra approach with regard to initial conditions. When the
identifiability matrix is computed with the numerical values of certain problematic initial conditions,
its rank decreases with respect to the general case. However, this situation cannot be detected with
symbolic rank calculations. When the system evolves from such initial conditions it may become
impossible—depending on the particular case—to determine some of its parameters, which would
nevertheless be structurally identifiable if the system was started at a different state. In [15] loss of
reachability was identified as the cause of this loss of identifiability. However, other alternative causes
may also exist. To assess this possibility we propose to check if the identifiability rank condition is
satisfied in two ways: for the generic case (symbolically), and in the vicinity of the initial conditions of
interest (by specializing its states to those specific values). By performing the rank test both for generic
and particular state values we obtain a more complete diagnosis. Then, if a certain numerical state
vector leads to an incomplete identifiability rank, it may indicate that some state variables are no longer
reachable from it, which in turn may make the associated parameters unidentifiable. This situation
can be checked by assessing the reachability of the system both for generic and particular states—or,
alternatively, by simulating the model using the state vector as initial condition. This procedure
allows to determine precisely if the parameters are structurally locally identifiable for those values.
An alternative solution could be to check identifiability in a range of parameter and state values,
as proposed by [11], although the computational complexity of such test makes it infeasible for
medium or large-scale systems. Given that, in general, the identifiability condition may be misleading
when evaluated for generic values of the states, an important question is whether it is possible to
determine the specific values that violate this test. For small models it may be possible to find them
analytically by inspection of the system equations. In more complex cases an alternative is to search
for such values via optimization.

The organization of this paper is as follows: in Section 2 we provide a compact presentation of the
necessary background on structural identifiability, observability, and reachability (controllability) of
nonlinear systems, and of the relations between these concepts. When available, necessary and/or
sufficient conditions under which these properties hold are given. This is presented using the
differential geometry formulation. Then in Section 3 we illustrate with six example models several
situations and issues that can appear in relation to loss of structural identifiability, and how this
relates to observability and reachability. We begin in Section 3.1 by remembering the known fact
that reachability is neither necessary nor sufficient for identifiability. Then in Section 3.2 we show
that identifiability rank tests can sometimes (i.e., for certain state vectors) be misleading. We further
remark, in Section 3.3, that the knowledge of initial conditions of unmeasured states can improve the
identifiability. In Section 3.4 we propose a procedure that assesses whether the identifiability rank test
is being misleading, and in Section 3.5 we propose an optimization-based procedure to find particular
state vectors will cause loss of identifiability. Finally, we summarize the Conclusions in Section 4.
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2. Background: Nonlinear Observability, Reachability, and Identifiability

2.1. Notation and Differential Geometry Concepts

We consider a general class of nonlinear time-invariant systems modelled as a structure M with
the following dynamic equations:

M :

⎧⎪⎨
⎪⎩

ẋ(t) = f (x, p, u) = f1(x, p) + f2(x, p) · u(t)
y(t) = h(x, p)
x0 = x(t = 0, p)

(1)

where f , f1, f2, and h are vector functions, p ∈ R
q is a real-valued vector of parameters, u ∈ R

r

is the input vector, x ∈ R
n the state variable vector, and y ∈ R

m the output or observables vector.
The dependency of f , f1, f2, and h on the parameters p will be usually dropped for ease of notation.
The following paragraphs define several differential geometry concepts that will be used throughout
this paper.

Given a smooth function z(x) and a vector field v(x), the Lie derivative of z with respect to v is:

Lvz(x) =
∂z(x)

∂x
v(x) (2)

where ∂
∂x z(x) is a row vector containing the partial derivatives of the smooth function z(x). In the

present work, z(x) can be either the m-dimensional vector function h(x) (when studying observability)
or the r-dimensional vector function f2(x) (when studying controllability). For a k-dimensional
function z and an n-dimensional vector x and function v, ∂

∂x z(x) is a k × n matrix, and Lvz(x) = ∂z(x)
∂x v(x)

is a k × 1 column vector. Higher order Lie derivatives can be defined recursively as:

L2
vz(x) = ∂Lvz(x)

∂x v(x)
· · ·

Li
vz(x) = ∂Li−1

v z(x)
∂x v(x)

(3)

Given two vector fields v1(x), v2(x), their Lie bracket is the vector field defined by

[v1, v2] =
∂v2

∂x
v1 − ∂v1

∂x
v2 (4)

A k−dimensional distribution Δ on X is a map which assigns, to each x ∈ X, a k−dimensional
subspace of Rn such that for each x0 ∈ X there exist an open set U ⊆ X containing x0 and k vector
fields f1, . . . , fk, such that

1. { fl(x), . . . , fk(x)} is a linearly independent set for each x ∈ U.
2. Δ(x) = span{ f1(x), . . . , fk(x)}, ∀x ∈ U [17].

2.2. Observability

Conceptually, a system is observable if for each state there exists at least one input which
allows to discriminate between this state and all nearby states, by measuring the output [17]. More
formally, two states x0 �= x1 are said to be distinguishable when there exists some input u(t) such
that y(t, x0, u(t)) �= y(t, x1, u(t)), where y(t, xi, u(t)) denotes the output function of the system for the
input u(t) and initial state xi(i = 0, 1). The system is said to be (locally) observable at x0 if there exists
a neighbourhood N of x0 such that every other x1 ∈ N is distinguishable from x0.

6
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2.2.1. Linear Observability

Before proceeding to nonlinear systems, let us recall that a linear system of the form

ẋ = A · x + B · u
y = C · x

(5)

is observable if and only if rank(O) = n, where O is the linear observability matrix [7],

O(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

C
C · A
C · A2

...
C · An−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

2.2.2. Nonlinear Observability

The extension to the nonlinear case is straightforward. For a system given by (1), the nonlinear
observability matrix is built using Lie derivatives as follows:

O(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂
∂x h(x)

∂
∂x (L f h(x))
∂

∂x (L2
f h(x))
...

∂
∂x (Ln−1

f h(x))

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

Theorem 1. Observability Rank Condition (ORC). If the system M given by (1) satisfies rank(O(x0)) = n,
where O is defined by (7), then M is locally observable around x0 [8].

The ORC is a sufficient and “almost necessary” condition for observability [17], meaning that if
M is locally observable around x0, then rank(O(x0)) = n for all the states belonging to an open dense
subset of the state space. Note that, in passing from linear to nonlinear, the rank condition has changed
from being sufficient and necessary to being “sufficient and almost necessary”.

Two terms related to observability are detectability and reconstructability. Detectability is a similar
notion to observability, but slightly weaker: a system is detectable if all the unstable modes are
observable. Reconstructability is also similar, but it refers to the ability of determining the present state
of a system from past and current (as opposed to future) measurements.

2.3. Controllability and Reachability

While observability studies whether it is possible to reconstruct the internal state x of a model by
observing its output y, controllability asks whether it is possible to control x by manipulating its input
u. Controllability and reachability are subtly different concepts: in reachability the question is which
states x(t f ) can be reached in finite time from the initial state, x(t0), which is fixed. In controllability
the question is which states x(t0) can be driven to a final state, x(t f ), which is fixed. A more precise
definition of reachability is as follows: a system (1) is said to be (locally) reachable around a state x0 if
there exists a neighbourhood N of x0 such that, for each x f ∈ N, there exist a time T > 0 and a set of
inputs u such that, if the system starts in state x0 at time t = 0, it reaches x f at time t = T. It should be
noted that for nonlinear systems, the possibility of reaching from any given state a set of full dimension
has also been called weak (local) controllability [8] and accessibility [18]. Here, following [17], we will
refer to it as nonlinear reachability or simply reachability.

7
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2.3.1. Linear Controllability and Reachability

A linear system given by (5) is reachable if and only if rank(C) = n, where C is the linear
controllability matrix defined as:

C(x) =
(

B|A · B|A2 · B| · · · |An−1 · B
)

(8)

While the condition rank(C) = n is both sufficient and necessary for reachability, for controllability
it is only sufficient; that is, if A is singular, the system may be controllable even if rank(C) < n.

The “duality” between observability and controllability/reachability can be noticed by inspecting
the linear observability (6) and controllability (8) matrices, since:

rank
(

B|A · B|A2 · B| · · · |An−1 · B
)
= n ⇔

⇔ rank

⎛
⎜⎜⎜⎜⎜⎜⎝

BT

BT · AT

BT · (AT)2

...
BT · (AT)n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

= n
(9)

Thus, the pair (A, B) is reachable if and only if the pair (AT , BT) is observable.

2.3.2. Nonlinear Controllability and Reachability

The nonlinear controllability matrix of the system (1) is as follows:

C(x) =
(

f2(x) L f1 f2(x) L2
f1

f2(x) . . . Ln−1
f1

f2(x)
)

(10)

The controllability matrix can be used to determine reachability with the following theorem:

Theorem 2. Controllability Rank Condition (CRC). If the system M given by (1) satisfies rank(C(x0)) = n,
then M is (locally) reachable in a neighbourhood N(x0) of x0 [17].

Note that the CRC is a conservative criterion, since it provides only a sufficient—but not
necessary—condition for reachability. A necessary condition can be obtained from the so-called
controllability distribution Δc(x), which is computed iteratively as a sequence of distributions:

Δ0 = span{ f2} → Δ1 → Δ2 → . . . → Δn−1 = Δc, (11)

with the following recursive rule:

Δi+1 = span
{

Δi
⋃ {[ f1, q], [ f2, q] : q(x) ∈ Δi(x)}

}
(12)

Theorem 3. Reachability Theorem. The system M given by (1) is (locally) reachable around x0 if and only
if there exists a neighbourhood N of x0 such that the distribution Δc(x), constructed as in (11,12), has constant
dimension n for all x ∈ N [17].

While Theorem 3 provides a necessary and sufficient condition, it is more difficult to check than
the CRC.

2.4. Structural Identifiability as Observability

Assuming that the model structure M (1) is correct, that the data is noise-free, and that the inputs
to the system can be chosen freely, it is always possible to choose an estimated parameter vector p̂

8
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such that the model output h(x, p̂) equals the one obtained with the true parameter vector, h(x, p∗).
If p̂ = p∗ this is trivially the case.

A parameter pi is structurally locally identifiable if for almost any p∗ ∈ R there is a neighbourhood
N(p∗) such that

p̂ ∈ N(p∗) and h(x, p̂) = h(x, p∗) ⇒ p̂i = p∗i (13)

A model M is structurally locally identifiable (s.l.i.) if all its parameters are s.l.i. If (13) does not
hold in any neighbourhood of p∗, parameter pi is structurally unidentifiable. A model M is structurally
unidentifiable if at least one of its parameters is structurally unidentifiable.

Identifiability analysis can be formulated as a nonlinear observability problem [9,19]. To do so,
let us augment the state variable vector so as to include also the model parameters:

x̃ =

[
x
p

]
(14)

Accordingly, the f function that describes the time evolution of the state variables in equation (1)
is augmented as follows:

f̃ (x̃) =

[
ẋ
ṗ

]
=

[
f (x, u)

0

]
(15)

where 0 is a zero-valued (since the parameters are constant in time) column vector of dimension q × 1.
The resulting generalized observability-identifiability matrix, OI(x̃), can be written as:

OI(x̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂x̃ h(x̃)

∂
∂x̃ (L f̃ h(x̃))
∂

∂x̃ (L f̃ 2 h(x̃))
...

∂
∂x̃ (L f̃ n+q−1 h(x̃))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(16)

where L f̃ h(x̃) is a Lie derivative defined as in equation (2), that is, L f̃ h(x̃) = ∂h(x̃)
∂x̃ f̃ (x̃), and higher

order derivatives are defined recursively as in equation (3).

Theorem 4. Observability-Identifiability Condition (OIC). If M given by (1) satisfies rank(OI(x̃0)) =

n + q, then M is (locally) observable and identifiable in a neighbourhood N(x̃0) of x̃0.

Proof. It follows immediately from Theorem 1 and the definition of x̃.

3. Results

Here we discuss the relationships between the structural properties defined in Section 2 and some
issues that may appear. We illustrate them with several case studies, which are listed in Table 1 along
with a summary of their properties.

3.1. Reachability Is Neither Necessary Nor Sufficient for Identifiability

For linear systems it was established early on that, despite the relationships that exist between
those properties, observability and controllability are neither necessary nor sufficient conditions for
structural identifiability. This was noted by DiStefano [20] by providing simple counter-examples
(although DiStefano’s brief note was disputed, see [21,22] and the author’s replies to those comments).
In a similar way, this section shows by means of three small examples that, for nonlinear systems,
reachability—or lack thereof—has in principle no implications for structural identifiability.

9
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Table 1. Main properties of the examples used in this paper. The term “generic” applied to SI (structural
identifiability) or reachability means that the model has said property for almost all values of x. The last
three columns refer to the possibility of losing said properties for certain values of x. N/A stands for
Not Applicable.

Example Ref.
(Generic) (Generic) Decrease Loss Loss of

SI Reachability in rank(OI) of SI Reachability

1 This paper YES NO NO NO N/A
2 This paper NO YES N/A N/A NO
3 [23] NO YES N/A N/A YES
4 [11] YES NO YES YES N/A
5 [24] YES NO YES NO N/A

6.A [14] NO NO N/A N/A N/A
6.B [14] YES NO YES NO N/A

Example 1. A model that is structurally identifiable but unreachable:

M1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = p1 · (x2
1 + A),

ẋ2 = p2 · (x1 · x2 + B) + u,
y1 = x1,
y2 = x2

(17)

where {p1, p2} are unknown parameters and {A, B} known constants, all of which are positive
quantities. The controllability distribution of M1 is

Δc(x) = span

{
0 0
1 −p2 · x1

}
(18)

which has dimension 1 < n = 2, so M1 is unreachable (Theorem 3). Its observability-identifiability
matrix is

OI(x̃) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0

2 · p1 · x1 0 x2
1 + A 0

p2 · x2 p2 · x1 0 x1 · x2 + B

⎞
⎟⎟⎟⎠ (19)

which has rank(OI(x̃)) = 4 = n + q, which means that it is observable and identifiable (OIC).

Example 2. A model that is structurally unidentifiable but reachable:

M2 :

⎧⎪⎨
⎪⎩

ẋ1 = p1 · x1 · x2
2 + u,

ẋ2 = p2 · x1,
y = p3 · x1

(20)

The controllability distribution of M2 is

Δc(x) = span

{
1 −p1 · x2

2
0 −p2

}
(21)

which has dimension 2, so M2 is reachable (Theorem 3). It is straightforward to calculate OI(x̃)
(not shown here due to its large size) and see that rank(OI(x̃)) = 3 < n + q = 5, which means that
it is unidentifiable (OIC). Specifically, p2 is identifiable but p1 and p3 are not. It can also be noticed

10
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that, according to the classic definition of observability (which assumes that the parameter values are
known) model M2 is observable, since

O(x) =

(
1 0

p1 · x2
2 2 · p1 · x1 · x2

)
(22)

and thus rank(O(x)) = 2 and the ORC holds.

Example 3. A model that is structurally unidentifiable but (almost everywhere) reachable:

M3 :

⎧⎪⎨
⎪⎩

ẋ1 = p1 · x1 · x2,
ẋ2 = p2 · u,
y = x1

(23)

This model is taken from [23]. For this system n + q = 4 and rank(OI(x̃)) = 3. Thus the
observability-identifiability condition (OIC) of Theorem 4 does not hold; the model as a whole,
and {p1, p2} in particular, are structurally locally unidentifiable. This unidentifiability result was
obtained symbolically, for generic values of the initial conditions. To illustrate this lack of identifiability,
the time evolution of M3 is shown in Figure 1 for two different parameter vectors: {p1 = 1, p2 = 1}
and {p1 = 1.6, p2 = 1.25}. If the model is simulated from the initial conditions {x1(0), x2(0)} = {1, 1},
the model outputs are distinguishable for the two different parameter vectors (panel A). However,
when the model is simulated from {x1(0), x2(0)} = {1, 0}, the outputs are identical (panel B): for these
initial conditions the parameters are indistinguishable, i.e., the model is unidentifiable. Furthermore,
even if the model is started from a different initial condition, x2 �= 0, its output may be the same to that
of x2 = 0 for two different parameter vectors (panel C). Thus, the structural unidentifiability of this
model is not exclusive of the initial condition x2 = 0. Note that, however, if we were able to measure
not only x1 but also x2, the model would become identifiable, since the time course of x2 is different in
each of the aforementioned cases.

Regarding reachability, the controllability distribution of M3 is

Δc(x) = span

{
0 −p1 · p2 · x1

p2 0

}
(24)

which has dimension 2, so M3 is reachable (Theorem 3). Thus, M3 is generically reachable and
structurally unidentifiable. So is M2; however, there is a difference between both models: unlike in the
case of M2, the dimension of the controllability distribution of M3 can decrease for certain values of
x: specifically, for x1 = 0, its dimension decreases from 2 to 1, as can be seen in Equation (24), and in
that particular case the model is no longer reachable. This is illustrated in panel D of Figure 1, which
shows that if x1(0) = 0 ⇒ x1(t) = 0 ∀t. We remark that this loss of reachability is not the cause of the
model’s unidentifiability, since the model is also unidentifiable for the initial conditions shown in the
other panels, for which there is no loss of reachability.
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Figure 1. Time courses of the M3 model used in Example 3. Panel (A) shows the evolution of the
system starting from non-zero initial conditions, for two different parameter vectors. From this plot it
would seem that the model is structurally identifiable, since different parameter vectors yield different
model outputs; Panel (B) shows the same time courses for initial condition x2(t = 0) = 0; in this
case the model output is identical for two different parameter vectors, which makes the parameters
indistinguishable; Panel (C) shows that it is actually impossible to distinguish between initial condition
x2(t = 0) = 0 and initial condition x2(t = 0) = 1: the output of the model simulated with two wildly
different parameter vectors can be the same. This illustrates that unidentifiability is inescapable if we
only measure x1; Panel (D) shows the model output for two parameter vectors and initial condition
x1(t = 0) = 0; for this case the model output remains at zero, and there is a loss of reachability.

3.2. The Results of Identifiability Tests Can Be Misleading for Certain State Vectors

The OIC of Theorem 4 represents a general result, which is valid for all values of the states and
parameters except for a set of measure zero. For these exceptions, however, its results may be misleading.
This section illustrates this fact with an example.

Example 4. A structurally identifiable model that loses identifiability for certain values of x:
Consider the following biochemical network [11]:

E + S
p0
�
p2

ES
p3−→ E + P; P

p1−→ ∅ (25)

If we denote by x1, x2, and x3 the concentrations of substrate (S), enzyme (E), and product (P), respectively,
this system can be modelled by the following equations [11]:

M4 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = −x1 · x2 + p2 · (10 − x2),
ẋ2 = −x1 · x2 + (p2 + p3) · (10 − x2),
ẋ3 = −p1 · x3 + p3 · (10 − x2)

y1 = x1, y2 = x3

(26)

Note that these equations were obtained by August and Papachristodoulou [11] after making two
assumptions: (i) that [ES] + [E] = 10, which allows omitting [ES] from the equations by replacing it with
[ES] = 10− [E] = 10− x2; and (ii) that the reaction rates are normalized, such that p0 = 1 is a known constant.
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For this example n + q = 6 and rank(OI(x̃)) = 6, which means that the OIC of Theorem 4 holds.
Therefore methods based in the OIC [10,11,13] classify the model as observable and identifiable for
generic values of the states and parameters. However, note that for the particular initial conditions
{x1(0) = 0, x2(0) = 10}, two of the states remain at zero {x1(t) = 0, x2(t) = 0} ∀t ≥ 0, and in
this case only p1 appears in the equations. Thus, for these particular initial conditions the model is not
identifiable, since it is not possible to determine the values of p2 and p3. Obviously, model M4 is
not reachable, since it does not have any control inputs and thus its controllability distribution is
empty. Therefore the loss of identifiability cannot be attributed to a loss of reachability for certain
initial conditions. However, it is linked to the fact that {x1, x2} remain equal to zero if the system
is started from {x1(0) = 0, x2(0) = 10}. This situation is not rare: indeed, by examining the
Equation (17) that describe model M1, it can be noticed that if A = 0, state x1 would remain equal to
zero if started in that condition, and the model would be unidentifiable, since the third column of its
observability-identifiability matrix (19) would be zero.

Example 4 shows how a model that is “generally” structurally identifiable—that is, it is identifiable
for almost all values of its state variables—can lose its identifiability for certain particular values of its
states (or equivalently, for certain initial conditions). This loss of identifiability results from some of the
states of M4 remaining at zero value from certain initial conditions, which prevents some parameters
appearing in the equations of those states from being identified. This loss of identifiability causes a loss
of rank in the OIC: if the model states are replaced with the initial conditions of interest, x0∗, it results
that rank(OI(x0∗)) < n + q; thus the loss of identifiability entails a rank deficiency.

However, this rank check is not a definitive proof: the next model provides a counter-example
that shows that, even when the rank of a (generally structurally identifiable) matrix decreases for
certain initial conditions, this does not necessarily result in structural unidentifiability.

Example 5. A structurally identifiable model despite rank deficiency of OI for certain values of x:
Robertson [24] proposed as a case study an autocatalytic reaction with the following scheme:

x1
k1−→ x2; 2x2

k2−→ x2 + x3; x2 + x3
k3−→ x1 + x3 (27)

Its kinetics are given by the following equations:

M5 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = −k1 · x1 + k3 · x2 · x3,
ẋ2 = k1 · x1 − k2 · x2

2 − k3 · x2 · x3,
ẋ3 = k2 · x2

2
y1 = x1, y2 = x2

(28)

This model was showcased in [25] as an example of an unidentifiable model, and later used as
a case study in [26]. Specifically, Eydgahi et al. stated that “the inability of estimation to recover
the parameter values used to generate synthetic data is not due to problems with the computational
procedures. Instead, it represents a fundamental limit on our ability to understand biochemical systems
based on time-course data alone”. However, this model is in fact structurally identifiable (OI is full
rank for generic values of x), although its practical identifiability is poor. A reason for its lack of
practical identifiability is that, for the nominal parameter values, x2 has very low values compared
to the other two states (six orders of magnitude smaller). Thus, the difficulty in recovering the true
values of its parameters is not due to a structural deficiency, but to numerical limitations.

Interestingly, when x2(0) = x3(0) = 0, the observability-identifiability matrix OI is not full rank,
so the system may seem to be structurally unidentifiable from those initial conditions. However, such
a loss of identifiability is “strictly local”. By this we mean that, as can be seen in Figure 2, all the states
(including x2 and x3) reach non-zero values immediately after t = 0 (note that the concentration curves
have been normalized to adopt values between 0 and 1, to facilitate the visualization). For example,
at t = 10 the state vector is {x1(10) = 0.8414, x2(10) = 1.623 · 10−5, x3(10) = 0.1586}, and OI has full
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rank when evaluated at that point. Therefore the model is still identifiable when simulated from these
initial conditions. This example shows that, even when the OI loses its full rank for certain values of
the state variables, this does not necessarily lead to loss of identifiability, as long as it does not produce
loss of accessibility.

Figure 2. Time courses of the Robertson model used in Example 5. The vertical axis shows the
concentration curves, which have been normalized to adopt values between 0 and 1 to facilitate
the visualization.

3.3. Knowledge of Additional Initial Conditions Can Increase Identifiability

So far we have assumed that the initial conditions of the states corresponding to measured outputs
are known, and that those of unmeasured states are unknown. This is the typical situation: in general
we do not have information about unmeasured states; on the other hand, since structural identifiability
analysis assumes unlimited measurements, we can consider all the values of the measured states
known—including, naturally, their initial conditions.

However, in certain cases we may possess information about the initial condition of a state, even
if we are not able to measure its subsequent behaviour. In this case, such additional information can
help identify some parameters that would be unidentifiable without it. This possibility was noted
by Chappell and Godfrey [27], who used a case study which they claimed to be the first example of
a real-life nonlinear model that was not globally identifiable. Here we illustrate this case with the
following example:

Example 6. A structurally unidentifiable model that becomes identifiable if the initial conditions (of unobserved
states) are known:

Denis-Vidal et al [14] proposed the following model to illustrate how the identifiability of uncontrolled
models may depend on the initial conditions.

M6 :

⎧⎪⎨
⎪⎩

ẋ1 = θ1 · x2
1 + θ2 · x1 · x2, x1(0) = 1

ẋ2 = θ3 · x2
1 + x1 · x2, x2(0) = b

y = x1

(29)

It can be seen that parameters θ2 and θ3 are structurally unidentifiable; we refer to this case as
Example 6.A (as written in Table 1). However, if we know the initial condition of the unmeasured state,
x2(0) = b, then the model becomes structurally identifiable; we refer to this variant as Example 6.B.
In this case, a decrease in the rank of OI (from full rank, 5, to 4) takes place if b = 0, but, similarly to
Example 5, the state x2 immediately departs from zero and the model is structurally identifiable.
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3.4. Guaranteeing the Results of the Structural Identifiability Test

The examples of the preceding section show that local structural identifiability is a generic property
that may be lost for particular values of the state variables, and that such loss of identifiability may not
be detected by differential geometry methods such as those based on the OIC. This issue is shared by
differential algebra methods: for them, [15,28] concluded that the result of the identifiability test is still
correct if a model is globally inaccessible (unreachable), but problems appear when a model is only
inaccessible from initial points belonging to a thin set.

The realization in [15,28] suggests performing an additional check on the reachability of a system:
if for a certain state x0 we find both a decrease in the rank of the observability-identifiability matrix
OI(x0) and a decrease in the dimension of the controllability distribution Δc(x0), we can conclude that
the model is not identifiable when started from the initial conditions x0. However, there are issues that
cannot be revealed by this test: we have seen that such a loss of identifiability for particular x0 can
also happen in uncontrolled models such as Example 4, which are by definition unreachable and for
which the dimension of Δc is always zero. Therefore, for such cases an alternative is to simulate the
model from x0—as we did for Example 5 in Figure 2—to see whether there are states that remain at
zero. In general, structural identifiability can be assessed for particular initial conditions x0 as follows:

1. Check the Observability-Identifiability condition (OIC, Theorem 4) for a generic symbolic
augmented vector x̃. If the matrix is not full rank, i.e., rank(OI(x̃)) < n + q, then the model
is structurally unidentifiable and no further tests are needed. If, however, it is full rank,
i.e., rank(OI(x̃)) = n + q, the model is generically structurally identifiable. However, in this case
there may be loss of identifiability for certain states; to assess this we proceed to the next step.

2. Check the Observability-Identifiability condition (OIC, Theorem 4) for a particular vector of
initial conditions of interest, x̃0. If rank(OI(x̃0)) < n + q, there has been a loss of rank which
indicates loss of local identifiability (as in Example 4), but that may be possible to overcome (as in
Example 5). To assess this point, we go to step 3.

3. Simulate the model starting from x0 to see if there are any states that remain zero.

In the present work we have carried the rank calculations using a recently presented tool called
STRIKE-GOLDD [13]. STRIKE-GOLDD is a methodology for local structural identifiability analysis
that evaluates the OIC symbolically. Although it considers in principle generic initial conditions, it can
also test particular initial conditions by specializing the generic x in the OI matrix to the particular
initial conditions of interest, x0. If the system under study is rational, it is also possible to carry
out a similar test with the Exact Arithmetic Rank (EAR) method [10]. EAR allows specifying initial
conditions and uses a computationally efficient numerical procedure for obtaining rank(OI(x0)).
Unlike EAR, STRIKE-GOLDD evaluates the OIC symbolically and does not require that the system is
rational, although this generality results in a computationally more expensive procedure. In another
related work, [11] evaluated the OIC using a more conservative and computationally expensive
procedure, recasting the rank calculation task as a sum-of-squares optimization problem. Its advantage
is that it provides a result that is not only valid for a particular point x0 but for range of values, that is,
for all states that fall within certain bounds, xL < x < xU . Unfortunately, these calculations are only
feasible for small systems due to computational limitations. For rational systems it is also possible
to use the differential algebra method DAISY [29], which allows specifying initial conditions. It is
important to be aware of the advantages and limitations of these methods when choosing one for
assessing the structural identifiability of a model.

3.5. Finding Specific Initial Conditions That Lead to Loss of Rank in the OIC

If the initial conditions are not fixed a priori, a question naturally arises: given a nonlinear
model that is generally structurally identifiable, is it possible to find the specific values of the initial
conditions—if there exist any—for which the OIC does not hold?
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3.5.1. Finding Solutions Analytically

It may be possible to find such values analytically. For example, by examining Equation (26) it
can be observed that for {x1 = 0, x2 = 10, x3 = 0} the right hand side of the ODEs are made zero
and the system remains in a steady state, thus eliminating any influence of the parameters on the
output and rendering them unidentifiable. However, there are also other combinations that lead to
loss of identifiability. A general way of finding these initial conditions is to calculate the singular
values of OI using a symbolic software, such as Mathematica or the MATLAB Symbolic Math Toolbox.
Then, the state vectors x∗ that decrease rank(OI(x∗)) can be found by equating the expressions of the
singular values to zero and solving the resulting equations. However, this approach involves symbolic
calculation of the singular values, which is a very complex task for which explicit solutions can be
obtained only for very small models. For example, this approach did not yield results for a model of
moderate size such as the one in Example 4, even after fixing the parameter values to random numbers
to reduce the problem size.

3.5.2. Finding Solutions via Optimization

An alternative, generally applicable way of answering this question is by formulating it as
an optimization problem. In it, the decision variables are the system states, and the objective to
minimize is the rank of the observability-identifiability matrix. Is this rank can be made zero for
particular values of the state variables, those values correspond to initial conditions that lead to lack
of structural identifiability. Since the rank is an integer, it is more convenient for computational
optimization to use as the objective function the smallest singular value of OI , which is a positive real
number and thus leads to a continuous function value. Thus it is possible to calculate a singular value
decomposition of OI numerically and use its smallest singular value as the objective; if it can be made
zero, the matrix is not full rank and structural identifiability is lost. In order to calculate a numeric
value for the singular values we must replace the symbolic variables by numbers; using non-repeated
prime numbers minimizes the risk of accidental cancellations that could artificially reduce the rank.
Then the optimization problem can be mathematically formulated as follows:

min
xL<x<xU

{ fobj = inf[sing(OI(x̃))]} (30)

That is: find the vector x that minimizes the objective function consisting of the smallest singular
value of the observability-identifiability matrix, for values of the states that lie within some lower and
upper bounds, xL < x < xU .

We applied this strategy to example 4, using as optimization method a general purpose
metaheuristic called enhanced scatter search (eSS), from the MATLAB (version R2015b, MathWorks,
Natick, MA, USA) implementation of the MEIGO toolbox [30]. Setting {xL = 0, xU = 20} as bounds
for the decision variables, and using FMINCON as local search method, the algorithm reported fobj = 0
after a few minutes, with the optimal decision variables being [x1 = 0, x2 = 10, x3 = 6.9081]. Since the
optimization method is not deterministic, different outcomes can be obtained. Running the algorithm
again we encountered the solution [x1 = 0, x2 = 10, x3 = 3.9086]; in this way it is easy to realize that
any vector in which [x1 = 0, x2 = 10] leads to unidentifiability regardless of the value of x3.

4. Conclusions

Structural properties (those that are determined exclusively by the model equations) provide
information about the behaviour of a system. Their analysis can reveal the existence of limitations
regarding system dynamics and model identification. In this paper we dealt with the relations
between the systemic properties of observability, reachability, and identifiability of nonlinear models.
Identifiability and observability are tightly related, since structural identifiability can be recast as
a “generalized” observability property (also called “augmented” or “extended”). On the other hand,

16



Processes 2017, 5, 29

observability and reachability (or similar terms like controllability and accessibility) are usually
considered as dual concepts.

Reachability is not a requisite for observability nor identifiability, nor vice versa. However,
in some cases a system which is in principle identifiable can become unidentifiable due to some of its
states becoming inaccessible (unreachable) from certain initial conditions. This problem is not always
detected by structural identifiability analysis methods. In general, the results of such methods—for
example, those based on differential geometry and differential algebra approaches—are valid for
“almost all” combinations of state and parameter values (i.e., for a dense subset of the state-parameter
space), but there may be exceptions for values belonging to thin sets (i.e., isolated values). To investigate
this possibility we propose to calculate the rank of the generalized observability-identifiability matrix
(OI) not only symbolically (which provides the generic result), but also numerically for the particular
initial conditions of interest. We have noted however that a loss of rank in the OI for particular
initial conditions x0 does not always imply a loss of structural identifiability: in some cases, such as
Example 5, the model can still be identified because the time evolution of the system escapes from the
pathological state. Thus, to assess if there is a loss of identifiability it is advisable to simulate the model
for the initial conditions of interest.

We have also noted in this manuscript that loss of reachability is not the only possible cause of
a loss of identifiability for specific initial conditions. Indeed, such unidentifiability can arise also in
uncontrolled models, whose controllability distribution ΔC is zero, as seen in Example 4. For this
reason we have seen that it is not entirely appropriate to assess the loss of identifiability by looking for
a possible decrease in the dimension of ΔC, and the aforementioned simulation-based analysis should
be preferred instead.

The related problem of finding which initial conditions lead to loss of identifiability is in general
more complicated. When such initial conditions are difficult to determine analytically, an alternative
is to use an optimization procedure. We have demonstrated the feasibility of this approach using an
example taken from the literature [11], for which this loss of identifiability had not been reported before.

We would like to mention that the idea of optimizing initial conditions to achieve a goal related
with identifiability has been applied in the literature before, albeit with a totally different purpose:
in the context of optimal experiment design, it may be desirable to find initial conditions that maximize
the practical identifiability of the parameters, as done e.g., by [31]. In contrast, here we have used it for
what can be considered as the opposite task: finding initial conditions that minimize (destroy) structural
identifiability. Both calculations provide useful information in different contexts.

The considerations presented in this paper should be taken into account before performing tasks
such as design of experiments or parameter estimation, in order to prevent identifiability issues that
may potentially render their results useless. For example, any attempts at calibrating a structurally
unidentifiable model will fail, resulting in a waste of time and effort and in wrong parameter estimates.
Furthermore, if this structural unidentifiability is mistaken for practical unidentifiability (a related
but different problem), it may lead to trying to solve the problem by investing additional efforts
in designing and performing new experiments, which will nevertheless be sterile. Therefore it is
advisable to assess the structural identifiability of a model for all the particular conditions of interest
before attempting at calibrating and further exploiting it.
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Abbreviations

The following abbreviations are used in this manuscript:

ORC Observability Rank Condition
CRC Controllability Rank Condition
OIC Observability-Identifiability Condition
ODE Ordinary Differential Equation
EAR Exact Arithmetic Rank
SI Structural Identifiability

References

1. Walter, E.; Pronzato, L. Identification of Parametric Models From Experimental Data; Communications and
Control Engineering Series; Springer: London, UK, 1997.

2. DiStefano J., III. Dynamic Systems Biology Modeling and Simulation; Academic Press: New York, NY, USA, 2015.
3. Villaverde, A.F.; Barreiro, A. Identifiability of large nonlinear biochemical networks. MATCH Commun.

Math. Comput. Chem. 2016, 76, 259–276.
4. Bellman, R.; Åström, K.J. On structural identifiability. Math. Biosci. 1970, 7, 329–339.
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Abstract: IL-6 signaling plays an important role in inflammatory processes in the body. While a
number of models for IL-6 signaling are available, the parameters associated with these models
vary from case to case as they are non-trivial to determine. In this study, optimal experimental
design is utilized to reduce the parameter uncertainty of an IL-6 signaling model consisting of
ordinary differential equations, thereby increasing the accuracy of the estimated parameter values
and, potentially, the model itself. The D-optimality criterion, operating on the Fisher information
matrix and, separately, on a sensitivity matrix computed from the Morris method, was used as the
objective function for the optimal experimental design problem. Optimal input functions for model
parameter estimation were identified by solving the optimal experimental design problem, and the
resulting input functions were shown to significantly decrease parameter uncertainty in simulated
experiments. Interestingly, the determined optimal input functions took on the shape of PRBS signals
even though there were no restrictions on their nature. Future work should corroborate these findings
by applying the determined optimal experimental design on a real experiment.

Keywords: optimal experimental design; D-optimality criterion; Fisher information matrix;
sensitivity analysis; IL-6 signaling; parameter estimation; piecewise constant functions

1. Introduction

Mathematical models of intracellular signaling pathways are important for understanding and
predicting how cells respond to certain stimuli. Such models can be modified readily when new
findings become available, and can be a useful tool in directing new studies based on hypotheses
generated by the model’s predictions.

Interleukin-6 (IL-6) is a cytokine involved in a variety of inflammatory processes [1–4].
Understanding the signaling pathways associated with extracellular IL-6 excitation is important
for elucidating and modulating the biological response to inflammation. Because chronic inflammation
can cause tissue damage and poses a serious health risk during chronic infection or autoimmune
conditions [5–7], therapeutic treatments for chronic inflammation are an active area of research.
These efforts can be augmented through the use of mathematical models for inflammatory signaling,
where IL-6 plays a major role.

An IL-6 signaling model (Appendix A) was previously developed in [1–4]. Originally, a detailed
model containing 77 ordinary differential equations (ODEs) and 128 parameters was derived,
followed by a model simplification procedure to decrease the number of ODEs and parameters
to 13 and 19, respectively. The simplified model contains only the variables and parameters deemed
necessary for representing the dynamics of the signaling system, as determined by parameter sensitivity
analysis and observability analysis [2]. This simplified model is the subject of the present study, and will
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henceforth be referred to as the ‘IL-6 model’ or the ‘model’ while the original detailed model will be
referred to as the ‘original IL-6 model’ or the ‘original model’.

In this study, optimal experimental design was applied to increase the accuracy of the 19 parameters
of the IL-6 model. The parameters in this model correspond to rate constants for the chemical reactions
in the signaling pathway represented by the model. By increasing the accuracy—and conversely
reducing the uncertainty—of the model parameters, it is possible to obtain a more accurate model
through iterative model adjustment. To demonstrate and examine this step in the model development
process, optimal experimental design methods were applied in this study to minimize the uncertainty
of the IL-6 model parameters estimated from least squares with experimental data.

Optimal experimental design has been utilized for decades in a variety of settings in which
it is of interest to maximize efficiency of resource use and obtain a significant amount of
information from experiments with acceptable cost [8–16]. Recently, as biological modeling and
systems biology have emerged as an important area in biomedical research, optimal experimental
design applied to biological experimental systems has become more popular [17–28]; additionally,
optimal experimental design has been recognized as a valuable tool in optimal control for several
decades [29]. For example, Jones et al. [13] maximized production of an exogenous commodity
chemical in metabolically engineered E. coli using an empirical modeling method similar to those used
in [15,16] to maximize the efficacy of drug delivery. Weber [26] utilized optimal experimental design
to maximize model prediction accuracy for a model of vesicle transport via the trans-Golgi network.
Bandara [18] performed optimal experimental design to reduce parameter uncertainty in a model of
phosphatidylinositol 3,4,5-trisphosphate signaling. These studies demonstrate the effectiveness of
optimal experimental design for obtaining maximally informative experimental data.

Here, optimal experimental design is applied to the problem of maximizing parameter accuracy
for the IL-6 model. In particular, the D-optimality criterion, applied to the Fisher information matrix
(FIM), is maximized over a set of IL-6 concentration input functions to determine an optimal dynamic
IL-6 input profile for exciting the signaling system to generate data for least squares estimation of the
model parameters [30]. The experimental design constraints considered in the problem are based on
available resources and limitations present in a typical laboratory capable of performing the designed
experiments. Namely, it is assumed that (a) the measurements of protein concentrations for two
transcription factors are recorded as a time series; (b) the sampling time between measurements does
not change during the course of an experiment; (c) the model represents signal transduction in rat
hepatocytes which are stimulated in vitro with IL-6 following a dynamic input function; and (d) the IL-6
concentration is kept below cytotoxic levels. A piecewise constant IL-6 input function was computed
by solving the optimal experimental design problem with the D-optimality criterion, operating on
the Fisher information matrix, as the objective function. Since the Fisher information matrix contains
only local information, a sensitivity matrix was also computed using the Morris method and the
D-optimality criterion was applied to the sensitivity matrix as well in order to corroborate that the
results are not just local in nature. The optimal IL-6 input function was found to substantially decrease
the model parameter uncertainty in simulated least squares fits compared to a constant stimulation
with IL-6.

The paper is organized as follows: optimal experimental design and its application to ODE
models are presented in Section 2; application of optimal experimental design to the specific case of
the IL-6 model is presented in Section 3 and results from solving the optimal experimental design
problem are presented in Section 4, including simulation results for calculating parameter uncertainty;
Section 5 discusses implications and suggests further applications of the optimal experimental design
methodology presented here. The IL-6 model is included for reference in Appendix A.
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2. Optimal Experimental Design

An ordinary differential equation model, e.g., for describing signal transduction, can be written as

dx
dt

= f (t, x, u, p); y = g(t, x, u, p), (1)

where x is a time-dependent vector of state variables, u is a time-dependent controlled input to the
system, p is a vector of constant parameters, and y is a vector of measured quantities related to the
model variables. Often, as is the case here, y is simply a subset of state variables from the vector
x that are measured experimentally over time. While these measurements y are discrete in nature,
the assumption that y is a continuous variable can be made if the sampling frequency is sufficiently high.

Optimal experimental design involves maximizing a criterion function that indicates
the quantity of information gained by a given experiment, often in the context of model
identification [8–12,14,17–23,29,31]. Several commonly used criterion functions for experimental design
exist. One of these is A-optimality, which seeks to minimize the trace of the inverse of the Fisher
information matrix. This criterion results in minimizing the average variance of the estimates of
the regression coefficients. Another popular approach is E-optimality which maximizes the smallest
eigenvalue of the Fisher information matrix. However, the most popular approach is D-optimal
experimental design, i.e., which maximizes the determinant of the FIM [14,19,24]. The D-optimality
criterion was chosen for this work as it seeks to minimize the covariance of the parameter estimates
for a specified model [14]. It should be noted that no experimental design is optimal in all aspects
and maximizing one particular criterion often negatively affects the experimental design of other
criteria. That being said, the D-optimality criterion has found widespread use in practice as it results
in experimental designs that have many of the properties that one usually looks for. For numerical
considerations, the natural logarithm of the determinant of the FIM was taken for the problem
presented. The optimal experimental design objective can be written generally as

maxϕD(F), (2)

where F is the FIM, defined in more detail below, and ϕD is the D-optimality criterion.
Taking the determinant of the parameter covariance matrix corresponds to computing the

volume of the parameter space that would allow for a solution to the least squares parameter fitting
problem [14,18]. The volume of this parameter space represents the covariance, or uncertainty, of the
parameters. Because the FIM is related to the inverse of the covariance matrix [8,10], maximizing
the determinant of the FIM results in minimizing the determinant of the covariance matrix, and thus
minimizing the volume of the parameter space, or minimizing parameter uncertainty.

