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Many applications modeled by polynomial systems have positive dimensional
solution components (e.g., the path synthesis problems for four-bar mechanisms)
that are challenging to compute numerically by homotopy continuation methods. A
procedure of A. Sommese and C. Wampler consists in slicing the components with
linear subspaces in general position to obtain generic points of the components as
the isolated solutions of an auxiliary system. Since this requires the solution of a
number of larger overdetermined systems, the procedure is computationally expen-
sive and also wasteful because many solution paths diverge. In this article an
embedding of the original polynomial system is presented, which leads to a
sequence of homotopies, with solution paths leading to generic points of all com-
ponents as the isolated solutions of an auxiliary system. The new procedure
significantly reduces the number of paths to solutions that need to be followed. This
approach has been implemented and applied to various polynomial systems, such
as the cyclic n-roots problem. � 2000 Academic Press
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1. INTRODUCTION

Let

f1(x1 , ..., xn)

f (x) :=_ b & (1)

fN(x1 , ..., xn)

denote a system of N polynomials on Cn. Positive dimensional components
of the solution set of f (x)=0 are a common occurrence, even when N=n.
Sometimes they are an unpleasant side show that happens with a system
generated using a model, for which only the isolated nonsingular solutions
are of interest; and sometimes, the positive dimensional solution com-
ponents are of primary interest. In either case, dealing with positive dimen-
sional components, is usually computationally difficult. In [54], Sommese
and Wampler presented a numerical algorithm, which uses auxiliary
systems to numerically find sets of solutions of the original system. These
sets of solutions, which let one numerically decide the dimension of the
zero set of the original system, include at least the isolated solutions of the
original system, plus ``generic points'' of each positive dimensional
irreducible component of the solutions of the original solutions. Generic
points are the basic numerical data which we are using to investigate the
positive dimensional solution components.

The algorithm from [54], which is based on slicing with general linear
spaces of different dimensions, leads to n auxiliary systems, which must be
dealt with. In this paper we present an embedding of the system f (x)=0
into a family of systems of polynomials depending on 2n variables
(x, z) # C2n, and a large space of parameters. We then single out n+1 of
the systems, Ei (x, z) for i from n to 0 (here E0(x, z)=0 is equivalent to the
system f (x)=0) obtained by choosing particular values of the parameters,
plus a homotopy Hi going from Ei to Ei&1 . For simplicity we assume that
f is not identically zero. The system En=0 has isolated nonsingular solu-
tions. We use polynomial continuation [1, 2, 37, 43] to implement the
following algorithm
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Algorithm 1. Cascade of homotopies between embedded systems.

Input: f, n. system with solution in Cn

Output: (Ei , Xi , Zi)
n
i=0 . embeddings with solutions

E0 :=f; initialize embedding sequence
for i from 1 up to n do slice and embed

Ei :=Embed(Ei&1 , zi); zi=new added variable
end for; homotopy sequence starts
Zn :=Solve(En); all roots are isolated, nonsingular, with zn {0
for i from n&1 down to 0 do countdown of dimensions

H i+1 :=tEi+1+(1&t)\ Ei

zi+1+ ;
Zi+1 are start solutions in homotopy
continuation t: 1 � 0 to remove zi+1

Xi :=limits of solutions of Hi+1

as t � 0 with zi=0; on component
Zi :=Hi+1(x, zi {0, t=0); not on component: these solutions

are isolated and nonsingular
end for.

The routine Embed will be defined in the third section. In Section 4 we
present a worked out example of the algorithm. Section 5 contains the
mathematical background needed to prove our main results:

1. if i is the largest integer with Xi nonempty, then the dimension of
f &1(0) is i; and

2. given any irreducible component W of f &1(0) of dimension i, then,
counting multiplicities, Xi contains deg (W ) generic points of W.

The applications described in Section 6 illustrate the performance of the
new procedure. We end this paper with some directions for future research.

2. BACKGROUND MATERIAL AND RELATED WORK

Before addressing related work in this section

1. we give a brief discussion of generic points, a notion, which is
basic in this paper; and

2. we give a discussion of the technique from [54] that allows us to
reduce to square systems, i.e., to systems with the same number of equa-
tions as variables.

2.1. Generic Points

For both topics a fuller discussion will be found in [54]. We orient the
discussion around the question of how we decide if a polynomial is zero on
an algebraic set.

574 SOMMESE AND VERSCHELDE



Let X be an irreducible and reduced algebraic set in CN. Geometrically,
this means that the smooth points of X are dense and connected, and the
ideal associated to X is all the polynomials on CN vanishing on the set
underlying X. Let p(x) be some polynomial on CN. How do we decide if
p vanishes identically on X? We know that if p(x) does not vanish identi-
cally, then p(x) vanishes only on a proper algebraic subset of X, which is
very ``thin'' in that it is of real codimension two (and thus of Lesbesgue
measure zero). Thus it is natural to check the condition by choosing a
``random'' point x* on X and checking whether p(x*)=0. If it is not, then
of course p(x) is not identically zero, and if p(x*)=0, then we conclude
correctly that p(x) is identically zero unless we choose x* from the measure
zero set on X where p(x) vanishes. Of course, with machine numbers there
is more than a zero probability that things go wrong, but probabilistic
algorithms speed up calculations just as the use of random numbers (which
are of course not random) speed up calculations at the expense of some
certainty. It is a typical situation in scientific computing, that we have
a model we can analyze mathematically and use to construct algorithms,
but when we use the finite (but large) set of double precision complex
numbers on a modern computer, there is a question of how well the
model fits the computations on the machine. We say more about this
below.

