71,382 research outputs found

    Corrigendum on Wiener index, Zagreb Indices and Harary index of Eulerian graphs

    Full text link
    In the original article ``Wiener index of Eulerian graphs'' [Discrete Applied Mathematics Volume 162, 10 January 2014, Pages 247-250], the authors state that the Wiener index (total distance) of an Eulerian graph is maximized by the cycle. We explain that the initial proof contains a flaw and note that it is a corollary of a result by Plesn\'ik, since an Eulerian graph is 22-edge-connected. The same incorrect proof is used in two referencing papers, ``Zagreb Indices and Multiplicative Zagreb Indices of Eulerian Graphs'' [Bull. Malays. Math. Sci. Soc. (2019) 42:67-78] and ``Harary index of Eulerian graphs'' [J. Math. Chem., 59(5):1378-1394, 2021]. We give proofs of the main results of those papers and the 22-edge-connected analogues.Comment: 5 Pages, 1 Figure Corrigendum of 3 papers, whose titles are combine

    Numerical homotopies to compute generic points on positive dimensional algebraic sets

    Get PDF
    Many applications modeled by polynomial systems have positive dimensional solution components (e.g., the path synthesis problems for four-bar mechanisms) that are challenging to compute numerically by homotopy continuation methods. A procedure of A. Sommese and C. Wampler consists in slicing the components with linear subspaces in general position to obtain generic points of the components as the isolated solutions of an auxiliary system. Since this requires the solution of a number of larger overdetermined systems, the procedure is computationally expensive and also wasteful because many solution paths diverge. In this article an embedding of the original polynomial system is presented, which leads to a sequence of homotopies, with solution paths leading to generic points of all components as the isolated solutions of an auxiliary system. The new procedure significantly reduces the number of paths to solutions that need to be followed. This approach has been implemented and applied to various polynomial systems, such as the cyclic n-roots problem

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs
    • …
    corecore