The FIM is computed from the sensitivity coefficients of the model, which can be an ODE model
as shown in Equation (1). Local sensitivity coefficients are defined as

∂xi
∂pj

∣∣∣∣∣
t,p

, (3)

where xi is the i-th state variable in the model, pj is the j-th model parameter in the vector p, and t is
the time at which the partial derivative is evaluated [2,3,32]. The local sensitivity coefficient represents
the change in a model state with respect to a change in the value of a parameter, and is a function
of time and the parameter vector. At every time point during an experiment, or a model simulation,
a sensitivity coefficient can be calculated for any of the state variables. However, the FIM contains the
sensitivity coefficients for only those state variables which are measured in experiments for generating
data to be used in parameter estimation using least squares fitting, i.e., the sensitivity coefficients for
the vector y. The FIM is written as

F = STS, (4)
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where S is the sensitivity matrix [32]

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y1
∂p1

(t1) ∂y1
∂pnp

(t1)
...

...
∂y1
∂p1

(tN) ∂y1
∂pnp

(tN)

. . .
∂y2
∂p1

(t1) ∂y2
∂pnp

(t1)
...

...
∂y2
∂p1

(tN) ∂y2
∂pnp

(tN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(2N)xnp , (5)

and np is the number of parameters in the model. Here, the formula shown for S corresponds
to an experiment in which two state variables are measured in a time series from time t1 to tN ;
one can extend the formula to the general case of any number of experimentally measured outputs,
however, two outputs are realistic for the application investigated in this paper. The local sensitivity
coefficients for all of the state variables of the model can be calculated by solving the system of ordinary
differential equations

d
dt

∂x
∂pT =

∂ f
∂xT

∂x
∂pT +

∂ f
∂pT (6)

where x is the column vector of state variables, p is the column vector of model parameters, and f is the
column vector of functions defining the model, as in Equation (1) [32]. To calculate the D-optimality
criterion value for a given experiment design, the model ODEs (Equation (1)) are solved simultaneously
with the sensitivity equations (Equation (6)), the FIM is constructed (Equations (4) and (5)), and the
determinant can then be computed. To determine an optimal experiment, an optimization problem is
solved which searches through different experimental designs, computing the D-optimality criterion
in this way for every iteration.

The Morris method [3] can also be utilized for calculating sensitivity coefficients in a covariance
matrix. It should be noted that such an approach results in more than local information due to the
certain properties of the Morris method. Using the Morris method, global sensitivity coefficients
are calculated by repeatedly sampling parameter values from a distribution. Finite difference
approximations of the local sensitivities are then computed at each value of the sampled parameter
vector, and the finite difference approximations are averaged to obtain each global sensitivity coefficient
as shown in Equations (7) and (8).

dijk =
yi(t, p1, . . . , pj + Δjk, . . . , pnp) − yi(t, p1, . . . , pj, . . . , pnp)

Δjk
(7)

sij =
1

nd

nd

∑
k=1

dijk (8)

Here, dijk is a finite difference derivative approximation for the local sensitivity of yi with respect
to parameter pj at the k-th sampled value of pj, Δjk defines the sampled value of pj depending on
the distribution of pj, and nd is the number of samples chosen for pj. This method for calculating
sensitivity coefficients takes into account the uncertainty of the parameter values by averaging over
samples from the parameter distribution. Therefore, using the Morris method for calculating the
sensitivity coefficients in the FIM does not rely on knowledge of an exact value for the parameters.
In fact, the exact values of the parameters are by definition unknown—otherwise, one would not
need to estimate the parameters. For this problem, the parameter distributions were considered to be
normal with a mean at the nominal parameter values and a standard deviation of one-tenth the value
of each parameter.
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3. Formulation of the Optimal Experimental Design Problem for the IL-6 Model

The values of the parameters p in ODE models are generally unknown and must be estimated
using experimentally measured data points [20,30,33]. The problem considered here is to optimize the
function for the controlled variable u in order to minimize the uncertainty of the parameters estimated
by least squares parameter estimation.

In the IL-6 model, u represents the IL-6 concentration in the local environment of the cells being
stimulated by IL-6. The IL-6 concentration at a given time determines the signaling behavior of the
cells, which is characterized by the concentrations of each signaling molecule in the pathway at time
t. Thus by modulating the input IL-6 concentration, u, as a function of time, the signaling dynamics
can be influenced so that measurements of components of the signaling pathway can yield maximal
information about the model parameters.

The measured state variables for this problem were chosen to be STAT3N*-STAT3N* and C/EBPβ,
two transcription factors of the IL-6 signaling pathway which are directly involved in transcribing
DNA to RNA. These measurements were chosen because of the availability of a fluorescent reporter
system for measuring the concentrations of these two proteins [2,34]. To design an optimal experiment
for minimizing parameter uncertainty, experiments were considered in which the concentrations of
these two proteins are measured in a time series every 45 min for 22 h using a fluorescent reporter
system. This time sequence for image acquisition was utilized previously to obtain initial estimates
for the parameters of the model [2]. However, for the initial parameter estimation, a constant IL-6
concentration at an arbitrary level of 100 ng/mL was utilized as the input function [2]. In the present
work, optimal experimental design was applied to optimize the input function over a continuous set
of time-dependent input functions while utilizing the same time sequence for data acquisition as was
utilized in [2]. This allows for evaluating whether the parameter uncertainty can be decreased by
optimizing the input function while holding other experimental control decisions constant.

For this problem, the set of input functions to optimize was chosen to be the piecewise constant
input functions with fixed and equal time intervals and IL-6 concentrations bounded between 0 and
7.5 nM. These input functions were chosen because they can be implemented experimentally due to
the long intervals during which a concentration is constant, and because they can be parameterized
so as to arrive at an optimization problem with a finite number of variables. Specifically, the number
of optimization variables is the number of concentration levels allowed in the piecewise constant
function. This is illustrated in Figure 1 with a piecewise constant input function for IL-6 that has r = 4
concentration levels. As an example, to determine the optimal input function with r = 4 concentration
levels, the optimal experimental design problem would be solved with four optimization variables
representing the four concentration levels of such an input function.

These piecewise constant input functions can be written as

u(t) =
r
∑

k=1
ckstep(t − (k − 1)Δt) − r

∑
k=1

ckstep(t − kΔt)

= c1step(t) +
r
∑

k=2
[ckstep(t − (k − 1)Δt) − ck−1step(t − (k − 1)Δt)] − crstep(t − rΔt)

= c1step(t) +
r
∑

k=2
(ck − ck−1)step(t − (k − 1)Δt) − crstep(t − rΔt)

(9)

where ck is the k-th concentration level in the vector c, ‘step’ is the Heaviside step function, r is the
number of concentration levels in the input function, and Δt = 22 h/r is the time interval for each
concentration level in the input function.

By changing the vector c to modulate the IL-6 input function, the solution of the model ODEs and
local sensitivity ODEs are modulated. This causes the FIM, and thus the D-optimality criterion value,
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to be a function of c. Therefore, the optimal experimental design problem for minimizing parameter
uncertainty in the IL-6 model can be written as

max
0≤c≤7.5 nM

ln|F(c)|, (10)

where |·| is the determinant and F is calculated from Equations (4) and (5) with y1 from Equation (5)
being the concentration of STAT3N*-STAT3N*, y2 being the concentration of C/EBPβ, and p being
the parameters of the IL-6 model. Specifically, in order to calculate the FIM, the IL-6 signaling ODE
model is numerically integrated simultaneously with the local sensitivity equations (Equation (6)) for
a given input function represented by c, and the FIM is constructed according to Equations (4) and (5).
This ODE integration is carried out in every iteration of the optimization problem to evaluate the
D-optimality criterion value until the optimization solver determines a solution.

Figure 1. Example of a piecewise constant input function for IL-6 (Interleukin-6) concentration with
r = 4. The input function shown here can be represented as a vector of the four concentration levels in
chronological order: c = [1.1, 5.2, 0.9, 7.4] nM IL-6.

When solving the problem using the Morris method to obtain global sensitivity coefficients,
the local sensitivity coefficients in the FIM are replaced by the global sensitivity coefficients calculated
by the Morris method. For the Morris method, the local sensitivity ODEs do not need to be solved;
rather, the model ODEs are solved repeatedly using the sampled parameter values, and the finite
difference approximations of the partial derivatives are computed and averaged.

To solve the optimal experimental design problem for each value of r from 1 to 6, the MATLAB
function ‘fminsearch’ was utilized [35]. Additionally, to account for the bound constraints on the
concentration levels, a stop flag was imposed in the program for running the optimization solver.
Multiple initial guesses were utilized for each value of r to avoid local optima (between 5 and 18 initial
guesses were used depending on r, in order to cover the range of possible qualitative input function
shapes for each value of r).

4. Optimal Experimental Design for the IL-6 Signaling Model

Solving the optimal experimental design problem for minimizing parameter uncertainty in the
IL-6 model for values of r from 1 to 6 resulted in an optimal IL-6 input function for each value of r.
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The optimal solutions for each r are listed in Table 1, which also lists several sub-optimal input
functions for comparison. Note that the D-optimality criterion value is greatest for the optimal input
function with r = 6 (see columns 1–4 in Table 1). The range of D-optimality criterion values for the
input functions listed in the table (column 4) is very wide if one considers that the values given
are the logarithm of the determinant of the FIM rather than the determinant itself. As expected,
the D-optimality criterion values for the optimal input functions increase with r (see Table 1, column 4);
this is due to the degrees of freedom added when r is increased.

Table 1. Optimal and sub-optimal input functions for values of r from 1 to 6.

Input Function (nM) r Optimal?
D-Optimality

Criterion Value
Covariance

Norm
Covariance

Trace

3.83 1 no −133.9 161 216
6.59 1 yes −114.5 43.8 45.2

[0.48, 7.34] 2 yes −28.9 12.95 12.96
[6.30, 1.60, 7.20] 3 yes 0.30 0.0033 0.0040

[1.09, 5.22, 0.90, 7.39] 4 yes 3.24 6.56 × 10−5 6.59 × 10−5

[0.99, 5.64, 0.95, 7.37, 0.97] 5 yes 18.8 1.90 × 10−6 1.91 × 10−6

[0.89, 5.94, 1.01, 7.14, 1.07, 5.22] 6 yes 29.7 4.26 × 10−6 4.83 × 10−6

[6.97, 0.67, 7.23, 0.88, 7.49, 1.09] 6 no 19.8 0.195 0.204
[7, 6, 5, 4, 3, 2] 6 no −41.4 42.2 46.8
[1, 4, 6, 6, 4, 1] 6 no −32.2 1.63 2.03

[3, 4, 5, 6, 7] 5 no −47.9 55.5 68.8
[6, 6, 5, 3, 3] 5 no −47.5 1.32 1.44

To test whether higher D-optimality criterion values for an input function corresponded to lower
uncertainty, simulations were run for each of the input functions listed in Table 1. For these simulations,
data were generated by utilizing the original IL-6 model and adding normally distributed noise to the
measurements. Specifically, for a given input function, a simulation was run by integrating the original
IL-6 model, adding Gaussian noise with a mean of 0 and a standard deviation of 1 at the measurement
time points (every 45 min for 22 h), and fitting the parameters of the simplified IL-6 model to the
simulated data. The standard deviation of 1 was chosen to provide a reasonable signal to noise ratio
for the model variables. For each input function, 30 simulations were run and parameters were fitted
for each simulation. A parameter covariance matrix was then calculated for each of the input functions
using the parameter fits from the 30 simulations that were run for each input function. The norm
and trace of these covariance matrices were utilized as measures of uncertainty for the parameters.
The norm accounts for covariances, while the trace takes into account only variances. Columns 5 and 6
of Table 1 show the norm and trace of the covariance matrix for each input function. As expected, one
can observe that the uncertainty is generally lower for optimal input functions than for sub-optimal
input functions. However, the relationship between the (a priori computed) D-optimality criterion and
the (a posteriori determined) uncertainty is not monotonic; e.g., the uncertainty for the r = 5 optimal
input function is slightly lower than that for the r = 6 input function while the D-optimality criterion
value is greater for the r = 6 input function (Table 1). Furthermore, the uncertainty for the r = 6
sub-optimal input function shown is larger than that for the optimal r = 4 and r = 5 input functions
even though the D-optimality criterion value is greater for the r = 6 sub-optimal input function. There
are a number of possible reasons for this lack of monotonicity, such as nonlinearity of the IL-6 model
and the fact that optimal experimental design theory is an approximate theory in the case of nonlinear
models [8,10].

In order to corroborate that these findings also hold up when global rather than local analysis is
used, the Morris method was implemented for computing sensitivity coefficients. This resulted in the
optimal input functions listed in Table 2. Figure 2 shows the optimal input functions computed by both
the local method and the Morris method for r from 1 to 6. It was observed that both methods resulted
in optimal input functions with alternating IL-6 concentration levels, reminiscent of pseudo-random
binary signals (PRBS signals). While the different methods sometimes result in input profiles that start
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high vs. low, the general shape of the functions is an oscillation between a low and a high value of the
input. This suggests that PRBS-like signals may be favorable for minimizing parameter uncertainty in
the IL-6 signaling model.

a) b)

c) d)

e) f)

Figure 2. Optimal input functions for values of r from 1 to 6. Blue indicates input functions identified
as optimal from the local sensitivity method, green indicates input functions identified as optimal from
the Morris method. (a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4 (e) r = 5 (f) r = 6.

Table 2. Optimal input functions for values of r from 1 to 6 via the Morris method

Input Function (nM) r

7.37 1
[2.38, 6.60] 2

[7.21, 1.83, 7.15] 3
[6.01, 1.05, 6.02, 0.99] 4

[7.36, 1.27, 6.68, 0.73, 6.70] 5
[6.11, 0.99, 5.75, 1.02, 6.26, 1.02] 6
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An important take-away message from the simulation results is that optimal experimental design
can be very effective at providing an a priori design, yet this does not replace evaluating the quality of
a design a posteriori.

5. Discussion

The IL-6 model aims to capture the behavior of molecules involved in both the Jak-STAT pathway
and the MAPK pathway [2]. This model is larger and more nonlinear than most models that have
previously been the subject of optimal experimental design involving signaling pathways [18,24,25].
The present study shows that optimal experimental design can be utilized for improving the
parameter accuracy of moderately complex nonlinear models. Further, the study shows that
parameter uncertainty can be substantially decreased by optimizing the input function alone without
simultaneously optimizing the experimental measurement time points for this particular system.
This observation potentially has fortunate implications for experimental systems in which the input
function can be controlled but the experimental measurement time points are dictated by practical
considerations and cannot be changed.

The main step in the optimal experimental design was the sensitivity analysis for constructing the
FIM. This involves constructing the Jacobian of the model equations so that the sensitivity equations can
be integrated to obtain the sensitivity coefficients for the FIM. In principle, this method can be applied
to any ODE model. The main step in the analysis is therefore to calculate all of the partial derivatives
in the Jacobian, since the Jacobian will be different for every ODE model. For the Morris method,
the information matrix is constructed by sampling from the parameter distribution and calculating
finite difference derivative approximations for the sensitivities. In both cases—i.e., local and global
methods—an ODE solver capable of accurately integrating the ODEs must be used, along with the
optimization solver in order to evaluate the objective function for each optimization iteration.

Optimal experimental design using the D-optimality criterion was effective, according to the
simulation results, in decreasing the parameter uncertainty in the model. However, one has to caution
that this is only one aspect. For example, it has been shown in work by White et al. [36] that increased
parameter accuracy does not guarantee an improvement in the accuracy of the model.

The form of the optimal input functions for the IL-6 model raises an interesting point regarding
general system identification theory. Each of the determined optimal input functions takes the form
of a PRBS-like sequence (see Figure 2), a commonly used input signal for system identification [37],
even though this input function shape was not postulated during the formulation of the optimal design
problem. Furthermore, computing an experimental design where sensitivities were computed via
the Morris method also led to PRBS-like optimal inputs. Without commenting on generality, a PRBS
signal seems to be a good choice for inputs of the investigated IL-6 signaling model, a result that may
potentially carry over to other signaling pathway models.

6. Conclusions

Optimal experimental design was applied to the problem of minimizing parameter uncertainty
in an IL-6 signaling model representing the Jak-STAT and MAPK pathways. The D-optimality
criterion, operating on the FIM, was constructed using sensitivity equations, which were solved
simultaneously with the equations of the model. Piecewise constant input functions were determined
by solving this optimization problem; the piecewise nature of the inputs lays the groundwork for
implementing the determined IL-6 concentration profiles on an experimental system. The optimal input
functions resulted in decreased parameter uncertainty for the model, as observed from simulations
in which parameters were fitted using the optimal input functions for inducing the signaling system.
Interestingly, the determined optimal input functions took on the shape of PRBS signals even though
this was not in any way postulated by the optimal experimental design problem. This observation was
further validated by formulating and solving the problem using a global method in addition to the
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local method. Future work should corroborate these findings by applying the determined optimal
experimental design to an actual experiment.
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Appendix A

The ordinary differential equations comprising the IL-6 model from [2] are shown below, with
initial values for the variables and a schematic of the signaling network taken from [2]. Parameter
values from the initial fit performed in [2] and values from the average simulated fit using the optimal
r = 5 input function (from the local method) are shown in Table A1. Units for parameter values
correspond to time in seconds and concentrations in nM.

1)

2)

3)

Figure A1. IL-6 model taken from [2]. (1) Model ODEs (2) initial conditions (3) schematic of the IL-6
signaling network.
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Table A1. Parameter values from initial parameter fit [2] and from optimal r = 5 input function.

Parameter Initial Fit r = 5 Fit 1

p1 2.336 × 10−5 2.59 × 10−5

p2 0.002 0.0128
p3 0.0138 0.0148
p4 1.502 1.508
p5 0.273 0.232
p6 3.282 × 10−4 5.653 × 10−4

p7 0.023 0.024
p8 1290 1219
p9 50.6 52.3
p10 2.067 × 10−4 5.557 × 10−4

p11 16.52 16.55
p12 0.04 0.06
p13 0.0023 0.0023
p14 4.059 × 10−4 4.221 × 10−4

p15 5.086 × 10−4 8.717 × 10−4

p16 16.0 15.9
p17 5.115 × 103 5.085 × 103

p18 1.198 × 10−5 1.648 × 10−5

p19 1.0 × 10−6 3.0 × 10−5

1Averaged from 30 simulations utilizing the original IL-6 model.
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Abstract: The bottleneck in creating dynamic models of biological networks and processes often lies in
estimating unknown kinetic model parameters from experimental data. In this regard, experimental
conditions have a strong influence on parameter identifiability and should therefore be optimized to
give the maximum information for parameter estimation. Existing model-based design of experiment
(MBDOE) methods commonly rely on the Fisher information matrix (FIM) for defining a metric
of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may
lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs
with respect to the parameters. In this work, we developed a multi-objective optimization (MOO)
MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature.
The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric
and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO
MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic
modeling of fed-batch fermentation of baker’s yeast.

Keywords: design of experiments; multi-objective optimization; Fisher information matrix; curvature;
biological processes; mathematical modeling

1. Introduction

Dynamic models of biological networks and processes are often created to gain a better
understanding of the system behavior. The creation of dynamic biological models requires the
values of kinetic parameters, many of which are system-specific and typically not known a priori.
These parameters are commonly estimated by calibrating model simulations to the available
experimental data. Such parameter fitting is known to be challenging, as there often exist multiple
parameter combinations that fit the available data equally well; that is, the model parameters are not
identifiable [1–5]. While there exist a number of reasons for such lack of parameter identifiability,
experimental conditions have a strong influence on this issue and thus should be carefully designed.
In addition, biological experiments and data collection are often costly and time-consuming, further
motivating the need for well-planned experiments that would give the maximum information given
finite resources.

Model-based design of experiments (MBDOEs) offer a means for integrating dynamic modeling
with experimental efforts, as illustrated by the iterative procedure in Figure 1. The role of the
model here is to capture the knowledge and information about the system up to a given iteration.
By using MBDOEs, one could harness this knowledge to guide experiments in the next iteration.
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MBDOE techniques have been used extensively for chemical process modeling [6], and more recently,
they have been applied to the modeling of cellular processes [7,8]. For the purpose of parameter
estimation, experiments are generally designed to improve the precision of the estimated parameters.
In this regard, the Fisher information matrix (FIM), whose inverse provides an estimate of the lower
bound of parameter variance-covariance by the Cramér-Rao inequality [9], has been commonly used
to define the objective function in the optimal experimental design (see [8] and references therein).
Since the turn of the century, FIM-based MBDOE methods have had newfound applications in the
emerging area of systems biology [10–16]. Besides FIM, Bayesian approaches have also been used
for MBDOEs, where given the prior distribution of the model parameters, experiments are designed
to minimize the posterior parameter variance [8]. Bayesian MBDOE strategies have been applied to
the modeling of biological networks for reducing parametric uncertainty [17–19]. While our work is
concerned with MBDOEs for the purpose of parameter estimation, MBDOE strategies have also been
developed and applied for discriminating between biological model structures [20–24] and reducing
cellular process output uncertainty [19,25,26].

EXPERIMENTAL 

DESIGN

SYSTEM

MODEL

FORMULATION

PARAMETER

ESTIMATION

Input data Output data

A priori knowledge

MODEL

VALIDATION

Yes

No

Figure 1. Iterative model identification cycle. The model building process involves the following key
steps: experimental design, model structure formulation, parameter estimation, and model validation.

In this work, we focused on FIM-based MBDOEs for parameter estimation. The FIM relies
on a linear approximation of the model behavior as a function of the parameters. More precisely,
the FIM is computed as a function of the first-order parametric sensitivity coefficients (Jacobian
matrix) of model outputs. For systems with a high degree of nonlinearity, the optimal experimental
design using the FIM may perform poorly [27]. For this reason, Bates and Watts proposed a MBDOE
based on minimizing model curvature by using the second-order parametric sensitivities (Hessian
matrix) [28]. Hamilton and Watts further introduced a design criterion, called Q-optimality, based on
a quadratic approximation of the volume of the parameter confidence region [29]. More recently,
Benabbas et al., proposed two curvature-based MBDOEs [30]. In one design, the authors used
a minimization of the root mean square (RMS) of the Hessian matrix, while in another design,
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they employed a constrained optimization guaranteeing the RMS to be lower than a given level.
While the second strategy using a curvature threshold was demonstrated to give more informative
experiments, how to set the appropriate RMS threshold value in a particular application was
not described.

Recently, Maheshwari et al. described a multi-objective optimization (MOO) formulation for
optimizing the design of the experiment using a combination of FIM-based metric and parameter
correlation [15]. Because parameter correlations could not account for model nonlinearity, the strategy
has the same drawback as FIM-based methods when applied to nonlinear models. In this work,
we proposed a MOO MBDOE method using a combination of a FIM criterion and model curvature.
We demonstrated the advantages of the proposed MOO MBDOE over FIM-based and other
curvature-based methods in an application to the kinetic modeling of the fed-batch fermentation
of baker’s yeast [30,31].

2. Model-Based Optimal Design of Experiments

We assume that the experimental data y ∈ IRn are contaminated by additive random noise,
as follows:

y = μ + ε (1)

where μ and ε denote the mean of the measurement data and the random noise, respectively.
When the total number of data points n is greater than the number of parameters p, μ spans a
p-dimensional space Ω ⊂ IRn, where

Ω = {μ : μ = F(x, u, θ), θ ∈ Θ ⊂ IRp} (2)

Here, x ∈ IRs denotes the state vector, θ ∈ IRp denotes the parameter vector, u ∈ IRm denotes the
input and F(x, u, θ) denotes the vector of nonlinear model equations. The subspace Ω is also called the
expectation surface or the solution locus. For a dynamic system, the state x is often described by a set
of ordinary differential equations (ODEs):

dx(θ, t)
dt

= g(x(θ, t), u, θ), x(θ, 0) = x0 (3)

The estimation of model parameters θ from a given set of data y is typically formulated as a
minimization of the weighted sum of squares of the difference between the model prediction F(x, u, θ)

and the measurement data y. For example, the maximum likelihood estimator (MLE) of the model
parameters for normally distributed data with known variance V is given by the minimum of the
following objective function:

Φ(θ) = [y − F(x, u, θ)]T V−1 [y − F(x, u, θ)] (4)

When the model is a linear function of the parameters F(x, u, θ) = Xθ, X ∈ IRn×p, then the
parameter estimates are given by θ̂ = (XTV−1X)−1XTV−1y. In this case, the MLE is the minimum
variance unbiased estimator of θ, where the covariance matrix of the parameter estimates is given
by Vθ = (XTV−1X)−1. When the model is nonlinear (with respect to the parameters), the parameter
estimates θ̂ = arg min Φ(θ) do not necessarily correspond to the minimum variance estimator.
According to the Cramér-Rao inequality [9], the inverse of the FIM provides a lower bound for
the covariance of the parameter estimates θ̂, that is

Vθ ≥ FIM−1 = ( ˆ̇FTV−1 ˆ̇F)−1 (5)

where ˆ̇F = Ḟ(θ̂, x) = ∂F(x,u,θ)
∂θ |θ=θ̂ is the first-order sensitivity matrix of F(x, u, θ) with respect to the

parameters θ.
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On the basis of the Cramér-Rao inequality, the FIM has been commonly used as a criterion of
data informativeness in MBDOEs. Many methods for MBDOEs, such as those listed in Table 1,
are based on finding experimental conditions that optimize a FIM-based information metric.
As shown in Equation (5), the FIM relies on a linearization of the model behavior with respect
to the parameters. Essentially, the linearization replaces the expectation surface Ω by its tangent plane
at θ̂. The performance of the experimental design using a FIM-based criterion would therefore depend
on whether (1) the model outputs vary proportionally with the parameter values (planar assumption),
and (2) whether this proportionality is constant (uniform coordinate assumption) [32]. When the model
is highly nonlinear with respect to the parameters, FIM-based MBDOEs may produce suboptimal
designs [33,34]. A recent MOO MBDOE using a combination of a FIM criterion and parameter
correlation has been shown to provide an improvement over FIM-based MBDOE methods [15].
However, this method also relies on the first-order parametric sensitivity matrix, and thus it could not
account for model nonlinearity.

Table 1. Model-based designs of experiments (MBDOEs) using the Fisher information matrix (FIM).

FIM-Based MBDOE Criterion

D-optimal max ∏i λi
A-optimal max ∑i λi
E-optimal max min(λi)

Modified E-optimal max min(λi)
max(λi)

Curvature-based design of experiment methods such as the Q-optimality have been introduced
to account for model nonlinearity by employing a second-order approximation of the model output.
Here, the curvature of the expectation surface Ω is captured using the second-order sensitivities of
F(x, u, θ) based on the Taylor series expansion:

F(x, u, θ) = F(x, u, θ̂) + ˆ̇F(θ− θ̂) +
1
2
(θ− θ̂)T ˆ̈F(θ− θ̂) + O((θ− θ̂)3) (6)

where ˆ̈Fijk = ∂2Fi(x,u,θ)
∂θj∂θk

|θ=θ̂ is the n × p × p Hessian matrix. As mentioned in the Introduction,
several curvature-based MBDOE methods are available, for example, by minimizing curvature or
using a curvature threshold [30]. In this work, we employed a MOO approach based on curvatures for
designing optimal experiments. The basic premise of our MBDOE is to select experimental conditions
that maximize the informativeness of data and ensure that the model behaves relatively linearly with
respect to the parameters. More specifically, our MBDOE uses two objective functions, the first of
which involves the maximization of a FIM-based information metric, and the second of which involves
the minimization of relative curvature measures [28]. The second objective function ensures that the
FIM can provide a reliable measure of data informativeness.

2.1. Multi-Objective Design of Experiments Based on Curvatures

In this section, we derive the relative curvature measures by following the work of Bates and
Watts [28]. We consider an arbitrary straight line in the parameter space passing through θ̂:

θ(b) = θ̂+ bh (7)

where h = [h1, h2, . . . , hp] is a non-zero vector. As the scalar parameter b varies, a curve is traced
through the expectation surface, also referred to as the lifted line, according to

μh(b) = μ(θ̂+ bh) (8)
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The tangent line of this curve at b = 0 is given by

μh =

[
dμh(b)

db

]
θ=θ̂,b=0

=

[
p

∑
r=1

∂F(x, u, θ)

∂θr

∂θr(b)
∂b

]
θ=θ̂,b=0

= ˆ̇Fh

(9)

The set of all such tangent lines, that is, the column space of ˆ̇F, describes the tangent (hyper)plane
at μ(θ̂).

Meanwhile, the curvature measures come from a quadratic approximation of μ. In this case,
the acceleration of μ(b) at b = 0 can be written as follows:

μ̈h = hT ˆ̈Fh =
p

∑
i=1

p

∑
j=1

∂2F(x, u, θ)

∂θi∂θj
hihj (10)

The acceleration vector μ̈h can be subsequently decomposed into two components:

μ̈h = μ̈t
h + μ̈n

h (11)

where at μ(θ̂), μ̈t
h is tangential to the tangent plane and μ̈n

h is normal to the tangent plane. The tangential
acceleration μ̈t

h is also called the parameter-effect curvature [28] and provides a measure of nonlinearity
along the parameter vector h. The degree of the parameter-effect curvature can change upon
reparameterization of the model. Meanwhile, the normal acceleration μ̈n

h does not vary with model
parameterization, and hence it is called the intrinsic curvature. Finally, the relative curvature measures
in the direction of h are given by [28,32]:

Kt
h =

‖μ̈t
h‖

‖μ̈t
h‖2 (12)

Kn
h =

‖μ̈n
h‖

‖μ̈n
h‖2 (13)

Below, we describe the decomposition of the Hessian into the tangential and the normal

component. We consider the QR-factorization of the Jacobian ˆ̇F, that is, ˆ̇F = QR = Q

[
R̃

0

]
. By rotating

the parameter axes (θ − θ̂) into ϕ = R̃(θ − θ̂), a new Jacobian matrix U̇ = dF(x,u,ϕ)
dϕ |ϕ=0 can be

computed as U̇ = ˆ̇FR̃−1, which comprises the first p column vectors of Q (i.e., Q =
[
U̇ N

]
).

The remaining column vectors of Q (i.e., N) are orthonormal to the tangent surface at ϕ = 0. In the
same manner, the Hessian matrix in the rotated axes can be written as Ü = LT ˆ̈FL, where L = R̃−1 and
Üijk =

∂2Fi(x,u,ϕ)
∂ϕj ϕk

|ϕ=0. The decomposition of the Hessian into the tangential and normal components is
given by the following equation [28]:

Ä = QTÜ =
[
U̇ N

]T
Ü =

[
Ät Än

]
(14)

The matrices Ät and Än respectively correspond to the parameter-effect and intrinsic curvature
components of the Hessian.
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To normalize the relative curvatures in Equations (12) and (13), Bates and Watts [28] used the

scaling factor ρ, where ρ = s
√

p and s2 = (y−μ̂)T(y−μ̂)
n−p . Following the same procedure, we define the

normalized relative curvatures as follows:

γt
h = ρKt

h (15)

γn
h = ρKn

h (16)

In addition, recasting h in the rotated axes as h = Ld, the tangent line μ̇Ld will have a unit norm
(i.e., ‖μ̇Ld‖ = 1) when d is a unit vector. The computation of γt

h and γn
h is thus simplified into

γt
Ld = ρ‖dTÄtd‖, ∀d : ‖d‖ = 1 (17)

γn
Ld = ρ‖dTÄnd‖, ∀d : ‖d‖ = 1 (18)

In the proposed experimental design, the maximum of these curvature measures are used, where

γt
max = max

‖d‖=1
γt

Ld (19)

γn
max = max

‖d‖=1
γn

Ld (20)

As mentioned above, in formulating the MOO for the design of experiments, two design criteria
have been taken into account. The first is that the experiment should be designed to maximize the
informativeness of the data for parameter estimation. In this case, we employ an information metric
based on the FIM. Meanwhile, the second design criterion in the MOO aims to minimize both the
parameter-effect and intrinsic curvatures. The MOO formulation offers certain advantages, for example,
that there is no need to prioritize any one of the criteria beforehand. Instead, we generate the Pareto
set or Pareto frontier representing the set of solutions for which we cannot improve the value of one
objective function without negatively affecting the other(s) [35].

Considering the kinetic ODE model given in Equation (3), our multi-objective formulation using
the D-optimal criterion is given by

max
x0 ,tsp ,u(t)

∏
i

λi

min
x0 ,tsp ,u(t)

γt
max + γn

max

(21)

subject to

dx(θ̂, t)
dt

= g(x(θ̂, t), u, θ̂)

x(θ̂, 0) = x0

xL
0 ≤ x0 ≤ xU

0

uL
j ≤ uj ≤ uU

j

(22)

where λi is the ith eigenvalue of the FIM (Equation (5)). The first objective function can be substituted
with other FIM-based metrics (see Table 1). The parameter vector θ̂ is either an initial guess of
the parameter values or the parameter estimates from the current iteration of an iterative model
identification procedure [6]. The decision variables may include the initial condition of the states x0,
the sampling time points of measurements tsp, and the dynamic input u(t). In the case study below,
we considered a control vector parametrization (CVP) of the input ui(t) as illustrated in Figure 2.
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Figure 2. Control vector parametrization of input profiles. In the baker yeast case study,
we implemented piecewise constant input profiles with ui=[ui,1, ui,2, ui,3, ui,4, ui,5] and four switching
times: tsw1, tsw2, tsw3, and tsw4.

2.2. Numerical Implementation of the Curvature-Based MOO Design

As described in the previous section, the parameter-effect and intrinsic curvatures require the
computation of the first- and second-order model sensitivities. For the ODE model in Equation (3),
the first-order sensitivities can be calculated according to

ˆ̇F = Ḟ(θ̂, x) =
∂F(x(t, u, θ))

∂x

∂x(t, u, θ)

∂θ/θ

∣∣∣∣
θ̂

(23)

The sensitivities in the above equation are normalized with respect to the parameter values.
The last term on the right-hand side is the first-order sensitivities of the ODE model, which obey the
following differential equation:

d
dt

∂x

∂θ
=

∂g

∂x

∂x

∂θ
+

∂g

∂θ
,

∂x

∂θ

∣∣∣∣
t=0

= 0 (24)

Here, we have assumed that x0 is not part of the parameter estimation, but such an assumption
can be easily relaxed. In the case study, the sensitivities ∂x

∂θ were computed by solving the ODE in
Equation (24) simultaneously to Equation (3), following a procedure known as the direct differential
method [36]. Meanwhile, the Hessian matrix was approximated using a finite-difference method,
as follows:

ˆ̈Fijk =

⎧⎪⎨
⎪⎩

Fi(θ+Δθjej)−2Fi(θ)+Fi(θ−Δθjej)

Δθ2
j /θ2

j
, for j = k

Fi(θ+Δθjej+Δθkek)−Fi(θ+Δθjej−Δθkek)−Fi(θ−Δθjej+Δθkek)+Fi(θ−Δθjej−Δθkek)

(Δθj/θj)(Δθk/θk)
, for j �= k

(25)

where ej is the jth elementary vector and uses 1% parameter perturbations (i.e., Δθj/θj=0.01).
The second-order sensitivities above are also normalized with respect to the parameter values.

Meanwhile, the curvature measures γt
max and γn

max in Equations (19) and (20) were calculated
from the Hessian matrix using the alternating least squares (ALS) method [37], an algorithm created
to find the maximum singular value σmax of a three-dimensional matrix. Based on the definitions
in Equations (19) and (20), the maximum curvature measures can be determined by computing the
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maximum singular values of the matrices ρÄt and ρÄn, respectively. More specifically, we implemented
the ALS method to solve for

σmax(B) = max
‖r‖=‖s‖=1

m

∑
i=1

ri sTBis (26)

where B is either ρÄt or ρÄn. The ALS algorithm started with initial guess values of the vectors r

and s and used the above equation to solve for one variable while fixing the other in an alternating
manner. Zhang and Golub showed that the method linearly converges in a neighbourhood of the
optimal solution [37].

In the case study, the MOO problem was solved using the non-dominated sorting genetic
algorithm II (NSGAII) in MATLAB, producing a Pareto frontier in the space of the objective
functions [38]. We employed a population size of 300 and set the number of generations to 50 times
the number of parameters (i.e., 1450). We recasted a maximization of an objective function as
the minimization of its negative counterpart. The optimal design was selected from the Pareto
frontier by balancing the trade-offs among the objective functions. More specifically, we first
normalized the objective functions such that their values on the Pareto frontier ranged between
0 and 1. Finally, we chose among the solutions on the Pareto frontier that which minimized the
Euclidean distance of all (normalized) objective functions as the final design.

3. Results

3.1. MBDOEs of Baker Yeast Fermentation Model

We evaluated the performance of the proposed MBDOE in an application to a kinetic model
of a fed-batch fermentation of baker’s yeast [30,31]. In addition to a D-optimal criterion, we also
implemented A-optimal, E-optimal and modified E-optimal criteria (see Table 1) with our MOO
MBDOE. We compared the performance of our method to other MBDOEs, including (a) FIM-based
MBDOEs, that is, D-optimal, A-optimal, E-optimal and modified E-optimal designs; (b) a D-optimal
design with a curvature threshold [30]; (c) a Q-optimal MBDOE [29]; and (d) a MOO MBDOE
using parameter correlation [15]. In total, we applied and compared 14 MBDOE methods. For the
optimizations in (a), (b) and (c), we employed the enhanced scatter search metaheuristic (eSSm)
algorithm [39–41]. For the MOO in (d), we used the optimization algorithm and optimal Pareto point
selection, as described in the previous section.

In the fed-batch fermenter model, cellular growth and product formation are captured by the
biomass variable x1, which is assumed to rely on a single substrate variable x2. The fermenter operates
at a constant temperature and the feed is free from product. The model equations are given by

dx1

dt
= (r − u1 − θ4)x1, x1(0) = x10

dx2

dt
= − rx1

θ3
+ u1(u2 − x2), x2(0) = 0.1

r =
θ1x2

θ2 + x2

(27)

where the input u1 is the dilution factor (in the range of 0.05–0.20 h−1) and the input u2 is the
substrate concentration in the feed (in the range of 5–35 g/L). In the model, the biomass growth follows
Monod-type kinetics. The parameters θ1 and θ2 are the Monod kinetic parameters, θ3 is the yield
coefficient, and θ4 is the cell death rate constant.

In the MBDOE, the design variables consisted of the initial condition of the biomass x1(0) in
the range between 1 and 10 g/L, 10 measurement sampling times (tsp), and the inputs u1(t) and
u2(t). The piecewise-constant dynamic inputs were each parametrized using the CVP, as shown in
Figure 2. Thus, the MOO was performed with 29 design parameters (x1(0), 10 tsp’s, 10 ui,j’s, and 8 tsw’s).
The length of the time interval between two successive measurement sampling points was constrained
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to be between 1 and 20 h, while that between two input switching times was bounded between 2 and
20 h. The calculations of the Jacobian and Hessian matrices in MBDOEs were made using parameter
values θd = [θ1, θ2, θ3, θ4] = [0.5, 0.5, 0.5, 0.5] [15,42], which were different from the “true” parameter
values used for noisy data generation in the next section. The reason for using a different parameter
set in the MBDOE to the true values was to emulate the typical scenario in practice, for which one
would start only with an estimate or guess of the model parameters. Figures 3 and 4 show the optimal
dynamic inputs and data sampling times resulting from all the MBDOE methods mentioned above
(see also the Pareto frontiers in Figures S1 and S2 in the Supplementary Materials). Meanwhile, Table 2
gives the optimal initial biomass concentration x1(0).
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Figure 3. Optimal dilution factor and feed substrate concentration. Optimal dilution factor (u1 in
h−1, left panels) and feed substrate concentration (u2 in g/L, right panels). (A,B) D-optimal (blue).
(C,D) A-optimal (red). (E,F) E-optimal (green). (G,H) modified E-optimal (black). In panels (A–H),
the optimal u1 and u2 using Fisher information matrix (FIM)-based criteria are shown by solid
line. Those using FIM-based criteria combined with curvatures are shown by dashed line, while
those using FIM-based criteria combined with parameter correlation are drawn with dashed-dot line.
(I–J) Threshold curvature (magenta, solid line), and Q-optimal design (magenta, dashed line).
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Figure 4. Optimal sampling grid from model-based design of experiments (MBDOEs). Simple Fisher
information matrix (FIM)-based criteria shown by continuous line, FIM-based criteria combined
with curvatures by dashed line, and FIM-based criteria combined with parameter correlation by
dashed-pointed line. Dots indicate the sampling times.

Table 2. Optimal initial condition of biomass x1(0) (g/L) from model-based design of experiments
(MOO: multi-objective optimization).

Design Criterion x1(0)

D-optimal 10.0
MOO D-optimal and curvatures 10.0
MOO D-optimal and correlation 10.0

A-optimal 10.0
MOO A-optimal and curvatures 9.9
MOO A-optimal and correlation 10.0

E-optimal 10.0
MOO E-optimal and curvatures 10.0
MOO E-optimal and correlation 10.0

Modified E-optimal 10.0
MOO modified E-optimal and curvatures 10.0
MOO modified E-optimal and correlation 10.0

Threshold curvature 8.2
Q-optimal 5.5

3.2. Performance Evaluation

For each of the optimal experimental designs above, we generated in silico datasets by simulating
the ODE model using the parameter values θ∗= [0.31, 0.18, 0.55, 0.05], as reported in previous
publications [15,42]. We subsequently added independent and identically distributed (i.i.d.) Gaussian
random white noise to the model simulations using a relative variance of 0.04 for both x1(t) and
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x2(t) [15,42]. For each in silico dataset, we then performed a parameter estimation using the resulting
data (y1 and y2) by maximum likelihood estimation, that is, by minimizing

Φ(θ) =
1
σ2

10

∑
i=1

[y1(ti)− x1(ti, θ)]2 + [y2(ti)− x2(ti, θ)]2 (28)

We also employed the following constraints for θ in the optimization above:

0.05 ≤ θ1, θ2, θ3 ≤ 0.98

and
0.01 ≤ θ4 ≤ 0.98

Finding the globally optimal solution to the parameter estimation in Equation (4) is challenging.
Here, we solved the constrained parameter optimization problem using the interior-point algorithm
(implemented by the subroutine fmincon function in MATLAB) with the true parameter values θ∗

as the initial guess. By employing the true values as the initial starting point of the optimization,
we expected that the parameter accuracy would mainly be affected by the experimental design and
not by the ability of the parameter optimization algorithm to find the globally optimal solution.