In [54], it was noted that the notion of a random point on an
irreducible algebraic variety is so close to the classical notion of a generic
point from algebraic geometry, that it is very reasonable to model the idea
of a random point on an irreducible variety using this concept. In [54],
there was a discussion of the different ways that algebraic geometers have
made this concept precise. At one extreme, which we do not find useful,
there is the scheme theory approach of treating a generic point on an
irreducible variety X as that nonclosed point whose closure is the set of all
points on X. This ``generic point,'' which has the function field of X as the
stalk of the structure sheaf of X at the point, finesses away the difficulties
of working with actual points. At the other extreme there is a classical
notion rooted in fields of definition of the variety. For example, consider
x1&x2=0, the equation of a line L in C2. If we have any polynomial with
rational coefficients q(x1 , x2) which vanishes at the point (?, ?) # L, then q
vanishes on L. The third major variant is to use the language as shorthand
for points in some set where none of some specified set of ``conditions'' are
satisfied. For example, if we have some finite set of algebraic functions
f1 , ..., fk on CN with no common zeroes on CN, then a special case of
Bertini's theorem [31] says that there is a Zariski open and dense set
U/Ck, such that, if (*1 , ..., *k) # U then the zero set of *1 f1+ } } } +*k fk

is smooth. Often this is phrased as saying that for a generic choice of
(*1 , ..., *k) # CN, the zero set of *1 f1+ } } } +*k fk is smooth. There are
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other variants of general that use other classes of dense sets than Zariski
open sets, e.g., using complements of countable unions of proper algebraic
subsets is sometimes useful.

Mathematically it is possible to translate between the languages of the
first and third approach. Moreover, theorems about results holding for
dense Zariski open sets, immediately imply the existence of a generic point
in the middle approach, but not necessarily conversely. For this reason, in
theorems and proofs we use the third approach with dense Zariski open
sets, though in practice we think conceptually of generic points along the
lines of the middle approach.

Finally, the real numbers come into algorithms in a number of places.
This leads us to use Zariski open set of the underlying irreducible algebraic
sets X, which are dense in the usual Euclidean topology. The complements
of these sets have real codimension one. In this paper, this only happens at
the point where we choose explicit forms of the homotopy parameter for
the homotopy continuation.

We are currently working on algorithms to process the information
contained in the points arising from the algorithm in this paper. Using
these ``generic points,'' we have an algorithm, which with probability one,
computes the degrees and dimensions of all irreducible components of a
reduced algebraic set, and says which of the ``generic points'' lie on which
components of the algebraic set.

To understand the relation of the model we use to the actual numerical
varieties that are computed on machines, let us try to analyze using a
``generic'' point to check whether a polynomial of degree d is identically
zero. Of course, given a nontrivial polynomial, we know it is not identically
zero, but let us try to analyze the probability that we will get a wrong
answer using generic points. Then let us critique this heuristic calculation.
For concreteness let p(z) :=>d

i=1 (z&zi) be a monic polynomial of degree
d with all its zeroes in a disk of radius R. Let z* be a ``generic point'' con-
tained in this disk. In practice we have chosen the disk containing z* to
have radius Rr108. Assume further that we use the criterion that we
decide that p(z) is identically zero if | p(z*)|<=, for some constant =
dependent on the hardware and software we use. Even though we are in
the case of one variable, we take = :=10&8. When working with double
precision, we usually take this value in problems to allow the condition
number of Jacobian matrices to be up to 108. In this situation a rough
estimate of the probability that we will mistakenly decide that the polynomial
is zero is

area([x # C | |>d
i=1 (x&zi)|<=])

?R2 . (2)
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It can be checked that the worst case happens when the roots coincide. We
get the upper bound

=2�d

R2 . (3)

Thus we end up with 10&16&(16�d).
Putting aside the obvious criticism of this calculation, that it assumes a

uniformity of distribution of machine numbers, which is far from satisfied,
the calculation is reassuring. For low degree polynomials, it is very reassur-
ing. In practice, we deal with relatively low degree polynomials. Indeed, if
you use only double precision, high degree polynomials are difficult
numerically. If you use higher precision, then we would also decrease = and
increase R.

Similar calculations are very difficult in higher dimensions. Even for the
continuation methods people traditionally use, realistic estimates have not
been worked out. For example, consider a traditional homotopy H(t, x) :=
#(1&t) f (x)+tg(x)=0 where # is a random complex number of the form
e- &1 %, f is a polynomial system of n polynomials on Cn that we wish to
solve, and g(x) is a polynomial system of n polynomials on Cn that we
know the solutions of. For simplicity, assume that f (x)=0 and g(x)=0
both have >n

i=1 di nonsingular solutions, where for i=1, ..., n, di=
deg ( fi)=deg (gi). In infinite precision, the bad # would be those with a %
so that the ``great circle'' followed as t varies between 1 and 0, contains the
image under the map (t, x) � t of a singular point of a fiber of the map
H&1(0) � C induced by (t, x) � t. Here we know that there are only a
finite set of bad %. So it is a probability zero event that we hit a bad point.
The interesting papers of Yomdin [59] and Briskin and Yomdin [15] con-
sider some related problems that arise with trying to apply Sard's theorem
in the smooth case.

Being willing to give up complete mathematical certainty in order to be
able to settle problems from engineering and science is part of the spirit of
numerical analysis. We very much agree with the following statement in
[34, p. 6], taken from Trefethen's definition [56] of numerical analysis:

Rounding errors and instability are important, and numerical
analysts will always be the experts in these subjects and at pains to
ensure that the unwary are not tripped up by them. But our central
mission is to compute quantities that are typically uncomputable,
from an analytic point of view, and to do it with lightning speed.

In this quotation, ``uncomputable'' means that approximations are
unavoidable. We strive to obtain those directly by floating-point computa-
tions.
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Unfortunately, the consideration of solving polynomial systems has been
ostensibly neglected by the mainstream numerical analysis so far [55]. In
[55] the discrete model of computer algebra is contrasted to the paradigm
of numerical algebra where the problems live in a continuous world. The
embedding of an algebraic problem into analysis leads to additional
meaningful results such as condition numbers that tell us how relevant the
computed numbers are. In many cases it does not make much sense to
solve a problem exactly whose input data is known only with low accuracy.
We find a similar clash in paradigms between the discrete Turing model
and continuous models of computation [13].

2.2. Reduction to Square Systems

Let

f1(x1 , ..., xn)

f (x) :=_ b & (4)

fN(x1 , ..., xn)

be a system of N polynomials on Cn. We carry out this discussion for poly-
nomials on Euclidean space for simplicity: it equally well goes for systems
of algebraic functions on a connected algebraic submanifold of Euclidean
space. In this paper we deal for the most part with square systems, i.e.,
systems where N=n. We would like to discuss the results from [54] that
allow us to reduce to this case.

