1,707 research outputs found

    A UNIFIED ENERGY APPROACH FOR B-SPLINE SNAKE IN MEDICAL IMAGE SEGMENTATION

    Get PDF
     The parametric snake is one of the preferred approaches in feature extraction from images because of their simplicity and efficiency. However the method has also limitations. In this paper an explicit snake that represented using BSpline applied for image segmentation is considered. In this paper, we identify some of these problems and propose efficient solutions to get around them. The proposed method is inspired by classical snake from Kass with some adaption for parametric curve. The paper also proposes new definitions of energy terms in the model to bring the snake performance more robust and efficient for image segmentation. This energy term unify the edge based and region based energy derived from the image data. The main objective of developed work is to develop an automatic method to segment the anatomical organs from medical images which is very hard and tedious to be performed manually. After this segmentation, the anatomical object can be further measured and analyzed to diagnose the anomaly in that organ. The results have shown that the proposed method has been proven qualitatively successful in segmenting different types of medical images.

    A review of algorithms for medical image segmentation and their applications to the female pelvic cavity

    Get PDF
    This paper aims to make a review on the current segmentation algorithms used for medical images. Algorithms are classified according to their principal methodologies, namely the ones based on thresholds, the ones based on clustering techniques and the ones based on deformable models. The last type is focused on due to the intensive investigations into the deformable models that have been done in the last few decades. Typical algorithms of each type are discussed and the main ideas, application fields, advantages and disadvantages of each type are summarised. Experiments that apply these algorithms to segment the organs and tissues of the female pelvic cavity are presented to further illustrate their distinct characteristics. In the end, the main guidelines that should be considered for designing the segmentation algorithms of the pelvic cavity are proposed

    Fully Deformable 3D Digital Partition Model with Topological Control

    Get PDF
    International audienceWe propose a purely discrete deformable partition model for segmenting 3D images. Its main ability is to maintain the topology of the partition during the minimization process. To do so, our main contribution is a new definition of multi-label simple points (ML simple point) that is easily computable. An ML simple point can be relabeled without modifying the overall topology of the partition. The definition is based on intervoxel properties, and uses the notion of collapse on cubical complexes. This work is an extension of a former restricted definition [DupasAl09] that prohibits the move of intersections of boundary surfaces. A deformation process is carried out with a greedy energy minimization algorithm. A discrete area estimator is used to approach at best standard regularizers classically used in continuous energy minimizing methods. We illustrate the potential of our approach with the segmentation of 3D medical images with known expected topology

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches
    • …
    corecore