We repeated the in silico data generation and parameter estimation as described above 100 times,
which resulted in a set of 100 parameter estimates. The performance of each MBDOE was assessed
by the average accuracy of the parameter estimates, measured by the average of the normalized
mean-square error (nMSE):

nMSE =
1
4

4

∑
i=1

nMSEi (29)

where

nMSEi =
variance(θ̂i)− bias2(θ̂i)

(θ∗i )2 , i = 1, 2, 3, 4 (30)

The variance of θ̂i was computed using the set of 100 parameter estimates, while the bias was
calculated as the difference between the average of θ̂i and θ∗i . Table 3 gives the average nMSE of the
parameter estimates from each MBDOE under consideration.

Table 3. Model-based design of experiment (MBDOE) performance on the fed-batch fermentation of
baker’s yeast model. The overall parameter accuracy is represented by the average of the normalized
mean-square error (nMSE). The reported parameter values and errors are the averages and standard
deviations from 100 repeated runs of parameter estimation.

Design Criterion nMSE θ1 ± SDθ1
θ2 ± SDθ2

θ3 ± SDθ3
θ4 ± SDθ4

D-optimal 7.06 × 10−3 0.3107 ± 0.0102 0.1831 ± 0.0276 0.5505 ± 0.0125 0.0502 ± 0.0026
MOO D-optimal and curvatures 4.71 × 10−3 0.3099 ± 0.0056 0.1825 ± 0.0233 0.5496 ± 0.0099 0.0499 ± 0.0018
MOO D-optimal and correlation 5.36 × 10−3 0.3117 ± 0.0134 0.1781 ± 0.0151 0.5543 ± 0.0270 0.0508 ± 0.0049

A-optimal 2.35 × 10−1 0.3294 ± 0.0659 0.2399 ± 0.1387 0.5841 ± 0.1083 0.0558 ± 0.0181
MOO A-optimal and curvatures 1.42 0.3669 ± 0.0947 0.5267 ± 0.2230 0.5548 ± 0.1333 0.0510 ± 0.0244
MOO A-optimal and correlation 4.82 0.0863 ± 0.0499 0.8927 ± 0.2555 0.2879 ± 0.1928 0.0177 ± 0.0263

E-optimal 8.01 × 10−2 0.3180 ± 0.0420 0.2026 ± 0.0956 0.5473 ± 0.0159 0.0496 ± 0.0026
MOO E-optimal and curvatures 3.33 × 10−3 0.3083 ± 0.0095 0.1829 ± 0.0164 0.5502 ± 0.0183 0.0500 ± 0.0026
MOO E-optimal and correlation 8.19 × 10−3 0.3108 ± 0.0164 0.1824 ± 0.0213 0.5552 ± 0.0304 0.0509 ± 0.0055

Modified E-optimal 6.99 × 10−2 0.3137 ± 0.0165 0.1986 ± 0.0920 0.5498 ± 0.0144 0.0502 ± 0.0033
MOO modified E-optimal and curvatures 3.44 × 10−4 0.3095 ± 0.0036 0.1789 ± 0.0034 0.5491 ± 0.0073 0.0500 ± 0.0013
MOO modified E-optimal and correlation 2.27 × 10−3 0.3088 ± 0.0048 0.1820 ± 0.0160 0.5486 ± 0.0047 0.0496 ± 0.0013

Threshold curvature 1.29 × 10−2 0.3144 ± 0.0307 0.1857 ± 0.0339 0.5500 ± 0.0155 0.0502 ± 0.0032
Q-optimal 1.91 × 10−2 0.3085 ± 0.0178 0.1757 ± 0.0216 0.5514 ± 0.0236 0.0504 ± 0.0119
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4. Discussion

As shown in Figure 3, the MBDOEs prescribed manipulating the input u1(t) mostly at the
beginning of the experiment and the input u2(t) for the entire duration of the experiment. For the
majority of the MBDOEs in this study, the optimal sampling times spread unevenly over the duration
of the experiment (see Figure 4). A more detailed comparison between Figures 3 and 4 showed that the
optimal sampling points were typically placed before and after a change in the dynamic inputs u1(t)
and u2(t). The exception to this observation was for the optimal design using the A-optimal criterion,
which gave the worst parameter accuracy among the MBDOEs considered.

The consideration of model curvature using the proposed MOO MBDOE generally led to
improved parameter accuracy over using only model curvature (i.e., Q-optimal and threshold
curvature) or using only FIM-based criteria. The lowest nMSE came from the MOO MBDOE
design using the modified E-optimal with model curvature. In comparison to MOO MBDOE using
parameter correlation, employing model curvature in the MOO framework gave better experimental
designs with lower average nMSEs. Meanwhile, Q-optimality and curvature thresholding strategies
provided better nMSEs than the majority of the FIM-based criteria, except the D-optimal design.
Finally, the optimal experiments based on the A-optimal criterion, either alone or in MOO MBDOE,
performed poorly. The poor performance of the A-optimal design has also been reported in a previous
publication [15].

The obvious drawback of curvature-based MBDOEs in comparison to FIM-based strategies is
the higher computational cost associated with computing the Hessian matrix. While the number of
first-order sensitivities (Jacobian) increases linearly with the number of parameters p, the number of
second-order sensitivities scales with p2. Fortunately, the calculation of the Hessian matrix can be easily
parallelized and implemented using multiple computing cores. In practice, one often focuses on only a
subset of the model parameters, and therefore the MBDOE is typically done for a handful of parameters.

We note that the MBDOE methods considered in this work consider only parametric uncertainty
in the models and assume that uncertainty in model equations, that is, structural uncertainty, is not
significant. For certain types of models, such as generalized mass action and S-system models [43,44],
model structural uncertainty can be treated as parametric uncertainty, and therefore the MBDOE
strategies developed here could be applied. As mentioned in the Introduction, MBDOE methods
for discriminating between model structures have been developed, many of which are based on
the Bayesian approach. Furthermore, in applications for which there exists intrinsic parametric
variability, for example, batch-to-batch variability in cell culture fermentation processes, Bayesian
MBDOE methods would be more suitable than FIM-based strategies, as Bayesian methods are able
to incorporate the prior (intrinsic) distribution of the parameter values in the design. Nevertheless,
as demonstrated in the case study, even when the MOO MBDOEs were performed using model
parameters that were quite different from the true values, the resulting optimal designs led to
precise and accurate parameter estimates. Meanwhile, biological systems, like other complex systems,
have been argued to be sloppy. In the context of our work, sloppy systems lead to mathematical
models whose FIMs have eigenvalues that are logarithmically spread evenly over large orders of
magnitude [45]. In other words, the system behavior is sensitive to or is controlled by a small
number of parameter combinations (along the FIM eigenvectors corresponding to large eigenvalues).
At the same time, there exist many parameter combinations that can be varied without affecting the
system behavior. Such sloppiness could arise in a system governed by processes that span large
and evenly distributed length and/or time scales, such that there exists no clear separation between
relevant and irrelevant mechanisms. A recent study demonstrated that in the case of sloppy systems,
reducing the model parametric uncertainty by MBDOEs beyond a certain point might not necessarily
translate to any improvement in model prediction accuracy [45]. However, it is possible to construct
reduced-order models of sloppy systems, whose parameters correspond to the important parameter
combinations [46,47]. Parameter estimation and MBDOE strategies can then be applied to these
reduced models.
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5. Conclusions

Existing MBDOE methods for parameter estimation mostly rely on the FIM to define information
criteria. Because the FIM is based on first-order sensitivities with respect to the model parameters,
the related MBDOEs may perform poorly for nonlinear models. Here, a new MBDOE using a MOO
framework was presented, employing the maximization of a FIM-based information metric and
the minimization of model curvatures. The application to a model of the fermentation of baker’s
yeast demonstrated that accounting model nonlinearity through model curvatures in designing
the experiment could lead to improved parameter accuracy over using only a FIM-based criterion.
The proposed MOO MBDOE also outperformed other curvature-based designs, including the
Q-optimality and curvature thresholding and another MOO MBDOE strategy using parameter
correlation. The use of the MOO framework further gives flexibility to accommodate other criteria that
may arise in a particular application, in the design of experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/5/4/63/s1.
Figure S1: Pareto frontier of the MOO MBDOE using curvatures and a FIM-based criterion. Figure S2: Pareto
frontier of the MOO MBDOE using correlation and a FIM-based criterion.
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Abstract: Tuberculosis (TB) is one of the most common infectious diseases worldwide. It is estimated
that one-third of the world’s population is infected with TB. Most have the latent stage of the
disease that can later transition to active TB disease. TB is spread by aerosol droplets containing
Mycobacterium tuberculosis (Mtb). Mtb bacteria enter through the respiratory system and are
attacked by the immune system in the lungs. The bacteria are clustered and contained by macrophages
into cellular aggregates called granulomas. These granulomas can hold the bacteria dormant for
long periods of time in latent TB. The bacteria can be perturbed from latency to active TB disease
in a process called granuloma activation when the granulomas are compromised by other immune
response events in a host, such as HIV, cancer, or aging. Dysregulation of matrix metalloproteinase 1
(MMP-1) has been recently implicated in granuloma activation through experimental studies, but the
mechanism is not well understood. Animal and human studies currently cannot probe the dynamics
of activation, so a computational model is developed to fill this gap. This dynamic mathematical
model focuses specifically on the latent to active transition after the initial immune response has
successfully formed a granuloma. Bacterial leakage from latent granulomas is successfully simulated
in response to the MMP-1 dynamics under several scenarios for granuloma activation.

Keywords: latent tuberculosis; immune system; cytokine signaling network; dynamic systems;
collagen remodeling

1. Introduction

Tuberculosis (TB) has killed more people than any other infectious disease and continues to infect
more people today than at any other time in history [1]. In 2015, 10.4 million people were infected with
Mycobacterium tuberculosis (Mtb), and 1.8 million died from TB disease [2]. An individual inoculated
with Mtb may experience a range of outcomes. The Mtb bacteria may be immediately destroyed by
the host’s immune response, the immune response may isolate bacteria into granulomas where the
infection persists in a latent state, or the bacteria may proliferate and manifest as active TB disease if the
initial infection is not controlled by the immune response. A majority of people infected with Mtb have
a clinically latent infection in which they do not show any symptoms of the infection. These individuals
serve as a reservoir for the bacteria, and if their immune response system is compromised in such
a way to trigger the penetration of the granulomas by active bacteria and formation of TB cavities,
the infection may transition from latent to active TB disease. The major risk factors for activation of
TB after an extended latent period include contact with an infectious TB patient, HIV co-infection,
initiation of an anti-tumor necrosis factor (TNF) treatment, silicosis, and diabetes [3]. About 5–10% of
latent infections undergo granuloma activation and progress to active TB [4]. However, the mechanism
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for the activation of latent TB is still unclear. Improved understanding of the triggers and dynamics of
this transition could be useful for designing new therapies to prevent the activation of latent TB.

TB infection starts when infectious droplets containing Mtb reach the respiratory tract of an
individual. After reaching the lung tissue, the Mtb is ingested by the resident alveolar macrophages.
The host cellular immune response starts with the secretion of cytokines, such as interleukin 12 (IL-12)
and tumor necrosis factor alpha (TNF-α), and chemokines that recruit the immune cells to the site
of infection [5] to form a compact cluster of immune cells, known as a granuloma. Latent infection
is characterized by granuloma formation and steady state maintenance (Figure 1). A granuloma is
mostly comprised of an organized aggregate of blood-derived macrophages that ingest and contain
the bacteria, differentiated macrophages, and T cells along with other cells such as neutrophils,
multinucleated giant cells, dendritic cells, B cells, natural killer cells, fibroblasts, and cells that secrete
extracellular matrix components. The exterior surface of the granuloma is composed largely of collagen
fibers (Figure 1). The granuloma acts as a microenvironment that walls off the bacteria from the rest of
the body to control the infection [1].

Figure 1. Mycobacterium tuberculosis (Mtb) induces an immune response in the lungs of a host that
can lead to formation of a cellular aggregate called a granuloma in which the Mtb can remain dormant
in the condition of latent tuberculosis (TB). Direct and indirect upregulation of matrix metalloproteinase
(MMP), which is stimulated by the Mtb in infected macrophages in the granuloma and denoted by
a dashed arrow, degrades the collagen exterior of the granuloma, triggering leakage of extracellular
bacteria (BE) and formation of a necrotic leaking granuloma called a TB cavity.

Collagen fibers provide tensile strength to the lungs and to granulomas and are highly resistant
to enzymatic degradation. Only collagenolytic proteases such as matrix metalloproteinases (MMPs)
are able to break the collagen fibers that encapsulate a granuloma. MMPs are a family of proteolytic
enzymes that degrade the components of the extracellular matrix and are critical for matrix
remodeling [6]. MMPs are typically regulated by the complementary class of inhibitors called tissue
inhibitors of metalloproteinases (TIMPs). MMPs have been implicated in the activation of latent
tuberculosis infections [7–9]. From the MMP family of proteases, MMP-1 specifically degrades type-1
collagen and drives the remodeling of pulmonary tissue in TB [7]. Experimental data showed that
TB activation involved a dysregulation in the balance of MMP-1 and its inhibitor TIMP-1 [7,10].
Direct infection of macrophages induced gene expression and secretion of MMP-1 along with a few
other MMPs [7]. Additionally, pro-inflammatory cytokines increased MMP secretion from stromal cells
such as epithelial cells, fibroblasts, and astrocytes, while there was no compensatory increase in the
production of TIMPs to regulate the MMP levels, thus causing an increase in collagen degradation [7].
Measurements from both human plasma samples [10] and sputum [7] showed that the concentrations
of MMP-1 were elevated in patients with active TB compared to latent TB patients or non-infected
control subjects, and the levels of the associated inhibitor TIMP-1 were either decreased [7] or changed
insignificantly [10] in the active TB cohorts. In [7] MMP-1, degradation of lung collagen in TB was
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confirmed using a transgenic TB mouse model that overexpressed human MMP-1. As MMP-1 is the
dominant MMP in granuloma degradation, we simply refer to MMP-1 as MMP in the rest of this article.
A surplus concentration of MMP cleaves the collagen envelope of granulomas and eventually leads to
the leakage of bacteria into the airways [8] (Figure 1); from the airways, the bacteria can spread into
other regions of the lung and to the rest of the patient’s body in an active infection.

The animal models that are most commonly used to study TB do not develop lung pathology
exactly the same as in humans [11,12]. Mouse models are useful for studying the infection stage of
TB but not the long term latency or reactivation from the latent state because most mouse models do
not form human-like granulomas [7]. The rabbit model used in [10] forms necrotic, leaking cavity
structures characteristic of active TB after disruption of granulomas. These cavities in rabbits are
consistent with the structure observed in humans, providing a valuable animal model for mechanistic
insight into cavity formation due to MMP/TIMP imbalance [10]. However, the one month time scale
for the formation of active cavities from initial TB infection in the rabbit model is a much faster time
scale than the typical cavity formation in human TB infection. Human studies to enhance mechanistic
understanding of the untreated latent to active transition cannot be conducted ethically without
applying the current standard of care (pharmaceutical interventions), disrupting the cavity formation
and progress over time. Additionally, most animal models require that infected animals be sacrificed
for invasive lung tissue sample collected to permit observation of the interaction between Mtb and
host structures. Thus, conclusions have to be drawn at minimal discrete time points without providing
much insight into the dynamic processes. Another surrogate model system is needed to overcome
these challenges for understanding the dynamics of MMP dysregulation that can lead to TB cavity
formation from latent granulomas and reactivation to TB disease from latent disease.

In lieu of biological experiments, computational models can be used to test possible mechanisms
for triggering the switch from latent to active TB infection as well as to study the dynamic process.
Mathematical models are useful tools for inexpensively conducting in silico experiments with multiple
interacting factors and for testing hypotheses. We developed a mathematical model in this study to
probe triggers for inducing the latent to active transition. Several computational and mathematical
models have been developed to describe the granuloma formation stages of TB in response to an initial
infection [13–16]. Another model was used to explore activation of TB due to a pharmaceutical
intervention [17]. No mathematical model has been published addressing the impact of MMP
dysregulation or the dynamics of this process on the biological network of cells within a granuloma
during TB. The model developed here builds on an existing model of the immune response to Mtb [13]
(referred to as the “immune response model” henceforth) by extending this model to explicitly consider
dynamic regulation of MMP-1. We also share our open-source Python codes for ease of continued
development by other computational researchers and by expanding the horizons of use of the models
for further in silico experiments by collaborators and other scientists not necessarily trained in high
performance computing.

The immune response model is able to simulate three physiologically-relevant regimes based on
parameter values: (i) immediate clearance of Mtb; (ii) a mild initial infection followed by long-term
latent TB; and (iii) an initial uncontrolled active infection [13]. Here, a novel model for MMP dynamics,
collagen degradation, and bacterial leakage is added to the immune response model. Figure 1 illustrates
the mechanisms we aim to capture in the model. The upregulation of MMP by Mtb drives the
degradation of the granuloma envelope, which allows Mtb to leak out of the granuloma to the
surroundings. Using the model that incorporates the MMP dynamics, we investigated conditions
under which the biological system can be perturbed to switch to active infection after a steady latent
infection has been established. Section 2 details the equations used to define the mathematical model.
Section 3 includes model results under various scenarios as well as an analysis of the model sensitivity
to parameter values.
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2. Methods

The immune response model considers the local immune response to Mtb in the lungs.
The immune response model includes population balances for macrophages, two families of T cells
(CD4+ and CD8+), intracellular bacteria (inside infected macrophages), and extracellular bacteria
(inside the granuloma but outside the macrophages). The model also includes the signaling network
that connects the various cell populations via the cytokines TNF-α, interferon gamma (IFN-γ), IL-4,
IL-10, and IL-12 [13]. The equations and parameters of the immune response model are summarized
in the Supplementary Materials. The immune response model can generate three regimes representing
the infection outcomes of clearance, latency, and active TB. However, the immune response model
does not consider the dynamic effects of MMP on the collagen on the surface of the granuloma,
which, if breached, can lead to bacterial leakage. In addition, the immune response model cannot
predict the transition from latent to active TB after a period of latency. The present work extends
the immune response model by considering the effects of intracellular bacteria on reprogramming
infected macrophages to increase production of MMP and the subsequent degradation of the collagen
envelope of granuloma by MMP. Here, we focus on additions to the original immune response model
that represent the local changes in MMP concentration, collagen concentration, and the leakage of
extracellular bacteria from the granuloma. Each of these additions is described in turn in the following
subsections. Here, the granulomas are considered as well-mixed zones without transport limitations to
facilitate adaptation of the ordinary differential equation based immune response model. An alternate
partial differential equation model for the immune response with spatial effects including diffusion has
been formulated [16]. However, the simulation results for that model were only shown for spatially
averaged populations of cells and cytokines. We seek to improve understanding of the process
dynamics in the present work and thus follow these previously published models in neglecting spatial
effects inside of granulomas.

2.1. MMP Dynamics

The steps that affect the MMP dynamics are illustrated in Figure 2. The activation of resting
macrophages, the recruitment of additional macrophages, and the infection of macrophages by Mtb
are well-characterized by the immune response model. Macrophages infected with Mtb have been
observed to induce gene expression and secretion of MMP; however, a compensatory increase in
secretion of TIMP was not observed [7]. The infected macrophages are not the only source of
MMP in a granuloma. The infected macrophages interact with the stromal cells like epithelial cells,
fibroblasts, and astrocytes, which further secrete MMP and together amplify the MMP upregulation.
The pro-inflammatory cytokines especially TNF-α have been found to play a key role in triggering the
upregulation of MMPs by stromal cells [18]. It has been found that interaction between macrophages
and stromal cell requires TNF-α to increase the MMP secretion by stromal cell networks [18–21].

The mass balance for MMP in terms of concentration for a constant volume system, [MMP], is

d[MMP]
dt

= αMMPMI
Fα

Fα + sMMP
+ βMMPMI − μMMP[MMP] + srMMP, (1)

where the first term represents secretion of MMPs indirectly by the stromal cells that requires both
TNF-α, Fα, and infected macrophages, MI ; the second term represents production of MMPs by
reprogrammed infected macrophages; the last two terms represent the natural first-order degradation
and constant production of MMP; αMMP is the rate constant for indirect production of MMP; sMMP

is the constant where the effect of TNF-α on the indirect MMP production has reached half of its
saturation level; βMMP is the rate constant for direct production of MMP by MI ; μMMP is the half life
of MMP; and srMMP is the basal constant recruitment rate of MMP. The last two terms maintain the
constant concentration of MMP at equilibrium in the latent state. The functional forms for the two
terms representing the upregulation of MMP in the presence of Mtb infection were based on the general
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mathematical forms defined in [13]: i.e., all terms that require the presence of infected macrophages to
upregulate a process are given a linear dependence on MI , while all terms that are upregulated by a
cytokine such as TNF-α are given a Michaelis-Menten type saturation equation dependent on Fα.

Figure 2. Resting macrophages recruit active macrophages in the immune response. Mtb infects some
of the macrophages. The infected macrophages can upregulate MMP secretion directly (denoted by
arrow from infected macrophage to MMP) and indirectly via TNF-α signaling to stromal cells (indicated
by the arrows connecting the stromal cell to the infected macrophage and MMP). Tissue inhibitors of
metalloproteinase (TIMP) is not correspondingly upregulated to inhibit MMP, making the enzyme’s
degradation rate the primary consumption term for surplus MMP that basal TIMP can not regulate.

2.2. Collagen Dynamics

The collagen dynamics during granuloma formation at the onset of TB infection is beyond
the scope of the current work focused on the latent to active transition. Therefore, for simplicity,
we consider a constant source term for collagen representative of the source after latency is achieved.
The effects of MMP on degrading the collagen are incorporated to study how the granulomas can be
compromised after latent TB is established (Figure 3). The cleavage of collagen by MMPs was found to
display Michaelis–Menten kinetics [22,23]. We recognize that the granulomas should have the collagen
fibers concentrated on the exterior surfaces. In the model proposed here, there is no spatial variation.
This could be a realistic approximation if the MMP is uniformly secreted within and adjacent to the
granulomas or if the transport occurs faster than the degradation time scale. Slow collagen degradation
is considered here, making this well-mixed model reasonable. The mass balance for the change in
concentration of collagen, C, in the well-mixed granuloma is

dC
dt

= srC − kC[MMP]
C

C + kM
, (2)

where srC is a constant recruitment term representing the external build up of the collagen envelope
around the granuloma, kC is the rate constant of collagen degradation, and kM is the Michaelis constant
for collagen degradation catalyzed by MMP.

Figure 3. The initial formation of granulomas involves collagen recruitment to form the fibrillar
collagen network of the stable granulomas in latent TB. Upregulation of MMP degrades the collagen
making the granulomas penetrable by Mtb.
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2.3. Bacterial Leakage

The change in the population of the extracellular bacteria inside the granuloma, BE, has two terms:

dBE
dt

=
dBE,IR

dt
+

dBE,L

dt
, (3)

where BE,IR is the non-leaking extracullular bacteria and BE,L is the leaking extracellular bacteria
(Figure 1). The first term dBE,IR

dt is the contribution from the immune response model and is given by
(S16) in the Supplementary Materials, which considers all the different mechanisms for the gain and
loss in extracellular bacterial count corresponding to the release and uptake of intracellular bacteria
by the macrophages, respectively, and the constant turnover number. However, this term does not
capture the loss of extracellular bacteria population when the granuloma starts leaking extracellular
bacteria into the lung. To account for this case, the second term is added to (3) to track the leakage of
bacteria through deteriorated collagen and is represented by

dBE,L

dt
= − kLsLBE

1 − C
CLa

C + sL
, (4)

where kL is the rate constant for the maximum rate of bacteria exiting the granuloma, sL is the half
saturation constant for the inhibitory effect of collagen on this process, and CLa is the expected collagen
concentration at latency. When the concentration of collagen is equal to the concentration of collagen
in the latent case (C = CLa), the granuloma is intact with no leakage of bacteria, thus making the
leakage term (4) zero. Zero is the maximum value for (4), i.e., the bacterial leakage never has a
positive value. This is ensured by the maximum value of C in the model formulation, which is CLa.
The maximum collagen concentration with respect to changes in MMP concentration is determined by

∂C
∂[MMP]

=
∂C
∂t

/
∂[MMP]

∂t
= 0. The solution to the maximization problem is srC = kC[MMP]

C
C + kM

,

which is how srC was defined using the values [MMP] = [MMP]La and C = CLa. At the other extreme,
when the concentration of collagen goes to zero, there is no longer a barrier around the bacteria, and
the rate of leakage is directly dependent on the extracellular bacterial count giving the fastest bacteria
leakage rate from the granuloma.

2.4. Biological Feedback

Although not shown explicitly, a feedback loop is formed between the equations introduced
here (1)–(4) via the species included in the immune response model (see Supplementary Materials
(S1)–(S16)). It is apparent that Equation (2) depends on the value of (MMP), and Equations (3)–(4)
depend on C. The contribution to the extracellular bacterial count from the immune response BE,IR
depends on multiple species in (S16) including BE. The extracellular bacteria count BE in-turn
leads directly to changes in species MR, MI , MA, Fα, Iγ, I12, and BI through dependence on BE
or BT = BE + BI in equations (S1), (S2), (S3), (S10), (S11), (S14), and (S15), respectively. Furthermore,
changes in MI , MA, Iγ, BT , and some T cells affect the production of Fα. Changes in MI and Fα directly
lead to changes in the production of MMP given by (1). Other pathways for indirect feedback exist
between the cytokines and the bacterial-population-sensitive macrophages.

2.5. Parameter Values

Parameters need to be specified to define the system before performing any simulations. A value
of μMMP is taken from a mathematical model for MMP in fibrosis [24] and is used as the basis for
calculating the rest of the parameters for (1). The value of srMMP is calculated by evaluating (1) with no
infection and data from [25]. The value of Fa at the end of a typical latent simulation is used to calculate
sMMP. Values of αMMP and βMMP are then calculated using data from [7,25]. Both kC and kM are kinetic
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parameters taken from published experimental data on characterizing the kinetics of MMP. However,
the parameters for the breakdown of collagen in literature have two sets of parameters: one for each of
the two proteins, α-1 and α-2, that compose collagen I [23]. For this model, a weighted average of the
parameters based on the number of proteins in each stand is used and converted into the appropriate
units. The source term for collagen I, srC, is then calculated from a typical collagen concentration [24].
The value of collagen expected in the latent case, CLa, is set based on data from the same fibrosis model
used for μMMP [24]. The rest of the parameters in (4), sC, kL, and sL, are calculated to give the steady
state and reasonable limiting behavior. The parameters are defined in Table 1. The parameters listed in
the Supplementary Materials Table S1 were validated for the immune response model [13].

Table 1. Parameters in the tuberculosis (TB) granuloma activation model (MMP: matrix metalloproteinase;
MI : infected macrophages; TNF: tumor necrosis factor).

Parameter Description Value Units

αMMP Rate constant for production of MMP by stromal cells 5.75 × 10−10 g · cm−3 · M−1
I

βMMP Rate constant for production of MMP by MI 4.44 × 10−10 g · cm−3 · M−1
I

sMMP
Half-sat constant of the effect of TNF-α on TNF-α
dependent MMP production 2 × 10−1 pg · cm−3

μMMP Half life of MMP 4.5 day−1

srMMP Constant recruitment rate of MMPs 3.2 × 10−9 g · cm−3 · day−1

srC Constant recruitment rate of collagen 1.21 × 10−4 g · cm−3 · day−1

kC Rate constant of collagen degradation 1.41 × 105 day−1

kM
Half-sat constant of the effect of collagen on collagen
degradation 4.289 × 10−3 g · cm−3

kL Rate of bacterial leakage at zero collagen 0.1 BE · day−1

sL
Half-sat constant on the effect of collagen depletion on
bacterial leakage 2 × 10−4 g · cm−3

CLa Concentration of collagen at latency 3.62 × 10−4 g · cm−3

2.6. Numerical Methods and Code Repository

The system of ordinary differential equations in the immune response model (see Supplementary
Materials (S1)–(S16)) and the TB granuloma active model defined by (1)–(4) was solved with odeint
solver from the SciPy Integrate Python module, which uses the classic lsoda routine from the FORTAN
library odepack. The default options were used in the solver. The parameter values in Table 1 were
used to generate the results in Section 3, unless otherwise indicated. The initial conditions are given
in Table 2. To enable code reuse, we wrote the model in Python and shared the code, parameter
files, and documentation in an open-source software repository at http://github.com/ashleefv/
tbActivationDynamics [26].
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Table 2. Initial conditions for each species in the combined immune response and TB granuloma
activation model (TNF: tumor necrosis factor; IFN: interferon; IL: interleukin).

Species Description Initial Value Units

MR Resting macrophage count 3.0 × 105 Count
MI Infected macrophage count 0 Count
MA Activated macrophage count 0 Count
T0 Th0 cells count 0 Count
T1 Th1 cells count 0 Count
T2 Th2 cells count 0 Count
T80 T80 cells count 0 Count
T8 T8 cells count 0 Count
Tc TC cells count 0 Count
BI Intracellular bacteria 0 Count
BE Extracellular bacteria introduced by infection 10 Count

BE,IR Extracellular bacteria generated during immune response to infection 0 Count
BE,L Leaking extracellular bacteria 0 Count
Fα TNF-α concentration 0 pg · mL−1

Iγ IFN-γ concentration 0 pg · mL−1

I4 IL-4 concentration 0 pg · mL−1

I10 IL-10 concentration 0 pg · mL−1

I12 IL-12 concentration 0 pg · mL−1

C Collagen concentration 0 g · g−3

MMP MMP concentration 7.11 × 10−10 g · g−3

3. Results and Discussion

3.1. Representative Latent Case

The model proposed in Section 2 is able to simulate both latent and active infections depending
on the different parameter values selected. We used substantial leakage of extracellular bacteria as the
marker for the transition from latent to active infection. Figure 4 shows model results of a representative
latent case using the parameter values listed in Table 1 and Table S1 in the Supplementary Materials.
This latent case is also leaking bacteria over time with a very small but nonzero amount of bacteria
escaping the granuloma. The leaking case eventually stabilizes and tends to a steady state without
further bacterial leakage. It should be noted that the cumulative bacterial leakage observed in Figure 4B
after 200 days is on a linear scale compared to the log scale in Figure 4A and is not significant compared
to the total bacterial count inside the granuloma. Intracellular bacteria are the bacteria inside the
infected macrophages. These infected macrophages secrete TNF-α. The MMP increase tracks with
the TNF-α increase, except that the oscillations in MMP are damped compared to those for TNF-α.
Around 200 days, the MMP concentration passes a threshold that starts to degrade collagen causing
the bacteria leakage term to start growing. The entire system starts stabilizing after that due to the
feedback processes, eventually leading to a steady latent state.

3.2. Sensitivity Analysis

In the immune response model, the parameters were probed with a global sensitivity analysis.
Here, we conducted a local sensitivity analysis on all of the new parameters for the TB granuloma
activation model (Table 1) as well as the parameters for the immume response model (Table S1).
The nominal set of parameters were those listed in the tables except for a kC value of 2.82 × 105 day−1,
which is double the latent case value and corresponds to a leaking case. The model output of interest
was the total bacterial leakage after the three years (1095 days), which is denoted as BL. The model
output with the nominal set of parameters is BLbase. All of the parameters were changed one at time by
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10 scale factors, s f , ranging from 0.95 to 1.05 in uniform increments, i.e., increases and decreases by 1%,
2%, . . . , 5%. The normalized local sensitivity index, Slocal , was calculated using

Slocal =
BLbase − BL

BLbase

(
1 − s f

)
,

(5)

which is the percent change in bacterial leakage divided by the percent change in the parameter
value. Positive numbers suggest increasing the parameter increases the bacterial leakage, and negative
numbers suggest decreasing the parameter increases the bacterial leakage. Figure 5 contains the
results of the local sensitivity averaged for the range of tested scale factors. All of the parameters were
investigated, but only those that were at least as sensitive as kC are shown in Figure 5. These local
sensitivity results are consistent with the global sensitivity results in [13]. kC is the most sensitive of
the parameters introduced here.

Figure 4. Typical simulation results leading to latent infection. All the concentrations and populations
stabilize over time, indicating latency. (A) bacterial populations and cumulative bacterial leakage
(log scale) vs. time. The intracellular, extracellular, and leaked bacterial concentrations are successfully
controlled by the immune system around 200 days; (B) cumulative bacterial leakage (linear scale)
vs. time; (C) dimensionless concentration of cytokine tumor necrosis factor (TNF)-α (linear scale) vs.
time; (D) concentrations of MMP and collagen vs. time on a log scale.

Figure 5. Local sensitivity analysis results for the parameters from the immune response model that
were at least as sensitive as the new model parameter kC.
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3.3. Effects of Collagen Degradation Rate Constant kC

We adjusted the rate constant of collagen degradation, kC, to determine the effect of the rate
of leakage on the other outputs of the model. Not only is kC the most sensitive of the parameters
introduced in Section 2, but it is also the most uncertain of those parameters. There exists a value of
kC where the rate of bacterial leakage is zero, and increasing kC only affects the other variables of the
model through a reduction in collagen allowing more bacteria to leak. Figure 6 contains simulation
results at various values of kC. Increases in kC have a dampening effect on the oscillations observed in
the system (Figure 6A–C) and can lead to a substantial increase in bacterial leakage (Figure 6D).

Figure 6. Simulation results from varying values of kC, where increasing kC leads towards a leaking
state of the granuloma. (A) intracellular bacteria count vs. time; (B) extracellular bacteria count vs. time;
(C) infected macrophage count vs. time; (D) cumulative bacterial leakage vs. time.

3.4. In Silico Experiment Perturbing the Immune System

An in silico experiment was carried out using the model to examine the effect of perturbing the
immune system through the loss of the single immune system components, such as through gene
deletion or pharmaceutical interventions. This was conducted by setting the differential equation
corresponding to a specific cytokine or cell type to be equal to zero for all time after an initial condition
of zero, representing a synthetic suppression of the production of that cell type or cytokine. The rest of
the model equations were left unchanged. When starting from the initial conditions and parameters for
the typical latent case, one of four results can occur when a specific component of the immune system
is not produced during a sustained perturbation of the typical immune response: (1) active infection;
(2) formation of a significantly leaking granuloma; (3) a periodic switching between latent and leaking
states; and (4) latent infection with little or no leaking. Table 3 summarizes results of the immune
system pertubation experiment, and Figure 7 contains results of the immune system pertubation
that showcase representative active, leaking, periodic switching, and latent results. The baseline case
shown for comparison was the case discussed in Section 3.1 and shown in Figure 4.
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Table 3. Summary of in silico immune system pertubation results.

Species Suppressed in the Simulation Notation Resulting State

IFN-γ Iγ Active
CD4+ Th1 cells T1 Active
TNF-α Fα Active
CD8+ Tc cells Tc Active and highly unstable
CD8+ T8 cells T8 Leaking
Activated macrophages MA Leaking
CD4+ Th0 cells T0 Periodic switching
CD8+ T80 cells T80 Periodic switching
IL-12 I12 Periodic Switching
CD4+ Th2 cells T2 Latent
IL-4 I4 Latent
IL-10 I10 Latent

Figure 7. Simulation results of the immune system pertubation experiment where the differential
equation corresponding to each of the species shown is set to be zero from day 0, one at a time while
the other species follow the otherwise unmodified model equations. Perturbed responses are shown
for T0, T8, and Iγ (dashed, dotted, and dark solid lines, respectively) The baseline is considered to be a
steady latent state (light solid line). (A) intracellular bacterial count vs. time; (B) extracellular bacterial
count vs. time; (C) MMP concentration vs. time; (D) cumulative bacterial leakage vs. time.

Four species resulted in the active state when they were suppressed: Iγ, T1, Fα, and TC.
The corresponding intracellular, extracellular and bacterial leakage counts for Iγ, T1, and Fα increased
to the order of 108 (Figure 7A,B,D for Iγ), demonstrating an active infection. The results for Tc

suppression (not shown) quickly exploded the bacterial and infected macrophages count and never
stabilized as in the other three cases.

Eliminating either T8 (Figure 4) or MA (not shown because of the similarity to T8) created a leaking
granuloma state characterized by a non-oscillating substantial increase in bacterial leakage (on the
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order of 103). The non-oscillating leakage indicated that the collagen was not able to re-form and
control the infection.

We have termed an intermediate state between latent and leaking as “periodic switching” because
of sustained oscillations. Eliminating T0, T80, or I12 leads to oscillations in bacterial counts as well as
the MMP concentration (Figure 7 for T0). The constant amplitude of oscillations in the intracellular
and extracellular bacterial count and MMP levels suggest that the system was continuously oscillating
between two states. For every drop in the MMP levels, the bacterial leakage count stayed steady
marking a non-leaking state (flat zone in the stair step pattern of the bacterial leakage curve in
Figure 7D). In contrast, as the MMP peaked in every oscillation, it caused a certain constant number
of the extracellular bacteria to leak. This led to a corresponding increase in the cumulative bacterial
leakage at that point, thus marking a leaking state. The amplitudes of the oscillations for T0 and
T80 were similar, while I12 had a larger amplitude of oscillations in the range of 20–200 BE (similar
maximum as the other cases but with a lower minimum). The resulting magnitude of bacterial leakage
was the same for all three cases, but the duration of the latent periods was longer for I12 (not shown).

The simulations for suppressing T2, I4, and I10 resulted in latent cases (not shown). The results
for T2 suppression were nearly indistinguishable from the baseline case. The bacterial leakage for I4

was slightly lower than that for the baseline case. The results for I10 suppression showed oscillations
in BI and BE lower than the baseline levels and zero leakage.

3.5. In Silico HIV Co-Infection Experiment via T Cell Depletion

HIV co-infection is known to increase the risk of progression from latent TB to active disease.
When a patient is infected with HIV, a major immunological effect is reduction in CD4+ T cells.
To model a patient with latent TB becoming co-infected with HIV, an in silico experiment to deplete
precursor T0 cells was performed (Figure 8). The model was run for 1500 days with the baseline case
and no changes to the model to establish a latent condition. At 1500 days, parameter α1a was set to
zero, and parameters α2 and sr1b were gradually reduced by an exponentially decaying function for the
next 1000 days. All three of these parameters are associated with the number of T0 cells present within
the granuloma (smaller values of the parameters correspond to reduced production and recruitment
of T cells). The simulation results show that the system tried to stabilize to until 1500 days (Figure 8)
with damping oscillations in T0 at latency. Shortly after day 1500, there was drop in T0 cell count
for the co-infection. This changed the levels of the cytokines and infected macrophages that affected
MMP and collagen concentrations, eventually leading to an increase in bacterial leakage. These results
show that a reduction in T0 cells simulating HIV co-infection after development of latent TB can
indeed trigger degradation of collagen and induce a leaking granuloma. The simulation results are
consistent with an experimental study in mice co-infected with HIV and Mtb that showed increased
mycobacterial burden and dissemination, loss of granuloma structure, and increase progression of
TB-disease when the HIV co-infection was present [27]. Another experimental work showed that
TB granulomas within HIV-positive expressed more IFN-γ, TNF-α, IL-4, and IL-12 than granulomas
from HIV-negative individual [28,29]. Our cytokine results for the HIV co-infection simulation yield
gradually increasing levels of IFN-γ, TNF-α, and IL-12 and small decreasing levels of IL-4 (Figure 9).

4. Conclusions

In this study, we extended a model for the immune response to Mtb by adding new equations
describing the dynamics of MMP upregulation, collagen degradation, and bacterial leakage. These new
equations are able to produce a leaking regime and periodic switching between leaking and non-leaking
in addition to the active and latent states that could be modeled with the immune response model.
The simulations’ results in Section 3 show how MMP–collagen interactions play a significant role in
the creation of leaking granulomas, leading to spreading of the infection. Varying the parameter kc

that governs the degradation rate of collagen by MMP had major consequences on the transition from
the latent state to the leaking granuloma state. Using this model, we were also able to assess the effects
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of perturbing the immune response to suppress the responses of various cells and cytokines on the
granuloma state in the long-term and the effects of depletion of T0 cells to simulate HIV co-infection.
The model fills a gap in the mathematical modeling of the processes of granuloma activation after
latency. The model opens up new directions for computational and experimental studies related to the
long-term prognosis of patients with latent TB such as effects of co-infections or vaccines and for further
exploration of the dynamics of granuloma activation after latency to improve the understanding of TB
disease progression and treatments.

Figure 8. Simulation results for the in silico HIV co-infection experiment via T0 cell depletion after
1500 days. The depletion results in a leaking state. (A) bacterial populations and cumulative bacterial
leakage (log scale) vs. time; (B) cumulative bacterial leakage (linear scale) vs. time; (C) T0 cell count
(linear scale) vs. time; (D) concentration of collagen (linear scale) vs. time.

Figure 9. Simulation results for the cytokines from the in silico HIV co-infection experiment via T0 cell
depletion after 1500 days. The depletion results in increasing cytokine levels, except for I4. The values
for Fα, I10, and I4 are all small.
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Supplementary Materials: Equations from the immune response model [13] and the corresponding parameters
are available online at http://www.mdpi.com/2227-9717/5/4/79/s1.
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Abstract: Due to the intrinsic stochasticity, the signaling dynamics in a clonal population of cells
exhibit cell-to-cell variability at the single-cell level, which is distinct from the population-average
dynamics. Frequently, flow cytometry is widely used to acquire the single-cell level measurements by
blocking cytokine secretion with reagents such as Golgiplug™. However, Golgiplug™ can alter the
signaling dynamics, causing measurements to be misleading. Hence, we developed a mathematical
model to infer the average single-cell dynamics based on the flow cytometry measurements in
the presence of Golgiplug™ with lipopolysaccharide (LPS)-induced NFκB signaling as an example.
First, a mathematical model was developed based on the prior knowledge. Then, average single-cell
dynamics of two key molecules (TNFα and IκBα) in the NFκB signaling pathway were measured
through flow cytometry in the presence of Golgiplug™ to validate the model and maximize its
prediction accuracy. Specifically, a parameter selection and estimation scheme selected key model
parameters and estimated their values. Unsatisfactory results from the parameter estimation guided
subsequent experiments and appropriate model improvements, and the refined model was calibrated
again through the parameter estimation. The inferred model was able to make predictions that were
consistent with the experimental measurements, which will be used to construct a semi-stochastic
model in the future.