Assume first that N<n. In this case we know that every irreducible com-
ponent of the zero set [ f =0] is at least n&N dimensional. To reduce to
a square system of N equations in N unknowns, we restrict the system to
a ``generic'' linear subspace L/Cn of dimension N. For k>n&N, here is
a one-to-one correspondence of the k-dimensional irreducible components
of [ f =0] and the k+N&n dimensional irreducible components of
[ fCN=0], gotten by associating the irreducible component X & L/
[ fCN=0] to all irreducible component X/[ f =0]. Moreover, the multi-
plicity of such all X as a component of [ f =0] is the same as the multi-
plicity of such an X & L as a component of [ fCN=0]. When k takes on the
minimum possible value n&N, the correspondence takes each component
X to degree X points X & L. Moreover, the multiplicity of each point of the
intersection is equal to the multiplicity of X. Also, because L is general, the
intersections have many ``generic'' properties. For example, if the singular
set Sing(X), of the reduction of a component X of dimension k has
codimension k$ in X, then the singular set Sing(X & L) equals Sing(X) & L
and still has codimension k$ (and is in particular empty if k$>k+N&n).
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Assume now that N>n. In this case the procedure leading to square
systems is to replace the system f with n random linear combinations of the
equations of the system. It turns out to be equivalent to work with the
``Gaussian elimination'' form of the system

f1(x1 , ..., xn)+ :
N&n

j=1

*1, n+ j fn+ j

F(x) :=_ b & . (5)

fn(x1 , ..., xn)+ :
N&n

j=1

*n, n+ j fn+ j

It is shown in [54] that for * chosen in a dense Zariski open subset of
Cn(N&n),

1. the positive dimensional irreducible components of [ f =0] are
the same as the positive dimensional components of the zero set [F=0] of
the randomized system;

2. the isolated zeroes of [ f =0] are contained among the isolated
zeroes of [F=0]; and

3. a reduced and irreducible component of [ f =0], e.g., a nonsingular
isolated solution of [ f =0], is a reduced and irreducible component of
[F=0].

Unfortunately, if the multiplicity of an irreducible component X of [ f =0]
is +>1, then the multiplicity of X in [F=0] can be >+. This happens in
simple examples, e.g., the example at the end of Section 2 of [54]. From
the point of view of many problems where we are interested in the reduc-
tion of a component, or about whether a component is nonsingular, this is
not a serious problem. It is also a question for zero sets defined by more
equations than codimension, whether the multiplicity information is of that
much interest in applied problems. For example, for overdetermined
systems, there is no geometric interpretation of isolated singular points in
terms of the coalescing of smooth solutions. Nevertheless, the loss, of some
of the multiplicity information, is a deficit of the method of passing to
randomized square systems.

2.3. Previous and Related Work

Resultants may find explicit formulas for the solutions in terms of
parameters. In this sense, they also are an effective way to deal with com-
ponents of solutions. Resultants that exploit sparsity are described in [21]
and [22]; see [23] for a survey. Recent papers on how to adapt sparse
resultants to deal with degenerate situations are [50] and [52].
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The standard tool in computer algebra is the Gro� bner basis. As a recent
conference celebrating 33 years of Gro� bner bases [16] shows, this is still
a very active and exciting research field. Gro� bner bases or triangular sets
[3, 4] are used to compute a primary decomposition of an ideal [19].
Singular [30] is a freely available package that does its Gro� bner basis
computations based on Hilbert series. We used Singular on the cyclic
7-roots problem on a Pentium II 400 Mhz machine with 256 Mb internal
memory and .5 Gb swap space. Singular reported ``out of memory.'' While
this experience is anecdotal and better implementations [25] exists, the
general criticism towards such computations is that the size of the Gro� bner
basis (its space complexity is surveyed in [41]) is too large to handle. Even
if some term order may speedup the practical computations, the conversion
of orders is still of doubly exponential complexity [36]. To overcome this
problem, an approach with straight-line programs was proposed in [6].
We refer to [29] for a recent practical implementation and comparisons.
In [40] we read about Kronecker's philosophy (implemented by those
straight-line programs) and the approach of Gro� bner for algebraic
information on multiplicities of solutions of zero-dimensional systems.

Our approach uses deformations from a solved system to the system we
wish to solve. It is interesting to contrast the almost completely reversed
use of deformations in the Gro� bner basis�elimination theory methods with
homotopy continuation methods. A term order is, in a natural way [7], a
prescription for a deformation from the system of interest represented by a
fiber over a general point of C to the special degenerate fiber over 0 defined
by monomials. Calculations over the special fiber are ``lifted'' to the general
fiber. In homotopy continuation, we also use a deformation over C, but the
system we start from is, with probability one, a ``general'' fiber, and the
system we are interested in is the special fiber that we degenerate to.

We refer to [48] for a continuation method to deal with solution
manifolds. Rather than discussing curve tracing techniques, we here focus
on homotopy methods, that is on methods to embed the given problem
into a family of systems. Traditional homotopies on projective space give
points on each connected component, e.g., [46, Theorem 7], but the points
do not have to be generic and no information is given about dimensions or
degrees of components. This precludes further processing of the points.

3. AN EMBEDDING OF A POLYNOMIAL SYSTEM

Throughout this paper we work with algebraic functions. This allows the
possibility of using rational functions, and not just polynomials. This extra
flexibility will be needed in a sequel, where, even though we start with a
system of polynomials on Cn, it becomes necessary to work with rational
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functions on a Zariski open set of an associated Euclidean space. We
assume in what follows that locally we have the same number of equations
as unknowns. A procedure for reducing to this case is presented in [54].