Keywords: systems biology; parameter estimation; NFκB signaling pathway; lipopolysaccharide;
flow cytometry; sensitivity analysis

1. Introduction

To integrate of multiple signaling pathways, their canonical transcription factors and downstream
effector genes is required for cells to respond to various signals they encounter in their
micro-environment. Therefore, understanding how information is sensed and processed by cells
and the signaling pathways that are engaged by different stimuli can help elucidate cellular behaviors
and responses. Typically, cellular signal dynamics and the response to stimuli have been studied using
a combination of mathematical modeling and experimental analysis [1,2]. A majority of these studies
has modeled cell signaling at the population level and used population-averaged measurements such
as Western blots to infer the dynamics of different proteins in the signaling pathway, as well as the
possible network structure of signaling pathways [1]. However, with recent advances in the ability
to measure gene and protein expression at the single-cell level (reviewed in [2,3]), it has become
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possible to analyze signaling dynamics at the single-cell level. In contrast to the observations from
population-average studies, the single-cell studies have demonstrated that individual cells in a clonal
population may respond differently to the same stimulus, and the population level measurements
could mask the temporal dynamics of individual cells [2]. This variability in the responses of individual
cells poses a challenge to their implementation in biology and medicine [4]. Therefore, it is important
to understand the stochasticity and heterogeneity in the single-cell responses that might be missed in
population-averaged measurements.

Advances in experimental tools for single-cell analysis have led to a significant increase in
single-cell studies [2,3]. Despite these advancements, it is still difficult to study the single-cell
signaling dynamics due to complex interactions at multiple levels between different proteins that are
involved in signal transduction [1]. Computational modeling has been proposed as a complementary
approach to overcome some of these limitations and gain insights that cannot be obtained solely
through experiments [1,2]. A viable and computationally efficient approach to study the cell-to-cell
variability is to use a deterministic model with parameters that have distributions [2,5–7]. In this
approach, the computational cost is generally reduced by simulating the signaling dynamics through a
deterministic modeling approach while the stochasticity is preserved by assigning a set of different
parameter values for each simulation based on predetermined parameter distributions.

In order to construct such models, an experimentally validated deterministic model, which can
capture average signaling dynamics at the single-cell level, is required. Although various deterministic
models have been proposed for several well-studied signal transduction pathways [1,8], many
demonstrate good qualitative, but not quantitative, agreement with the experimental data. This
has been attributed to, among other factors, the limited breadth of data used for training the model
(e.g., models trained using one dataset with a single stimulus concentration), which makes the models
unable to make robust predictions under different conditions. Moreover, the identifiability issue
of model parameters [9], which arises due to the model structure as well as the limited availability
of experimental data of intracellular proteins [10,11], is not always addressed, which may lead to a
suboptimal estimation of model parameters [10,12]. Additionally, many models have been constructed
and validated based on experimental data obtained from the population-averaged measurements,
which mask the signaling dynamics at the single-cell level [2,13,14]. Consequently, these models are
inadequate to predict the average signaling dynamics of single cells.

Motivated by the above considerations, we developed a deterministic model that can accurately
predict the average signaling dynamics of single cells. We chose lipopolysaccharide (LPS)-induced
nuclear factor κB (NFκB) signaling in mouse macrophages for our model system as it is an extensively
studied and characterized signaling pathway [8,15,16]. In order to address the issues discussed above,
both computational and experimental approaches have been implemented. First, a rigorous numerical
scheme is used to identify the most important parameters that are to be estimated in the parameter
estimation [17]. Specifically, the sensitivity analysis and the parameter selection method quantitatively
assess the significance of each model parameter with respect to experimental measurements under
different LPS concentrations and select parameters whose values could be uniquely estimated [10,18].
Second, flow cytometry with intracellular staining is used to measure the average single-cell dynamics
of key molecules involved in the NFκB signaling pathway in response to a broad range of LPS
concentrations [19,20]. In this study, the intracellular concentrations of the inhibitor of κB-α (IκBα) and
tumor necrosis factor α (TNFα) were measured. IκBα is an inhibitor of NFκB activity, and therefore, the
IκBα dynamics are inversely correlated with the NFκB dynamics. At the same time, the activated NFκB
induces the transcription and translation of TNFα upon the stimulation of LPS; hence, the TNFα can
also be used to infer the dynamics of the NFκB signaling pathway [16]. The obtained average single-cell
kinetics is used to quantitatively calibrate and validate the model. Third, the discrepancy between
the experimental measurements and the model predictions reveals important, yet unconsidered
mechanisms, which is validated experimentally afterwards and leads to the model refinement. Through
this integrated model development methodology, predictions from the resultant model quantitatively
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agree with the experimental measurements. Therefore, the proposed model represents a first step
towards the construction of single-cell semi-stochastic models to investigate the stochasticity of
intracellular NFκB signaling in macrophages.

2. Material and Methods

2.1. Materials and Cell Culture

RAW264.7 cells were obtained from ATCC (Manassas, VA, USA). Dulbecco’s Modified Eagle
Medium (DMEM) and penicillin/streptomycin were obtained from Invitrogen (Carlsbad, CA, USA).
Bovine serum and fetal bovine serum (FBS) were obtained from Atlanta Biologicals (Flowery Branch,
GA, USA). Ultrapure LPS derived from S. minnesota was obtained from Invivogen (San Diego, CA,
USA). RAW264.7 macrophages were cultured in DMEM supplemented with 10% FBS, penicillin (200
U/mL) and streptomycin (200 μg/mL) at 37 °C in a 5% CO2 environment.

2.2. Flow Cytometry Analysis

The expression of TNFα and IκBα under different experimental conditions was determined using
flow cytometry. RAW264.7 cells were seeded into round-bottomed 96-well plate and stimulated with
different concentrations of LPS for the indicated time. Golgiplug™ (BD Biosciences, San Jose, CA, USA)
was added along with LPS for TNFα detection experiments to block secretion of TNFα. Cells were then
stained with Alexa Flour 700 fluorescence-tagged TNFα antibody (BD Biosciences) and PE-conjugated
IκBα antibody (Cell Signaling Technology, Danvers, MA, USA) using the manufacturer’s suggested
protocol. Stained cells were analyzed using a BD Fortessa flow cytometer (BD Biosciences) at the
Texas A&M Health Science Center College of Medicine Cell Analysis Facility. Ten thousands events
per sample were acquired, and the data were analyzed using FlowJo software (Tree Star, OR, USA).
Cells were gated based on side scattered light (SSC) and forward scattered light (FSC) values to
eliminate cell debris, and TNFα- and IκBα-positive cells were gated based on the antibody isotype
(see Supplementary Materials Figures S1–S3). All experiments were repeated using at least three
different cultures.

2.3. Model Development

The schematic diagram of the NFκB signaling pathway is illustrated in Figure 1. The model used
in this study was adopted from Caldwell et al. [21], which takes the extracellular LPS concentration
as an input to predict the kinetics of key biomolecules in the NFκB signaling pathway. In this model,
by forming a complex with Toll-like receptor 4 (TLR4), LPS activates IκB kinase (IKK) through myeloid
differentiation primary response 88 (MyD88)- or TIR (Toll/Interleukin-1 receptor)-domain-containing
adaptor-inducing interferon-β (TRIF)-dependent activation of TNF receptor-associated factor 6
(TRAF6). The activated IKK in turn promotes the translocation of NFκB to the nucleus, where the
nuclear NFκB induces the transcription of NFκB inhibitors (IκB-α, -β, -ε and A20), as well as TNFα.
Once translated, these inhibitors inhibit the NFκB signaling pathway. In contrast, the translated TNFα

is secreted to the extracellular medium, and some of the secreted TNFα proteins will bind with TNFα

receptor (TNFR) on the cellular membrane to initiate the TNFα-induced NFκB signaling pathway
(see [21–23] for details of the model).

Additionally, nonlinear functions proposed by Junkin et al. [24] were added to describe how the
rates of TNFα production and secretion increase as the amount of activated TRIF complex increases.
This model incorporates the TLR4-mediated NFκB dynamics induced by LPS, as well as the production
of TNFα in macrophages (see [21,23] for details). For the purpose of this study, two modifications
were made to the model presented by Caldwell et al. [21]. First, transcription delays were ignored to
facilitate the simplicity of subsequent calculations for sensitivity analysis and parameter estimation.
Second, a new role of A20 protein, which was introduced in the previous model [21,23] as an inhibitor
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of the TNFα-induced NFκB signaling [23,25,26], was included in the modified model to downregulate
the LPS-induced signaling through deubiquitinating of TRAF6 [27].
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Figure 1. Schematic diagram for the LPS-NFκB-TNFα signaling pathway. Due to space limitation,
TRIF-dependent regulation of TNFα production, IκBβ and IκBε-dependent NFκB deactivation
and eIF2α-induced translation inhibition are not illustrated. Furthermore, some states related to
TNFα-induced activation of IKK kinase (IKKK) are not shown. Colored arrows indicate the processes
affected by the addition of Golgiplug™ (see the text for details).

For this study, the TNFα production at the single-cell level was measured using flow cytometry
by adding Golgiplug™ since brefeldin A, the active agent of Golgiplug™, causes the Golgi apparatus
to merge with endoplasmic reticulum (ER) and inhibits protein export from the Golgi complex [28,29].
Hence, the addition of Golgiplug™ enabled us to measure average single-cell production of TNFα.
On the other hand, because Golgiplug™ interferes with the normal cellular processes, it inevitably
affects the NFκB signaling dynamics. Specifically, Golgiplug™ suppresses the expression of receptors
on the cellular membrane, which negatively regulates the LPS-mediated NFκB signaling pathway
in different ways. First, the addition of Golgiplug™ can block the translocation of TLR4 and its
accessory molecules from the Golgi complex, which leads to the termination of signaling as these
receptors are not replenished after turnover [28,30–32]. Similarly, TNFR is also depleted from the
cellular membrane due to Golgiplug™ [33,34], which may inhibit subsequent TNFα autocrine and
paracrine signaling [35–37]. Second, Golgiplug™ can hinder the membrane expression of the cluster of
differentiation 14 (CD14), which regulates the endocytosis of LPS or the TLR4-LPS complex [38–40].
Therefore, the TRIF-dependent pathway, which is initiated only after LPS or LPS-TLR4 is endocytosed
into cytoplasm [5,41], can also be partially impaired. Lastly, the secretion of TNFα proteins translated
in response to the NFκB activation will also be inhibited, which helps measure the TNFα production at
the single-cell level.

Consequently, the dynamic effects of Golgiplug™ were parameterized and included in the model
by the following equations:
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G =
t

t + τ

ksTNFR,m = ksTNFR(1 − G)

ksTLR4,m = ksTLR4
(1 − G)

kenLPS,m = kenLPS
(1 − G)

kencp,m = kencp
(1 − G)

ksec,m = ksec(1 − G)

(1)

where G is the normalized activity of Golgiplug™, t is the elapsed time from the addition of Golgiplug™,
τ is the characteristic time associated with Golgiplug™ activity, ksTNFR and ksTLR4

are the constitutive
synthesis rates of TNFR and TLR4, respectively, in the absence of Golgiplug™, kenLPS

and kencp
are the

endocytosis rates of LPS and the LPS-TLR4 complex, respectively, in the absence of Golgiplug™, ksec is
the TNFα secretion rate in the absence of Golgiplug™ and ksTNFR,m, ksTLR4,m, kenLPS,m, kencp,m and ksec,m are
the corresponding rates in the presence of Golgiplug™. After Golgiplug™ is added to the cells at t = 0,
G slowly increases from zero to one, which corresponds to no inhibition of protein export to complete
inhibition of protein export from the Golgi apparatus in the presence of Golgiplug™.

Since the signaling kinetics under the stimulation of LPS in the presence of Golgiplug™ were
measured experimentally, the dynamic model that consists of the model presented in [21] and
Equation (1) was used to simulate the dynamics of LPS-induced NFκB signaling in the presence
of Golgiplug™. In general, the dynamic model that simulates the signaling pathway can be represented
by a set of nonlinear ordinary differential equations as follows:

dx
dt

= f (x, θ; u)

y = g (x, θ; u)
(2)

where x represents the concentration of the biomolecules involved in the signaling pathway
(i.e., a vector of states), θ is a vector of model parameters that describe the biochemical reaction
rates in the process, u is the concentration of LPS added to the cells (i.e., the process input), and y is
the model output (i.e., the experimental measurements predicted by the model). When Golgiplug™

is added, Equation (1) is included in Equation (2), and the overall model consists of 49 states and
146 parameters (see Supplementary Materials Tables S1-S2 and Equations (S1)–(S60)).

2.4. Parameter Estimation

Since we added the Golgiplug™ module to the model developed by Caldwell et al. [21],
the integrated dynamic model (the model presented in [21] and Equation (1)) was quantitatively
calibrated by estimating its parameters using experimental measurements in response to different LPS
concentrations in the presence of Golgiplug™.

The model parameter values were estimated by minimizing the difference between the
experimental measurements and the model predictions of the protein concentration. In this work,
we used flow cytometry to measure two key molecules in the LPS-induced NFκB signaling pathway:
TNF α and IκBα. Since flow cytometry does not provide direct measurements of protein concentration,
the mean fluorescence intensity (MFI), which is a measure of the number of copies of the target molecule
per cell, was used to infer the protein concentration by assuming a linear relationship between MFI
and protein concentration. The experimental data and model prediction were compared based on fold
changes of MFI, which are defined as follows:
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yIκBα(t) =
(xIκBα(t) + xIκBαn(t) + xNFκB-IκBα(t) + xNFκB-IκBαn(t))

(xIκBα,0 + xIκBαn ,0 + xNFκB-IκBα,0 + xNFκB-IκBαn ,0)
≈ IIκBα(t)− IIκBα,c

IIκBα,0 − IIκBα,c

yTNFα(t) =
xTNFα(t)

xTNFα,0

≈ ITNFα(t)− ITNFα,c

ITNFα,0 − ITNFα,c

(3)

where yIκBα(t) and yTNFα(t) are the fold changes of the IκBα and TNFα concentration at time t, xIκBα, xIκBαn ,
xNFκB-IκBα, xNFκB-IκBαn and xTNFα are the cytoplasmic IκBα, nuclear IκBα, cytoplasmic IκBα-NFκB complex,
nuclear IκBα-NFκB complex and intracellular TNFα concentration, respectively, xi,0 is the initial
concentration of the corresponding biomolecules, IIκBα and ITNFα are the MFI of IκBα and intracellular
TNFα, respectively, and Ij,0 and Ij,c, ∀ j = {IκBα, TNFα}, are the corresponding MFI at t = 0 and MFI of
negative control, respectively. In each cell, IκBα can be part of four biomolecules (xIκBα, xIκBαn , xNFκB-IκBα,
xNFκB-IκBαn ); however, flow cytometry measurements can only provide the total IκBα concentration in
each cell. Therefore, the simulated concentrations of four IκBα-containing biomolecules were initially
summed, and the fold change of the sum (i.e., yIκBα) was computed to compare with the measurements
in the subsequent parameter estimation procedure.

One of the biggest challenges in estimating parameters of signaling pathways with a large
number of parameters is the parameter identifiability issue [10]. That is, the exact values of some
model parameters cannot be uniquely determined from experimental measurements even if a large
amount of experimental measurements are available [10,11]. As the proposed model has a large
number of parameters, not all the model parameters can be estimated. To this end, a subset of the
model parameters, which can be uniquely estimated from the available experimental measurements,
was identified through a parameter selection method [10,18]. Only these parameters were estimated
against the experimental data.

First, local sensitivity analysis [10,42] was performed to compute two different sensitivity
matrices S1 and S2 to quantify the effect of each model parameter on yIκBα and yTNFα (i.e., the process
outputs). S1 and S2 represent the sensitivity matrices of the model parameters with respect to yIκBα

and yTNFα, respectively, when the cells were stimulated with LPS in the presence of Golgiplug™.
Specifically, a sensitivity matrix is defined as:

Si =

⎡
⎢⎢⎢⎣

∂yi(t1)
∂θ1

· · · ∂yi(t1)
∂θnp

...
. . .

...
∂yi(tNt )

∂θ1
· · · ∂yi(tNt )

∂θnp

⎤
⎥⎥⎥⎦ , ∀i = {IκBα, TNFα} (4)

where np is the number of parameters in θ in Equation (2), and ∂yi(tl)/∂θj quantifies the effect of a
parameter θj on an output yi at t = tl , ∀l = 1, · · · , Nt, where Nt is the number of measurement instants.
∂yi(tl)/∂θj can be computed by the following equation:

∂yi(tl)

∂θj
=

∂gi(tl)

∂xT
∂x
∂θj

+
∂gi(tl)

∂θj
(5)

Additionally, the term ∂x/∂θj in Equation (5) can be computed by integrating the following
equation along with Equation (2):

d
dt

∂x(tl)

∂θj
=

∂f(tl)

∂xT
∂x
∂θj

+
∂f(tl)

∂θj
(6)

Second, the Gram–Schmidt orthogonalization method [10,18] was used to identify the pi most
important model parameters to be estimated for each Si, ∀ i = 1, 2. Here, pi is the number of singular
values of Si whose magnitudes are at least 5% of the largest singular value [17,18]. As a result, the
parameter subset to be estimated, θs ∈ R

p×1 where p ≤ p1 + p2, is chosen as the union of the selected
parameters from S1 and S2. Third, the least-squares problem was solved to estimate the values of θs

67



Processes 2018, 6, 21

by minimizing the difference between the model predictions and the experimental data of yTNFα and
yIκBα while the values of the unselected parameters were fixed at their nominal values selected from
the literature [21,24,43,44] with some modifications.

In this study, three LPS concentrations (10, 50 and 250 ng/mL) were used to stimulate cells, and
the MFI of IκBα and TNFα were measured at t = 0, 10, 20, 30, 60, 120, 240 and 360 min after the addition
of LPS with Golgiplug™ (i.e., tl , ∀ l = 1, · · · , 7). Specifically, the MFI data from 10 and 250 ng/mL of
LPS (i.e., uk, ∀ k = 1, 2) were used to estimate the parameter values, while the dataset from 50 ng/mL
LPS was used to validate the model with the updated parameters. Then, the least-squares problem is
formulated as follows:

min
θs

2

∑
k=1

7

∑
l=1

[(
yIκBα,k,1(tl)− ŷIκBα,k,1(tl)

ŷIκBα,k,1(tl)

)2

+

(
yTNFα,k,1(tl)− ŷTNFα,k,1(tl)

ŷTNFα,k,1(tl)

)2
]

(7)

s.t.
dxk,i

dt
= f i (xk,i, θs; uk) , xk,i(t = 0) = x0, ∀i = 1, 2 (8)

yj,k,1 = gj (xk,i, θs; uk) , j = {IκBα, TNFα} (9)

xlb ≤ xk,i ≤ xub (10)

θlb
s ≤ θs ≤ θub

s (11)

where yIκBα,k,1(tl) and yTNFα,k,1(tl) are the simulated fold changes of IκBα and TNFα, respectively, through
Equation (9) at t = tl under the initial LPS concentration of uk in the presence of Golgiplug™, ŷIκBα,k,1

and ŷTNFα,k,1 are the corresponding experimentally measured fold changes and x0 is the vector of the
initial conditions of x (see Supplementary Materials Table S1).

In the least-squares problem of Equations (7)–(11), the objective function of Equation (7) computes
the difference between model predictions and the experimental measurements of the proteins in the
presence of Golgiplug™. As a whole, the objective function minimizes the difference by varying the
values of θs. While Equation (8) is integrated to compute the predicted protein concentration xk,i, f 1,
which includes Equation (1), is used if Golgiplug™ is present; otherwise, f 2, which does not involve
Equation (1), is integrated. The initial condition of the model, x̂0, is assumed based on a previous
study [21,23]. Equations (10)–(11) impose lower and upper bounds on the states and parameters,
respectively, based on previous studies and underlying biological knowledge [5,21,23].

It should be noted that we preserved one set of the experimental measurements (one obtained
under 50 ng/mL of LPS) to validate the parameter estimation results [45]. As Equations (7)–(11)
are likely to be non-convex, the choice of the initial guesses is important. In this study, the initial
guesses for the above least-squares problem were obtained from Caldwell et al. [21], which were
validated experimentally by comparing with the population-level measurements. Therefore, the
parameter values estimated by Caldwell et al. [21] were suitable initial guesses. At the same time,
Equations (7)–(11) were solved multiple times with different initial values to avoid any suboptimal
optima. Model simulations and the parameter estimation were performed in MATLAB via its functions
ode15s and fmincon. The absolute and relative tolerance criterion for ode15s were set as 10−9, and
fmincon was implemented with multistart to obtain a better result by solving Equations (7)–(11) multiple
times with different initial conditions.

3. Results

Profiles of de novo synthesized intracellular TNFα under the stimulation of LPS in the presence of
Golgiplug™ demonstrated that the TNFα production increased around one hour after the stimulation
(Figure 2). At around the same time, the IκBα concentration reached its minimum, which is consistent
with experimental observations in the literature [46–48]. Subsequently, the IκBα concentration increased
due to the induction of IκB transcript (IκBt) by nuclear translation of NFκB, while the TNFα production
rate slowed down beyond 4 h of LPS stimulation (Figure 2). It should be noted that no experiments
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were conducted beyond 6 h after LPS was added to the cell culture based on the manufacturer’s
guideline on Golgiplug™ use. This is most likely based on the fact that Golgiplug™ might induce the
apoptosis of cells exposed to it for a long time [49,50]. As a result, the calibrated model is more suitable
to describe the early NFκB signaling pathway (≤6 h) upon the LPS stimulation.
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Figure 2. Parameter estimation before considering the Golgiplug™-induced ER stress. (a–c) Measured
(empty circle) and simulated (solid line) fold changes of intracellular TNFα concentrations over time
were plotted under different LPS concentrations in the presence of Golgiplug™. (d–f) Measured (empty
circle) and simulated (solid line) fold changes of IκBα concentrations over time were plotted under
different LPS concentrations in the presence of Golgiplug™. Indicated amounts of LPS were used for
experiments and simulations. Experimental data are given as means ± SEM (standard error of means)
with at least n = 6.

3.1. Model Validation

Based on the criteria outlined above in the previous section, six parameters (Table 1) were
selected for parameter estimation. Figure 2 shows the simulated profiles of intracellular TNFα

and IκBα in macrophages under the stimulation of LPS in the presence of Golgiplug™ after the
parameter estimation. While the model predictions agreed well with the experimental data obtained
for 250 ng/mL of LPS, less concordance was observed between simulations and experimental data
for 10 ng/mL of LPS. Specifically, the simulated concentration of intracellular TNFα was one order of
magnitude lower than the MFI data, while the simulated IκBα dynamics were qualitatively similar to
the measured MFI values. Since the discrepancy between the model prediction and the experimental
measurements was pronounced with 10 ng/mL of LPS, we hypothesized that the lack of agreement
between the simulations and experimental data was because the effects of Golgiplug™ addition
were not adequately represented in the model structure and were more pronounced at the lower
LPS concentration.
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Table 1. The selected parameters when Golgiplug™-induced IκB translation inhibition was not considered.

Parameter

TLR4 constitutive generation rate
IKKK-mediated IKK activation (IKK → IKKa)

IκBα transcript degradation rate
Hill coefficient of IκBα transcription
Hill coefficient of IκBε transcription

Hill coefficient of TNFα transcription
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Figure 3. Kinetics of IκBα fold changes when the cells were stimulated by (a) 0, (b) 10, (c) 50, and
(d) 250 ng/mL of LPS in the presence (empty circles) or absence (x marks) of Golgiplug™. Data are
given as means ± SEM with at least n = 3.

3.2. Golgiplug™-Induced ER Stress

One possible explanation for this discrepancy could be that the addition of Golgiplug™ induced
other signaling pathways, which altered NFκB signaling dynamics [51]. As Golgiplug™ prevents
protein secretion by causing collapse of the Golgi apparatus into the ER, synthesized proteins will
be redistributed from the Golgi complex into the ER [29]. A direct consequence of Golgiplug™ addition
could be accumulation of newly synthesized proteins in ER, which may induce ER stress [51]. It is
well established that the ER stress leads to phosphorylation of eukaryotic initiation factor 2 α-subunit
(eIF2α), which partially inhibits the translation of IκB in the NFκB signaling pathway [51–54]. This could
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lead to a decrease in the overall kinetics of the LPS-induced NFκB signaling as the concentration of IκB
proteins would be kept lower, leading to the aforementioned mismatch between the model predictions
and experimental data. Since the low LPS concentration induces less IκBα and its isomers (IκBβ and
IκBε) (Figure 2), the entire LPS-induced NFκB pathway dynamics would be affected more significantly by
Golgiplug™ at a lower LPS concentration than at a high LPS concentration if the translation of IκBα and
its isomers is partially inhibited. If this is true, it can lead to the pronounced disagreement between the
model prediction and the experimental measurement under the stimulation of 10 ng/mL LPS as shown
in Figure 2.

Therefore, we examined whether the Golgiplug™ addition could modulate IκB levels in
macrophages. First, the fold change in IκBα MFI with the stimulation of LPS alone, Golgiplug ™ alone,
and LPS and Golgiplug ™ in macrophages were compared. Figure 3a shows that Golgiplug™ alone
lowers the concentration of IκBα, and Figure 3b–d show that the IκBα kinetics were altered when
the cells were stimulated with LPS and Golgiplug™. While IκBα levels initially decreased when
cells were exposed to LPS alone, they recovered to pre-stimulation levels after 3 h of exposure.
However, when LPS was added along with Golgiplug™, IκBα levels continued to be lower than
pre-stimulation levels (Figure 3b–d). These results suggested that Golgiplug™ could affect the
IκBα kinetics (presumably through the eIF2α phosphorylation) [52,54]. This also explains the
observations in Figure 2a–c, where the intracellular TNFα concentration continued to increase since
the Golgiplug™-induced response prolonged the NFκB activation by inhibiting the IκBα synthesis.

3.3. Model Refinement

In order to account for the Golgiplug™-induced translation inhibition, the following equation was
considered in addition to Equation (1):

ktli ,m = ktli

(
1 − νG

G + K

)
(12)

where ktli ,m and ktli are the IκBi, ∀ i = α, β, ε, translation rates in the presence and absence of
Golgiplug™, respectively, ν is a coefficient for the maximum translation inhibition and K is the
Michaelis constant of the eIF2α phosphorylation. Equation (12) was included in Equation (2) along
with Equation (1) for an accurate simulation. The process affected by this translation inhibition is
shown in Figure 1 via a red arrow.

The proposed dynamic model was calibrated again using the parameter estimation procedure as
described above. Since the additional measurements of the IκBα dynamics in the absence of Golgiplug™

were obtained, an extra sensitivity matrix was calculated, and the following was added to the objective
function (7):

2

∑
k=1

7

∑
l=1

(
yIκBα,k,2(tl)− ŷIκBα,k,2(tl)

yIκBα,k,2(tl)

)2

where ŷIκBα,k,2 and yIκBα,k,2 are the simulated and measured IκBα fold change, respectively, in the
absence of Golgiplug™.

3.4. Final Model Validation

Based on the updated model structure and the available experimental data, the aforementioned
parameter selection approach determined eight parameters, which could be uniquely estimated
(Table 2). Most of the parameters selected by the proposed parameter selection procedure were relevant
to the core NFκB-IκB feedback system such as Hill coefficients for IκB-α and -ε transcription, IKK
deactivation, and IκBα transcript degradation rate. The remaining identified parameters are the TLR4
constitutive generation rate, C1 (TNFR complex [23]) deactivation rate and eIF2α phosphorylation
coefficient, which are most relevant to the LPS- and TNFα-induced NFκB activation, as well as
the effects of Golgiplug™, respectively. Hence, all major processes considered in this system,
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which included the LPS- and TNFα-induced NFκB signaling pathway in the presence of Golgiplug™,
were quantitatively validated against the single-cell experimental data.

Table 2. Selected parameters and their newly estimated values for the final model.

Parameter New Value

Coefficient for eIF2α phosphorylation (ν) 1.00
A20-mediated C1 deactivation 9.04 × 103 (μM min)−1

TLR4 constitutive generation rate 3.75 × 10−2 μM min−1

IKKK-mediated IKK activation 4.75 × 103 (μM min)−1

Constitutive inactivation of IKK 2.85 × 10−2 min−1

IκBα mRNA degradation rate 5.83 × 10−3 min−1

Hill coefficient of IκBα transcription 4.16
Hill coefficient of IκBε transcription 5.00

Figure 4 shows simulated fold changes in IκBα and intracellular TNFα after parameter
estimation. The simulated profiles were again compared with the experimental data. The normalized
root-mean-squares of the parameter estimation results before and after the incorporation of the
Golgiplug™ model (Equation (12)) were 3.8 and 2.5, respectively, which demonstrated the improvement
of the model fidelity. Overall, the model predictions were in qualitative and quantitative agreement
with both training datasets and validation datasets, as well as the literature data, which validated the
prediction capability of the calibrated model, as well as our hypothesis on the effect of Golgiplug™

on the inhibition of IκB translation. The results demonstrated that the calibrated model is capable of
predicting input-output responses in the NFκB pathway. Additionally, the predictions from the current
model were compared with the model proposed by Caldwell et al. [21] (Figure 4g–i). The proposed
model was able to predict the observed IκBα dynamics under all LPS concentrations more accurately
than the previous model by Caldwell et al. [21], which again demonstrated that the predictive capability
of the model was improved in terms of simulating the IκBα dynamics.

In order to further assess the predictive capability of the newly calibrated model, the simulated
dynamics of nuclear NFκB levels (i.e., activated NFκB) in the absence of Golgiplug™ were
computed and plotted in Figure 5a. The maximum NFκB translocation to the nucleus occurred
within 2 h of LPS addition, which was consistent with previous experimental studies [15,55,56].
Moreover, as the LPS concentration increased, the nuclear NFκB levels reached their maximum value
earlier (i.e., at 50, 60, 75 and 105 min after adding LPS), and the areas under the curves in Figure 5a,
which were computed as indicators of the signal strength, were around 20 μM·min for different
concentrations of LPS. Interestingly, a 25-fold change in the LPS concentration only resulted in less
than a 100% change in the signal strength. This observation was consistent with single-cell studies by
Tay et al. [14,57], where they observed a relatively constant peak intensity and decreasing response
time of the NFκB signal in mouse 3T3 cells upon TNFα or LPS stimulation.

Figure 5b shows the predicted amount of TNFα secreted under different LPS stimulation
conditions in macrophages. As the LPS concentration increased, the concentration of secreted
TNFα increased, which was expected since the signal (area under the peak) became stronger.
Furthermore, similar to previous studies [15,21,58], the TNFα concentration peaked around 5 h after
stimulation and gradually declined thereafter; however, the rate of decline was slower than that
reported by Maiti et al. [15] (Figure 5c), where they measured the TNFα secretion dynamics from
RAW264.7 macrophages in response to LPS stimulation at the population level. This observation
was consistent with the observation reported by Xue et al. [13], who observed using human
monocyte-derived macrophages the amount of TNFα secreted to the medium from a single cell
in a cell population was less than that from an isolated single-cell at 20 h after the LPS stimulation. This
suggested that the simulated dynamics by the proposed model is qualitatively similar to the signaling
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dynamics of an isolated single-cell instead of population-averaged dynamics, which was expected
since the kinetic data obtained under Golgiplug™ were used to train the model.
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Figure 4. Parameter estimation considering Golgiplug™-induced ER stress. (a–c) Measured (empty
circle) and simulated (solid line) fold changes of intracellular TNFα concentrations over time were
plotted in the presence of Golgiplug™. (d–f) Measured (empty circle) and simulated (solid line) fold
changes of IκBα concentrations over time were plotted in the presence of Golgiplug™. (g–i) Measured
(empty circle) and simulated (solid line) fold changes of IκBα concentrations over time were plotted in
the absence of Golgiplug™. The IκBα dynamics predicted by the model in [21,24] were also plotted in
(g–i) for comparison. Indicated amounts of LPS were used for experiments and simulations.
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Figure 5. Simulated dynamics of NFκB nuclear translation and TNFα secretion. (a) Nuclear NFκB
concentration and (b) the amount of TNFα secreted to the medium upon stimulation by
10, 50, 100 and 250 ng/mL of LPS. (c) The simulated dynamics of TNFα concentration in the medium
was compared with the measurement by Maiti et al. [15] in response to 100 ng/mL of LPS. The TNFα

concentration at each point was normalized to the maximum value obtained.

4. Discussion

In this study, we have developed a dynamic model that can accurately simulate the average
single-cell dynamics of the NFκB signaling pathway by combining the single-cell measurements
and a numerical scheme with sensitivity analysis, parameter selection and parameter estimation.
The dynamic model was built based on a previously developed NFκB model [21,23,24] and calibrated
using the experimental data and the aforementioned numerical scheme. Predictions from the
developed dynamic model are in good agreement with the experimental measurements under
all LPS concentrations, which demonstrates that the model is capable of simulating the average
single-cell dynamics.

Previous studies have used stochastic simulation algorithms such as Gillespie’s algorithm [59] and
approximate methods of Gillespie’s algorithm [60–63] to study single-cell dynamics and investigate
heterogeneity in signaling pathways at the single-cell level [2,5,64]. For example, Lipniacki et al. [14,64]
proposed a hybrid stochastic-deterministic model of the TNFα-induced NFκB signaling pathway that
was able to reproduce the heterogeneous responses observed in the single-cell measurements [14,65]
and identify possible origins of the heterogeneity. However, stochastic simulation algorithms are
computationally expensive, and they are difficult to fit to experimental measurements for model
validation [7,66,67]. A more viable method is a semi-stochastic model, which uses deterministic modeling
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with model parameters that have distributions [5–7], to reduce the computational cost while still studying
the cell-to-cell variability. The dynamic model developed here can accurately simulate average single-cell
dynamics and is a first step towards building a semi-stochastic model of the NFκB signaling.

The development of such a deterministic model for building a semi-stochastic model requires
accurate parameter estimation, where values of model parameters are estimated by solving an
optimization problem (Equations (7)–(11)). However, parameter estimation is a nontrivial problem
due to, but not limited to, ill conditioning, over-fitting and the non-identifiability of model
parameters [9,68,69]. The ill-conditioning and over-fitting problems during parameter estimation
are attributed to the fact that available experimental measurements are usually very limited and noisy,
while mathematical models of signaling pathways are often very comprehensive and include a large
number of parameters [9,10]. As a result, the solution to the parameter estimation problem is likely to be
non-unique or very sensitive to noise present in the experimental measurements. Furthermore, even if
a large number of noise-free experimental measurements are available, the value of a parameter cannot
be uniquely determined if the parameter is not identifiable [10,11]; hence, it is necessary to check the
parameter identifiability a priori.

The model developed in this work contains 148 parameters with limited experimental data,
and hence, parameter estimation is very likely to suffer from the aforementioned issues in the parameter
estimation procedure. Therefore, we implemented an integrated method combining sensitivity analysis
and parameter selection before parameter estimation. Specifically, the sensitivity analysis quantified
the effects of each parameter on the measurements, and the parameter selection method selected
identifiable parameters via Gram–Schmidt orthogonalization. Then, the values of only the selected
parameters were estimated in the parameter estimation, while the values of remaining parameters were
fixed at their nominal values, which effectively alleviated the ill-conditioning problem by reducing the
degrees of freedom in Equations (7)–(11) [9,10,68].

After parameter estimation, the simulated profiles of intracellular TNFα and IκBα exhibited
reasonable agreement between the model predictions and the experimental measurements at all LPS
concentrations (Figure 4). Furthermore, as shown in Figure 5c, model predictions after parameter
estimation were distinct from that of a cell population as the simulated profiles were closer to the
signaling dynamics of isolated single-cells. This was likely because the use of Golgiplug™ inhibited
secretion of cytokines [70] and hence minimized potential autocrine and paracrine signaling from the
secreted cytokines. This is important as the autocrine and paracrine signaling has been proposed as a
key component in determining the overall signaling dynamics of cells in a population [13,35,36,71].
Therefore, the proposed model, which was trained by the single-cell dynamics from flow cytometry
in the presence of Golgiplug™, was able to describe the single-cell NFκB dynamics under minimal
cytokine feedback.

It should be noted that the current model simulates the LPS-induced NFκB signaling dynamics
in a cell, but it does not consider the initiation of the NFκB signaling pathway by TNFα secreted
by neighboring cells. Hence, the flow cytometry measurements obtained in the presence of
Golgiplug™ are appropriate to identify realistic parameter values to reproduce average single-cell
dynamics. At the same time, as flow cytometry measures cellular responses from thousands of cells
simultaneously, flow cytometry can provide distributions of the measurements (see Supplementary
Materials Figures S1–S3). Based on this statistical information, one can estimate the distributions of
the parameters by different methods such as Bayesian approaches [6,7] or generalized polynomial
chaos [72]. The model with the estimated parameter distributions is then the semi-stochastic model
that can be used to study the heterogeneity in cellular responses.

The present study also suggests that cytokine production data acquired using flow cytometry in
the presence of Golgiplug™ should be interpreted cautiously. As Golgiplug™ can block cytokine
secretion, it is often used to assess the cytokine production at the single-cell level using flow
cytometry [73–75]. The data shown in the work suggest that the dynamics of transcription
factors and other signaling intermediates may be altered by the addition of Golgiplug™ (Figure 3).
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Therefore, data from studies using Golgiplug™ need to be interpreted cautiously, and a model-based
approach like the one presented here can be useful in eliminating the effects of Golgiplug™ and extract
true signaling dynamics from flow cytometry data.

5. Conclusions

We systemically extracted the average single-cell dynamics of the LPS-induced NFκB signaling
pathway through the integration of sensitivity analysis and a parameter selection scheme with flow
cytometry data of key protein intermediates. Based on the measurements and the model structure,
key model parameters were identified and estimated to maximize the prediction accuracy of the
calibrated model while avoiding overfitting. The mismatch between the model predictions and
experimental observations even after the parameter estimation revealed the existence of a previously
unconsidered, yet important, mechanism related to Golgiplug™, which was subsequently validated by
experiments and led to the update of the proposed model. Then, the resultant model was validated,
and the simulated profiles from the updated model were in good agreement with experimental datasets
under three different LPS concentrations. This model can be used as the nominal model to construct a
deterministic model that has parameters with distributions and can be used to study the stochasticity
in signaling.

Supplementary Materials: The model parameters and equations are available at http://www.mdpi.com/2227-
9717/6/3/21/s1. Furthermore, representative histograms of IκBα and TNFα levels measured using flow cytometry
are provided in the Supplementary Materials Figures S1–S3.
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The following abbreviations are used in this manuscript:

LPS lipopolysaccharide
NFκB nuclear factor κB
TNFα tumor necrosis factor α

IκBα inhibitor of κB, α

TLR4 Toll-like receptor 4
IKK IκB kinase
MyD88 myeloid differentiation primary response 88
TIR Toll/interleukin-1 receptor
TRIF TIR-domain-containing adaptor-inducing interferon-β
TRAF6 TNF receptor-associated factor 6
IKKK IKK kinase
ER endoplasmic reticulum
TNFR TNFα receptor
CD14 cluster of differentiation 14
MFI mean fluorescence intensity
IκBt IκB transcript
eIF2α eukaryotic initiation factor 2 α-subunit
C1 TNFR complex
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Abstract: Studies performed at single-cell resolution have demonstrated the physiological significance
of cell-to-cell variability. Various types of mathematical models and systems analyses of biological
networks have further been used to gain a better understanding of the sources and regulatory
mechanisms of such variability. In this work, we present a novel sensitivity analysis method, called
molecular density function perturbation (MDFP), for the dynamical analysis of cellular heterogeneity.
The proposed analysis is based on introducing perturbations to the density or distribution function
of the cellular state variables at specific time points, and quantifying how such perturbations
affect the state distribution at later time points. We applied the MDFP analysis to a model of a
signal transduction pathway involving TRAIL (tumor necrosis factor-related apoptosis-inducing
ligand)-induced apoptosis in HeLa cells. The MDFP analysis shows that caspase-8 activation regulates
the timing of the switch-like increase of cPARP (cleaved poly(ADP-ribose) polymerase), an indicator
of apoptosis. Meanwhile, the cell-to-cell variability in the commitment to apoptosis depends on
mitochondrial outer membrane permeabilization (MOMP) and events following MOMP, including
the release of Smac (second mitochondria-derived activator of caspases) and cytochrome c from
mitochondria, the inhibition of XIAP (X-linked inhibitor of apoptosis) by Smac, and the formation of
the apoptosome.

Keywords: mathematical modeling; biological networks; sensitivity analysis; programmed cell death;
single cell dynamics; cell population

1. Introduction

Advances in single-cell profiling technology and the application of this technology to study
biology at single-cell resolution have demonstrated the ubiquity and functional role of cell-to-cell
variability in physiological processes, such as programmed cell death (apoptosis) and stem cell
differentiation [1–3]. Besides genetic, epigenetic, and environmental factors, the cellular heterogeneity
observed in a given cell population has also been attributed to the inherent stochastic dynamics
of cellular processes. For example, gene transcriptional processes have been shown to occur in
stochastic (random) bursts [4–6]. Many modeling frameworks have been used to capture cellular
heterogeneity—for example, by using ensemble models (EM) of ordinary differential equations
(ODEs) [7–9], population balance models (PBMs) [10], stochastic ordinary differential equations
(SDEs) [11,12], and chemical master equations (CMEs) [13–15]. In these models, the cell-to-cell
variability is described by a probability density or distribution function of cell state variables.
Systems analyses have also been developed and applied to gain insight into the dynamics of cell
state distribution. For example, several types of parameter sensitivity analysis, including SOBOL
sensitivity [16], derivative-based global sensitivity measure (DGSM) [17], glocal analysis [18], extended
Fourier amplitude sensitivity test (eFAST) [19], and stochastic sensitivity analysis [20–23] have
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been used to identify the rate-controlling or bottlenecking processes based on dynamic models of
cell distribution.

Parameter sensitivity analysis (PSA) is a common systems analysis that is used to elucidate the
dependence of system behavior on system parameters [24–27]. In the PSA, we compute sensitivity
coefficients whose magnitudes describe how much system states vary with changes in one or a
combination of system parameters. A large sensitivity magnitude means that the system behavior
strongly depends on changes in the corresponding parameter(s), an indication of a rate-limiting
process. In several publications [28–30], we have shown that the traditional PSA derived using
static perturbations to system parameters may lead to incorrect conclusions when the rate-limiting
process changes with time. For this reason, we have created a new class of sensitivity analysis based
on impulse perturbations on parameters and states, called impulse parameter sensitivity analysis
(iPSA) and Green’s function matrix (GFM) analysis, respectively [28–30]. By introducing impulse
perturbations at different times, the new sensitivity analyses are able to reveal not only which processes
are rate limiting but also when they become rate limiting.

In this work, we adapted the concept of impulse perturbation-based PSA for the dynamical
analysis of cell-to-cell variability. The new sensitivity analysis, called molecular density function
perturbation (MDFP), is based on time-varying perturbations to the probability density or distribution
function of the cell state variables. The MDFP sensitivity coefficients are defined using distribution
distances in order to account for changes in the cell state distribution beyond the first-order moment
(i.e., population mean). We applied the MDFP analysis to a model of programmed cell death in HeLa
cell populations [31] and identified key regulators in apoptotic decision making.

2. Material and Methods

Sensitivity analysis of dynamic models of cell distribution has received much interest in recent
times along with the rise of systems biology and the increasing attention to single-cell analysis.
Novel PSA methods have been developed for the CME models of biological networks [20–23]. Here,
the sensitivity coefficients describe changes in the mean of cell state distribution caused by infinitesimal
(local) perturbations to the parameter values. Methods for global sensitivity analysis have also been
adapted for analyzing cell distribution sensitivities, such as sampling-based partial rank correlation
coefficient (PRCC) and variance-based eFAST [19]. Despite their differences, the aforementioned
sensitivity analyses and the corresponding sensitivity coefficients are based on static or persistent
parameter perturbations. As we have demonstrated previously, such analysis is incapable of
elucidating any dynamic transitions of the bottlenecking process [28–30].

2.1. Molecular Density Function Perturbation (MDFP) Analysis

In the following, we formulate the molecular density function perturbation (MDFP) analysis.
In MDFP, we describe the cell distribution using a probability density function (PDF) denoted by
fX(x, t), where x ∈ R

n denotes the cell state vector and t denotes time. This description of cell
distribution is flexible enough to accommodate mathematical modeling frameworks that are commonly
used to simulate cell population dynamics, including EMs, PBMs, SDEs, and CMEs. In biological
network models, the cell state is typically defined by the concentrations of biomolecules. By definition,
the (n-tuple) integral of the PDF

∫ b
a fX(x, t)dx gives the fraction of the cell population at time t whose

states (concentrations) satisfy a ≤ x ≤ b. The basic premise of the MDFP analysis is the same as that
of the impulse perturbation-based sensitivity analysis, specifically the GFM analysis [28], which is to
introduce a perturbation to the cell state at time τ and quantify the effect of this perturbation at a later
time t (t ≥ τ). However, the MDFP analysis uses perturbations to the PDF of the cell state.

In deriving the MDP sensitivity coefficients, we start with the following relationship:

fX(x, t) = fX|Xτ
(x, t|xτ , τ) fX(xτ , τ). (1)
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The PDF fX|Xτ
(x, t|xτ , τ), also known as the transitional probability or the propensity function,

gives the conditional PDF of x at time t given that the cell state is xτ at time τ (t ≥ τ). In the following,
we consider introducing a mean shift perturbation to the PDF at time τ to give:

f
Δ+j
X (x̌τ , τ) = fX

(
x̌τ − δej, τ

)
, (2)

where x̌τ denotes the perturbed state variables and ej denotes the j-th column of the identity matrix.

Note that the PDF f
Δ+j
X (x̌τ , τ) corresponds to the PDF fX(xτ , τ) with a positive mean shift of δej

(i.e., x̌τ = xτ + δej). Given the perturbed PDF f
Δ+j
X (x̌τ , τ) at time τ and the propensity function

fX|Xτ
(x, t|xτ , τ), we can define the perturbed PDF of the cell state at time t, denoted by f

Δ+j,τ
X (x, t),

as follows:
f

Δ+j,τ
X (x̌, t) = fX|Xτ

(x̌, t|x̌τ , τ) f
Δ+j
X (x̌τ , τ). (3)

Note that the following equality applies:

f
Δ+j,τ
X (x̌, τ) = f

Δ+j
X (x̌τ , τ). (4)

In the MDFP analysis, we employ a distribution distance metric to quantify the magnitude of
PDF changes caused by the perturbations. Several metrics of distribution distance are available,
such as the Kullback–Leibler distance (ΔKL), Jeffrey distance (ΔJ), Jensen–Shannon divergence (ΔJS),
engineering metric (ΔE), Kolmogorov–Smirnov distance (ΔKS), and the Cramer–von Mises distance
(ΔCVM). The first four of the aforementioned distribution distances are based on the difference between
two PDFs, while the last two are based on the difference between the cumulative density functions
(CDFs). For the analysis of programmed cell death (below), we used the Cramer–von Mises distance
(see Supplementary Material S1 for the mathematical definitions of the other distribution distances):

ΔCVM

(
f A(z)

∣∣∣∣∣∣ f B(z)
)
=

∫ ∞

−∞

(
FA(z)− FB(z)

)2
dz, (5)

which, in our experience, gives more reliable sensitivity coefficient calculations. The variable F(z)
denotes the CDF of the PDF f (z)—i.e., F(z) =

∫ z
−∞ f (y)dy.

Following the common definition of sensitivity coefficients [32], we compute the MDFP sensitivity
coefficients as the ratio of the changes in the PDF of the cell state at time t and the perturbation
introduced at time τ. The sensitivity coefficients are evaluated for a particular cell state variable of
interest xi (the i-th element of x) with respect to a perturbation to δej on the state variable xj, as follows:

SMDFP
i,j (t, τ) = sign

(
ΔμXi (t)
Δμxj(τ)

)
ΔCVM

(
f

Δ+j,τ
Xi

(x̌i, t)
∣∣∣∣∣∣ f

Δ−j,τ
Xi

(x̌i, t)
)

ΔCVM

(
f

Δ+j
Xj

(
x̌j, τ

)∣∣∣∣∣∣ f
Δ−j
Xj

(
x̌j, τ

)) , (6)

where sign(·) gives the sign of the argument variable and ΔμXi (t) denotes the change in the mean of

the state variable xi at time t. The function f
Δ+j,τ
Xi

(x̌i, t) denotes the marginal PDF of f
Δ+j,τ
X (x̌, t) with

the following definition:

f
Δ+j,τ
Xi

(x̌i, t) =
∫

f
Δ+j,τ
X (x̌, t)dx̌∼i. (7)

The integration in Equation (7) is performed over all state variables x̌’s except for x̌i. Note that the
sensitivity coefficient in Equation (6) is motivated by the centered difference approximation [32], where
the sensitivity coefficients are computed using positive and negative perturbations to the system.

The definition of the MDFP sensitivity coefficients is analogous to the Green’s function matrix
(GFM) sensitivity [28,32]. We can visualize SMDFP

i,j (t, τ) using a heatmap as shown in Figure 1.
The magnitudes of the sensitivities represent the degree of importance, while the signs of the sensitivity
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coefficients reflect the direction of the mean change. A positive sensitivity coefficient indicates that
the mean change of xi at time t is in the same direction as the mean shift perturbation to xj at time
τ. One can further use the magnitudes of the sensitivity coefficients to rank state variables (at time
τ) according to the degree of their influence on a particular state variable (at time t), where larger
sensitivity magnitudes indicate higher importance.

Figure 1. A heatmap of the molecular density function perturbation (MDFP) sensitivity coefficient.
The x-axis represents the time τ at which the perturbation is introduced while the y-axis represents the
observation time t. The MDFP coefficient in the heatmap is scaled such that the magnitude falls within
±1, and the scaling factor is reported in the lower right corner of the plot. The sensitivity values for
t < τ are set to zero for causal systems.

In the case study, we considered an ensemble of ODE models with each model representing one
cell in a cell population. The models in the ensemble shared the same ODEs and parameters but had
different initial states. The ODE model followed the general formula:

dx(t, p)

dt
= g(x, p), (8)

where p denotes the vector of model parameters and g(x, p) is a vector-valued nonlinear function.
The distribution of the initial conditions is given by the PDF fX(xt0 , t0). The sensitivity coefficients
were computed using a Monte Carlo approach, where we simulated an ensemble of ODE models with
a random sample generated from fX(xt0 , t0) as the initial conditions. The model simulation of each
randomly sampled initial condition represented the state trajectory of a cell in the cell population.
For the computation of SMDFP

i,j (t, τ), we introduced a perturbation δ to the state variable xj for each of
the cells in the ensemble at selected time points τ and simulated the perturbed state trajectory of xi
until the desired time t (t ≥ τ). We constructed the marginal PDFs or CDFs of the state variables using
a kernel density estimator with leave-one-out cross validation [33].

2.2. Green’s Function Matrix Analysis

We compared the MDFP analysis to a related sensitivity analysis based on the GFM. Similar
to the MDFP analysis, the GFM analysis introduces time-dependent perturbations to the state
variables. The GFM sensitivity coefficients were calculated by directly differentiating the ODE model
in Equation (8) as follows [28]:

d
dt

(
∂x(t)
∂x(τ)

)
=

d
dt

SGFM(t, τ) =
∂g(x, p)

∂x
SGFM; SGFM(τ, τ) = In (9)

where SGFM(t, τ) is the n × n sensitivity matrix and In is the n × n identity matrix. The (i, j)-th element
of SGFM(t, τ) (i.e., SGFM

i,j (t, τ) = dxi(t)/dxj(τ)) gives the sensitivity of the state xi(t) with respect
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to perturbations to the state xj(τ) (t ≥ τ). In the case study below, we normalized the sensitivity
coefficients as follows:

ŜGFM
i,j (t, τ) = SGFM

i,j (t, τ)
xj(τ)

xi(t)
(10)

We computed the GFM sensitivity coefficients following the procedure described in the original
publication [28].

3. Results

3.1. TRAIL-Induced Cell Death Model in HeLa Cells

Figure 2 depicts the signaling network associated with extrinsically-induced apoptosis by the
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The ODE model comprises 58 species,
28 reactions, and 70 kinetic parameters [34] (see Supplementary Material S2 for details on the initial
conditions, parameter values, and rate equations). The model parameters and initial conditions
were previously determined by parameter fitting to single-cell and cell population data from cell
imaging, flow cytometry, and immunoblotting experiments [31,35,36]. The model describes the key
mechanisms for the activation of endogenous executioner caspase-3 (C3*) and the subsequent cleavage
of poly(ADP-ribose) polymerase (PARP) [35]. Specifically, the model describes four major pathways:
(i) the upstream pathway, describing TRAIL-induced cleavage of pro-caspase-8 (C8) to caspase-8 (C8*);
(ii) the mitochondrial independent type I pathway, describing the cleavage of pro-caspase-3 (C3) to
caspase-3 (C3*) by C8* and the inhibition of C3 by X-linked inhibitor of apoptosis (XIAP); (iii) the
mitochondrial-dependent type II pathway, describing the formation of mitochondrial pores promoted
by C8*, the consequent release of cytochrome c (Cyc) into the cytosol, the formation of apoptosome
(Apop) induced by cytosolic Cyc, and the activation of C3 by apoptosome; and (iv) the pro-caspase-6
(C6) positive feedback loop where active C3* could promote the activation of C8. In the following,
we applied the GFM and MDFP sensitivity analysis to elucidate the key processes in the cell death
decision making. More specifically, we computed the GFM and MDFP sensitivity coefficients of the
cleaved PARP (cPARP) concentration, an indicator of apoptosis, with respect to perturbations in the
concentration of molecules involved in the regulation of PARP cleavage in the model, excluding the
intermediate complexes.

3.2. GFM Analysis of TRAIL-Induced Cell Death

We applied the GFM analysis to the ODE model using the model parameters in the original
report and the median initial concentration from a follow-up publication by the same authors [36]
(see Supplementary Material S2). The analysis was performed for a constant TRAIL stimulation over a
time range of 0 to 5.3 h, in which the concentrations reached steady state (see Figure 2b). Here, the ODE
model simulated an apoptotic cell in which the cleavage of PARP in response to TRAIL occurs in a
delayed switch-like manner, as shown in Figure 3a. To study the activation dynamics of cPARP in
greater detail, the analysis of the GFM sensitivity coefficients was split into two phases: before and
after mitochondrial outer membrane permeabilization (pre- and post-MOMP). Following a previous
study [31], we defined MOMP to occur when 10% of the total PARP has been cleaved into cPARP,
which in this analysis occurred at 2.36 h (see Figure 2b). Figure 3b,c portrays the ten largest GFM
sensitivity coefficients of the cPARP concentration ŜGFM

cPARP,j(t, τ) in the pre- and post-MOMP phases,
respectively (see Supplementary Figures S1 and S2 for the complete GFM sensitivity coefficients). In the
pre-MOMP phase, the ten largest GFM sensitivity magnitudes were associated with the upstream and
type I pathways, indicating that the early dynamics of cPARP response to the TRAIL stimulus depends
on these two pathways. In the post-MOMP phase, the top sensitivity coefficients corresponded to the
type II pathway, specifically the regulators of MOMP (i.e., the signaling molecules upstream of M* in
the network in Figure 2). Thus, the GFM analysis indicates that the switch-like dynamics in the cPARP
concentration relies on the mitochondria-dependent pathway.
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Figure 2. Signal transduction pathway and model simulation of TRAIL (tumor necrosis factor-related
apoptosis-inducing ligand)-induced apoptosis in HeLa cells. (a) Signal transduction pathway of
apoptosis. Type I pathway describes the activation of caspase-3 by caspase-8 while type II pathway
describes a mitochondria-dependent activation of caspase-3. Active caspase-3 subsequently cleaves
the substrate poly(ADP-ribose) polymerase (PARP) to produce cleaved poly(ADP-ribose) polymerase
(cPARP). (b) Model simulation of signal transduction pathway in response to TRAIL.
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Figure 3. Green’s function matrix (GFM) analysis of cPARP activation by a constant TRAIL stimulus.
(a) cPARP activation follows a delayed switch-like trajectory in response to a constant TRAIL stimulus.
(b,c) Ten largest GFM sensitivity coefficients of cPARP concentration (in magnitude) with respect to
perturbations to the state variables in the network, as shown on the label of each subfigure. The x-axis
gives the time of perturbation τ while the y-axis represents the time of observation t. Each heatmap
is scaled to have values within ±1, using the scaling factor reported in the lower right corner of the
plot. Panel (b) shows the GFM sensitivity coefficients in the pre-MOMP phase (before 2.36 h). Panel (c)
shows the GFM sensitivity coefficients in the post-MOMP phase (after 2.36 h).

3.3. MDFP Analysis of TRAIL-Induced Cell Death

The MDFP analysis was carried out for the same TRAIL stimulation as the GFM. For the
calculation of the cell distribution, we generated five ensembles of 1000 initial concentrations from a
log-normal distribution using the Latin hypercube sampling (LHS) algorithm based on the reported
mean values and coefficient of variations reported previously [36] (see Supplementary Material S2).
Figure 4a gives the time evolution of the distribution of the cPARP concentration based on the
simulations of the ODE model using the ensemble of initial concentrations. Following the original
study [36], we defined cells to be apoptotic when 50% of the total PARP at the final time exists in
its cleaved form. The ensemble model simulations showed that on average ~95% of the cells in the
simulated cell population undergo apoptosis, similar to what was reported in the original modeling
study [36].

As in the GFM analysis above, we computed the MDFP sensitivities of cPARP with respect
to perturbations to the concentrations of other molecules in the network. Following Equation (2),
we introduced a mean shift perturbation to the distribution of each state variable at various
perturbation times τ, specifically by adding +10% or −10% of the mean concentration to the state
variable xj(τ) (i.e., δej = ±0.1μj(τ)ej, where μj(τ) is the mean of the state xj at time τ). Starting from
the perturbed concentrations, we simulated the time-evolution of cPARP for time t ≥ τ. Based on these
simulations, we reconstructed the marginal PDFs and CDFs of the cPARP using the kernel density
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function approximation, which were then used in the calculation of the sensitivity coefficients as
prescribed in Equation (6).

Figure 4. MDFP analysis of cPARP activation by a constant TRAIL stimulus. (a) Time evolution of the
distribution of cPARP concentration shows a switch-like behavior. (b,c) Ten largest MDFP coefficients
of cPARP concentration (in magnitude) with respect to the perturbations to different state variables in
the network. The x-axis gives the time of perturbation τ while the y-axis gives the time of observation t.
Each heatmap is scaled to have values within ±1, using the scaling factor reported in the lower right
corner of the plot. Panel (b) shows the MDFP sensitivity coefficients pre-MOMP (until 1.76 h). Panel (c)
shows the MDFP sensitivity coefficients post-MOMP.

Figure 4b,c shows the heatmaps of the ten largest MDFP sensitivity coefficients (in magnitude)
averaged over the five ensembles (see Supplementary Figures S3 and S4 for the complete MDFP
sensitivity coefficients). We also split the analysis into two phases: pre- and post-MOMP at 1.76 h,
the time when the median of cPARP concentration reached 10% of the median of total PARP
concentration. Similar to the GFM analysis, the MDFP analysis showed that the early response
of cPARP to TRAIL-induced apoptosis depends on the upstream and type I pathway molecules.
Meanwhile, the cleavage of PARP in the post-MOMP phase is sensitive to mitochondria-dependent
pathway molecules, again confirming the general finding of the GFM analysis above. However,
in contrast to the GFM analysis, the MDFP sensitivity coefficients pointed to events during and after
MOMP, such as the release of cytochrome c from mitochondria, the binding of XIAP by Smac, and the
formation of the apoptosome, as the key regulators of cPARP concentration.

3.4. MDFP Analysis of Apoptotic and Non-Apoptotic HeLa Cells

We repeated the MDFP analysis focusing on the subpopulations of apoptotic and non-apoptotic
cells separately. Here, the final cPARP concentration (at time 5.3 h) was taken to be the indicator of
apoptosis, where an apoptotic cell has at least 50% of the total PARP cleaved (see Figure 5a,b) [36].
Since only 5% of the population was non-apoptotic, a resampling of the initial conditions was
performed to simulate 10,000 cells, from which a population of 1000 apoptotic and 1000 non-apoptotic
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cells were chosen for MDFP analysis. We then ranked the molecules according to the infinite norm
of the MDFP sensitivity coefficients of the final cPARP level with respect to the respective molecular
concentrations (i.e., ‖SMDFP

cPARP,j‖∞ = max
τ

SMDFP
cPARP,j(5.3 h, τ)). Figure 5c,d shows the ranking of the top

ten molecules according to the magnitudes of ‖SMDFP
cPARP,j‖∞ (see Supplementary Figure S5 for the

complete MDFP sensitivity coefficients of non-apoptotic cells). The MDFP ranking of the apoptotic
subpopulation was in agreement with the GFM analysis in which the final cPARP level depended on the
molecules that regulate MOMP. The similarity between the GFM and MDFP analyses of an apoptotic
subpopulation is perhaps not surprising considering that the GFM analysis was applied to the model
of a cell undergoing apoptosis. Meanwhile, the analysis of a non-apoptotic subpopulation produced a
ranking that resembled the outcome of the MDFP analysis of the cell population above. Comparing
the analysis of the apoptotic and non-apoptotic cells showed the importance of MOMP, XIAP and its
inhibitor Smac, and Apaf-1 in regulating the final cPARP in non-apoptotic cells. Interestingly, among
the apoptotic cells, XIAP was not among the 10 largest sensitivity coefficients.

 

Figure 5. MDFP analysis of the final cleaved PARP levels in (a,c) apoptotic and (b,d) non-apoptotic cell
subpopulations. (a,b) The level of cPARP normalized with respect to the total PARP level. The dashed
lines (–) indicate the 1 and 99 percentiles of the cPARP levels, while the solid line (-) represents the
median level. (c,d) Ten largest sensitivity coefficients in magnitude in apoptotic and non-apoptotic
cells, respectively.

4. Discussion

Cell-to-cell variability has important functional roles in physiological processes, such as cell
decision making in stem cell differentiation and cell death. In this work, we developed a sensitivity
analysis method called molecular density function perturbation (MDFP) based on introducing
time-varying mean shift perturbations to the distribution of molecular concentrations and quantifying
the effects of such perturbations on the distribution of the concentration of molecules of interest.
The magnitude of the MDFP sensitivity coefficients indicates how much a perturbation to the
concentration PDF of one molecule introduced at a particular time τ affects the concentration PDF of a
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molecule of interest at some time t (t ≥ τ). We applied the MDFP analysis to a model of programmed
cell death signaling in a population of HeLa cells to elucidate the apoptosis decision making. We used
the magnitude of the sensitivity coefficients to rank the importance of each molecule in determining
the concentration of cleaved PARP, an indicator of apoptosis.

In the application of the MDFP analysis, we employed the Cramer–von Mises distribution distance
ΔCVM in the calculation of the sensitivity coefficients. As mentioned in Section 2.1, several alternative
distribution distance metrics exist for defining the MDFP sensitivity coefficients. The rankings of
molecules based on the cPARP sensitivity coefficients using different distribution distances were
strongly correlated with the Cramer–von Mises and with each other (see Supplementary Figure S6a).
Furthermore, the ranking of molecules using different perturbation magnitudes (1%, 10% and 100% of
the mean) were in agreement with each other (see Supplementary Figure S6b). Thus, the conclusion of
the MDFP analysis did not depend strongly on the choice of distribution distance and perturbation size.

Global sensitivity analysis methods such as SOBOL sensitivity [16], DGSM [17], and glocal
analysis [18] can be applied to analyze mathematical models of cell populations. As mentioned earlier
and explained in [29], the dynamical aspects of cellular regulation may not be immediately apparent
from the application of these analyses. Briefly, the reason stems from the fact that the perturbations in
these methods are introduced to model parameters in a time-invariant (static) manner. Consequently,
the effects of the perturbations on the system behavior are integrated over time [29]. While existing
global sensitivity analyses are able to indicate which parametric perturbations cause a significant
change in the overall system behavior (output), the sensitivity coefficients do not directly point to
when these perturbations matter.

At the cost of requiring more complicated calculations than the existing global sensitivity analysis
methods, the MDFP analysis provides dynamic information on the bottlenecking process by revealing
the molecular concentrations to which perturbations introduced at time τ would elicit a large change
in a particular state variable of interest at t. For example, referring to Figure 4c, the heatmap of the
MDFP sensitivity coefficient of cPARP with respect to pro-caspase-8 (C8) indicates that perturbing
the distribution of pro-caspase-8 at the beginning of the experiment τ = 0 (h) would cause a much
higher impact on cPARP compared to a perturbation delivered after ~2 h. Figure 6 shows the effects of
a positive mean shift perturbation to C8 (δ = +μC8) at two different perturbation times, either τ = 0 h
or τ = 2.14 h, on the mean, median, and standard deviation of cPARP distribution, confirming the
MDFP sensitivity analysis.

 

Figure 6. Validation of the MDFP sensitivity analysis of cPARP. A positive mean shift perturbation
to pro-caspase-8 was given either at τ = 0 h (+) or at τ = 2.14 h (×). Panel (a) shows the mean;
panel (b) gives the median; and panel (c) gives the standard deviation of the cPARP concentration.
The unperturbed simulation is shown as solid lines (−).

The MDFP analysis of the cell distribution and the GFM analysis of the ODE model provided
somewhat different conclusions with respect to the regulation of PARP cleavage. According to the
GFM analysis, the switching dynamics of cPARP depends on the molecules upstream of MOMP,
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particularly the initial level of pro-caspase-8 (C8). On the other hand, the MDFP analysis suggests
that PARP cleavage is strongly sensitive to MOMP and the subsequent release of cytochrome c
into the cytosolic compartment. As done in Figure 6, we compared perturbing the mean initial
concentration of pro-caspase 8 (C8) at the initial time τ = 0 with perturbing the mean number of
mitochondrial open pores (M*) at time τ = 2.14 h, when M* level had reached steady state for more
than 99% of the cells. Both perturbations were implemented using 100% positive mean shifts. Figure 7
shows the effects of the above perturbations on the mean, median, and standard deviation of cPARP
concentration. As illustrated in Figure 7, both perturbations led to similar shifts in the mean and
median of cPARP, where the switch-like dynamic of PARP cleavage occurred earlier and more swiftly.
Meanwhile, the perturbation to M* caused a larger drop in the standard deviation of cPARP than the
perturbation to C8 (i.e., cells became more alike when we increased the number of mitochondrial open
pores). While the positive mean shift perturbation to pro-caspase-8 led to a faster cleavage of PARP,
this perturbation did not affect the fraction of apoptotic versus non-apoptotic cells. However, when we
increased the number of mitochondrial open pores, the fraction of non-apoptotic cells dropped from
5.6% to 3.2%.

 

Figure 7. Comparison of GFM and MDFP analyses. A positive mean shift perturbation was given
either to pro-caspase-8 a τ = 0 h (+) or to mitochondrial open pores M* at τ = 2.14 h (×). Panel (a)
shows the mean of the cPARP concentration distribution, panel (b) gives the median, and panel (c)
gives the standard deviation. The unperturbed simulation is shown as solid lines (−).

Both the GFM and MDFP analyses of the cell death signaling network implicate the
mitochondria-dependent type II pathway to be the responsible mechanism in the switch-like activation
of PARP in HeLa cells, placing caspase-8 activation (cleavage) as the most important step in the
apoptosis decision making during pre-MOMP. This finding agrees with a previous experimental study
on fractional killing by TRAIL [31,37], reporting that the activation of C8 controls the switching time
of cPARP. In post-MOMP, the GFM analysis indicates that perturbations to the regulators of MOMP
(upstream of M* in Figure 2) would strongly affect the PARP cleavage dynamics. On the other hand,
the MDFP analysis points to MOMP and events post-MOMP (downstream of M* in Figure 2), including
cytochrome c and Smac release from mitochondria, XIAP binding by Smac, and apoptosome formation,
to be the key determinants of the cell-to-cell variability in cPARP level. The finding from the MDFP
analysis is in agreement with a previous study that found XIAP to be the determining factor for the
rate and extent of type II cell death [38]. Furthermore, the results of the MDFP analysis of apoptotic
and non-apoptotic subpopulations showed that perturbations to molecules executing the cell death
signal after MOMP (i.e., Smac, cytochrome C, Apaf-1) had a stronger effect on the cPARP activation in
the non-apoptotic cells than in the apoptotic cells. Consistent with such an insight, the depletion of
Apaf-1 or Apaf-1/Smac together by siRNA has been shown to significantly reduce the activation of
PARP in HeLa cells (see Supplementary Figure S7 in [36]).

As the functional significance of cell-to-cell variability is increasingly being recognized and the
mathematical models that are able to describe cell distribution become more and more common,
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the MDFP analysis proposed here will provide an analytical tool to use such models for elucidating
the key molecules and processes that govern the dynamics of cellular heterogeneity.

Supplementary Materials: The following are available online at www.mdpi.com/2227-9717/6/2/9/s1, Material
S1: Probability distance metrics, Material S2: TRAIL induced programmed cell death model of Hela cells, Figure S1:
GFM analysis of TRAIL induced apoptosis model during pre-MOMP (before 2.36 h), Figure S2: GFM analysis of
TRAIL-induced apoptosis model during post-MOMP (after 2.36 h), Figure S3: MDFP analysis of TRAIL-induced
apoptosis model during pre-MOMP (before 1.76 h), Figure S4: MDFP analysis of TRAIL-induced apoptosis
model during post-MOMP (after 1.76 h), Figure S5: MDFP analysis of non-apoptotic Hela subpopulation,
Figure S6: Spearman correlations of MDFP sensitivity coefficients using different distribution distances and
perturbation sizes.
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Abstract: Presented herein is a model-driven strategy for characterizing the production capability of
expression host and subsequently identifying targets for strain improvement by resorting to network
structural comparison with reference strain and in silico analysis of genome-scale metabolic model.
The applicability of the strategy was demonstrated by exploring the capability of Zymomonas mobilis,
as a succinic acid producer. Initially, the central metabolism of Z. mobilis was compared with reference
producer, Mannheimia succiniciproducens, in order to identify gene deletion targets. It was followed by
combinatorial gene deletion analysis. Remarkably, resultant in silico strains suggested that knocking
out pdc, ldh, and pfl genes encoding pyruvate-consuming reactions as well as the cl gene leads to
fifteen-fold increase in succinic acid molar yield. The current exploratory work could be a promising
support to wet experiments by providing guidance for metabolic engineering strategies and lowering
the number of trials and errors.

Keywords: Zymomonas mobilis; succinic acid; gene deletion; genome-scale metabolic model;
systems biology

1. Introduction

Succinic acid (SA) is a valuable specialty chemical with a wide range of applications in food,
pharmaceutical, and chemical industries, currently being synthesized through petrochemical processes
by the catalytic hydrogenation of petroleum-derived maleic anhydride [1]. However, the increase in
oil prices along with raising environmental awareness has made bio-based SA production an attractive
option. Thus, a multitude of studies have attempted to develop SA-producing microbial fermentation
systems coupled with the use of renewable biomasses [2,3]. Several well-known SA producers
include Anaerobiospirillum succiniciproducens, Actinobacillus succinogenes, Mannheimia succiniciproducens,
and recombinant Escherichia coli. Generally, SA is excreted during anaerobic fermentation, which has
some operational disadvantages such as low cell growth and slow carbon uptake, leading to its low
productivity. In addition, these producers secrete other competing fermentative byproducts, e.g.,
acetic acid, lactic acid, and formic acid, thus reducing SA yield and making its purification difficult.

To overcome the above limitations, researchers have tried to develop various metabolic
engineering strategies to enhance SA production mostly in E. coli [4–8]. For example, yield was
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significantly increased by amplifying the enzymatic reactions involved in SA pathway [9–11]
and by introducing non-indigenous enzymes to E. coli [12,13]. Other interesting options are the
inactivation of pathways that compete with SA [14,15] and the construction of glyoxylate cycle
to enable aerobic succinate production [16–18]. For other producers, several studies were also
carried out to reduce byproduct formations in A. succiniciproducens [19,20], A. succinogenes [21–23],
and M. succiniciproducens [24,25].

In summary, various strategies described above have successfully enhanced SA yields and reduced
byproduct formations. Nonetheless, there still remain issues regarding slow carbon uptake under
anaerobic condition leading to low productivity. Therefore, we can consider other microorganisms
that can grow well under anaerobic condition. One potential candidate is Zymomonas mobilis that
is known to have relatively high catabolic and high glucose uptake rates, producing ethanol as the
major fermentative product [26]. Moreover, Swings and DeLey [27] observed that SA was secreted in
Z. mobilis as a minor byproduct at the yield of 0.0025–0.014 (g/g), when yeast extract was added into
the medium. This evidence in conjunction with the operational advantages of anaerobic fermentation
motivated us to explore metabolic engineering strategies for substantially enhancing SA production.

One strategy for improving strain performance is to identify potential targets for genetic
modification. To this end, gene (or reaction) targets can be conventionally identified by random
mutagenesis, followed by intelligent screening. Recently, various omics data generated by
high-throughput experimental techniques have been exploited for gene identification through
comparative genomic, transcriptomic, proteomic, and metabolomic studies within the context of
systems biotechnology [28–32]. Apart from this high-throughput omics profiling, in silico analysis of
genome-scale metabolic models of various microbes have been successfully employed to investigate
their cellular behavior, pose new engineering hypotheses, and identify and evaluate potential genetic
targets for strain improvements [33–39]. Several in silico analysis methods for strain optimization
have been designed to select such candidates for genetic manipulations (addition and/or deletion),
thereby giving rise to enhanced productivity and cellular properties. They include OptKnock [40],
OptStrain [41], OptGene [42], OptForce [43], Flux-sum analysis [44], and cofactor modification
analysis [45,46]. These studies have shown that genome-scale models can assist experimental studies
for strain improvement [47]. In this work, we employ our previously developed genome-scale model
for Z. mobilis and perform in silico analyses to explore and evaluate various strain engineering strategies
to enhance SA production in Z. mobilis. In particular, we use constraint-based flux analyses for gene
knockout simulations to develop optimization strategies for overproducing SA.

2. Materials and Methods

2.1. Genome-Scale Metabolic Model of Z. mobilis

The genome-scale metabolic model for Z. mobilis ZM4 (ATCC31821), iZM411, has been developed
on the basis of its genome annotations [48]. This previous model was further improved using the
updated information from KEGG and BioCyc, resulting in 738 reactions and 705 metabolites in
49 specific pathways or subsystems based on their functional roles. It includes major metabolic
pathways, i.e., central metabolism, amino acid biosynthesis, lipid metabolism, cell wall metabolism,
and vitamin and cofactor metabolism along with the necessary transport reactions for extracellular
metabolites. Biomass equation is also derived from the drain of various biosynthetic precursors
and relevant cofactors into Z. mobilis biomass at their appropriate ratios to quantify the cell specific
growth rate. The complete updated model and biomass equation could be found in Supplementary 1
and 2, respectively.

2.2. Constraints-Based Flux Analysis

Mass balance on various metabolites under the steady state assumption gives rise to a set of
linear equations with reactions fluxes as unknown quantities. It is mathematically constructed as
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an underdetermined system since the number of metabolites constraints is less than the number of
unknown fluxes to be determined. Thus, unknown fluxes can then be evaluated by applying linear
programming to find optimum value for a given cellular objective, subjected to known uptake rates
as the constraints in the model. In this study, the objective function considered was maximization of
biomass growth to describe the physiological behavior under the growing condition. Various in silico
analyses were carried out by using MetaFluxNet [49] and CPLEX 12.1.0 solver under the general
algebraic modeling system (GAMS) [50].

2.3. Combinatorial Knockout Simulation

Combinatorial knockout analysis was performed by applying additional constraints to the current
linear flux model. We removed individual reaction(s) associated with the gene(s) being knocked
out from in silico models, and evaluated the alteration in flux distribution as the consequence of
the deletion of reaction(s). For this analysis, anaerobic growth on glucose was assumed by setting
glucose and oxygen uptake rates at 10 mmol/gDCW/h and zero, respectively. Biomass maximization
for a steady-state metabolic network, comprised of a set N = {1, . . . , n} of metabolites and a set
M = {1, . . . , m} of reactions, can be expressed in the following linear programming (LP) problem:

maximize vbiomass

subject to ∑
j∈M

Sijvj = 0, ∀i ∈ N

(1 − yj)lbj ≤ vj ≤ (1 − yj)ubj, yj = {0, 1}, ∀j ∈ K, K = set of KO candidates

∑
j∈K

yj = k, ∀j ∈ K, k = number of genes deleted

where Sij is the stoichiometric coefficient of metabolite i in reaction j, vj is flux value reaction j, and yj is
binary variable, with 1 for deleted reaction and 0 for active reaction. Gene deletion conducted in this
study was for single (k = 1), double (k = 2), triple (k = 3), and quadruple (k = 4).

2.4. Flux-Sum Quantification

In order to quantify turnover rate of intermediate metabolites, flux-sum (Φ) can be defined as the
summation of incoming or outgoing fluxes of given metabolite i as follows [44]:

Φi = ∑
j∈Pi

Sijvj = − ∑
j∈Ci

Sijvj =
1
2∑

j

∣∣Sijvj
∣∣

where Pi and Ci denote the sets of reactions producing and consuming metabolite i, respectively. Under
the pseudo-steady state assumption, i is the mass flow contributed by all of the fluxes producing
(consuming) metabolite i.

3. Results and Discussion

The current study aimed at exploring Z. mobilis as potential SA producer or expression host
organism and developing the in silico model-driven systematic strategy for strain improvement.
To this end, we first evaluated the potential of Z. mobilis to produce SA by computing its theoretical
yield using our genome-scale model. Then, we compared and contrasted the central metabolic
networks of Z. mobilis and a known SA producer, M. succiniciproducens, to identify engineering targets
for enhancing SA production. This network comparison allowed us to find a few target genes/reactions
to be added/deleted, which were then evaluated via in silico analysis of the model as successfully
demonstrated by Lee et al. [51]. Additionally, having narrowed down the pool of possible targets
from the central metabolic reactions, combinatorial knockout analyses were carried out to obtain a list
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of possible candidates for genetic modification and to investigate their KO effects on SA production.
We now describe and discuss each of the above steps in detail.

3.1. Exploring Metabolic Capabilities for Succinic Acid Production in Z. mobilis

As mentioned earlier, Swings and Deley [27] experimentally observed SA yield of 0.0038–0.024 mol
per mol glucose in wild-type Z. mobilis. Recently, Seo et al. [52] have shown the existence of frdABCD
genes associated with succinic acid dehydrogenase which is responsible for converting fumarate
to SA, from the genome sequence of Z. mobilis. This clearly suggests the fumarate reduction to SA is a
plausible biosynthetic pathway in Z. mobilis. This route includes malic enzyme that converts pyruvate
(PYR) to malate (MAL), which is then followed by fumarate hydratase and SA dehydrogenase. This is
indeed the pathway present in M. succiniciproducens which is well-known succinic acid producer. Thus,
our genome-scale model includes both pathways for SA production, and interestingly subsequent
simulations of wild-type Z. mobilis on glucose confirmed that it naturally secreted SA at 0.06 molar
yield during its exponential growth phase, as the byproducts in lysine and methionine biosynthesis.
This yield is comparable to the yield observed by Swings and Deley [27].

Next, we maximized SA production in our in silico model satisfying the required cellular growth
under growing condition in the wild-type Z. mobilis. Simulation results showed that Z. mobilis was
capable of theoretically producing as much as 1.6 mol SA per mol glucose. Furthermore, an increase
in SA production led to a decrease in ethanol production, which clearly suggests that ethanol is a
competing metabolite for SA production. To understand this SA production further, we explored how
the fluxes are diverted from ethanol to SA in this scenario of maximum SA yield. Comparing the flux
distribution in this scenario with the growing condition of the wild-type showed the increase in fluxes
through tricarboxylic acid (TCA) cycle and carbon dioxide (CO2) uptake, while the decrease in fluxes
through ethanol production pathway was observed. The attenuation of these latter fluxes is obvious
again, as ethanol is a competing metabolite for SA. Interestingly, the increased uptake of CO2 points to
its consumption in SA production. This can be inferred from the increased flux of CO2-consuming
malic enzyme that functions as the bridging reaction between glycolysis and TCA cycle in Z. mobilis.

3.2. Central Metabolism Comparison with SA Producer to Identify Gene Candidates in Z. mobilis

Of the several known SA producers, M. succiniciproducens has the highest SA yield of 1.2 mol per
mol glucose, which is 60% of its theoretical SA yield [24]. Both Z. mobilis and M. succiniciproducens are
anaerobic fermentative organisms without the phospho-transferring systems (PTS). Instead, they both
utilize transportation protein for exchanging substrates between the cytoplasm and the surrounding
environment via a process known as facilitated diffusion [14,53]. These common characteristics
suggest that SA production in Z. mobilis can be enhanced by imitating M. succiniciproducens. Therefore,
we compared the central metabolic pathways of Z. mobilis and M. succiniciproducens to identify
gene candidates that may possibly impact fermentation profiles. One significant difference in their
metabolisms is that Z. mobilis utilizes the Entner–Doudoroff (ED) pathway, while M. succiniciproducens
has the Embden–Meyerhof–Parnas (EMP) pathway. Since the ED pathway in Z. mobilis is one major
factor for its high catabolic rate, we focused more on the reactions that are uniquely present in Z. mobilis,
but absent in M. succiniciproducens, which constitute potential gene deletion targets.

As illustrated in Figure 1, pyruvate decarboxylase (pdc, PYR → ACALD + CO2), acetolactate
synthase (als, PYR → ALAC + CO2), and citrate lyase (cl, CIT → AC + OAA) are three genes that
are unique to Z. mobilis. Therefore, we created in silico mutants without pdc, als, and cl to mimic
M. succiniciproducens metabolism. The in silico simulation results of the wild-type strain and the
knockout mutants are shown in Table 1. The deletion of pdc increased SA production to 0.5 mol SA per
mol glucose. Not surprisingly, pdc is crucial for ethanol fermentation in Z. mobilis. Our simulations
showed that its deletion diverts the flux from ethanol to acetic acid and SA in the TCA cycle on
one hand, and the production of lactic acid and formic acid on the other. However, the deletion of
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acetolactate synthase (als) resulted in zero growth, because this gene is essential for valine synthesis in
Z. mobilis. Clearly, this is not a viable candidate for strain improvement.

Figure 1. Comparison of central metabolism in Zymomonas mobilis and Mannheimia succiniciproducens.
Blue and red shadows highlight the succinic acid production pathway in M. succinicproducens and
Z. mobilis, respectively.
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The deletion of citrate lyase (cl) did not affect SA production. But, interestingly, the deletion of
cl in addition to that of pdc increased SA production further from 0.5 to 0.6 mol SA per mol glucose.
While this yield is 1.1 mol lower than the maximum possible yield predicted by our in silico model for
Z. mobilis, it is much higher than 0.06 mol observed for the wild-type Z. mobilis. This clearly shows
the success of a simple approach of mimicking M. succiniciproducens for enhancing SA production
in Z. mobilis as similarly reported in the previous study [9]. However, the question is whether it is
possible to increase this yield even more. Therefore, we now use a combinatorial approach in the
following section to identify better knockout combinations.

Table 1. Knockout simulations for target genes identified from central metabolism comparison.

In Silico Strains Growth Rate (1/h)
Molar Yield (mol Metabolite/mol Glucose)

Succinic Acid Ethanol Lactic Acid Formic Acid Acetic Acid

Wild-Type ZM4 0.08 0.06 1.76 0 0 0

Metabolism Comparison

Δpdc 0.07 0.53 0 0.49 0.28 0.42

Δals 0 0 0 0 0 0

Δcl 0.08 0.06 1.76 0 0 0

ΔpdcΔcl 0.07 0.6 0 0.71 0.28 0

Combinatorial Knockout

Δpdc 0.07 0.53 0 0.49 0.28 0.42

ΔpdcΔldh 0.07 0.93 0 0 1.11 0.56

ΔpdcΔpfl 0.07 0.67 0 1.12 0 0

ΔpdcΔcl 0.07 0.6 0 0.71 0.28 0

ΔpdcΔldhΔpfl 0.07 1.14 0 0 0 0.75

ΔpdcΔpflΔcl 0.07 0.47 0 1.42 0 0

ΔpdcΔldhΔcl 0.07 1.09 0 0 1.64 0

ΔpdcΔldhΔpflΔcl 0.07 1.52 0 0 0 0

OptKnock/OptGene

Δpdc 0.07/0.07 0.53/0.66 0/0 0.59/0.44 0.59/0.94 0

ΔpdcΔldh 0.07/0.07 0.94/0.92 0/0 0.42/0.45 0/0 0.38/0.44

ΔpdcΔldhΔpfl 0.07/0.07 1.17/1.17 0/0 0/0 0/0 0.58/0.45

ΔpdcΔldhΔpflΔcl 0.07/0.07 1.42/1.42 0/0 0/0 0/0 0

3.3. Combinatorial Knockout Analysis

It should be noted that SA is a primary metabolite of Z. mobilis. Therefore, our possible knockout
candidates are limited to the 44 genes for the 57 reactions within the central metabolism. Out of the
44 genes, 19 are lethal genes; hence only 25 genes were considered for strain improvement. Since this
number is small, we studied all possible combinations of single, double, triple, and quadruple gene
knockouts. The resulting predictions are presented in Figure 2.