Given a system of algebraic functions

f1(x)

f (x) :=_ b & (6)

fn(x)

on a connected algebraic manifold X of dimension n embedded into a
Euclidean space CA we have the following basic embedding into a family
of systems. First we restrict n linear functions on CA to X. Thus for j from
1 to n we have

Lj (x) :=aj+aj, 1x1+ } } } +aj, A xA , (7)

where x i is the restriction of the i th coordinate function of CA to X. By
abuse of notation we let Lj # CA+1 denote

(aj aj, 1 } } } aj, A). (8)

We fix linear coordinates z1 , ..., zn on a complex Euclidean space Cn.
Then we have the system of equations

Ei ( f )(x, z, 41 , ..., 4i , L1 , ..., Li) :=

f1(x)+ :
i

j=1

*1, jzj

, (9)

b

fn(x)+ :
i

j=1

*n, jzj

a1+a1, 1x1+ } } } +a1, AxA+z1

b
ai+ai, 1 xi+ } } } +ai, AxA+zi

where we let

*1, i

4i :=_ b & . (10)

*n, i
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We often refer to En( f )(x, z1 , ..., zn , 41 , ..., 4n , L1 , ..., Ln) by En or En( f ).
Further we let Ei or Ei ( f ) denote Ei ( f )(x, z1 , ..., zi , 41 , ..., 4i , L1 , ..., Li) on
Cn+i. Note that E0 is just f and that the solutions (x, z1 , ..., zi) # X_Ci

of

Ei (x, z1 , ..., zi , 41 , ..., 4i , L1 , ..., L i)=0 (11)

are naturally identified with the solutions (x, z1 , ..., zi , 0, ..., 0) # X_Cn of
the system

En(x, z1 , ..., zn , 41 , ..., 4i , 0, ..., 0, L1 , ..., Li , 0, ..., 0)=0 (12)

We let Y denote the space Cn_(A+1)_Cn_n of parameters

a1 a1, 1 } } } a1, A *1, 1 } } } *n, 1

_ b b . . . b . . . b b & # Cn_(A+1)_Cn_n (13)

an an, 1 } } } an, A *1, n } } } *n, n

for these systems. We have used the transpose of the *i, j for convenience
in describing the stratification Y0 /Y1 / } } } /Yn of the space Y given by
defining Yn :=Y; and Yi , for i=0, ..., n&1, as the subset of Y with the
coordinates

ai+1 ai+1, 1 } } } ai+1, A *1, i+1 } } } *n, i+1

_ b b . . . b b . . . b &an an, 1 } } } an, A *1, n } } } *n, n

# C(n&i)_(A+1)_C(n&i)_n (14)

set equal to 0. Thus using the identification (12) above, we can regard Yi

as the parameter space of the system of equations

Ei (x, z1 , ..., zi , 41 , ..., 4i , L1 , ..., L i)=0. (15)
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We consider homotopies Hi , for i from n to 1 and t from 1 to 0, defined by

Hi (x, z1 , ..., z i , t) :=

f1(x)+ :
i&1

j=1

*1, jzj+t*1, izi

, (16)

b

fn(x)+ :
i&1

j=1

*n, jzj+t*n, izi

L1(x)+z1

b
Li&1(x)+zi&1

tLi (x)+zi

with the convention that if i=1, we mean

H1(x, z1 , t) :=_
f1(x)+t*1, 1z1

b
fn(x)+t*n, 1z1

tL1(x)+z1
& . (17)

Thus Hi (x, z1 , ..., zi , 1)=Ei and H i (x, z1 , ..., zi , 0)=0 is

{Ei&1(x, z1 , ..., zi&1)
zi

=0
=0.

(18)

Note that using this convention, Hi can be rewritten as tEi+(1&t) ( Ei&1
zi

).

Lemma 2. There is a nonempty Zariski open set U of points

a1 a1, 1 } } } a1, A *1, 1 } } } *n, 1

_ b b . . . b b . . . b & # Cn_(A+1)_Cn_n (19)

an an, 1 } } } an, A *1, n } } } *n, n

such that for each i=1, ..., n,

1. the solutions of Ei (x, z1 , ..., zi)=0 with (z1 , ..., zi){0 are isolated
and nonsingular;

2. given any irreducible component W of f &1(0) of dimension i, the set
of isolated solutions of Ei (x, z1 , ..., zi)=0 with (z1 , ..., zi)=0, contain
deg(Wred) generic points of Wred , where Wred is the reduction of W; and
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3. the solutions of Ei (x, z1 , ..., zi)=0 with (z1 , ..., zi){0 are the same
as the solutions of Ei (x, z1 , ..., z i)=0 with zi {0.

Proof. For a fixed i # [1, ..., n] consider the system of equations

:
n

j=1

:1, j f j + :
i

j=1

;1, jzj = 0

b

:
n

j=1

:n, j f j + :
i

j=1

;n, jzj = 0

(20)

#1+ :
A

j=1

#1, jxj+ :
i

j=1

$1, jzj = 0

b

#i+ :
A

j=1

#i, j xj + :
i

j=1

$i, jzj = 0.

By Bertini's theorem (see Section 5 for a convenient form of this result),
there is a nonempty Zariski open set U of

(:, ;, #, $) # Cn_n_Cn_i_Ci_(A+1)_C i_i, (21)

where

:1, 1 } } } :1, n ;1, 1 } } } ;1, i

: :=_ b . . . b &; ; :=_ b . . . b & (22)

:n, 1 } } } :n, n ;n, 1 } } } ;n, i

and

#1 #1, 1 } } } #1, A $1, 1 } } } $1, i

# :=_ b b . . . b &; $ :=_ b . . . b & (23)

#i #i, 1 } } } #i, A $i, 1 } } } $ i, i

such that, if not empty, the zero set Z of the above system of equations on
X_Ci minus the set of common zeroes of f1 , ..., fn , z1 , ..., zi is smooth and
of dimension 0. Left multiplying this n+i vector of equations with an
invertible (n+i)_(n+i) matrix G of the form

_A

0
0
B& , (24)
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where A is an n_n matrix and B is a i_i matrix, results in the equivalent
system of equations

z1

A } : } f +A } ; } _ b &=0

zi (25)

z1

B } # } _
1
x1

b
xA
&+B } $ } _ b &=0.

zi

Thus we can assume that the set V is invariant under this action by the
matrices G. Thus we have a nonempty Zariski open set U of

a1 a1, 1 } } } a1, A *1, 1 } } } *n, 1

_ b b . . . b . . . b b & # Cn_(A+1)_Cn_n (26)

an an, 1 } } } an, A *1, n } } } *n, n

such that for each i the equivalent system is of the form

f1(x) + :
i

i=1

*1, izi = 0

b b

fn(x) + :
i

i=1

*n, izi = 0

(27)
a1+ :

A

j=1

a1, j xj+z1 = 0

b b

ai + :
A

j=1

ai, jx j+zi = 0

and has smooth nonsingular zeroes when (z1 , ..., zi){0. Thus we have the
first assertion of the lemma.

To see the second assertion of the lemma, note that the solutions of
Ei=0 with (z1 , ..., zi)=0 are naturally identified with the solutions of the
system
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f1(x) = 0

(28)

b b
fn(x) = 0

a1+ :
A

j=1

a1, j xj = 0

b b

ai+ :
A

j=1

ai, jxj = 0

The second assertion follows now from the Algorithm in [54, Sect. 3.1].
We prove the third assertion of the lemma by induction on i. If i=1,

then it is a tautology that the solutions of Ei (x, z1 , ..., zi)=0 with
(z1 , ..., zi){0 are the same as the solutions of Ei (x, z1 , ..., zi)=0 with zi {0.

So we can assume that the result is true for k<i where i>1. Note that
a solution of Ei=0 with zi=0 but (z1 , ..., zi){0 is a solution of the system

Ei&1(x, z1 , ..., z i&1) = 0

Li (x) = 0{ z i = 0 (29)

b
zn = 0.

Since the solutions of Ei&1=0 with zi&1 {0 are isolated and nonsingular,
a generic choice of Li (x) will not be zero on any of the solutions. But this
means that the solutions of Ei=0 for generic Li (x) will have no solutions
with zi=0. K

Note that if we choose y generically in Y, then we have chosen the
associated yi generically in Yi for each i from n to 1. Thus we can assume
that with an initial generic choice of parameters y, the behavior for each of
the systems Ei=0 is the behavior we expect with a generic choice of
parameters on Yi . One minor point remains. Given a generic choice of
parameters y # Y, generic behavior might not occur for the homotopy Hi

with t # (0, 1]. This is easily dealt with by a trick of Morgan and Sommese
[44�46].

Assume that we have chosen the parameters y for the systems in the non-
empty Zariski open set U of
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a1 a1, 1 } } } a1, A *1, 1 } } } *n, 1

_ b b . . . b . . . b b & # Cn_(A+1)_Cn_n (30)

an an, 1 } } } an, A *1, n } } } *n, n

We want our homotopies Hi (x, z1 , ..., zi , t)=0 to define algebraic sets that
are flat over a Zariski open set containing (0, 1]. Numerically this means
that we want to have generic behavior for each t # (0, 1], i.e., the same
number of isolated points, no components that do not correspond to com-
ponents in any other fiber. Exploiting generic flatness in this way is the
underlying approach of the work of Morgan and Sommese [44�46], to
which we refer for more details. Since for all but a finite number of values
of t # C generic behavior occurs, we can conclude that given a set of
parameters y # U as above, the homotopy

H', i (x, z1 , ..., zi , t) :=(x, z1 , ..., zi , 't)

=

f1(x)+ :
i&1

j=1

*1, jzj+t'*1, izi

(31)

b

fn(x)+ :
i&1

j=1

*n, j zj+t'*n, izi

L1(x)+z1

b
Li&1(x)+zi&1

t'Li (x)+zi

defines an algebraic set flat over a Zariski open set of C containing (0, 1],
for all but a finite set of ' # C with |'|=1. Using openness of flatness, we
can absorb the ' into the parameters we use. We still have a dense open
set of general parameters, but the set is only Zariski open in the underlying
real algebraic structure.

By Lemma 2 if the Li , 4i are chosen randomly, then with probability
one, En(x, z)=0 has a solution with z=0 only if f (x) is identically zero on
Cn.

Recall from the introduction that for i from n to 1,

1. Zi denotes the solutions to Ei=0 with zi {0; and

2. Xi&1 denote the limits with zi&1=0 of the paths of the homotopy
Hi (t), from t=1 to t=0, starting at points of Zi . By convention, the
condition zi&1=0 is empty when i=1.
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Theorem 3. Let f be as above. Assume that f is not identically zero and
that the 4i are chosen generically. If i is the largest integer with Xi nonempty,
then the dimension of f &1(0) is i. Moreover given any irreducible component
W of f &1(0) of dimension i, then, the finite set, Xi contains deg (Wred)
generic points of Wred , where Wred is the reduction of W. The multiplicities
of any of the points of Xi that lie on W are equal, and are greater than or
equal to the multiplicity of W; and are equal to one if and only if W is
reduced.

Thus our algorithm achieves the same numerical goal of the algorithm of
[54], but much more efficiently. As one piece of evidence of its optimality,
note that as a consequence, we obtain the classical upper bound [27,
12.3.1] that �i # I +i deg (Wi)�d1 } } } dn , where, f1 , ..., fn is a system of n
polynomials on Cn; dj is the total degree of fj ; the irreducible components
of the reduction of the zero set of the system is �i # I Wi ; and + i is the
multiplicity of Wi as a component of the zero set.

Proof of Theorem 3. We use the notation of the proof of Lemma 2. By
Lemma 2, it follows that there is a nonempty Zariski open set of points
y # Y, such that for each i from n to 1, all elements of the set Zi of solutions
of Ei (x, z1 , ..., zi)=0 with zi {0 are nonsingular and isolated. Thus for a
dense set (Zariski open in the underlying real algebraic structure of y # Y)
the paths over t # (0, 1] are smooth if they start at nonsingular isolated
solutions of Ei=0. By Lemma 6 and our random choice of y # Y, each non-
singular isolated solutions (x*, z1*, ..., z*i&1 , 0) of Ei&1=0 must start from a
nonsingular isolated solution (x$, z$1 , ..., z$i) of Ei=0.

If z$i=0 for a solution, then (z$1 , ..., z$i)=0 by Lemma 2. Thus f (x$)=0
and hence Hi (x$, 0, ..., 0, t)=0 identically in t; and hence (x*, z1* , ..., z*i&1 ,
0)=(x$, 0, ..., 0). Thus we know from Lemma 2 that for a Zariski open set
of Yi the solutions of the system Ei=0 with zi=0 (and hence
(z1 , ..., zi)=0) are on irreducible components of the algebraic set f (x)=0
of dimension i. Thus (x*, z1*, ..., z*i&1 , 0)=(x$, 0, ..., 0) is on an irreducible
component of the algebraic set of points with Ei&1=0, which has dimen-
sion �1. This contradicts (x*, z1*, ..., z*i&1) being an isolated nonsingular
solution of Ei&1=0. Thus the isolated nonsingular solutions of Ei&1=0
must be endpoints of paths of homotopy Hi starting at points of Zi .