From single gene knockouts, we find that pdc is the only gene whose knockout leads to the increase
in SA production at the expense of growth. Without knocking out pdc, it is not possible to increase
SA production. However, after pdc is deleted, several other knockout strategies can be considered to
increase SA production further. Not expectedly, cell growth is not affected at all by these additional
knockouts, which is a very useful characteristic of Z. mobilis. From Figure 2, we see that the additional
deletions of ldh (lactate dehydrogenase), pfl (pyruvate formate lyase), and cl all increase SA production.
Of these three 2-gene knockouts, pdc-ldh seems to be the best for SA production with a molar yield
of 0.9. Note that Lee et al. [54] had also reported pdc and ldh as KO candidates for SA production and
Seo et al. [55] improved SA production by removing the genes in Z. mobilis. We clarified that this is
only the best 2-gene knockout with a yield of 0.9 mol per mol of glucose. Further improvement is
possibly achievable through 3-gene knockouts. As seen from Figure 2, pdc–ldh–pfl seems to be the best
3-gene knockout with an SA molar yield of 1.1 mol per mol glucose. It should be noted that disrupting
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ldh and pfl genes led to the enhanced SA production in M. succiniciproducens and E. coli [24,56]. Finally,
the knockout of all four genes (pdc–ldh–pfl–cl) enables us to obtain an even higher yield of 1.5 mol SA
per mol glucose, which is very close to the maximum theoretical yield of 1.6 mol SA per mol glucose.
Interestingly, the yield of SA was significantly increased by knockout of additional target, i.e., cl gene
in Aspergillus niger [57].

Figure 2. Simulation results for gene knockout analysis on central metabolic pathways. The shift
in biomass growth and succinic acid molar yield from wild type to quadruple knockout (KO) is
shown. The best strain for SA production is also shown for single (iΔpdc), double (iΔpdcΔldh), triple
(iΔpdcΔldhΔpfl), and quadruple (iΔpdcΔldhΔpflΔcl) knockouts.

Figure 3 illustrates the redistribution of central metabolism fluxes with sequential knockouts of pdc,
ldh, pfl, and cl, explaining how the strain can be genetically engineered to increase SA production.
As we can see, this 4-gene knockout diverts carbon flux entirely from ethanol to SA sequentially
through lactic acid (pdc), formic acid (ldh), acetic acid (pfl), and finally SA (cl). SA production is more
expensive energetically, as it requires one extra mol of NADH compared to ethanol. While ethanol
production needs one mol of NADH for pyruvate conversion, SA needs one for malate formation,
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and the other for menaquinone/menaquinol cycle. Figure 3 also shows how the NADH pool quantified
by the flux-sum or turnover rate (see Materials and Methods) increases gradually, as ethanol is diverted
to SA via lactic, formic, and acetic acids. Hong and Lee [56] have also observed in E. coli that higher SA
production required more NADH. In contrast, ADP/ATP pool remains constant. It is also interesting
to see that, while pyruvate is common to pdc, ldh, and pfl, only the knockout of pdc reduces its pool.
This has a direct effect on growth, thus, the growth of Z. mobilis depends on the size of pyruvate pool.
However, the additional knockouts of ldh, pfl, and cl do not affect the pyruvate pool, and hence have
no effect on growth.

Figure 3. Metabolic flux distribution across the central metabolic pathways during the exponential
growth phase of the microbial culture and flux-sum across the metabolite pyruvate and cofactor
NADH in Z. mobilis. Consumption and production of the cofactor NADH and the metabolite
pyruvate (PYR) is shown using the flux-sum values across each of the strains (wild type, iΔpdc,
iΔpdcΔldh, iΔpdcΔldhΔpfl, iΔpdcΔldhΔpflΔcl). Percentage contribution is also shown. NADH: reduced
nicotinamide adenine dinucleotide; NADPH: reduced nicotinamide adenine dinucleotide phosphate;
COA: coenzyme A; ACCOA: acetyl coenzyme A; PYR: pyruvate; PEP: phosphoenolpyruvate; DGP:
2-dehydro-3-deoxy-D-gluconate 6-phosphate; MAL: malate.
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3.4. Model-Driven Systematic Framework for Strain Optimization

Based on our analyses in the previous sections, we now propose a systematic model-driven
framework for strain engineering to produce a desired target metabolite using a microbial host
(Figure 4). Given a target metabolite, the first step of this framework is to select an expression host
from the microbes that could potentially produce it. This expression host should have some special
characteristics that would address some deficiencies such as low productivity in other expression
hosts. In case of Z. mobilis, the high catabolic rate in anaerobic fermentation was the key feature that
may offer a faster metabolite production rate. The second step is to develop and use a genome-scale
model for the expression host to predict its maximum theoretical yield for the target metabolite. If the
theoretical yield is comparable to those for other known producers, then the selected microbe has the
potential to become a host for strain improvement.

The third step is to explore various combinations of gene modifications (deletions and/or
additions) in the expression host to overproduce the target metabolite. This can be done in several ways.
One way is to compare the metabolic network of the selected expression host with that of a known
reference strain to identify the key differences in genes and pathways. Such a rational approach may
give unique gene candidates in the reference strain and expression host for additions and deletions,
respectively. The hypothesis is that the reference has optimally evolved and developed relevant
synthetic pathways towards the desired metabolite [9]. In cases where only a few genes can be
manipulated, as was the case in this work, this approach can be used to narrow down the pool of
possible gene targets. For a small pool, it may be feasible to exhaustively consider all possible knockout
combinations as done in the current study. These targets can then be evaluated using the genome-scale
metabolic model to predict yields. However, for a large pool, such an exhaustive search may not
be effective due to the combinatorial explosion. Therefore, another approach would be to exploit
optimization techniques for strain improvement such as OptKnock [40], OptStrain [41], OptGene [42],
OptForce [43], etc. While these methods may require some computational effort, some of them may
guarantee the best solutions, if they converge. Both OptKnock and OptGene suggest the same strain
modification as the one we have obtained in this work (Table 1). The multiple solutions of metabolites
production yield observed are the results of different tools used. Note that, the SA yields obtained
from different tools are almost consistent with the yields obtained from combinatorial knockout.

Figure 4. Proposed framework for strain improvement to overproduce a desirable target metabolite in
a potential expression host (succinic acid in Z. mobilis in the current study).
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4. Conclusions

In this study, we presented a systematic approach for overproducing SA in Z. mobilis by using
an in silico constraints-based flux analysis. Our genome-scale model shows that Z. mobilis has the
capability to produce SA. Our comparison of the central metabolisms of Z. mobilis and the SA-producer,
M. succiniciproducens, suggested the removal of three genes (pdc, als, and cl) to mimic the metabolism
of the latter. The inactivation of pdc and cl increased the SA yield, but the inactivation of als
led to zero biomass growth. However, our combinatorial gene knockout analyses pointed to the
inactivation of four genes pdc, ldh, pfl, and cl, which increased yield up to 1.5 mol SA per mol glucose.
This is close to the maximum possible theoretical yield of 1.7 mol SA from glucose in Z. mobilis.
Interestingly, pdc, ldh, and pfl are pyruvate-consuming reactions in Z. mobilis, whose sequential
disruption seems to redistribute pyruvate flux from ethanol to lactic acid to formic acid to acetic acid,
and then finally to succinic acid homofermentatively. Based on our work, we proposed a systematic
framework to overproduce a desired metabolite from an organism by using the genome-scale metabolic
model. The strain engineering strategies proposed in this work can be verified in the future through
wet experiments.

Supplementary Materials: The supplements are available online at http://www.mdpi.com/2227-9717/6/4/30/s2,
The supplements 1 and 2 contain complete updated model and biomass equations, respectively.
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Abstract: Enormous advances in genetics and metabolic engineering have made it possible, in principle,
to create new plants and crops with improved yield through targeted molecular alterations. However,
while the potential is beyond doubt, the actual implementation of envisioned new strains is often
difficult, due to the diverse and complex nature of plants. Indeed, the intrinsic complexity of plants
makes intuitive predictions difficult and often unreliable. The hope for overcoming this challenge is
that methods of data mining and computational systems biology may become powerful enough that
they could serve as beneficial tools for guiding future experimentation. In the first part of this article,
we review the complexities of plants, as well as some of the mathematical and computational methods
that have been used in the recent past to deepen our understanding of crops and their potential yield
improvements. In the second part, we present a specific case study that indicates how robust models
may be employed for crop improvements. This case study focuses on the biosynthesis of lignin in
switchgrass (Panicum virgatum). Switchgrass is considered one of the most promising candidates for the
second generation of bioenergy production, which does not use edible plant parts. Lignin is important
in this context, because it impedes the use of cellulose in such inedible plant materials. The dynamic
model offers a platform for investigating the pathway behavior in transgenic lines. In particular,
it allows predictions of lignin content and composition in numerous genetic perturbation scenarios.

Keywords: biochemical systems theory; biofuel; lignin biosynthesis; optimization; plant
metabolism; recalcitrance

1. Introduction

Crops have been cultivated, bred, and improved for thousands of years, and some successes have
been astounding: a modern corn cob weighs between 1 and 1 1/2 pounds, whereas its early predecessor,
the ancient Latin American grass teosinte, had an average fruit weighing about 35 grams [1].
Achieving this 20-fold increase took about 8000 years.

In contrast to food crops, bioenergy crops have not been investigated for very long, if one
ignores the burning of wood and other organic materials. Due to its relative youth, research on
bioenergy crops had the immediate advantage of a rich body of genetic and metabolic information.
Furthermore, millions of dollars in tax incentives and subsidies reflect the determination of many
countries around the world to advance the use of sustainable bioenergy products, wean the world off
its dependence from fossil fuels, and reduce greenhouse emissions. As a consequence, genetic and
metabolic engineering have made the production of ethanol, butanol, and fatty acids from corn or
sugar cane, competitive. As an example, in September 2014, three plants in Iowa and Kansas started
commercial production of cellulosic ethanol with an annual ramp-up capacity of 80 million gallons.
While impressive, this amount constitutes only a fraction of the federal call for 1.75 billion gallons per
year in the U.S.

Processes 2017, 5, 61; doi:10.3390/pr5040061 www.mdpi.com/journal/processes107



Processes 2017, 5, 61

The low-hanging fruit of using sources like corn, is in direct competition with the supply of food
products, and it has become today’s challenge to produce “second-generation” bioenergy from other
plant materials that do not cause ethical concerns. This new type of biofuel research is sometimes
called “advanced”, because it relies on lignocellulosic materials, which by and large, correspond to
inedible plant parts, such as corn stover, pine bark, grasses, and wood chips. In parallel, algae have
been studied extensively, but so far, with little economic success.

The challenges associated with exploiting these plant sources are manifold, but often converge to
two overarching issues. First, the energy is stored less in concentrated, easily accessible sugars and
more in woody substances that are difficult to ferment; we will discuss this aspect later. Second, plants
are enormously complex, which is in part due to large numbers of constituents, and their interactions.
As an example, some species of Spruce (Picea) are predicted to possess between 50,000 and 60,000
genes [2], which is between two and three times the number of human genes [3]. This large number
of genes presumably reflects considerable redundancies, metabolic plasticity, and numerous stress
response mechanisms, which are needed to compensate for the plant’s lack of motility, and result
in distinct differences to animal physiology [4,5]. Whereas the human metabolome library (HML)
lists slightly more than 1000 different metabolites in humans [6], the number of metabolites in the
plant kingdom is estimated to lie somewhere between 200,000 and 1,000,000 [7–9]; indeed, the width
of this range alone indicates how little of plant metabolism we truly understand. Of course, plants
also contain uncounted proteins and structural elements, which all contribute to their survival, but
also impede attempts of targeted alterations. Collectively, these features render genetic and metabolic
engineering of plants very challenging.

Nonetheless, new gene editing techniques, for instance, based on clustered regularly interspaced
short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9), have found their way
into plant breeding [10]. The first applications targeted Arabidopsis, tobacco, rice, and wheat [11–13],
but numerous other species have followed (e.g., [14–16]). These experimental advances are directly
pertinent for future crop modeling, as they permit modifications that were considered impossible just
a few years ago.

A particular, additional challenge associated with plants is that primary and secondary
metabolism are tightly linked and regulated by “super-coordinated” gene expression networks [17].
This tight coordination may explain why it is not straightforward to identify and tweak only certain
processes of interest, because many processes are possibly affected and robustly compensated. Adding
to these complications is the fact that plant cells are highly compartmentalized [18,19], and that
metabolite turnover occurs over a wide range of rates [20].

Another very challenging feature of plants is their polyploidy, that is, the existence of several
copies of their chromosomes, which obviously makes targeted alterations cumbersome, and
complicates essentially all gene manipulations, even if the methods and techniques are routine
in microbes. Polyploidy is particularly important for crops, because it offers the opportunity
of modifying traits and lineages [21]. In fact, polyploidization is found in many modern crops
and wild species, including cotton (Gossypium hirsutum), tobacco (Nicotiana tabacum), wheat
(Triticum aestivum), canola (Brassica napus), soybean (Glycine max), potato (Solanum tuberosum), and
sugarcane (Saccharum officinarum). For instance, bananas are triploid and potatoes tetraploid, while
wheat is hexaploid and sugarcane octoploid [22]. Polyploidy can be extreme: members of the genus
Ophioglossum of adder's-tongue ferns can have very high chromosome counts, with possibly up to
720 chromosomes, due to polyploidy [23]. Further complicating the large numbers of chromosomes
is the fact that some plants are alloploid, as they evolved or were bred through the hybridization
of different species. An important example is the genus Brassica, which contains cabbages, as well
as cauliflower, broccoli, turnip and seeds for the production of mustard and for canola oil (cf. [24]).
Polyploidy can be traced back far within the phylogeny of a species. As just one example, there is
strong evidence of polyploidy through breeding that can be seen in the long history of rice cultivation,
where massive gene duplications have occurred since ancient times. The result is an estimated count
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of at least 38,000–40,000 genes in rice, of which only 2–3% are unique to any two rice subspecies, such
as indica and japonica [25]. It is, at this point, unclear what the ramifications of polyploidy for modeling
might be, but it is clear that both experimental and modeling approaches have to grapple with this key
issue of crop manipulation.

Faced with the challenges and the enormous diversity of plants, the plant and crop communities
have been focusing primarily on a number of model plants. Some of these, notably rice (Oryza sativa),
maize (Zea mays), soybean (Glycine max), tobacco (Nicotiana tabacum), alfalfa (Medicago truncatula), and
black cottonwood (Populus trichocarpa), are food, feed, or potential energy sources, while others, like
Arabidopsis thaliana and Brachypodium distachyon, have features that greatly facilitate their investigation,
such as relatively small genomes, fast growth, and diploidy instead of polyploidy.

Within this context, most improvements in crop production have come from experimental
metabolic engineering research, which has been model free in the sense that new plant alterations
were guided by biological intuition. This approach has been very successful in many instances, but
one should expect it to run into problems as soon as large omics datasets become a standard in crop
science. These datasets are very valuable, but they are also so immense in size that they cannot
be comprehended by the unaided human mind, and require sophisticated computer algorithms for
analysis and interpretation; a review by Yuan et al. [5] discusses this need for integrating “big data”
with traditional plant systems biology. Yet, even modern machine learning methods of analysis
are not sufficient by themselves. These methods are designed to filter information from noise and
mine patterns from data that the unaided human mind cannot comprehend, but they rarely suggest
mechanisms or provide explanations, especially with respect to the dynamics of a system under study,
and if this system is nonlinear, due to regulation, synergisms, and threshold effects. Thus, if the goal of
an investigation is an explanation of why a system behaves the way it does, or a prediction of system
responses under untested conditions, intuition and statistical data analysis alone are susceptible to
failure in the complex world of plant physiology. They need to be complemented with dynamic
systems modeling, which is a rather new subject in bioenergy research.

Among the relatively few recent mathematical modeling efforts in the field of crop research, many
studies have focused on photosynthesis (e.g., [26–33]), on pathways of general importance, such as
the TCA cycle (e.g., [4,31,34–36]), or on specific pathways that are of another industrial interest, such
as flavonoid and isoprenoid metabolism (see reviews [5,19,37,38]). By contrast, metabolic modeling
for improved plant biofuels is still relatively scarce. Nonetheless, considering the complexity and
variability of plants, the utilization of methods of computational systems biology appears to become
an increasingly rational strategy toward realizing economically feasible bioenergy production, and one
might expect that computational modeling will become a standard tool of guiding experimentation in
the future.

Returning to the specific challenge of difficult access to sugars in inedible plant materials, the
focus must shift to lignin, which severely impedes bioenergy extraction from woody substrates. Except
for cellulose, lignin is the most abundant terrestrial biopolymer and accounts for roughly 30% of all
organic carbon in the biosphere [39]. It is the main constituent of wood, and plays a vital role in
terrestrial plant life, as it is the key component of the water transport system in the plant xylem, and
gives the plant structure and strength, to overcome gravity. Chemically, lignin is an irregular phenolic
polymer, whose hydrophobic nature not only facilitates water transfer from the roots, but also blocks
surface evaporation from stems and leaves.

Within the cell wall, lignin is physically entangled with cellulose and hemicellulose molecules,
and thereby, severely limits the production of ethanol and other bioenergy compounds by hindering
the access of enzymes to these desirable polysaccharides. It is also resistant to enzymatic digestion, and
therefore, difficult to remove from plant materials. The ultimate consequence of lignin in plant walls is
recalcitrance, which summarily describes the resistance of plant materials to fermentation. Recalcitrance
has emerged as a major obstacle in the commercial production of cellulosic ethanol and other bioenergy
compounds, and has therefore become a key target for bioenergy research. The complete elimination
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of lignin is, of course, not desirable, but even a reduction in lignin content and/or certain changes
in lignin composition have been shown to improve ethanol yield [40–43]. As a consequence, the
second-generation bioenergy industry has put lignin biosynthesis and degradation into the spotlight.
Specifically, one focus area has become the alteration of the quantities and proportions of the three or
more types of monolignols, which are the building blocks of the lignin heteropolymer.

As an interesting side note, lignin is not always a problem. In fact, it is a true yin and yang: on the
one hand, it is an impediment to bioenergy production, but on the other hand, is a very intriguing
organic compound, and some recent industry efforts actually target the harvesting of lignin as a
valuable resource for a variety of chemical syntheses.

Most efforts of altering lignin have been directed toward biotechnological experimentation, and
computational modeling efforts are still the exception, although they have emerged with increasing
frequency. Examples include computational models by Lee et al., who analyzed the pathways of
lignin biosynthesis in poplar [44] and alfalfa [45], based on gene knockdown experiments. Wang
et al. constructed a kinetic model of the lignin pathway from a large set of in vivo and in vitro
measurements [46]. Faraji et al. investigated the lignin biosynthesis pathway in switchgrass
(Panicum virgatum) [47], which was identified by the U.S. Department of Energy as the most promising
monocot plant for biofuel ethanol by DOE. Other works in this field include [48,49]. A summary of
highlights from these studies is provided in [50].

In the following, we first describe representative mathematical approaches that are currently
used for modeling crop metabolism, and include a wide variety of techniques. One should note
that the physiological attributes of plants often translate into unique mathematical constraints that
require reevaluation of the details and underlying principles of popular modeling formalisms. While
discussing different approaches, we highlight specifically the metabolic modeling of bioenergy crops.
Subsequently, we finish with a modeling case study that explores the pathway of lignin biosynthesis in
switchgrass. In terms of references, we give preference to articles addressing plant and crop systems,
while keeping general references to a minimum.

2. Mathematical Modeling Approaches for Metabolic Engineering in Crops

Significant improvements in food and bioenergy crops are very challenging, but the enormous
global scale of mobile energy use, and the corresponding potential economic benefits of even minor
percent improvements in biofuel yield, are very attractive. As a consequence, many attempts have
been made to alter crops with traditional methods of metabolic engineering, where the overriding
goal is the targeted alteration of metabolic pathways toward better yields in compounds, like ethanol
and butanol.

It is only recent that computational biology has begun to partner with experimental biology in
advancing and pushing the boundaries of rational crop science [51]. Much of this work has focused on
the model plant species discussed earlier, and indeed, some comprehensive, multi-scale models are
available that address these model species [52–55]. Also, most of these models have an exclusive focus
on steady-state operation, whereas dynamic modeling of bioenergy pathways is still in its infancy.
Baghalian et al. [37], and Morgan and Rhodes [19], provide excellent reviews on modeling plant
metabolism that describe prominent mathematical approaches in the field.

Mathematical models for metabolic pathway analysis are manifold, and driven by the availability
of data types [56]. They may be classified in two coarse categories. The first uses steady-state
approaches, which have the two advantages that they are algebraic, which renders large model sizes
possible, and that they are relevant, as many systems operate close to a steady state. The second
category contains dynamic models, which are more realistic, and cover transients as well as the steady
state, but are mathematically more complicated. Outside these categories, the literature contains a few
models that are stochastic, permit spatial considerations, and span multiple scales.
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2.1. Steady-State Modeling

Any modeling strategy is ruled by the availability of data, and plant metabolic modeling is
no exception. For systems operating close to a steady state, ideal data would consist of metabolite
concentrations, and of the distribution of fluxes throughout a metabolic system. Unfortunately,
such data are seldom available, and the computational estimation of fluxes has become one of
the crucial steps in metabolic modeling. One basis for estimation is the technique of 13C labeling,
which has become popular for metabolic flux characterizations, and entails computational modeling
for metabolic network reconstruction [57,58]. In particular, stoichiometric modeling [59] has been
widely applied to isotopic labeling data [36,60–64]. In some cases, these methods have allowed the
estimation of entire flux maps [18], but most metabolic flux models presently lack sufficient data and
are underdetermined. As a consequence, much effort in the field has been dedicated to algorithm
development and experimental techniques that try to infer flux values from other data.

The estimation of fluxes falls into two steps. First, one needs to determine which fluxes
are likely to exist within a particular metabolic system. This determination is usually performed
indirectly, namely through genome sequencing, which permits connecting a genotype to an observable
phenotype by means of genome-wide metabolic reconstructions, based on sequence comparisons with
better-identified organisms [65,66]. Once the candidate fluxes and their associations with metabolites
are established, the magnitudes of all fluxes are to be determined. The guiding principle is that, at any
steady state, the fluxes entering a metabolite pool must collectively be equal, in total magnitude, to the
collection of fluxes exiting this pool [67,68]. The most prominent implementation of this concept is flux
balance analysis (FBA; see below) [65,69], which computes the flux distribution within a metabolic
pathway at a steady state, based on an assumed objective of the system, such as maximum growth or
some maximum flux.

Other steady-state approaches at the level of flux distributions are flux variability analysis
(FVA) [70], elementary mode analysis (EMA) [71,72], extreme pathway analysis (EPA) [71,72], and
metabolic flux analysis (MFA) [73]. One might also mention metabolic control analysis (MCA) [74–77]
in this category, as it was designed specifically for assessing the control of flux through a pathway at a
steady state. Pertinent details of these approaches are presented below.

2.1.1. Flux Balance Analysis (FBA)

In typical pathway systems, the number of fluxes is greater than the number of metabolites,
because the same metabolite is usually involved in more than one reaction. As a consequence, the
stoichiometric matrix of a typical metabolic system is underdetermined and infinitely many solutions
are possible. To address this situation, FBA formulates the system as a linear programing problem,
where the solution of the underdetermined system is a member of the solution space, and optimizes an
objective function of choice, such as maximal growth. The solution space itself is determined by linear
constraints of the problem, such as non-negativity and maximal magnitudes of fluxes [64,78]. FBA is
a simple, yet powerful tool that has been widely used to determine steady-state flux distributions.
One caveat of this method is the choice of a suitable objective function. The choice of maximal growth
is often suited for microbial populations, but in mammalian systems and in plants, where several
pathways simultaneously share metabolites and enzymes, selecting the right objective function is not a
straightforward task.

FBA has been used successfully in plant and bioenergy research. For instance, Paez et al. analyzed
biomass synthesis in Chlamydomonas reinhardtii under different CO2 levels [79]. Chang et al. presented
a genome-scale metabolic network model of the same organism [80] using FBA and FVA. Employing
a variant of flux balance analysis that accounts for dynamics (DFBA), Flassig et al. [81] modeled the
β-carotene accumulation in Dunaliella salina under various light and nutrient conditions. Because it
is to be expected that plants must satisfy several objectives, methods of multi-objective optimization
have been applied to metabolic plant modeling as an alternative to FBA [82,83].
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A somewhat problematic aspect of FBA is the omission of nonlinearities, such as regulatory
signals, which clearly operate in actual cells. While the FBA solution itself is unaffected by regulation,
any extrapolations to new situations, such as gene knockouts, can be significantly influenced by
regulatory signals, thereby rendering FBA predictions questionable. A second issue is the fact that
plant cells are highly compartmentalized, which complicates any type of modeling. In particular, one
must question whether it is admissible to merge “parallel” fluxes, using the same substrates, which
are, however, proceeding in different compartments. Experimental studies have shown that even
within the cytosol, spatial channeling of multiple enzymes can mimic pseudo-compartmental behavior,
without which, some aspects of the dynamics of a plant cell cannot be explained [84]. Finally, it is
unclear to what degree plant cells truly operate under (quasi-) steady-state conditions.

An interesting variation of FBA is the method of minimization of metabolic adjustment (MOMA) [85],
which characterizes a flux distribution that is altered due to a mutation or intervention, in relation
to the corresponding FBA solution for the same wild type internode. Expressed differently, MOMA
focuses on the admissible solution within the solution simplex that most closely mimics the wild type.
Lee and others used MOMA to analyze data from knockdown experiments with genes associated with
lignin biosynthesis in alfalfa [45].

2.1.2. Flux Variability Analysis (FVA)

FVA is a constraint-based modeling variant of FBA. It addresses the well-known situation in
linear programming (LP), that a problem has infinitely many solutions, because the optimal solution is
not one of the vertices of the solution simplex. This situation can arise, for instance, when the objective
function is parallel to one of the LP constraints. For such a case, FVA determines the variability in
each of the fluxes in the proximity of equivalent, admissible solutions [70]. An unexpected merit of
the method is that biological systems do not necessarily operate truly optimally, and that it is hence
important to explore flux distributions in slightly suboptimal solutions as well. As a more conservative
method, FVA may appear to be a better fit for the complex biology of plants than FBA.

Hay and Schwender employed flux variability analysis (FVA) to reconstruct the seed storage
metabolism pathway in oilseed rape (canola; Brassica napus), and to characterize the changes in this
pathway during seed development [86,87]. As one of the largest sources of edible vegetable oil in the
world, oilseed rape is also a favored biofuel crop. The authors were able to identify the differential
roles of fluxes and their variability under different nutritional conditions. Their results provide an
interesting computational validation of how metabolic redundancies can play a crucial role during the
important phase of seed development with the rapeseed life cycle.

In a different application of FVA, combined with FBA, Chang et al. developed a genome-scale
metabolic network model for the microalga Chlamydomonas reinhardtii [80], to investigate the effect
of light on metabolism. Their specific goal was to create a predictive tool for an optimal light
source design.

2.1.3. Extreme Pathway Analysis (EPA) and Elementary Mode Analysis (EMA)

Extreme pathways represent the structure of a pathway network as a linear combination of flux
pathways that act as the vector basis, in the sense of linear algebra [71,72]. With this set-up, any
steady-state vector of the system can be written as a linear combination of this basis. In a geometric
interpretation, the extreme pathways are the lateral edges of the admissible cone of solutions that
is anchored at the origin. The extreme pathways are a subset of the so-called elementary modes
of the pathway system. In EMA, non-decomposability constraints ensure these elementary modes
are genetically independent. As a consequence, they can explain the links between the genotypes
and the corresponding phenotypes. Steuer et al. applied elementary modes in their analysis of the
mitochondrial TCA cycle in plants [88].

Extreme pathways are unique and irreducible sets of elementary modes. As such, an important
drawback arises when a pathway has many degrees of freedom, because the number of the elementary
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modes is equal to the degrees of freedom in the pathway. In such cases, analysis of the system through
the assessment of elementary modes becomes cumbersome due to the combinatorial explosion of
admissible routes in the system. [89]. A second limitation of the method is that extreme pathways
cannot always convert an input into a desired product, although the elementary modes of the system
allow such a conversion [72]. Also, typical EPAs assume a predominant reaction for every reaction,
which is often, but not always a given. If the system contains reversible pathways, the extreme rays of
the solution cone may lose this property, and it may be preferable to work with extreme currents, or to
define different classes for reversible and irreversible fluxes [90].

The main advantage of EMA/EPA is the following: in a metabolic engineering problem,
diagnostics of elementary modes and extreme pathways will assist in designing a scheme of multiple
genetic alterations in a targeted manner. Specifically, an optimized solution derived from techniques
such as linear programing, might provide a more desirable numerical value for the objective of
the problem when suboptimal solutions derived from EMA provide more biologically meaningful
solutions, due to the synergy in the regulation of the genes involved in the chain of reactions in each
elementary mode.

2.1.4. Metabolic Flux Analysis (MFA)

MFA relies on labeling data, which are usually generated with an experiment where 13C labeled
substrate is given to the system. After some while, the label distributes among the metabolites
according to the magnitudes of fluxes within the system. 13C is a stable isotope of carbon which
contains one extra neutron relative to 12C, the most abundant isotope of carbon. Hence, methods
such as mass spectrometry are able to detect the level of isotope abundance in different metabolites,
which in turn, assists in the elucidation of the fluxes in a metabolic pathway. The idea behind
MFA is that measuring sufficiently many fluxes leads to a substantial reduction of the degrees of
freedom of a pathway, possibly to zero, in which case, a unique solution is achievable [72]. Although
conceptually straightforward, MFA is technically quite difficult, and measuring internal fluxes is still
a challenge. However, new experimental techniques are expected to provide us with the desired
information in the foreseeable future [91]. Roscher et al. discussed applications of metabolic flux
analysis in photosynthetic and non-photosynthetic plant tissues [92]. The comprehensive review by
Dieuaide-Noubhani and Alonso [93] covers MFA in plants, and describes both experimental and
mathematical modeling steps.

2.1.5. Metabolic Control Analysis (MCA)

MCA [74–77] was proposed specifically for assessing the control of flux through a pathway at
a steady state. Before MCA was developed, it was assumed that every pathway has a rate-limiting
step, which controls the flux through the pathway. The proponents of MCA showed convincingly that
there is seldom a single rate-limiting step in a metabolic pathway. Instead, the control of the flux is
distributed, with different degrees of importance, among many or all reaction steps. MCA addresses
this issue by computing flux and metabolite control coefficients, and elasticity coefficients, which
coarsely correspond to sensitivities, and may be derived from alleged functional forms of rate laws
or direct experimental measurements [94]. A review by Rees and Hill discusses MCA specifically in
the context of plant metabolism [95]. Giersch et al. [96] applied MCA to the system of photosynthetic
carbon fixation.

2.1.6. Limitations of Steady-State Approaches

Steady-state modeling has the advantage of relative mathematical simplicity, and in particular, the
fact that no differential equations are involved. However, the restriction to steady-state operation must
be considered with some caution in plant and crop modeling, as plants seldom truly operate at the
same steady state throughout the day [19,20,37,92]. In particular, the dynamics of the light–dark cycle
is an important reminder of the non-steady-state operation of plants [36]. Parallel pathways, often
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occurring in several compartments, add to the complexity of plant metabolism [18]. Finally, the large
range of turnover times of metabolite pools may affect the validity of pure steady-state models [27].

2.2. Dynamic Modeling

Dynamic modeling has the potential of capturing the complex physiology of plants more
accurately. Specially, kinetic models are, at least in principle, capable of simulating time course data and
permit a variety of dynamical analyses of metabolic pathways. However, in comparison to steady-state
models, dynamic models are more difficult to analyze, and require much more data support.

2.2.1. Explicit Kinetic Models

The law of mass action is the basis for the earliest quantitative modeling of a chemical reaction
rate law [97]. Kinetic mass action models are widely used in metabolic modeling. In plant metabolic
modeling, an example is the work by Farre et al. [98], who developed a model of carotenoid biosynthesis
in maize to identify effective genetic intervention points. Bai et al. [99] used a mass action kinetic
model to investigate the carotenoid pathway in rice embryonic callus, and presented model-driven
metabolic engineering strategies.

Rooted in the law of mass action, the first mechanistic kinetic models of metabolism were
based on the concept of the Henri–Michaelis–Menten mechanism and its generalizations [100,101].
The mathematical representations of the reaction steps, according to these concepts, contain physical
properties that are represented by measurable parameters, such as Vmax, KM, and Ki [100,102]. Although
these mechanistic kinetic models are still predominant [46], their underlying assumptions are seldom
justified in a living cell. For instance, these models implicitly rely on the homogeneity of the medium
in which the reactions occur, which doesn’t hold true in the in vivo environment of a cell. For larger
systems, the parameterization of mechanistic kinetic models becomes laborious, expensive, and
time consuming [37], and the resulting measurements are often obtained in vitro, and may not be
representative of enzyme kinetics in vivo [27,103]. An additional problem with mechanistic models is
that it may become impossible to infer their structure if multiple regulatory mechanisms are involved
in a reaction [104].

The simplest mechanistic models of metabolism are over a century old, and describe the kinetics
of individual enzyme catalyzed reactions [100,101,105]. A modern example of their use within the
context of bioenergy crops is the work of Nag et al. [106], which elucidates the carbon flow in plant
cells, using a mechanistic kinetic model of starch degradation. Starch is of great interest in the biofuel
industry, as it is readily fermentable into alcohol or other energy products. Wang et al. [46] constructed
a kinetic metabolic model of lignin synthesis in black cottonwood (Populus trichocarpa), based on a
large array of in vivo and in vitro measurements.

Uncounted variations and alternatives of the original Michaelis–Menten concept were developed
over the years, to represent more complicated enzymatic processes and their regulation in an
appropriate manner. These variants have been reviewed numerous times [104,107,108], and are
not described here much. Instead, we focus on more global approaches that permit streamlined
representations of entire pathway systems. As alternatives to the original mechanistic models,
several modeling frameworks have been proposed as semi-mechanistic strategies that represent which
variables affect which fluxes, but do not dictate specific mechanisms. Examples include biochemical
systems theory (BST) [44,45,47,109], structural kinetic modeling [110], dynamic flux estimation [111]
and nonparametric dynamic modeling [112,113]. They are briefly described below.

2.2.2. Biochemical Systems Theory (BST)

BST is a kinetic modeling approach that uses power-law functions to model all fluxes [114–116].
The core idea behind BST is that, in logarithmic space and close to an operating point, a rate law is well
represented by a linear function of the substrate(s) and regulator(s) of the reaction [117]. Therefore, a
Taylor linearization in logarithmic space about the biological operating point approximates the often
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unknown kinetic process with reasonable accuracy. In Cartesian space, the result of this approximation
is a term consisting of a rate constant, and a product of power-law functions of all contributing
variables, each raised to an exponent, called the kinetic order. Each exponent can have any real value;
it is positive for substrates and activators, negative for inhibitors, and zero for variables without
direct effect on the flux. The power-law functions are easy to adjust for any number of substrates
or regulators, and BST has been widely used in a variety of organisms. Lee et al. used BST in a
steady-state and dynamic flux characterization of the lignin biosynthesis pathway in Medicago [109].
Other examples of BST framework in plant modeling are [44,45,47,118–125].

2.2.3. Other Dynamic Modeling Approaches in a Predefined Format

The saturable and cooperative formalism has its roots in BST, but instead of presenting the variables
in each term with simple power-law functions, uses Hill-type functions [126]. Thus, every process
is guaranteed to saturate, and the accuracy of models in this formalism is often higher than in BST.
However, this improvement is paid for with a considerable increase in the number of parameters.

The linear-logarithmic (lin-log) representation of enzyme-catalyzed reactions is closely aligned with
the concepts of MCA, and can be seen as the dynamic arm of this formalism [127,128]. It represents all
variables, reaction rates, and fluxes in relation to their steady-state analogues. For very large substrate
concentrations, the accuracy of these models is superior to those in BST [129], but for very small
concentrations, the lin-log rates become negative and approach −∞ when the substrate converges to
zero [117,130,131].

Structural kinetic modeling recognizes the disadvantages of rate laws whose mathematical formats
cannot be justified on biological grounds, and assigns a local linear representation at each point of a
simulation. The system is first written in terms of the Jacobian of the system, and then the Jacobian
is reconstructed such that its components are either directly measurable or estimated. The resulting
model is free of explicit functional forms [110]. Steuer et al. presented a structural kinetic model of
Calvin cycle in chloroplast stroma [110].

Dynamic flux estimation (DFE). Given the co-existence of very many, very different mathematical
representations for metabolic processes, and the fact that none of these are mathematically guaranteed
to be correct, with the exception of a small range of validity about an operating point, one might ask
whether one can obtain a glimpse of true representations directly from data. A related question is
whether it is absolutely necessary to specify functional formats before one starts modeling. DFE offers
some answers to these questions.

DFE is a dynamic modeling approach that requires good time series of metabolite concentrations,
and uses these to circumvent the initial need for selecting suitable functional forms and their
parameterizations [111]. DFE does this by algebraically isolating each flux, and deriving graphical
and numerical flux–substrate relationships, in the following manner. First, the time series data
are smoothed, and the slopes of the time courses are numerically estimated at many time points.
These slope values are substituted for the derivatives on the left-hand sides of the differential equations
of the system. The result is a large algebraic system of equations that represent the pathway at many
time points. This system is solved, and the result is a set of arrays that assign flux values to time
points or to metabolites on which they depend. These results can be plotted, which reveals flux
representations that are presumably very close to the truth. In an independent second step, one
attempts to represent the numerical flux representations with parametric functions. In addition to
being close to the truth, DFE minimizes compensation errors that commonly arise in a simultaneous
parametrization of systems. A drawback of DFE is that its direct implementation would require a
square stoichiometric matrix. However, several procedures have been proposed [113,132–135] to relax
this assumption, which is seldom true.

Nonparametric dynamic modeling. When it comes to selecting the functional format of rate laws
in DFE, there is no silver bullet. Whether mechanistic or non-mechanistic, any rate law needs to be
mathematically specified, and then parameterized. A rare exception is the recently proposed method of
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nonparametric dynamic modeling, which circumvents the need to select functional forms by deriving
and utilizing their shapes directly from time series data [112]. This method is a direct variant of DFE
that uses the same initial steps, but then replaces the choice and fitting of functional forms with look-up
tables that were derived from the data.

Specifically, the look-up tables are assembled from the flux–substrate relationships that were
established in the first phase of DFE. The information in these look-up tables consists of discrete
points on curves or surfaces representing flux values throughout the ranges of the experimental time
series data. The numerical solver for the otherwise typical ODEs is discretized, and uses the look-up
tables instead the closed-form rate laws to calculate flux values at each iteration. Because the method
depends so strongly on available data, it is numerically valid only over the given experimental ranges
and close-by. Although the nonparametric character of the method might appear to be a limiting factor,
this type of dynamic modeling is surprisingly accurate and powerful. For instance, it is possible to
perform stability and sensitivity analysis, and to compute steady states from non-steady-state data. By
its definition, nonparametric dynamic modeling is an essentially unbiased approach that is almost free
of assumptions.

2.3. Other Approaches: Stochastic, Spatial, and Multi-Scale Models

Stochastic models. Models containing randomness have been studied for a long time within the
realm of statistical analyses of stochastic processes. In the context of plants and crops, Hartmann
and Schreiber analyzed sucrose degradation using various formalisms, including stochastic Petri net
(SPN) simulations in potato (Solanum tuberosum) [136]. Wu and Tian developed a stochastic multistep
modeling framework to improve the accuracy of delayed reactions [137], and applied their method to
the aliphatic glucosinolate biosynthesis pathway. One notable phenomenon in plants is the circadian
clock, which has been studied in detail in the bread mold Neurospora crassa [138,139]. The review by
Guerriero et al. [140] presents examples of stochastic models that investigate the effects of intrinsic
noise in these circadian rhythms (see also [141–143]).

Spatial models. The importance of spatial assumptions in a plant metabolic model was earlier
discussed. To capture the highly compartmentalized environment of plant cells demands a more
detailed approach than is possible with the models discussed so far. A good example in this category
is the work by Bogart and Myers [53], who constructed a spatial model of a maize leave to explain
its metabolic state in response to a developmental gradient observed between base and tip tissue.
The review by Sweetlove and Fernie [144] gives an overview of spatial modeling in plants, and
identifies experimental and computational challenges that must be overcome before a realistic spatial
or compartmental model for plants can be achieved.

Multi-scale models. Multi-scale modeling is challenging because different aspects of a system in
space, time and biological organization require different degrees of granularity. For instance, a model
that includes a wide range of time scales suffers from necessary compromises between high temporal
resolution in detailed modules, and coarseness at a higher level; it may also have problems with
stiffness. By contrast, a model focusing on a very narrow time scale might not capture the essence
of a system’s dynamics. Therefore, the ideal may be a hierarchical hybrid modeling scheme, with
an ensemble of modules where each module covers a certain time scale, which often aligns with
corresponding spatial and organizational scales.

In spite of these challenges, prominent examples of multi-scale modeling have been elaborated
in the form of multi-organ, and even whole-plant models. A multi-organ FBA model by
Grafahrend-Belau et al. [145], was developed to investigate the metabolic behavior of source and
sink organs during the generative phase in barley (Hordeum vulgare). The SOYSIM project is a
whole-plant model developed by University of Nebraska at Lincoln, that simulates the soybean
growth from emergence to maturity [55]. WIMOVAC is a simulation model of vegetation responses to
environmental changes; it focuses specifically on the carbon balance in plants [54].
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2.4. Case Study: Lignin Biosynthesis in Switchgrass

As discussed earlier, an intermediate goal of improving bioenergy yields is the alteration of
lignin toward reduced recalcitrance, which necessitates a solid understanding of how monolignols
are synthesized before they are sent from the cytosol into the cell wall. Achieving this goal requires
good experimental data regarding monolignol biosynthesis, and a computational framework for the
effective analysis of these data. The latter is the subject of this case study describing analyses of lignin
biosynthesis in switchgrass (Panicum virgatum).

Four different monolignols are the major precursors of the lignin polymer in P. virgatum. They are
called p-coumaryl alcohol, coniferyl alcohol, 5-OH-coniferyl alcohol, and sinapyl alcohol, or, more
casually, H-lignin, G-lignin, 5H-lignin, and S-lignin, respectively. The lignin pathway in switchgrass
is a subset of the phenylpropanoid pathway, and has a topology that is distinct from other plants,
and uses a particular set of enzymes. Predictions regarding the dynamics of the pathway are difficult,
because several of these enzymes (4CL, CAD, CCR, COMT, F5H) are shared among multiple reactions
with different substrates (Figure 1). Specifically, the part of the pathway leading to S- and G-lignin
has a grid-like structure. The shared enzymes, the grid structure, and the flux representations
are the foundation of the nonlinear characteristics of the pathway, and make intuitive predictions
regarding perturbations or interventions unreliable. In particular, it is difficult to foresee how up- or
downregulation of genes would affect the composition of monolignols under non-wild type conditions.

 

Figure 1. Lignin biosynthesis pathway in switchgrass (Panicum virgatum). The pathway mainly uses
phenylalanine as starting compound. The reactions take place in the cytosol, and the monolignol end
products are translocated to the plant cell wall, transformed into lignin monomers, and polymerized to
form lignin. In switchgrass, the overall lignin composition is ~5% H, 45–50% S, and 45–50% G-lignin.
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A critical first branch point is p-coumaroyl-CoA, where the pathway diverges toward H-lignin
in one branch, and towards S- and G-lignin in the other. This divergence is important, because the
normal percentage of H-lignin is quite small (~3%), and because it is apparently the ratio of S to
G that significantly influences the physicochemical features of the lignin polymer. As was shown
elsewhere [47], the shared enzymes between the H-lignin and S–G-lignin modules leads to crosstalk
that is the result of competition between different substrates. This feature turned out to be necessary
for explaining the behavior of the pathway in 4CL knockdowns. The crosstalk and other nonlinearities
are indications of the difficulties of making predictions without appropriate computational tools.

In previous work [47], we developed a computational model of the lignin biosynthesis pathway
in switchgrass that successfully captures the lignin profiles in wild type and four transgenic strains
(4CL, COMT, CAD, and CCR knockdowns). Using experimental data on lignin content and S/G ratio
in these five conditions, and designing a model within the mathematical framework of biochemical
systems theory (BST), we were able to infer the structure and regulation of the lignin pathway, and to
simulate its dynamics, thereby demonstrating that the model could explain all available experimental
data. Furthermore, the model was validated against another transgenic strain, namely a knockdown
of an inhibitor of the transcription factor PvMYB4, which had not been used to construct the model.
In the following, we use this model, without changes, to predict the lignin profiles in so far untested
transgenic plants, by purely computational means.

While reducing lignin content is one of the targets in bioenergy science, there is uncertainty in the
literature as to whether the total lignin content plays a more important role for recalcitrance than the
S/G ratio. It is not even entirely clear whether a higher or lower S/G ratio would benefit the ethanol
yield. In fact, there have been contradictory reports in the literature [146,147]. The computational
model is capable of simulating both scenarios, and allows optimization toward either objective.

2.4.1. A Library of Virtual Strains

The previously developed model [47] is, in fact, an ensemble of model variants that are equally
capable of capturing the available experimental data in the wild type and four knockdowns, namely
in COMT [43], CAD [42], CCR [148], and 4CL [40]. These data included the lignin content and
composition, as well as the steady-state concentrations of several metabolites of the pathway. The data
were measured in plant crude extracts, which had been collected from wild type or transgenic plants.
Gene knockdowns in transgenic plants were conducted through introducing RNAi to reduce enzyme
activity. The total lignin was quantified using the acetyl bromide method, and the S/G ratio was
measured by thioacidolysis. Here, we use the ensemble to simulate the pathway over a wide range of
perturbations, to determine the responses of the system to single or multiple increases or decreases in
enzyme activities, and the consequent changes in lignin content and composition.

Single Perturbations. In the first set of computational experiments, one enzyme at a time was
perturbed up to ±5-fold relative to its wild type activity. Since every scenario is simulated for the
entire ensemble of models; the analysis yields many results for each scenario. Using all these results
collectively, the median of total lignin content, and the median of the S/G ratio in the perturbed
systems are recorded. The medians are normalized with respect to the wild type value, so that value
1 represents the wild type (see Methods).

The results of this analysis are shown in Figures 2 and 3. The X-axis shows the log2-fold
change in the amount of a given enzyme, and the Y-axis indicates the specifically perturbed enzyme.
The grouping of HCT, C3’H, and CSE represents the flux from p-coumaroyl-CoA to caffeic acid, as
the corresponding reactions have been merged into one in our model. The color code represents the
relative change in total lignin or S/G ratio, for which white depicts no change from the wild type
phenotype. The green spectrum (in the panel for total lignin) and the blue spectrum (in the panel for
the S/G ratio) represent reductions, while the red spectrum (in both panels) represents an increase
relative to wild type. The color bar indicates the intensity of fold change in the enzymes. The greatest
lignin reduction achieved is close to 50%, which is the predicted result of an 80% CAD knockdown,
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with 20% activity remaining. The most significant reduction and increase in S/G ratio is predicted
for perturbations in F5H. Thus, the different criteria for total lignin and lignin composition point to
different knockdowns.

Figure 2. Total lignin in response to single enzyme perturbations. The total lignin level is color coded,
where green represents decreases in total lignin, red represents increases, while white corresponds
to the wild type level. CAD seems to be the most effective enzyme in reducing lignin. Note that,
surprisingly, the change in lignin content is not always monotonic. Simulations show that lignin can be
reduced by knocking down or overexpressing the activities of F5H, COMT and CCR.

Figure 3. S/G ratios in response to single enzyme perturbations. Blue represents decreases in S/G
ratios, red represents increases, while white is the wild type base level. F5H seems to be the most
effective enzyme for altering the S/G ratio, both toward increases and decreases. Similar to the total
lignin response, changes in S/G ratios are not necessarily monotonic: the S/G ratio increases in both
knocked down and overexpressed CCR1.

Double Perturbations. It seems reasonable to surmise that simultaneous changes in two enzymes
might be more effective in altering total lignin and/or the S/G ratio. Thus, we analyzed simultaneous
perturbations in pairs of enzymes. The perturbations were again restricted to magnitudes of ±5-fold
relative to the corresponding wild type activities. Again, every scenario was simulated with the
ensemble of models, and the medians of total lignin content and of the S/G ratios were computed and
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normalized with respect to the wild type values. The results are shown in Figures 4 and 5. The X- and
Y-axes represent the log2-fold changes in the perturbed enzyme activities.

 

Figure 4. Total lignin in double enzyme perturbations. The color code is the same as in Figure 2.
Pairs of CAD/4CL, CAD/CCR, and CAD/F5H are predicted as the most effective combinations; in
particular, the pair of CAD/F5H shows strong synergism: an increase in F5H, combined with a small
reduction in CAD, reduces total lignin dramatically. The nonlinear behavior of the pathway is evident
in the dual-overexpression scenarios, especially in pairs, including CCR1, COMT, or F5H.
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Figure 5. S/G ratios in response to two simultaneous enzyme perturbations. The color code is the
same as in Figure 3. Pairs including F5H and COMT (F5H/4CL, F5H/CCR, F5H/CAD, F5H/COMT,
COMT/4CL, COMT/CCR) show the highest changes in S/G ratio. In particular, F5H and COMT work
well synergistically, even for moderate perturbations.

It is evident from the results that some perturbations are more effective in altering lignin content
and S/G ratio, whereas the system response is more robust to others. It is also clear that many solutions
reveal compromises between alterations in total lignin and the S/G ratio. If the S/G ratio is to be
altered, F5H seems again to be the key enzyme, and pairs like F5H/4CL, F5H/CCR, F5H/CAD, and
F5H/COMT are predicted to be most successful. At the same time, if the goal is solely to reduce lignin,
irrespective of the S/G ratio, other solutions exist, including the pairs of CAD/4CL, CAD/CCR, and
CAD/F5H.

Single Perturbations in a PvMYB4 Overexpression Strain. A recent study [41,149] analyzed
the consequences of overexpressing the inhibitor, PvMYB4, of a transcription factor in switchgrass.
The main result was an altered expression profile of many of the enzymes involved in lignin
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biosynthesis. Consequently, the lignin content was reduced to 40–70%, while the S/G ratio remained
the same as for wild type. So far, the PvMYB4 strain has been the most effective transgenic line in
reducing recalcitrance in switchgrass. To build upon this success, we combined this scenario with
additional single enzyme perturbations, and investigated whether it could be possible to improve
the results from the PvMYB4 transgenic strain further. As before, each enzyme was perturbed up to
±5-fold relative to the wild type level. Simulation results are shown in Figures 6 and 7. The color code
is the same as for previous figures. The black square in each row represents the enzyme activity in
the reference PvMYB4 perturbation. An interesting observation is that the lignin content is predicted
to decrease even more than in the reference PvMYB4 experiment if CCR1 is overexpressed in this
background. Additional simulations show that lignin content could be reduced further if CCoAOMT,
CAD, or 4CL are reduced to even lower levels relative to the PvMYB4 background.

 

Figure 6. Total lignin in overexpressed PvMYB4 plus a single enzyme perturbation. The color code
is the same as in Figure 2. The black squares represent the original amount of the corresponding
enzyme in the PvMYB4 experiment. Additional overexpression of CCR is predicted to improve the
total lignin results. Decreasing the level of CAD and CCoAOMT, relative to the reference PvMyb4
experiment, can reduce the total lignin further.

Figure 7. S/G ratio in overexpressed PvMYB4 plus an additional single enzyme perturbation.

The color code is the same as in Figure 3. The black squares represent the reference amount of
the corresponding enzyme in the PvMYB4 experiment. The S/G ratio can be significantly changed
compared to the background PvMYB4 experiment. A change in F5H can alter the S/G ratio dramatically
in a narrow perturbation interval.
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2.4.2. System Optimization through Global Perturbations

So far, all perturbation profiles were determined by Monte Carlo sampling, where the goal was to
find a desired combination of lignin content and composition. Now, we pursue a somewhat similar
goal, except that it represents a different intent. Namely, a desired target combination of lignin content
and S/G ratio is chosen a priori as the criterion for an optimization, where the goal is to determine
those admissible combinatorial perturbation profiles that satisfy the criteria in an optimal manner.
The main difference between this approach, and the results in Figures 2–5, is that the earlier approach
tries to keep the number of enzymes to be manipulated as low as possible. Hence, the reduction
in lignin content and composition is certainly not necessarily optimized. Furthermore, the changes
were restricted by physiological limits, because dramatic changes in enzyme activities may lead to
instability of the system, which might translate into the accumulation of toxic intermediate metabolites,
or the emergence of undesired phenotypes. Therefore, the level of perturbations should be accordingly
limited for at least some enzymes of the pathway.

A different approach toward identifying desirable strains is the optimization of all enzymes
within physiological bounds. Although the optimized combinations might not be experimentally
implementable at present, they do indicate what changes are theoretically achievable, and in which
specific directions novel alterations should be pursued. Thus, this part of the project aims to compute
ensembles of optimized enzyme activity patterns within physiological constraints.

As it is not clear which combination of lignin content and composition (S/G ratio) is considered
optimal for a particular purpose, all enzymes in the model were simultaneously perturbed randomly
up to ±5-fold, using Monte Carlo simulations. Admissible system responses were defined as stable
scenarios that reached a steady state and led to an accumulation of metabolites, of at most, 6 times
their normal levels, or fell at most, to 5% of the normal level. The admissible solutions were recorded
and categorized based on lignin content and S/G ratio.

The results are shown in Figure 8. The three rows of subpanels represent the degree of reduction
in lignin, categorized in three intervals, and the four columns of subpanels represent intervals for
changes in the S/G ratio. Thus, the top row indicates the strongest reduction in lignin, and the left-most
subpanel exhibits the lowest S/G ratios. Due to the randomized nature of the Monte Carlo method,
we obtain many perturbation profiles that satisfy the constraints of each subpanel. All such profiles
are grouped into 3 to 10 clusters, denoted by ci. The default number of clusters is three, and each
cluster contains, at most, 100 profiles. Some subpanels include more clusters, which is an indication of
the abundance of admissible profiles for that range of constraints. The median of each set of profiles
is computed for each cluster, and the clusters are then sorted based on the total fold change in all
enzymes collectively, shown as the bottom row in each subpanel. The darker a box in the bottom row
is, the more distant the strain is from wild type switchgrass. This total fold change is a measure of
how distant or close a mutant strain is to the wild type. This strategy accounts for the observation that
profiles closer to wild type are probably to be favored metabolically, and is in line with the concept of
the minimization of metabolic adjustment [45].

Since the S/G ratio in wild type switchgrass is about 1, the central subpanels are closer to the wild
type. If an experimentalist is interested in a strain with the strongest possible reduction in lignin, and
the highest possible increase in the S/G ratio, the subpanel in the top right corner exhibits perturbation
profiles that are predicted to achieve these criteria. Among these, cluster c1 is the closer to wild type
than c2 and c3 in the same subpanel. If the c1 column is the chosen profile, the enzyme perturbation
scenario is indicated by the color code. White represents the wild type, the blue spectrum represents
reduced expression of the enzyme, and the red spectrum shows overexpression. The intensity of the
color represents the degree of perturbation needed. The log2-fold change is indicated in the color bar.
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Figure 8. Global perturbation scenarios. All seven enzymes are perturbed simultaneously. The results
are broken into 12 subpanels. The subpanels in the same columns share the same S/G ratio, and the
subpanels in the same row share the same total lignin. Each of the subpanels includes several columns,
where each column represents a cluster of perturbation vectors that are sorted based on the distance
from the wild type. Cluster c1 in each subpanel is the closest perturbation scenario to the wild
type. The grey scale represents the distance from the wild type, and the red/blue spectrum shows
the increase/decrease in pathway enzyme. White represents the wild type, therefore, no change in
the enzyme.
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As a specific example, suppose that a high increase in S/G ratio and a moderate decrease in total
lignin is desired, which leads us to the top right subpanel. If a medium total change in enzyme profile
is allowed, we choose column c2 as the perturbation scenario. Then, CCR1 must be overexpressed
2.8-fold, F5H must be overexpressed to 1.6-fold, the flux from the group of HCT/C3’H/CSE must be
increased 1.9-fold, while 4CL, COMT, and CCoAOMT must be knocked down, as indicated in the blue
range of the color scale.

Although the lignin profile in some pathway enzyme knockdowns has been measured before
in vivo [40,42,148–150], our results cover seven pathway enzyme knockdowns in single, double, and
combinatorial perturbations. The possibly strong ±5-fold perturbations presumably cover the realistic
range of behaviors of the lignin biosynthetic pathway in response to gene knockdowns. Determining
the total lignin and S/G ratio, simultaneously, provides a powerful tool for lignin researchers to choose
the desired knockdown scenario based on the lignin characteristics of choice.

Figures 2–8 make it clear that the response of the system is nonlinear in some perturbation
scenarios. For instance, in single enzyme perturbations (Figure 2), F5H, COMT, and CCR1 exhibit
non-monotonic changes in total lignin, which means that reducing the enzyme concentration is not
the only way to reduce lignin content, but that targeted overexpression may lead to the same result.
In the specific case of CCR, an increase in total lignin with small degrees of enzyme overexpression,
followed by a decrease in total lignin at higher levels of enzyme overexpression, is a good example
of the occasional counterintuitive behavior of the pathway. The same pattern is even clearer in
double knockdowns, such as the pairs of 4CL–CCR, 4CL–F5H, CCR–CAD, CCR–CCoAOMT, and
COMT–CCoAOMT (Figure 3). Another interesting result is that choosing a specific perturbation
scenario can retain the same amount of total lignin, while leaving room to adjust the desired S/G ratio,
as it is the case for the pair 4CL–F5H: there is no substantial difference in total lignin in the left half of
the figure, but there is a drastic change in S/G ratio based on the fold change in F5H. The same applies
to other pairs including F5H, and also, for the combination of COMT–CCoAOMT.

The computational model turned out to be helpful for an investigation of the transgenic strain of
overexpressed PvMYB4 (Figure 5). It is interesting to note that, similar to single enzyme perturbations,
combinations of the profile of pathway enzymes in PvMYB4 line with overexpressed CCR can further
improve the reduction in total lignin. Again, the S/G ratio is easy to manipulate, while keeping the
total lignin almost unchanged; see for instance, combinations of the profile with F5H or COMT.

An added benefit of the developed library is that our results could be complemented with a record
of the ethanol yield in the transgenic plants containing different total lignin contents and different S/G
ratios. This record could provide the desired lignin content and S/G ratio, and with this target, one
could use our results in Figures 2–8 to choose the perturbation scenario needed to achieve the target
characteristics in the transgenic plant. In other words, this combination of computational results and
literature information could be of value and assistance for the targeted design of transgenic plants.

While, from a technical point of view, growing transgenic plants with more than two knocked
down enzymes does not seem to be practical at present, fast and inexpensive computational modeling
is not really limited. Thus, it offers the opportunity to investigate more complex perturbation scenarios
that could shed light onto virtually optimized transgenics. For example, one could restrict the number
of enzymes to be perturbed, or permit higher levels of perturbation to achieve a more significant
change in total lignin or S/G ratio (cf. [151]).

Of course, caution is advised, and it will be necessary to validate the predictions with
correspondingly manipulated strains. As an example of possibly wrong predictions, a drastic change
in an enzyme concentration is not a problem, theoretically, but physiological restrictions might not
allow it. It could also happen that a significant change in one or two enzymes might lead to intolerable
changes in fluxes, or an accumulation of toxic intermediates within, or outside, the lignin pathway.
By contrast, a combination of small changes at multiple locations of the pathway is experimentally
more challenging, but might avoid such issues. Thus, there is range of options for reaching the same
result. Among these admissible perturbation scenarios, which give the same combination of lignin
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content and S/G ratio, one should presumably focus on the optimized scenario that reaches the target
but deviates the least from the wild type. This overall deviation is reminiscent of the philosophy of
the method of minimization of metabolic adjustment (MOMA) [45,85], which we discussed before. It
may be assessed with a metric, like the Euclidian distance between the enzyme profiles in the virtual
transgenic and the wild type. As one might expect, our results show that the more the lignin content
is to be reduced, the further the optimized enzyme perturbation profile deviates from the wild type.
Interestingly, the S/G ratio is not particularly sensitive to the distance from the wild type, and for the
same lignin content, the optimized enzyme perturbation profiles for different S/G ratios are quite
close to each other. In other words, it seems that altering the S/G ratio does not introduce plants with
severely altered characteristics.

3. Methods

As described elsewhere [47], the lignin pathway system is modeled by a system of stoichiometric
differential equations of the form

dXi
dt

=
k

∑
j=1

si,jVj (1)

Here, each Xi is a metabolite, Vj represent fluxes, and si,j are stoichiometric matrix elements. If
flux Vj enters the pool of metabolite Xi, then si,j is 1. If flux Vj leaves the pool of metabolite Xi, si,j is
−1, and if the flux Vj has no direct association with metabolite Xi, si,j is zero. If all equations equal
zero, the pathway operates at a steady state, where the concentrations do not change.

Each flux in Equation (1) is formulated as a general mass action (GMA) equation within the
modeling framework of biochemical systems theory [114–117,152],

Vj = αj

n

∏
r=1

Xr
gr,j

n+m

∏
r=n+1

Xr
hr,j (2)

where n is the number of metabolites, and m is the number of enzymes in the system. Furthermore,
αj is the rate constant, Xr for 1 < r < n is a metabolite, and Xr for n + 1 < r < n + m is an enzyme.
The metabolites are the dependent variables of the system, whereas the enzymes are considered
independent variables that do not change during a computational experiment. The parameters gr,j
and hr,j are called kinetic orders. They determine whether a metabolite or enzyme is involved in a flux
or not, and if so, in what manner and how strong. For an enzyme, it is customary to set the value
of the kinetic order hr,j to 0 or 1, which implies that a particular enzyme is not at all involved in the
process, or that the flux Vj is linearly dependent on the activity of enzyme Xr. gr,j can take a positive
or negative value. If gr,j > 0, the metabolite Xr is either a substrate or an activator of the flux Vj, and if
gr,j < 0, Xr is an inhibitor. Here we assume gr,j to range between −1 and 1, which is typical (cf. Ch.
5 of [152]). In the case here, the values of the rate constants and kinetic orders are known from the
parameterized model in the previous work [47].

Due to lacking information, the steady-state concentrations of the metabolites and the enzyme
activities of the pathway are not known. Hence, normalized concentrations relative to wild type
concentrations are used.

3.1. A Library of Virtual Mutant Strains

As a consequence of the normalization of the variables, the Xr values for the enzymes are equal to
1 when a wild type strain is modeled. If a knockdown strain is modeled, the corresponding enzyme Xr

will have a value less than 1, and if a strain with an upregulated enzyme is modeled, the corresponding
enzyme Xr value will be greater than 1. Once a perturbation by down- or upregulation of an enzyme
has been introduced, the system rearranges itself, and typically achieves a new steady state. At this
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state, at least some of the fluxes and metabolites typically assume new values. Thus, the affected
flux becomes

V′
j = αj

n

∏
r=1

X′
r

gr,j
n+m

∏
r=n+1

X′
r (3)

To generate a library of virtual mutants, enzyme concentrations, Xr (n + 1 < r < n + m), are
perturbed up to ±5-fold. If the number of enzymes to be perturbed is k, using an extensive Monte
Carlo simulation, a hypercube in R

k is randomly sampled, and the generated set of arrays of random
values is fed into the system. Since αj and gr,j are already known, the differential equations can be
immediately simulated for single or double alterations, or for the PvMYB4 overexpression strain
combined with an additional perturbation.

3.2. Admissible Results

Each scenario corresponds to an array of perturbed enzymes. The total lignin content and S/G
ratio for the scenario are recorded, if the perturbed system satisfies the following criteria:

1. The system is stable at the steady state, and reaches this state after a perturbation.
2. The steady-state values of the metabolites do not exceed a value of 6 times the wild type concentration.
3. The steady-state values of the metabolites do not fall below 5% of the wild type value.

Since an ensemble of models is used to simulate each scenario, multiple lignin profiles exist
for each perturbation scenario. For visualization purposes, the median of the total lignin and the
corresponding S/G ratio of the ensemble for each scenario is plotted against the perturbed enzyme(s).

3.3. Global Perturbations and Optimized Virtual Mutant Strains

All seven enzymes are perturbed simultaneously within a range of up to ±5-fold about the
wild type value. Perturbation scenarios that satisfy the criteria described in the previous section are
recorded. The recorded results are arranged in a matrix based on the total lignin content and S/G ratio.
The total lignin range is subdivided into three intervals, namely for 25–50%, 50–75%, and 75–100%
reduction in total lignin relative to the wild type, while the S/G ratio is subdivided into four intervals,
namely 0–0.5, 0.5–1, 1–2, and >2. These intervals group the results into 12 sets with different total
lignin and S/G ratio characteristics.

Each square in the results matrix contains a set with numerous scenarios satisfying specific
interval criteria for total lignin and S/G ratio. To facilitate the interpreting of the results, the scenarios
are clustered, and the clusters are sorted based on the distance from the wild type, which reflects
the overall change imposed upon the system (Figure 8). This distance is defined as the Euclidian
distance between the vector of perturbed enzymes and the vector of the corresponding wild type value.
The smaller the distance is, the closer is the virtual mutant is to the wild type (Figure 9).

Figure 9. Clusters of results in matrix subpanels of Figure 8.
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4. Discussion and Conclusions

The article consists of two parts. In the first, we described generic issues of crop modeling,
and illustrated them with prominent methods and applications from the literature. Metabolic
modeling in plants does not have as rich a history as in animal cells or bacteria, and many of the
computational models developed so far have not been specifically tuned for the distinct physiology
of plants. We addressed this issue by elaborating strategies on the basis of the most common
mathematical techniques in metabolic modeling, focusing on plant applications, and discussing
possible discrepancies between standard applications and the specific attributes of plants.

The hope behind this strategy of representing the field was that experimentalists and modelers
may find common ground in this discussion. As plant and crop modeling matures, it seems that the
current methods may have to be customized toward the genuine features of plants. This customization
will have to be the outcome of an extensive, ongoing dialogue between the experimental and
computational communities. Such a dialogue is not always easy, as the different communities use
different languages and observe nature from different viewpoints. However, the reward of such a
collaboration will be the emergence of new integrative approaches that are able to answer pressing
questions of the field and guide future experimentation.

As a pertinent side issue, we discussed the reliability of mechanistic modeling using in vitro data,
and the fact that researchers must take caution when drawing conclusions from such models, unless
extensive validation against in vivo data supports the model performance. Computational models
have been instrumental in demonstrating that even for the best known pathways, where allegedly
every element of the system is known, in vitro measurements might not be representative enough to
simulate the typically complex in vivo environment [103].

An intriguing aspect of computational modeling is the feature of emergence. One type of the emergence
of unexpected behavior occurs when a system or organism is exposed to a new environment, in which
case, a model may or may not be able to explain the observations. However, the success of computational
models in predicting the emergence of some feature, although it had not been foreseen by experimental
data, may sometimes be traced back to the nonlinear nature of biological systems, and the model may even
offer explanations. It is clear that plant cells, due to their complexity, are susceptible to such issues.

Many mathematical techniques were reviewed in this study, and numerous other techniques exist
that have not yet been applied specifically to plant metabolism. The choice of the best suited technique
points to the overriding questions of any modeling effort, namely: what are the phenomena that the
model is supposed to explain, and which approaches are most efficacious for analyzing the available
data? The dichotomies of steady-state or dynamic, deterministic versus stochastic, mechanistic or
non-mechanistic models are important choices that a modeler needs to make at the beginning of every
analysis, and that ultimately define the quality of a model.

We demonstrated the potential of a model to guide future research in the second part of this article,
which was dedicated to a detailed case study. Specifically, we used an earlier model to illustrate how
model predictions may provide guideposts for future genomic manipulations. As we demonstrated,
the computational model of the lignin biosynthetic pathway captured the complexity of the biological
systems and led to insights beyond intuition. It also provided a powerful tool for simulating mutant
plants with modified lignin characteristics, and prescribed single, double, combinatorial and global
pathway enzyme knockdowns that were predicted to yield plant designs with specifically altered
lignin content and composition. The model itself had been validated against a PvMYB4 strain before
generating the libraries, but it is clear that further validation against other transgenics will improve the
reliability of the presented results, and may improve the model itself.

Acknowledgments: This work was supported by DOE-BESC grant DE-AC05-00OR22725 (PI: Paul Gilna). BESC,
the BioEnergy Science Center, is a U.S. Department of Energy Bioenergy Research Center supported by the Office
of Biological and Environmental Research in the DOE Office of Science.

Author Contributions: M.F. designed the model as well as the computational experiments. E.O.V. supervised the
project and contributed to all computational aspects. Both authors collaborated on the writing of the article.

128



Processes 2017, 5, 61

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

PAL L-phenylalanine ammonia-lyase
C4H cinnamate 4-hydroxylase
4CL 4-coumarate:CoA ligase
CCR1 cinnamoyl CoA reductase 1
CAD cinnamyl alcohol dehydrogenase
HCT hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase
C3′H p-coumaroyl shikimate 3′-hydroxylase
CSE caffeoyl shikimate esterase
COMT caffeic acid O-methyltransferase
CCoAOMT caffeoyl CoA O-methyltransferase
F5H ferulate 5-hydroxylase
ER endoplasmic reticulum
BST biochemical systems theory
GMA generalized mass action
FBA flux balance analysis
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Abstract: Data analysis used for biomedical research, particularly analysis involving metabolic or
signaling pathways, is often based upon univariate statistical analysis. One common approach is
to compute means and standard deviations individually for each variable or to determine where
each variable falls between upper and lower bounds. Additionally, p-values are often computed to
determine if there are differences between data taken from two groups. However, these approaches
ignore that the collected data are often correlated in some form, which may be due to these
measurements describing quantities that are connected by biological networks. Multivariate analysis
approaches are more appropriate in these scenarios, as they can detect differences in datasets that the
traditional univariate approaches may miss. This work presents three case studies that involve data
from clinical studies of autism spectrum disorder that illustrate the need for and demonstrate the
potential impact of multivariate analysis.

Keywords: multivariate statistics; Fisher discriminant analysis; probability density function; autism
spectrum disorder; one carbon metabolism; transsulfuration; urine toxic metals; classification;
machine learning

1. Introduction

Statistical analysis is a critical component for supporting any finding—whether from a clinical
trial or other data collection. While there are numerous types of scenarios where such an analysis may
need to be applied, two expository examples are: (1) when a clinical trial tests measurements from
two or more populations, such as healthy versus diseased or placebo versus treatment; or (2) when
a patient’s blood sample is analyzed and the measured values are compared against reference
ranges for a healthy individual. In both cases, the analysis is typically performed by comparing
the representative value of one specific measured quantity against the same measured quantity of
others, and this comparison is typically done for each measured quantity. However, such an approach
will ignore correlations that may exist between the different measured quantities. If the measured
quantities are representative of activity in a biological network where components are connected
via reactions, interactions, or regulatory effects, such as in metabolic or signaling pathways, then
traditional univariate approaches will potentially misrepresent the true behavior of the system under
investigation. Multivariate analysis can address this shortcoming and, more accurately, it can be used
to elucidate the characteristics of a biological network.
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The value of considering multiple quantities simultaneously is recognized in the medical and
biomedical communities, as demonstrated by the use of measurement ratios for univariate statistical
analysis. The ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH), for example,
is used as an indicator of DNA methylation capacity [1]. Kidney functioning can be assessed with the
ratio of blood urea nitrogen to creatinine in the plasma [2]. Furthermore, the ratio of total cholesterol
to high-density lipoprotein cholesterol is used to provide an assessment of cardiovascular health [3].
Using ratios or observing the statistical distribution of ratios, instead of analyzing the separate values
individually, can be advantageous as the interactions between different biological components may
then be considered. However, the ability to take correlations of a larger number of measurements into
account, without needing to specify the relationships, would be of even greater benefit. Multivariate
statistical methods, such as Fisher Discriminant Analysis (FDA) [4] and its nonlinear extension,
Kernel Fisher Discriminant Analysis (KFDA) [5], are promising options as they can address the
aforementioned drawbacks of univariate analytical approaches.

This paper provides three case studies that compare the results obtained from univariate and
multivariate statistical analyses of data from clinical studies. These case studies illustrate the benefits
of using multivariate techniques over their univariate counterparts. While one must be careful when
drawing conclusions from specific case studies about a more general setting, this work is nevertheless
intended to highlight examples of advantages that can be gained by using multivariate analysis
techniques, especially in cases where biological networks are involved.

2. Preliminary Information

2.1. Univariate Statistical Analysis

Univariate analyses are those aiming to summarize the characteristics of a single variable.
These produce the statistics commonly reported in scientific literature, including the mean, standard
deviation, and quantiles. When comparing a single measurement between two study populations, such
as placebo and treatment groups, the two-sample t-test can be used to test for a significant difference
in the group means, provided that the measurement is normally distributed in both groups [6].
Alternatively, the Mann-Whitney U test allows one to test for a significant difference in medians
between two identical, but shifted, distributions [7].

2.2. Multivariate Statistical Analysis

Multivariate analysis involves the investigation of multiple variables simultaneously and
encompasses a number of techniques that can be used to model data arising from complex systems.
Such techniques take on a variety of forms and are used for a number of different tasks. For example,
analyses of variance models [8] are commonly used to test the effects of multiple categorical factors on
a measured response variable. The support vector machine [9] is a popular option for the supervised
classification of groups of data consisting of a number of measurements. Additionally, hierarchical
clustering [10] can be used for cluster analysis, while partial least squares regression [11] offers an
approach for parameter estimation. Multivariate methods are often implemented in machine learning
tasks in which models are developed with existing data and then used to predict new data. FDA is
a useful method for maximizing separation between two or more groups of data samples [4] and is
most appropriate when the input variables are continuous and normally distributed [12].

The input of FDA is a set of data samples X, where each sample x is a vector containing a fixed
number of measurements. With a two-class problem (again consider the placebo versus treatment
example), a subset of these samples X1 belongs to one class while the remaining subset of samples X2

belongs to the other class. The purpose of FDA is to calculate the projection vector w, which transforms
each x to a single score variable t, that best separates the samples in X1 and X2. Separability is quantified
by J, the ratio of the between-class scatter to the within-class scatter, and w is chosen to maximize
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this quantity [4]. Figure 1a summarizes this linear transformation performed in FDA as applied to
individual samples.

Figure 1. Schematics of the transformations used in Fisher Discriminant Analysis (FDA) and Kernel
Fisher Discriminant Analysis (KFDA): (a) In FDA, the dot product of vector w with data sample x is
calculated to obtain the projected value t; (b) KFDA first maps each sample x to a higher-dimensional
space f according to the nonlinear transformation ϕ(x). The dot product of w with f (rather than with
x) is then calculated to obtain the projection t.

The principle of KFDA is similar to that of FDA, except that KFDA is capable of modeling
nonlinear relationships between input variables rather than just linear ones. Before calculating
a projection direction w to best separate X1 and X2, KFDA first applies a nonlinear transformation
to each x, expressed as f = ϕ(x), to map each to a higher-dimensional variable space f . Since the
explicit mapping of ϕ(x) is not known, an implicit mapping can be defined such that the inner product
between any two ϕ(x) is a Mercer kernel [5]. In a two-class problem, all f belonging to one class
make up F1 while the f in the other class comprise F2. The vector w that best separates F1 and F2 is
then determined, with the linear projection t = w·f capturing nonlinear relationships in the original
variable space of x. Like FDA, nonlinear KFDA also aims to maximize the value of J. A schematic of
the operations involved in KFDA is provided in Figure 1b. It should also be noted that the radial basis
function, a commonly-used kernel, will be used in this work.

3. Advantages of Multivariate Approaches for Biological Network Analysis

Three case studies are presented in this section that illustrate some benefits of using multivariate
approaches to analyze biological networks. The focus of these case studies is on folate-dependent
one-carbon metabolism (FOCM) and transsulfuration (TS), two metabolic pathways with critical roles
in the human body (Figure 2). FOCM, which occurs in every cell type [13], is involved with the
epigenetic control of gene expression through DNA methylation [14]. The TS pathway, initiated by the
conversion of homocysteine to cystathionine, is found in the liver, kidney, pancreas, small intestine,
and brain, and contributes to the management of intracellular oxidative stress [15,16]. The FOCM and
TS pathways are connected and together form an important juncture in the larger metabolic networks
of human cells.

FOCM and TS are believed to be closely intertwined with genetic and environmental factors
associated with autism spectrum disorder (ASD) predisposition [17] and therefore are often the
focus of clinical studies investigating metabolic abnormalities in ASD [18–20]. These studies have
found the ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) [21] to be reduced
in individuals with ASD compared to neurotypical (NT) peers, which suggests a reduced DNA
methylation capacity. The same studies have determined an increased proportion of oxidized to
reduced glutathione [22], an important antioxidant, to indicate an irregular balance between oxidants
and antioxidants (redox status) in ASD.
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Figure 2. Diagram of major metabolites and reactions involved in the folate-dependent one-carbon
metabolism (FOCM) and transsulfuration (TS) pathways. DNA methylation plays an important role in
epigenetics and glutathione (GSH) is responsible for the clearance of environmental toxins.

The case studies that follow will highlight three unique aspects of multivariate analysis.
First, the utility of incorporating multiple measurements for assessing network activity will be
demonstrated using a general example. Second, advantages of using multivariate over univariate
methods to analyze FOCM/TS metabolite data will be studied in the context of ASD classification.
Third, the ability of nonlinear multivariate approaches to uncover relationships that linear analyses
cannot describe will be explored, with a focus on measurements of toxic metals from the urine of
individuals with ASD.

3.1. Advantages of Using Multiple Correlated Measurements for Diagnosis: A General Case

Consider a subset of reactions in FOCM associated with DNA methylation to be represented by
the model in Figure 3. This model is taken to describe FOCM activity in liver cells. The metabolic
reactions are assumed to proceed according to mass action kinetics and the reaction rates are thus
proportional to the concentrations of the substrates, similar to the FOCM/TS model design used in
a previous study [23]. In this model, methionine is delivered to liver cells at the rate vin. Methionine is
converted to SAM at a rate v1 by methionine adenosyltransferase enzymes. SAM is then converted to
SAH by methyltransferase enzymes at the rate v2, or is depleted by other reactions and excreted at
a rate described by vdeplete. Finally, SAH is converted to other FOCM products at a rate vout.

Figure 3. A simplified representation of a subset of reactions in FOCM responsible for DNA methylation.
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Recall that a reduced SAM/SAH ratio has been observed in individuals with ASD and indicates
a lowered capacity for DNA methylation. In the context of the metabolic model, this implies one of five
scenarios: (1) reduced SAM and relatively normal SAH; (2) relatively normal SAM and elevated SAH;
(3) both reduced SAM and elevated SAH; (4) elevated SAM and further elevated SAH; or (5) reduced
SAH and further reduced SAM. In each scenario, the measurement of both SAM and SAH is required
to make an informed assessment about DNA methylation capacity. Therefore, measuring SAM or SAH
alone will not provide sufficient information to form meaningful conclusions about methylation status.

For example, suppose a patient has significantly increased vin, which can be due to a number
of reasons. All modeled metabolite concentrations (methionine, SAM, SAH) will then increase with
time, along with their associated reaction rates. Clinical measurement of SAH sometime afterwards
will indicate an elevated concentration of SAH, and following scenario (2) or scenario (3) the unwary
clinician might conclude that the patient has a decreased SAM/SAH ratio. However, with an additional
measurement of SAM it would be discovered that the SAM concentration is also elevated and the
SAM/SAH ratio is relatively unchanged. The only way to verify this is to incorporate multiple
measurements into the diagnosis and obtain a bigger picture of the network being studied.

A potential alternative to this multivariate approach would be to develop a comprehensive
network model of the metabolic pathways under investigation and analyze the behavior of the
network as a whole. While this can provide correlational (and sometimes causal) information that
a multivariate statistical approach cannot, it also has several drawbacks. For one, a network model
requires reasonably extensive knowledge of the network’s structure and properties, which are
not always known, or a very large dataset to construct the network’s structure. Understanding
the network’s behavior then necessitates that the measurements be available for a large number
of components of the network, whereas a multivariate analysis can be performed with just a subset
of these measurements and without specifying the relationships between individual components.
The presented multivariate approach thus offers a simplified, yet effective, representation of the
network that can serve as a biomarker for the disorder or disease of interest.

3.2. Advantages of Using Multivariate Approaches over Univariate Approaches: Application to ASD
Classification Using Clinical Measurements of FOCM/TS Metabolites

The purpose of this case study is to illustrate the benefit of incorporating multiple measurements,
rather than a collection of individual ones, into a procedure for classifying two groups of data.
To demonstrate this point, data from the Integrated Metabolic and Genomic Endeavor (IMAGE) study
at Arkansas Children’s Hospital Research Institute [20] will be used. The IMAGE study investigates
plasma profiles of FOCM and TS metabolites in individuals with ASD and how they compare to
those of NT individuals. Measurements of primary interest in this study are methionine cycle and TS
metabolites, as well as DNA methylation and oxidative stress markers.

ASD classification has been performed with high accuracy by applying FDA to measurements
from the IMAGE study [24]. In a multivariate analysis of these data, a subset of five measurements
was found to provide excellent classification of the ASD and NT cohorts. These measurements,
which are explained elsewhere in greater detail [20], were: (1) the percentage of DNA that is methylated
(% DNA methylation), an indicator of epigenetic activity; (2) the concentration of 8-hydroxyguanosine,
a marker of oxidative damage in DNA; (3) the concentration of glutamylcysteine, the precursor for
glutathione; (4) the ratio of free oxidized cysteine to free reduced cysteine (free cystine/free cysteine),
an indicator of extracellular redox status; and (5) the percentage of glutathione molecules that are
oxidized (% oxidized glutathione).

Table 1 provides descriptive statistics for each of these measurements in the ASD and NT cohorts,
along with p-values from the two-tailed Welch’s t-test (significance level α = 0.05). These numbers
indicate a significant difference in the mean between the cohorts for all five measurements. To further
characterize these differences, the probability density functions (PDFs) of each variable were plotted
for each group (Figure 4). The differences in means between cohorts are apparent in these distributions.
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However, there is still significant overlap of the PDFs, suggesting that these measurements will not
allow for an accurate classification of a patient when considered individually.

Table 1. Means and standard deviations of five FOCM/TS measurements for the autism spectrum
disorder (ASD) and neurotypical (NT) cohorts from the Integrated Metabolic and Genomic Endeavor
(IMAGE) study. Reported p-values were obtained from the two-tailed Welch’s t-test.

Measurement
ASD Mean ± SD NT Mean ± SD p-Value

n = 83 n = 76

% DNA methylation 3.37 ± 0.87 4.26 ± 0.90 <0.001
8-hydroxyguanosine (pmol/mg DNA) 89.2 ± 27.9 56.7 ± 17.9 <0.001

glutamylcysteine (μM) 1.87 ± 0.46 2.37 ± 0.59 <0.001
free cystine/free cysteine 1.51 ± 0.58 1.06 ± 0.35 <0.001
% oxidized glutathione 0.22 ± 0.07 0.12 ± 0.04 <0.001

Figure 4. Probability density functions (PDFs) of five measurements for ASD and NT cohorts
from the IMAGE study: (a) % DNA methylation; (b) 8-hydroxyguanosine; (c) glutamylcysteine;
(d) free cystine/free cysteine; (e) % oxidized glutathione. These PDFs are based on the standardized
values of each measurement (i.e., all samples for a measurement are scaled such that the mean value is
0 and the standard deviation is 1).