Using Lemma 6 the above argument can be modified to show that
isolated, but possibly singular, solutions of (x*, z1* , ..., z*i&1 , 0) of Ei&1=0
must start from a nonsingular isolated solution (x$, z$1 , ..., z$i) of Ei=0 with
(z$1 , ..., z$i){0 (and hence by Lemma 2 with z$i {0). K

The property of a generic system of the form En( f ) that it has isolated
nonsingular solutions is useful. In this direction, see [38].
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4. A WORKED OUT EXAMPLE

Consider the polynomial system f (x)=0 and start system g(x)=0.

f (x)={ x2
1x2=0

x2
1(x2

2+x1)=0
g(x)={x3

1&c1=0
x4

2&c2=0
(32)

To solve f (x)=0 we trace D=3_4=12 solution paths starting at the
solutions of g(x)=0. One path diverges to infinity, three paths converge to
(0, 0), and the remaining eight paths end at the solution component x1=0,
for some x2 {0. The condition numbers at the end of the paths do not
allow us to decide which solution is isolated.

To embed f (x)=0 we take a random hyperplane L(x)=a0+a1x1+
a2 x2=0 and choose two random complex constants, *1 and *2 :

x2
1x2+*1z=0

E1(x, z)={ x2
1(x2

2+x1)+*2z=0 (33)

a0+a1 x1+a2 x2+z=0.

We can solve this system by tracing D=12 solution paths, using a
standard linear homotopy with the equations g(x)=0, z&1=0 as start
system, with g(x)=0 as in (32). Five paths diverge to infinity. Two paths
go to the same solution with z=0, which reveals the degree of the solution
component x2

1=0. Note that geometrically this component corresponds to
a pair of lines. The five remaining paths go to regular solutions with z{0.

To compute the possible remaining isolated solutions, we trace five solu-
tion paths starting at the five regular solutions of the system (33). In going
with t from 1 to 0, we use the homotopy

x2
1x2+*1z=0 x2

1 x2=0

H1(x, z, t)=t \{ x2
1(x

2
2+x1)+*2z=0++(1&t) \{x2

1(x2
2+x1)=0+a0+a1x1+a2 x2+z=0 z=0

(34)

Three paths converge to (0, 0), two paths go to solutions on the compo-
nent with x1=0 and x2 {0. End games are still needed to decide whether
the solutions are isolated.

With our new method, 17 solution paths instead of 24 were traced, as 24
would have been the number of paths with an iteration of the procedure
in [54].
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Polyhedral root counting methods provide a generically sharp root
count for polynomial systems. In particular, the mixed volume of the
Newton polytopes of the system equals the number of roots in (C*)n,
C* :=C"[0], for a system with generic coefficients. When the system has
only few monomials with nonzero coefficients, then the mixed volume
provides a much lower root count than the Be� zout bounds based on the
degrees of the polynomials.

For our type of applications, the distinction between solutions with z=0
and z{0 is instrumental in identifying components of solutions. This dif-
ference does depend on the values of the coefficients of the original system
and is not neglected by the ordinary mixed volume. So we will not miss any
solutions with z=0, but we may miss solution components for which some
xi=0. Fortunately, extensions of the polyhedral methods that allow to
count and compute all affine roots (that is in Cn instead of (C*)n) are
covered amply in the literature (see [24, 28, 35, 39, 49, 51, 53]). The key
idea [39] is to add a random constant to every equation to shift the roots
with zero components away from the coordinate axes. In removing these
constants by continuation, all affine roots lie at the end of some path that
starts at a root in (C*)n.

Consider again the polynomial system f (x)=0 in (32). Because of the
first equation we immediately see that there cannot be any solution with all
components different from zero. The direct application of polyhedral
methods does not yield anything, since the mixed volume for f (x)=0
equals zero. With affine polyhedral methods, we consider the system

f (0)(x)={ x2
1x2+#1=0

x2
1(x2

2+x1)+#2=0,
(35)

where #1 and #2 are randomly chosen complex numbers. Here the mixed
volume equals five. Note the difference with the total degree D=12.
Letting the #'s go to zero, three of the five paths converge to the origin, and
the other two paths go to other solutions on the component.

To obtain information about the components, with polyhedral methods
we consider the embedding

x2
1x2+#1+*1z=0

E1(x, z)={x2
1(x2

2+x1)+#2+*2 z=0 (36)

a0+a1 x1+a2x2+z=0.

This system has mixed volume equal to seven. We use this as start system
to solve it with #1=0 and #2=0, following the paths that start at the seven
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solution paths of E1(x, z)=0. From the seven paths, five paths go to solu-
tions with z{0, and the other two paths go to the component ending with
z=0.

Observe again the gain in efficiency compared to the procedure in [54].
We now have to trace only 12 instead of 24 paths.

5. BERTINI'S THEOREM AND A LOCAL EXTENSION THEOREM

Here is a weak, but convenient form of Bertini's theorem, e.g., Fulton
[27, Example 12.1.11]. For a further discussion of Bertini theorems, see
also [8, Sect. 1.7].

Theorem 4 (Bertini). Let X be an algebraic manifold of dimension n,
e.g., complex Euclidean space or complex projective space. Let L1 , ..., Ln be
line bundles on X. For i from 1 to n, let [si, j | j=1, ..., ri] be a set of sec-
tions of Li . Let Bi denote the set of common zeroes of the sections
[si, j | 1� j�r i]; and let B :=�i Bi . Then given general real or complex
numbers [*i, j | j=1, ..., ri ; i=1, ..., n], all solutions on X&B, of the system
of equations

:
r1

j=1

*1, js1, j=0

{ b (37)

:
rn

j=1

*n, jsn, j=0

are isolated and nonsingular.

In the proof of Theorem 3, we need an extension theorem, giving condi-
tions ensuring that if we have a system of equations f (x, y)=0 depending
on parameters y with a multiplicity + isolated solution x* of the system for
some point y* in the parameter space, then there is a neighborhood U of
x* such that for points y near y* in the parameter space, there are + solu-
tions counting multiplicities of the system f (x, y)=0. Special cases are well
known in the context of all polynomial systems, but we do not know a
general reference in the numerical analysis literature. This sort of result is
standard for algebraic geometers in the algebraic context, or within the
German school of several complex variables in the complex analytic con-
text. So we are simply explaining why this sort of result follows
immediately from standard results in these fields. We work locally. All open
sets are in the usual Euclidean topology, i.e., not in the Zariski topology.
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A possibly nonreduced complex analytic space, X, is said to be a local
complete intersection if given any point x # X, there is a set U/X, open
in the usual complex topology, that contains x, and such that

1. there is an embedding ,: U � B of U into an open ball in B/CN

for some N :=n+m>0;

2. the ideal of the complex space ,(U) is defined by holomorphic
functions g1 , ..., gn ; and

3. the dimension of the maximal dimensional irreducible component
of X through x is m.

Local complete intersections are very well behaved. One elementary, but
important fact about them is that all the irreducible components of X

through a given x # X are equal dimensional. Local complete intersections
are among the simplest examples after manifolds of spaces with Cohen�
Macaulay local rings. Cohen�Macaulay local rings are discussed in many
places, e.g., [20, 26].

We record the following less elementary fact, which we will use in
Lemma 6. It holds equally for algebraic spaces and algebraic morphisms.
Recall that a continuous map is said to be proper if the inverse image of
any compact set is compact.

Lemma 5. Let ?: X � Y be a proper surjective holomorphic map with
zero dimensional fibers from a possibly nonreduced complex analytic space X
with Cohen�Macaulay local rings, e.g., a local complete intersection, onto a
complex manifold Y. Then ? is flat.

Proof. Since X has Cohen�Macaulay local rings, all irreducible com-
ponents are equal dimensional. Thus, since ? has zero dimensional fibers
and is surjective, ? is open. Thus it follows from Fischer [26, Proposition
on p. 158] that ? is flat. K

Let X be a connected n-dimensional complex manifold. Let Y be a
connected m-dimensional complex manifold. Let

f1(x, y)

f (x, y)=_ b &=0 (38)

fn(x, y)

be a system of n holomorphic functions. Let x* be an isolated solution of
the system f (x, y*)=0 for a fixed value y* # Y, i.e., assume that there is an
open set O/X containing x* with x* the only solution of f (x, y*)=0
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on O. Assume that the multiplicity of x* is +. This number, which is 1
exactly when the Jacobian of f (x, y*) is invertible at x*, is equal to

dimC OX | x*�J( f1(x, y*), ..., fn(x, y*)), (39)

where OX | x* is the local ring of convergent power series on X centered at
the point x*, and J( f1(x, y*), ..., fn(x, y*)) is the ideal in OX | x* generated
by the functions f1(x, y*), ..., fn(x, y*).

Lemma 6 (Local extension lemma). Let X, Y, f, x*, and y* be as above.
There are open neighborhoods U of x* # X and V of y* # Y such that for any
y # V there exist + isolated solutions (counting multiplicities) of f (x, y)=0
on U.

Proof. Let dim[(x*, y*)] Z denote the dimension of an analytic set
Z/X_Y at the point (x*, y*). Let X$ denote the zero set of f1 , ..., fn on
X_Y. Since there are n functions, the dimension of each irreducible com-
ponent of X$ is at least m, and in particular

dim(x*, y*) X$�m. (40)

Since x* is an isolated solution of f (x*, y)=0 on X_[ y*], we have that
dim(x*, y*) (X_[ y*]) & X$=0. Since X_Y is smooth, we have

dim (x*, y*) (X_[ y*]) & X$�dim (x*, y*) (X_[ y*])

+dim(x*, y*) X$&dim (x*, y*) X_Y

=n+dim(x*, y*) X$&n&m.

Thus we conclude that

dim(x*, y*) X$=m. (41)

Thus the union X" of the components of X$ passing through (x*, y*) has
pure dimension m. It follows, e.g., use Gunning [32, Theorem 16], that
there are neighborhoods U of x* # X and V of y* # Y such that the projec-
tion ? of X" & (U_V ) to V is proper and finite. By shrinking U and V we
can assume that X" & (U_V )=X$ & (U_V ) and that X$ & (U_[ y*])=
(x*, y*).

Now X$ & (U_V ) is a local complete intersection, and since the
map ?X$ & (U_V ) : X$ & (U_V ) � V is proper with finite fibers, we conclude
by Lemma 5, that this map is flat. Thus the direct image E :=
?

*
(OX$ & (U_V )) of the structure sheaf of X$ is locally free, e.g., Fischer [26,
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Proposition 3.13]. On U_V, X$ is defined by the functions fi (x, y)=0, for
i=1, ..., n. By definition, at a point (x$, y$) # (U_V ) & X$ we have
OX$ | [(x$, y$)] is

O(U_V ) | [(x$, y$)] �J( f1(x, y), ..., fn(x, y)), (42)

where O(U_V ) | [(x$, y$)] is the local ring of convergent power series on U_V
centered at [(x$, y$)] and J( f1(x, y), ..., fn(x, y)) denotes the ideal in
O(U_V ) | [(x$, y$)] generated by f1 , ..., fn .

The statement that E is locally free, is equivalent to ranks of E at
different points of V being equal. The rank of E at a point y$ # V is by
definition

dimC Ey$ :=E<\my$ }
OY | y$

E+ , (43)

where my$ is the maximal ideal generated OY | y$ consisting of convergent
power series vanishing at y$. Thus comparing to the definition of the multi-
plicity of the solution x* of f (x, y*) being +, we see that the rank of E is
+. Unwinding the definition of ?

*
, Ey$ for any fixed y$ # V is the direct sum

of the modules

OX | x$�J( f1(x, y$), ..., fn(x, y$)), (44)

with index set the set of distinct points x$ # U with f (x$, y$)=0. This proves
the assertion of the lemma. K

6. APPLICATIONS AND COMPUTATIONAL EXPERIENCES

We have conducted a systematic set of experiments with PHCpack [57]
on three case studies of familiar polynomial systems. Little symbolic
manipulation of polynomials is needed to set up homotopies derived from
the embedding presented in this paper.

To avoid wasting paper, we have omitted the algebraic formulations of
the systems, which can either be found electronically in the database main-
tained on the web sites of the second author, or can be consulted in the
cited literature. Although the systems are academic examples and only
interesting for benchmarking purposes, we try to indicate the relevance to
their application fields.

Unless stated otherwise, all reported timings concern a 450 MHz Intel
Pentium machine with 1 Gb of main memory and 1 Gb swap space,
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running Debian GNU�Linux. We observe that dealing with components of
solutions is a much harder problem than just approximating the isolated
solutions.