The use of multivariate methods such as FDA can address this issue. Figure 5 shows the results
of applying FDA to these five measurements using leave-one-out cross-validation [25]; this method
provides an independent assessment of the model performance by training the FDA model on all
samples but one, obtaining a projected score for the left-out sample, and then repeating this process
such that every sample has been left out exactly once. The resulting PDFs for the ASD and NT cohorts
are well-separated, and when the indicated threshold is used for classification, the corresponding
Type I and Type II errors are only 4.8% and 5%, respectively. It must be emphasized that since
cross-validation was used in this analysis, the problem of potentially overfitting the FDA model by
including more variables was addressed; these results also indicate the model’s ability to accurately
predict new data points that were not originally used to develop the model.
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Figure 5. Multivariate analysis with FDA using five measurements from the IMAGE study
(% DNA methylation, 8-hydroxyguanosine, glutamylcysteine, free cystine/free cysteine, and %
oxidized glutathione). The scores are the projected values obtained by leave-one-out cross-validation
with FDA, while the PDFs were obtained by fitting to the scores. The shown threshold corresponds to
a Type I error of 4.8% and a Type II error of 5%.

In summary, univariate analysis of the five FOCM/TS measurements indicates significant
differences in the means between the ASD and NT cohorts for each of the measurements.
However, due to the variance in the measurements, these differences are not sufficiently large
for purposes of classification. On the other hand, the application of a multivariate technique
(in this case, FDA) allows us to simultaneously consider all of these measurements and determine
a pattern in the data that can accurately predict if measurements come from a participant in the ASD
or NT cohort.

3.3. Advantages of Nonlinear Approaches over Linear Approaches: Application to ASD Classification Using
Clinical Measurements of Urine Toxic Metals

This final case study examines how nonlinear multivariate methods can uncover relationships
among measurements that linear methods are unable to capture. The advantages of these nonlinear
approaches have previously been shown using measurements of urine toxic metals that were
collected as part of the Comprehensive Nutritional and Dietary Intervention Study at Arizona State
University [26]. These data are again considered here.

Recall that the TS pathway is responsible for the synthesis of glutathione, which plays a major
role in the regulation of oxidative stress. One use of glutathione is to aid with the removal of unwanted
substances, such as toxic metals, from the body by binding them and subsequently facilitating excretion.
Most of the excretion is done via feces [27], although other routes such as excretion via urine can
also play a role [28]. Given that children with ASD have been found to have reduced levels of
glutathione [18], it is likely that their toxic metal excretions will be different from those of their
neurotypical peers. Thus, urine toxic metals can potentially be used as an indicator of FOCM and TS
abnormalities in patients with ASD.

Descriptive univariate statistics for measurements of three urine toxic metals collected in the
Comprehensive Nutritional and Dietary Intervention Study [26] are given in Table 2. It should be noted
that each measurement is normalized by the amount of creatinine to address the varying dilution of
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each urine sample. Among these urine toxic metals, none had means that were significantly different
between the ASD and NT cohorts when evaluated with the two-tailed Welch’s t-test (significance level
α = 0.05). This univariate analysis suggests little to no separability between the ASD and NT groups
based on these three measurements.

Table 2. Means and standard deviations of levels of three urine toxic metals in the ASD and NT cohorts
from the Comprehensive Nutritional and Dietary Intervention Study. Metal levels are in units of μg/g
of creatinine. Reported p-values were obtained from the two-tailed Welch’s t-test.

Measurement
ASD Mean ± SD NT Mean ± SD p-Value

n = 67 n = 50

Aluminum 9.03 ± 6.55 8.55 ± 11.15 n.s.
Cesium 4.03 ± 1.92 3.74 ± 1.75 n.s.

Tungsten 0.29 ± 0.25 0.29 ± 0.21 n.s.

Applying FDA to these data does not produce any substantial separation between cohorts
either (Figure 6). The PDFs resulting from leave-one-out cross-validation overlap almost entirely, with
the corresponding Type I error at 50% and Type II error also at 50%. Using a linear multivariate
approach thus does not offer any additional insights for classification. This is not unexpected,
as the results of the univariate analysis also showed minimal differences between the ASD and
NT measurements. However, there may be nonlinear relationships present that neither univariate nor
linear multivariate techniques can describe.

Figure 6. Results of classification using linear FDA with three urine toxic metal measurements
(aluminum, cesium, tungsten) as inputs. FDA scores were from leave-one-out cross-validation and the
PDFs were obtained by fitting to the scores. The Type I and Type II errors are both 50%.

Using nonlinear KFDA with these three urine toxic metal measurements improves the
classification significantly, as seen in Figure 7. The PDFs after leave-one-out cross-validation with
KFDA produce Type I and Type II errors of 29% and 28%, respectively. These results are notably
better than those obtained from the linear analysis, though still far from being usable as a diagnostic
tool. This inability to accurately classify the two cohorts highlights that KFDA will not detect strong
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differences between groups of data that are very similar, as is the case with the three urine toxic metal
measurements presented here. It is nevertheless important to note that the nonlinear approach was still
able to identify certain differences in the patterns in the data between groups that the linear analysis
missed. This example highlights that a univariate or a linear approach being unable to find differences
between two groups does not mean that differences may not exist. This is especially so for more
complex relationships between variables that may be present in biological networks.

Figure 7. Results of classification using nonlinear KFDA with three urine toxic metal measurements
(aluminum, cesium, tungsten) as inputs. KFDA scores were from leave-one-out cross-validation and
the PDFs were obtained by fitting to the scores. The corresponding Type I and Type II errors are 29%
and 28%, respectively.

4. Conclusions

Statistical analysis is an integral part of any clinical trial and is also critical for evaluating medical
laboratory test results. While the current state of practice in many areas of biomedical research
involving metabolic or signaling pathways is to use univariate statistical analysis to evaluate one
measurement at a time (across a cohort where this is applicable), this approach is sub-optimal when
the measured quantities are correlated in some form, as is the case when they are connected via
a biological network. This work included three case studies involving clinical data to demonstrate
that significant advantages can be gained from using multivariate statistical analysis on these types
of data. It is the opinion of the authors that multivariate analysis techniques should be more broadly
considered for measurements taken from biological networks.
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Abstract: Alzheimer’s disease (AD) is a major public health threat; however, despite decades of
research, the disease mechanisms are not completely understood, and there is a significant dearth
of predictive biomarkers. The availability of systems biology approaches has opened new avenues
for understanding disease mechanisms at a pathway level. However, to the best of our knowledge,
no prior study has characterized the nature of pathway crosstalks in AD, or examined their utility
as biomarkers for diagnosis or prognosis. In this paper, we build the first computational crosstalk
model of AD incorporating genetics, antecedent knowledge, and biomarkers from a national study to
create a generic pathway crosstalk reference map and to characterize the nature of genetic and protein
pathway crosstalks in mild cognitive impairment (MCI) subjects. We perform initial studies of the
utility of incorporating these crosstalks as biomarkers for assessing the risk of MCI progression to AD
dementia. Our analysis identified Single Nucleotide Polymorphism-enriched pathways representing
six of the seven Kyoto Encyclopedia of Genes and Genomes pathway categories. Integrating pathway
crosstalks as a predictor improved the accuracy by 11.7% compared to standard clinical parameters
and apolipoprotein E ε4 status alone. Our findings highlight the importance of moving beyond
discrete biomarkers to studying interactions among complex biological pathways.
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1. Introduction

It is common knowledge that the prognostics of diseases such as Alzheimer’s disease (AD) is
of national importance. AD alone affects about 10% of the population over 65 years old [1,2], and is
among the leading causes of death in patients over 75 years of age in the U.S. [3]. There is evidence
suggesting that the progression to AD dementia begins years before it is clinically determined and is
preceded by a phase of mild cognitive impairment (MCI), during which AD-related treatments are
likely to be more effective. Thus, it is important to discover the mechanisms underlying risk of AD
and to develop accurate biomarkers that reflect the complexity of the disease at an individual level.
Although a number of biomarkers are currently being evaluated for use to predict AD or study disease
progression (e.g., tau, p-tau181P, β-amyloid1-42, apolipoprotein E ε4 (APOE ε4), and microRNAs) [4–7],
none of these markers are yet fully validated or approved for predicting the risk of AD. Indeed,
AD is no longer seen as a disease of single discrete lesions, but as a perturbation of altered cortical
networks by pathological processes in interlinked pathways. Hence, the application of systems biology
methods to the discovery and characterization of novel biomarkers [8–20] has taken on greater promise
and urgency.

The cellular mechanisms underlying many neurological disorders are complex, with crosstalks
between multiple molecular pathways likely contributing to disease initiation and progression.
In living organisms, pathways are said to crosstalk if they are linked together to perform biological
functions as a system. Crosstalks can also be defined as interactions between signal transduction
pathways, and usually take the form of protein or transmembrane interactions. A number of
potential crosstalks have been noted in vitro in AD, such as those between amyloid and tau pathways,
oxidative phosphorylation, the p53 signaling pathway, and apoptosis [21–23]. Another example is
the reported crosstalk among MAPK, insulin, and calcium signaling pathways [24]. There is also
evidence of crosstalk among pathways involved in the regulation of glycolysis metabolism, pathways
involved in the regulation of the actin cytoskeleton, and apoptosis [24]. The latter crosstalk is also
associated with other neurodegenerative disorders, such as Huntington disease and amyotrophic lateral
sclerosis [24]. Furthermore, the cellular signaling pathways in AD have been reported, such as Wnt
signaling, 5′ adenosine monophosphate-activated protein kinase, mammalian target of rapamycin,
Sirtuin 1, and peroxisome proliferator-activated receptor gamma co-activator 1-α, and possible crosstalk
between these pathways has been discussed [25]. For a review of multiple interacting pathways
in neurodegenerative disease, see [26]. In clinical AD research studies of diagnosis or prognosis,
biomarkers are typically treated as discrete entities, in part because biological pathway crosstalks
between genes or proteins have not yet been fully characterized at a systems biology level in AD.

From the computational methodology standpoint, the study of pathway crosstalks is still in its
infancy. Existing methods predict crosstalks between known metabolic pathways using chemical
protein interaction networks [24,27–29]. However, these computational methods do not take advantage
of the different chemical evidence available, such as direct binding, the biochemical evidence,
such as phosphorylation, and the functional evidence, such as transcriptional regulation. Moreover,
the discovery, characterization, and utilization of pathway crosstalks as biomarkers for disease
prognosis has not been investigated.

Here, we use clinical, cognitive, and genetic data from a national cohort study, the Alzheimer’s
Disease Neuroimaging Initiative (ADNI-1), along with a systematic computational methodology to
discover and characterize biological pathway crosstalks in subjects with MCI. We further examine the
utility of these novel biomarkers to discriminate stable MCI from those who progress to AD dementia.
The first part of the methodology (Figure 1), focuses on utilizing several existing evidence, such as
chemical interaction, genetic interaction, domain interaction, and transcription factors, to identify
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potential pathway crosstalks. In the second part (Figure 2), Single Nucleotide Polymorphisms (SNPs)
are used to find patient-specific pathway crosstalks as biomarkers. In the third part, we build and test
initial prognostic models that use pathway crosstalks as biomarkers to predict patient progression
from MCI progression to AD dementia (see Results). To the best of our knowledge, this is the first such
systematic characterization of biological pathway crosstalk biomarkers associated with the risk of AD.

Figure 1. Identification of potential pathway crosstalks. The methodology has three steps:
(1) quantifying crosstalk likelihood using multiple individual evidence to score each pathway pair,
(2) obtaining a combined score using information fusion, and (3) building the crosstalk reference map.
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Figure 2. Identification of patient-specific pathway crosstalks. The methodology has three steps:
(1) mapping the Single Nucleotide Polymorphisms (SNPs) to genes and in turn to pathways using the
SNP and gene location information, (2) choosing a genetic model and calculating a patient-specific
SNP enrichment score for each pathway using the patient’s allele information, and (3) overlaying
the pathway enrichment scores on the reference crosstalk map to build patient-specific pathway
crosstalk maps.

2. Materials and Methods

Our methodology consists of the following steps: (A) identifying potential pathway crosstalks by
using existing gene and protein data (Figure 1), (B) identifying patient-specific pathway crosstalks via
SNP information (Figure 2), and (C) identifying significant pathway crosstalks as biomarkers for MCI
progression to AD dementia progression prediction.
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2.1. Identification of Potential Pathway Crosstalks

We quantify how likely it is that a pair of pathways will crosstalk based on biological datasets
that provide evidence for possible crosstalks (including chemical interaction, genetic interaction,
and transcription factors). To have a more robust pathway crosstalk map, we incorporate a wide
array of evidence. The scores from each of these evidence are then combined to build one generic
pathway crosstalk reference map analogous to the “Kyoto Encyclopedia of Genes and Genomes”
(KEGG) pathway reference map.

The likelihood of a pathway pair crosstalking can be scored by utilizing one of two different
methods. The first method is based on the presence of common elements, such as kinases and enzymes.
The second method is based on the presence of interacting elements, such as chemically interacting
proteins. In the following sections, we will discuss the different evidence used and their corresponding
scoring methods.

2.1.1. Scoring Pathway Crosstalks Based on Common Elements

The pathway pairs were scored for how likely they are to crosstalk based on common elements
from each of the following evidence:

• Shared enzymes and metabolites: The number of enzymes and metabolites shared by a pair
of pathways is utilized as one of the evidence to identify potential pathway crosstalks. This is
reasonable because a variation in the concentration of common enzymes or metabolites will affect
both pathways.

• Phosphorylation: Phosphorylation, performed by protein kinases, is the addition of a phosphate
group to a protein, which results in a change of the protein’s function. Co-phosphorylated proteins
in different pathways suggest potential pathway crosstalks.

• Transcriptional regulation: Genes with common transcription factors are likely coexpressed.
Coexpressed genes in different pathways provide an avenue for the pathways to crosstalk.
For each pathway pair, we find the group of transcription factors that have coexpressed genes in
both pathways.

For each pair of pathways, Pi and Pj, we define the scoring function as Equation (1):

Overlapscore
(

Pi, Pj
)
=

∣∣Y(Pi) ∩ Y
(

Pj
)∣∣

min
(|Y(Pi)|,

∣∣Y(Pj
)∣∣) , (1)

where Y(Pi) is the set of proteins (enzymes, metabolites, transcription factors, kinases) associated with
pathway Pi.

2.1.2. Scoring Pathway Crosstalks Based on Interacting Elements

The pathway pairs were scored for how likely they are to crosstalk based on interacting elements
from each of the following evidence:

• Chemical interactions: Protein interactions have previously been used to identify pathway
crosstalks [24,30]. Chemical interaction between proteins belonging to different pathways
provides a mechanism for pathways to crosstalk.

• Genetic interactions: The use of genetic interactions for identifying pathway crosstalks stems from
the concept of “between-pathway” interactions. This essentially states that if there is a genetic
interaction between pathways, one pathway covers for the defects in the other pathway.

• Protein domain: Protein function is closely related to fundamental units of protein structure called
“domains”. In the domain interaction network, a pair of proteins has an edge if they are associated
with the same set of protein domains. These edges are taken into consideration to assess for
potential pathway crosstalks because of the common domains.
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• Synthetically lethal gene pairs: Gene pairs whose simultaneous low- or non-expression can cause
the organism to die are called synthetically lethal pairs [31,32]. The presence of synthetically lethal
pairs of genes across two pathways is a possible sign of pathway crosstalks.

For each pair of pathways, Pi and Pj, we define the scoring function as Equation (2):

Interactionscore
(

Pi, Pj
)
=

Ninter
(

Pi, Pj
)

|Y(Pi)| ∗
∣∣Y(Pj

)∣∣ , (2)

where Ninter
(

Pi, Pj
)

is the number of interactions (genetic, chemical, domain, synthetically lethal) that
exist among the proteins associated with pathway Pi and the proteins associated with pathway Pj.

2.1.3. Significance Estimation of Pathway Crosstalk Scores

Estimating p-values using Monte Carlo methods [33] is a robust technique for statistical
significance assessments. This technique was utilized to assess the significance of the scores obtained
for the pathway crosstalks using different evidence, as follows:

1. For each pair of pathways, a score for how likely they are to crosstalk is calculated based on
each evidence.

2. Each pathway is randomized by replacing all proteins in that pathway with randomly selected
proteins from the set of all proteins in the organism. This pathway randomization step is repeated
W = 1000 times, i.e., we obtain W sets of pathways with randomized proteins.

3. The evidence-specific scores for each pathway pair are recalculated W times using each set of
pathways with randomized proteins.

4. An evidence-specific p-value is estimated for each pathway pair as R/W, where R is the number
of randomized versions of that pathway pair that produce an evidence-specific score greater than
or equal to the score obtained for the original pathway pair.

2.1.4. Combining the Scores for Each Pathway Crosstalk

For each pathway pair, we combine the evidence-specific p-values obtained using Monte Carlo
methods. This gives a combined estimation for crosstalk likelihood between the pathway pair.
To combine the p-values, we use the QFAST information fusion methodology proposed by Bailey
and Gribskov [34], which is based on a theorem by Feller [35]. The QFAST methodology uses the
product of the individual p-values as a test statistic to calculate the combined p-value; using the product
of p-values as a test statistic has been shown to be a desirable method for information fusion [34].
One issue to consider is that some pathway pairs may not be scored by some of the evidence due to
missing data. For those cases, we assign a p-value of 1 to denote that the particular evidence offers no
information about those pathways crosstalking. The QFAST formula to calculate the combined p-value
is Equation (3): (

n

∏
i=1

pi

)
n−1

∑
i=0

− ln(∏n
i=1 pi)

i!
, (3)

where Pi is the p-value obtained for evidence i, and n is the number of evidence.
A generic pathway crosstalk reference map is then built as a network, where the nodes represent

pathways and the edges represent a statistically significant combined p-value for crosstalk likelihood
between a pathway pair (at a significance level of α = 0.01).

2.2. Identification of Patient-Specific Pathway Crosstalks

To determine which of the pathway crosstalks in the generic reference map may be utilized as
a biomarker for MCI progression to AD dementia progression, we identify patient-specific pathway
crosstalks. For this purpose, we make use of SNP data. SNPs are variations in the deoxyribonucleic
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acid (DNA) sequence at particular locations, which can influence phenotypes such as proneness to
disease or reaction to drugs. Initiatives such as the ADNI collect patient-specific SNP information.
We utilize this information to identify patient-specific pathway crosstalks via the following four steps
(Figure 2):

1. Obtain a mapping of SNPs to pathways using genetic information.
2. Identify the list of SNPs that are present in a patient.
3. Use the mapping obtained in Step 1 and the patient-specific SNP list in Step 2 to obtain the

pathways that are “SNP-enriched” in the patient.
4. Use the “SNP-enriched” pathways from Step 3 to obtain patient-specific pathway crosstalks.

2.2.1. Obtain a Mapping of SNPs to Pathways

Every SNP is assigned a chromosome number and a location on the genome, which can be used
to map SNPs to genes, and, in turn, SNPs to pathways. Starting with a list of all genes that map to at
least one pathway, we assign an SNP to a gene if it is present within 10 kilo base pairs (kbp) distance
upstream or downstream of that gene. This method has been previously used by Silver et al. [36,37].
Note that since SNPs are mapped to all genes within a range of 10 kbp, the same SNP may be mapped
to more than one gene. The set of SNPs assigned to a pathway is the union of all SNPs assigned to the
genes of that pathway.

2.2.2. Identify Patient-Specific SNPs That Are Present

For each patient, we identify a list of SNPs that are present based on the homozygous minor
(recessive) genetic model. This genetic model requires a minor allele count of 2 for an SNP to be
considered present, i.e., the minor allele is inherited from both parents.

2.2.3. Identify Patient-Specific SNP-Enriched Pathways

Given the set of SNPs assigned to a pathway, SNPpathway, the set of SNPs that are present in
a patient, SNPpatient, and the set of SNPs of interest, SNPinterest, we define an enrichment score for this
pathway and patient as Equation (4):

Enrichment(patient, pathway) =

∣∣∣SNPpatient ∩ SNPpathway ∩ SNPinterest

∣∣∣
|SNPinterest| , (4)

where SNPinterest is the set of all SNPs found on the human genome or a set of relevant SNPs from the
scientific literature.

A p-value for the enrichment score is calculated using Monte Carlo methods, as discussed
previously. The “SNP-enriched” pathways for each patient are then defined as the pathways with
a statistically significant p-value for that patient (at a significance level of α = 0.05).

2.2.4. Identify Patient-Specific Pathway Crosstalks

Given the SNP-enriched pathways for each patient, we build patient-specific pathway crosstalk
maps from the generic pathway crosstalk reference map, analogous to building organism-specific
pathway maps from the KEGG pathway reference map. A pathway crosstalk, i.e., an edge in the
patient-specific reference map, is present if both pathways are SNP-enriched for that patient.

2.3. Identification of Biased Pathway Crosstalk

The pathways and patient-specific pathway crosstalks that are biased towards MCI progressive
patients or MCI non-progressive patients (at a significance level of α = 0.01) are incorporated as features
into the model to predict MCI progression to AD dementia progression. The bias of an active pathway
crosstalk towards MCI progressive patients is quantified using the hypergeometric test (Equation (5)):
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φ(n, x, v, w) = ∑x
i=w

(
x
i

)(
n − x
v − i

)
(

n
v

) , (5)

where

• Population: n is the total number of patients.
• Success in population: x is the total number of MCI progressive patients and y is the number of

MCI non-progressive patients.
• Sample: v is the total number of patients (both MCI progressive and MCI non-progressive patients)

a pathway crosstalk is enriched in.
• Success in sample: w is the number of MCI progressive patients and z is the number of MCI

non-progressive patients the pathway crosstalk is enriched in.

Similarly, the bias of an active pathway crosstalk towards MCI non-progressive patients can be
calculated via φ(n, y, v, z).

2.4. Datasets

In this study, we utilize cellular subsystems that model biological pathways. Henceforth, we will
refer to a cellular subsystem as a pathway. To create a potential pathway crosstalk reference map,
we used cellular pathway data from the KEGG database [38–40]. We obtained evidence for human
chemical interaction, genetic interaction, and synthetic lethal gene pairs from BioGRID [41], domain
interaction from GeneMania [42], transcription factors from the FANTOM database [43,44], and protein
phosphorylation [45]. We obtained SNPs associated with genes that were manually curated to
be associated with AD from the Comparative Toxicogenomics Database [46], and we obtained a
compilation of genes from the literature that have been identified as likely risk factors of AD from
SNPedia [47]. This information was utilized as our biologically meaningful knowledge priors. Some of
the genes associated with Alzheimer’s that were used in this study can be found in Table 1.

Table 1. Some of the genes associated with Alzheimer’s disease (AD) that were used in this study.

Gene Evidence

APP amyloid beta (A4)
precursor protein

Mutations in this gene have been implicated in autosomal dominant AD
and cerebroarterial amyloidosis (NCBI Entrez Gene)

IL-1β

Four new genetic studies underscore the relevance of IL-1 to
Alzheimer’s pathogenesis, showing that homozygosity of a specific
polymorphism in the IL-1α gene at least triples Alzheimer’s risk,
especially for an earlier age of onset and in combination with
homozygosity for another polymorphism in the IL-1β gene [48]

SOD2 A polymorphism in SOD2 is associated with development of AD [49]

NOS3 NOS3 may be a new genetic risk factor of late onset AD [50]

The data used in the preparation of this manuscript were obtained from the ADNI [51] database.
The ADNI was launched in 2003 as a public–private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of the ADNI has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can be combined to measure the progression
of MCI and early AD.

For our predictive study, we utilized the dataset from an earlier study by Shaffer et al. [52]
based on ADNI-1. That particular study identified 97 MCI patients and predicted progression to
AD dementia based on their clinical parameters, MRI results, PET scans, cerebrospinal fluid (CSF)

153



Processes 2017, 5, 47

markers (tau, p-tau181P, and β-amyloid1-42), the APOE ε4 genotype, and results from at least one
follow-up clinical examination. Out of the 97 patients from the earlier study, only 91 patients have
corresponding SNP data in the ADNI database. Hence, for the current study, we only utilized these
91 patients. However, this reduction in the number of patients did not considerably affect the ratio of
MCI progressive patients to MCI non-progressive patients. The original study had 43 MCI progressive
patients and 54 MCI non-progressive patients, and the reduced dataset has 41 MCI progressive patients
and 50 MCI non-progressive patients. Thus, there is still sufficient representation of the two classes
of patients.

3. Results/Discussion

3.1. Sample Characteristics

The mean age for all 91 MCI patients was 74.96 ± 7.32 years (mean ± standard deviation).
The male-to-female ratio was 2.37, and 96.7% of subjects were white. A total of 36.26% of subjects had a
family history of AD, and 54.94% had a positive finding for the APOE ε4 genotype. The mean follow-up
duration for all of the subjects was 31.6 ± 10.6 months. Of these, 41 progressed to AD during follow-up
(MCI progressive patients) and 50 did not (MCI non-progressive patients), with MCI progressive
patients tending to have longer follow-up times by about 4.5 months. Statistically, MCI progressive
patients did not differ from MCI non-progressive patients in mean age, sex ratio, education, race,
ethnicity, family history of AD, or APOE ε4 prevalence. See Table 2 for details.

Table 2. Baseline Characteristics of mild cognitive impairment (MCI) Study Sample.

Subjects with MCI (n = 91)
MCI Progressive
Patients (n = 41)

MCI Non-Progressive
Patients (n = 50)

p-Value 1

Age (years) 75.17 ± 7.30 74.78 ± 7.44 0.8011
Male-to-female-ratio 2,3 2.42 (29/12) 2.33 (35/15) 0.9394
Family history of AD 2,3 36.39 (15/41) 36.00 (18/50) 0.9539
APOE ε4 carriers, % 2,3 60.98 (25/41) 50.00 (25/50) 0.4036

Average follow-up time (months) 34.10 ± 9.70 29.64 ± 10.94 0.0426
1 Data in parentheses are number of participants. 2 p-values obtained using χ2-tests. 3 Use of χ2- or t-test to compare
difference between MCI progressive patients and MCI non-progressive patients. Unless otherwise indicated,
the data is written as mean ± standard deviation and p-values were calculated using a t-test.

3.2. SNP-Enriched Pathways and Associated Crosstalks

Our analysis identified SNP-enriched pathways that represent six of the seven KEGG pathway
categories, including Cellular Processes, Metabolism, Environmental Information Processing, Genetic
Information Processing, Human Diseases, and Organismal Systems. This broad array of pathway
categories represents the complex nature of AD pathogenesis, which has been attributed to
many different biological mechanisms, ranging from amyloid toxicity to metabolic dysfunction to
immune dysregulation. Figure 3 depicts the distribution of SNP-enriched pathways amongst the
six KEGG categories. The majority of enriched pathways are classified under Human Diseases (31%).
This supports the well-established relationships between AD and multiple other cardiovascular,
autoimmune, and neurodegenerative diseases. For instance, diabetes, obesity, and heart diseases are
well-established risk factors of AD, so much so that AD has been referred to as type 3 diabetes. As such,
finding SNP-enriched pathways for cardiovascular, endocrine, and metabolic diseases in individuals
with MCI is anticipated [53].

Similarly, the enrichment of metabolic pathways, organismal systems including nervous and
immune system pathways, and common signaling pathways of the environmental information
processing category is also expected and well-supported in the literature [54–68]. Interestingly,
several genetic information processing pathways, including cell cycle regulation and DNA replication
and repair, were found to be enriched. Evidence for the roles of these pathways in AD has only
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recently begun to surface [69–71]. Our findings of the SNP-enrichment of these pathways among MCI
individuals may provide support for further investigations into such pathways.

SNP-enriched pathway crosstalks were discovered between six KEGG categories, with the greatest
number of crosstalks occurring between Human Diseases and Organismal systems. It is difficult to
stipulate the significance of these findings. However, given that the etiology of many diseases,
including AD, is complex and likely involves the failure/dysregulation of many pathways that are
involved in the normal functioning of multiple organ systems, such significant crosstalk between these
two categories among MCI individuals is not unexpected. The ageing process itself may facilitate a
greater number of crosstalks in many pathways, since aging is associated with degeneration in many
tissues and raises the risk for other chronic diseases besides dementia.

Figure 3. The distribution of the types of SNP-enriched pathways identified in this study and
a comparison to the pathway distribution of the Kyoto Encyclopedia of Genes and Genomes (KEGG).
NOTE: Although there are seven KEGG pathway categories, here we only show the six KEGG pathway
categories that included identified SNP-enriched pathways in this study.

To investigate the genetic load in regards to AD, we further examined enriched pathway crosstalks
specifically relating to the KEGG AD pathway. We identified 97 AD-related crosstalks and grouped
the participating pathways by KEGG category (Figure 4).
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Figure 4. Pathways found to have significant crosstalk with the AD pathway and corresponding KEGG
categories (shown in colored blocks). Specific KEGG pathway types are listed below each category with
the number of occurrences in parentheses. NOTE: Although there are seven KEGG pathway categories,
here we only show the six KEGG pathway categories that included identified SNP-enriched pathways
in this study.
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In line with the overall findings of crosstalk enrichment, the AD-specific pathway crosstalks
primarily fell between the categories Human Diseases and Organismal Systems, supporting the
importance of the pathways within these categories in AD genetic load. In contrast, pathways of
Metabolism and Genetic Information Processing had very few crosstalks, suggesting that genetic
load in these processes is not as important to the disease process, at least in this particular cohort.
Similar findings were seen in the analysis of all pathway crosstalks. Focusing in on the AD pathway,
we observe significant crosstalk in between all pathway categories supporting the complex etiology of
this disease.

3.3. SNP-Enriched Features with Baseline Clinical Parameters

We predicted MCI progression to AD dementia progression using a support vector machine
(SVM) with a linear kernel function with baseline clinical parameters (age, education, and Alzheimer’s
disease assessment scale-cognitive subscale (ADAS-Cog)), significant pathways, or significant pathway
crosstalks as predictors. The results for 100 iterations of 10-fold cross-validation are shown in Table 3.
The model built with the clinical parameters only produced an accuracy of 59.19 ± 2.46% with
83.64 ± 0.29% of training data points as support vectors. The model built with significant pathways
alone produced an accuracy of 56.78 ± 3.5% with 68.36 ± 3.5% support vectors. Typically, we expect
a random guessing model to yield an accuracy of 50%; thus, both models only perform moderately
above a random model.

Table 3. Performance of support vector machine (SVM) models with baseline clinical parameters.

Metrics

Baseline
Clinical: Age,

Education,
ADAS-Cog

Significant
Pathways

(Only)

Significant
Pathway

Crosstalks
(Only)

Baseline
Clinical +

Significant
Pathways

Baseline
Clinical +

Significant
Pathway

Crosstalks

Accuracy in % 59.19 ± 2.46 56.78 ± 3.5 60.97 ± 3.24 64.57 ± 3.56 70.9 ± 3.3
Support Vectors in % 83.64 ± 0.29 68.36 ± 2.1 50.83 ± 4.77 63.3 ± 1.15 54.29 ± 0.56

True Positives 30.78 ± 1.7 31.21 ± 4.7 40.9 ± 3.1 33.64 ± 2.4 37.93 ± 2.16
False Negatives 19.22 ± 1.7 18.79 ± 4.7 9.06 ± 3.13 16.36 ± 2.4 12.07 ± 2.16
False Positives 17.9 ± 1.6 20.51 ± 3.09 26.46 ± 4.17 15.9 ± 2.03 14.41 ± 1.6
True Negatives 23.08 ± 1.55 20.49 ± 3.09 14.54 ± 4.17 25.11 ± 2.03 26.59 ± 1.6

Sensitivity 0.62 ± 0.03 0.62 ± 0.09 0.82 ± 0.06 0.67 ± 0.05 0.76 ± 0.04
Specificity 0.56 ± 0.04 0.51 ± 0.07 0.35 ± 0.11 0.61 ± 0.05 0.65 ± 0.04
Precision 0.62 ± 0.03 0.60 ± 0.09 0.61 ± 0.03 0.68 ± 0.03 0.74 ± 0.03

ADAS-Cog, Alzheimer’s disease assessment scale-cognitive subscale.

A high percentage of support vectors indicate that an SVM model is overfitted and unlikely to
generalize well. Thus, if we have two models that produce the same accuracy, then we pick the model
that has the lower percentage of support vectors. Sixty-eight percent (68%) or more of the training
data points were used as support vectors and this indicates highly overfitted models, which is shown
by the poor cross-validation accuracy.

Incorporating both the baseline clinical parameters and significant pathways as predictors
produced a model with an accuracy of 64.57 ± 3.56% with 63.3 ± 1.15% support vectors. This combined
model demonstrated a 5.38% increase in accuracy compared to the baseline clinical parameters model
and a 7.79% increase in accuracy compared to the model using significant pathways alone. Additionally,
the reduced support vector percentage of this combined model indicates a better generalizability
than the baseline clinical parameters model (20.34% decrease in support vectors) and the significant
pathways model (5.04% decrease in support vectors).

With our novel approach of using significant pathway crosstalks to predict AD progression,
our model provides an accuracy of 60.97 ± 3.24, which is higher than using baseline clinical
parameters or significant pathways alone. Furthermore, this crosstalks model has the lower support
vector percentage of 50.83 ± 4.77%, and thus the greatest generalizability of all of the models.
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The enhancement of the significant pathway crosstalks model with the inclusion of baseline clinical
parameters produced a model that has the greatest accuracy of 70.9 ± 3.3% with a moderate support
vectors percentage of 54.29 ± 0.56%. These initial results support the utility of using pathway crosstalks
as significant predictors in the progression from MCI progression to AD dementia and warrant
replication in larger samples followed for longer periods.

3.4. Comparison of Model Performances from Shaffer et al. (2013) with Our Model Performance including
SNP-Enriched Features

We compared models built using the clinical parameters and the SNP-enriched features (significant
pathways or significant pathway crosstalks) to a logistic regression model with only clinical parameters
by Shaffer et al. [52] (Table 4). We also noticed that the average accuracy of the logistic regression
model slightly increased (from 58.7% to 59.10 ± 1.71%) when we repeatedly created random 10-folds
instead of using the 10 original folds from Shaffer et al. [52]. It decreased (to 57.04 ± 2%) when we
removed the six patients that did not have corresponding SNP data in the ADNI database. Our method,
when incorporating either significant pathways or significant pathway crosstalks, had a higher average
accuracy on 100 randomly generated 10-folds than the method by Shaffer et al. [52]. Impressively,
the combination of the baseline clinical parameters, APOE ε4, and significant pathway crosstalks
in our logistic regression model yielded an accuracy of 72.1 ± 2.66. Also, a similar accuracy was
obtained using a linear kernel SVM built on the SNP-enriched features. This indicates that the
pathways and pathway crosstalks indeed lead to a better rate of prediction from MCI progression to
AD dementia progression.

Table 4. Performance of Shaffer et al. [52] model with clinical parameters with 97 patients in comparison
to our model with 97 and 91 patients.

Model Logistic Regression SVM with Linear Kernel

No. Patient 97 Patients 91 Patients 91 Patients

Metrics

original 10-fold
cross-validation:

Baseline Clinical +
APOE ε4 Shaffer
et al. paper [52]

100 Iterations of
Random 10-fold
cross-validation:

Baseline Clinical +
APOE ε4

100 Iterations of
Random 10-fold
cross-validation:

Baseline Clinical +
APOE ε4

100 Iterations of
Random 10-fold
cross-validation:

Baseline Clinical +
APOE ε4 +
significant
pathway
crosstalks

100 Iterations of
Random 10-fold
cross-validation:

Baseline Clinical +
APOE ε4 +
significant
pathway

100 Iterations of
Random 10-fold
cross-validation:

Baseline Clinical +
APOE ε4 +
significant
pathway
crosstalks

Accuracy in % 58.7 59.10 ± 1.71 57.04 ± 2 72.1 ± 2.66 63.56 ± 3.4 69.53 ± 2.9

Support Vectors
in % N/A N/A N/A N/A 63.29 ± 1.16 53.65 ± 0.6

True Positives 17 39.98 ± 1.21 16.48 ± 1.16 39.22 ± 2.08 33.74 ± 2.4 37.6 ± 1.9

False Negatives 26 14.02 ± 1.21 24.43 ± 1.3 10.78 ± 2.08 16.3 ± 2.35 12.44 ± 1.9

False Positives 14 25.65 ± 1.23 14.67 ± 1.58 14.61 ± 1.3 16.91 ± 2 15.29 ± 1.5

True Negatives 40 17.35 ± 1.23 35.52 ± 1.53 26.39 ± 1.3 24.09 ± 2 25.71 ± 1.5

Sensitivity 0.40 0.74 ± 0.02 0.41 ± 0.05 0.78 ± 0.04 0.68 ± 0.05 0.75 ± 0.04

Specificity 0.74 0.40 ± 0.03 0.72 ± 0.03 0.64 ± 0.03 0.59 ± 0.05 0.63 ± 0.04

Precision 0.46 0.61 ± 0.02 0.54 ± 0.06 0.75 ± 0.03 0.68 ± 0.04 0.73 ± 0.03

3.5. Randomized SNP-Enriched Features

To demonstrate that the pathway crosstalks found in this study have true predictive power and
the results are not a random occurrence, we generated 25 random samples of pathway crosstalks with
no prior association to Alzheimer’s and performed 100 iterations of 10-fold cross-validation for each of
these 25 samples. The results are shown in Table 5.
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Table 5. Performance of models with randomized pathway cross-talk features.

Metrics
Baseline Clinical + Randomized
Significant Pathway Crosstalks

Baseline Clinical + Significant
Pathway Crosstalks

Accuracy in % 59.27 ± 3.66 70.9 ± 3.3
Support Vectors in % 83.47 ± 1.84 54.29 ± 0.56

True Positives 30.86 ± 1.98 37.93 ± 2.16
False Negatives 19.14 ± 1.97 12.07 ± 2.16
False Positives 17.95 ± 1.59 14.41 ± 1.6
True Negatives 23.05 ± 1.56 26.59 ± 1.6

Sensitivity 0.62 ± 0.97 0.76 ± 0.04
Specificity 0.56 ± 1.45 0.65 ± 0.04
Precision 0.63 ± 0.02 0.74 ± 0.03

The model with the baseline clinical parameters and randomized significant pathway crosstalks
gave an accuracy of 59.27 ± 3.66 with 83.47 ± 1.84 support vectors. This model yields 12% less
accuracy and a 29.1% increase in support vectors, in comparison to the original model that uses baseline
parameters and significant pathway crosstalks (instead of randomized significant pathway crosstalks).
As expected, our randomly generated pathway crosstalks shows worse performance than significant
pathway crosstalks. The model accuracy is still moderately above a random guessing model, likely due
to the presence of the clinical parameters. A similar trend was seen when investigating models with
baseline clinical parameters and all AD biomarkers to determine the effects of randomized pathways.

In this work, we focus on the development of a novel computational methodology for the
discovery of pathway crosstalks to be used as biomarkers for the prognosis of AD. To demonstrate the
efficacy of our methodology, we compared it with methods and results from prior studies in this area,
which used ADNI-1 data. Although there is more recent data available, ADNI-1 data was used so that
we could benchmark our methodology against these prior studies. In future work, we will continue our
characterization efforts by incorporating the newer ADNI datasets as well as increasing the sensitivity
of the proposed methodology through the use of the additive genetic model for the identification of
patient-specific SNPs. There are also some limitations to our study. The ADNI is not a population-based
study; it is essentially a biomarker cohort at research sites and our sample size was relatively small:
we relied on a sample that was previously studied, since our initial goal was to examine the additive
value of crosstalk biomarkers. We also did not incorporate other biomarkers such as tau, p-tau181P,
β-amyloid1-42, APOE ε4, and microRNAs at this time, since our main focus was on methodological
development for discovering and characterizing pathway crosstalks. However, the ADNI results have
formed the basis for many current clinical prevention drug trials, and hence the ADNI is a highly
relevant dataset. Moreover, its careful selection criteria and the way it makes available rich biomarker
and genetic data and longitudinal cognitive data are enormous strengths. Indeed, the study of pathway
crosstalks may yield novel insights into how AD pathological (e.g., beta-amyloid, tau) and neuronal
loss (e.g., apoptosis, atrophy) mechanisms interact, and our methods lay the foundation for such
future work.

The generic pathway crosstalk reference map was built using several different datasets, and hence
the question arises as to whether all datasets should be treated equally. For simplicity, in this study,
we treated all datasets equivalently. However, a modification to our information fusion method
would allow us to introduce parameters to weigh evidence differently based on expert knowledge
or trustworthiness. In the future, we would like to perform additional experiments to see the effects
of these parameters on disease AD prognosis. This is non-trivial, as we would first need to define a
weighting scheme and then develop additional methods to gauge the weights for different evidence.

4. Conclusions

AD is a major public health challenge, and there remain substantial gaps in our knowledge of
its biology and treatment targets. Fully characterizing AD at a systems biology level is a priority
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for these reasons. In this work, we demonstrate a new methodology to build a pathway crosstalk
reference map using the combined power of several gene and protein knowledge antecedents, and
use this to make AD-specific discovery pathway crosstalks by enrichment with patient-specific SNP
information. Our pilot data documents the promise of utilizing those SNP-enriched pathway crosstalks
to identify potential AD-linked mechanisms at a systems level. More specifically, we demonstrate
a three-step methodology to build a generic pathway crosstalk reference map by combining several
protein/gene evidence. We then used the identified pathway crosstalks from this map as potential AD
biomarkers by enriching them with patient-specific SNP information. In an initial sample of at risk
subjects, we found that utilizing SNP-enriched pathway crosstalks as additional features significantly
improved the prediction accuracy of MCI progression to AD dementia progression.

In addition, we verified some previously identified pathways and identified some new pathway
crosstalks that warrant further study. Furthermore, we built the prediction model including the
identified pathways and crosstalks, and compared our model’s outputs with a previous study.
These prediction model comparison analyses show that the identified pathways and crosstalks can be
used as significant biomarkers of MCI progression to AD dementia progression prediction with other
clinical information. Additional analysis would be required to understand the biological mechanisms
that explain the association of these pathways to AD.

In summary, this is the first report to our knowledge that characterizes biological crosstalk
pathways in subjects at risk of AD using gene and protein knowledge antecedents and studies their
potential utility as prognostic biomarkers. Further application of this methodology to the full ADNI-1
and ADNI-2 cohort as well as to other population studies is warranted, and may yield further insights
into disease mechanisms as well as novel targets for biomarker development and drug discovery.
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