With a faster computer one can attack larger problems, but also the
quality of the software matters. Concerning this latter aspect we want to
point out that no special-purpose software has been developed that exploits
the structure of the embedded systems. The continuation could for instance
go faster if one eliminated explicitly some variables using the linear
hyperplanes that were introduced in the slicing.

6.1. A Planar Four-Bar Mechanism

Four-bar mechanisms are ubiquitous in mechanical design. The
4-variable polynomial system that was derived and solved in [47] has total
degree 256 and lowest multi-homogeneous Be� zout bound 96. The mixed
volume equals 80, avoiding the calculation of zero component solutions.
There is a solution component of dimension two, with sum of degrees equal
to two. The lowest multi-homogeneous Be� zout bound of E2 equals 240
whereas the mixed volume equals 96.

We summarize the computational experiments in Table 1, whose format
goes as follows. The cascade of homotopies starts with solving the start
system g by polyhedral methods since mixed volumes are sharper than the
bounds based on the degrees. To solve the system Ek we must trace *paths
solution curves. This number is partitioned into ones on the component
(z=0), regular finite solutions (z{0), and diverging ones ( � �). Observe
the take over of the (z{0)-solutions to the next row. The number in the
column with heading z{0 on the E0 -row is the number of isolated
solutions of the original system. In the last column we list cpu times.

The information in Table 1 is useful to make some rough comparisons
with other homotopy methods. For instance, if we are only interested in
the isolated roots, the cost would be of the same magnitude as on the
E0 -row. To compare with the procedure of Sommese and Wampler [54],

TABLE 1

The Number of Paths and Timings for a Planar Four-Bar Mechanism

Number of
System paths z=0 z{0 �� cpu time

g, start 96 0 96 0 10 s 880 ms
E2 96 2 68 26 4 min 47s 830 ms
E1 68 12 56 0 18 s 370 ms
E0 56 20 36 0 11 s 10 ms

Total 316 34 256 26 5 min 28 s 90 ms
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we could add up the entries in the columns with headings z=0 and � �
to the *paths in the next row, simulating the process of no solution
recycling.

We must note that there exists an isotropic formulation of this problem
[58] for which the mixed volume is an exact root count for the 36 isolated
solutions. The black-box solver of PHC needs only 11s 710ms to solve that
system.

6.2. Constructing Runge-Kutta formulas

The following system is due to Butcher [17] and was used as test
problem in [14]. The system has seven variables and a three-dimensional
component. Its total degree is 4608 and mixed volume equals 24. After slic-
ing and embedding thrice, the resulting 10-variable system has mixed
volume 247. We summarize the running statistics in Table 2.

6.3. On Fourier Transforms: The Cyclic n-roots Problem

In [11] an example was given which stems from the problem of finding
all ``bi-equimodular'' vectors x # Cn, i.e.: all x with coordinates of constant
absolute value such that the Fourier transform of x is a vector with coor-
dinates of constant absolute value, see also [9] and [10]. This system was
popularized in [18], and is by far the most notorious benchmark problem
in polynomial system solving. Other references are [5], [12] and [22].

In [42], the following conjectures of Ralf Fro� berg are mentioned. If n
has a quadratic divisor, then there are infinitely many solutions. If the
number of solutions is finite, then this number equals all possible combina-
tions of n&1 elements from a set of 2n&2 elements. Uffe Haagerup [33]
has proven that for n prime, the number of roots is always finite, and
equals indeed (2n&2)!�(n&1)!2.

In Table 3 we summarize the results of the embedding for the cyclic
8-roots problem, which has a solution component of dimension one. The

TABLE 2

The Number of Paths and Timings for Butcher's System

Number of
System paths z=0 z{0 �� cpu time

g, start 247 0 247 0 17 min 13 s 770 ms
E3 247 3 193 51 9 min 57 s 830 ms
E2 193 15 161 17 1 min 59 s 470 ms
E1 161 11 72 78 4 min 57 s 600 ms
E0 72 0 4 68 2 min 24 s 650 ms

Total 920 29 677 214 34 min 32 s 550 ms
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TABLE 3

The Number of Paths and Timings for Cyclic 8-Roots

Number of
System paths z=0 z{0 �� cpu time

g, start 4176 0 4176 0 1 h 30 min 26 s 800 ms
E1 4176 144 3975 57 1 h 10 min 3 s 930 ms
E0 3975 495 1152 2328 7 h 7 min 55 s 580 ms

Total 12327 639 9303 2385 9 h 48 min 26 s 310 ms

original system has mixed volume equal to 2560. The embedded system has
mixed volume 4176. See Table 3 for the summary of the runs. We remark
that if one is only interested in the isolated roots, one only has to trace
2560 solution paths.

Before developing the embedding method, we attacked the cyclic 8-roots
problem first with the slicing method of Sommese and Wampler. The com-
putation of generic points on the solution component required the tracing
of 10,940 solution paths (which takes now 4176 paths). For this task, the
black-box solver of PHC needed 4 days and nights, 15 h 6 min 49 s 392 ms
cpu time on a SUN workstation. Although the Linux machine we used is
somewhat faster than that SUN workstation, it certainly does not speed up
things 50 times!

We end this section with another illustration on the importance of
having good polynomial equations for the same problem. Thanks to a trick
of John Canny, described in [21], there exists a reduced version of the
cyclic n-roots problem. This version reduces the number of roots by
eight and yields a significant saving in the path tracking. For instance, the
mixed volume of the reduced cyclic 8-roots problem equals 320, instead of
2560 for the original problem. Table 4 summarizes the computational
experiments.

TABLE 4

The Number of Paths and Timings for Reduced Cyclic 8-Roots

Number of
System paths z=0 z{0 �� cpu time

g, start 775 0 775 0 10 min 1 s 860 ms
E1 775 18 744 13 11 min 23 s 680 ms
E0 744 445 144 155 14 min 52 s 340 ms

Total 2294 463 1663 168 36 min 17 s 860 ms
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Finally, this reduction also allows us to treat the cyclic 9-roots system
that has a two-dimensional component of solutions. The sum of the degrees
of the reduced cyclic 9-roots problem equals two. The mixed volume of
embedded system E2 equals 4044, computed in cpu time 2 h 48 min 4 s
320 ms. The polyhedral continuation for the start system requires 1 h 4 m
5 s 130 ms and the path following to solve E2 takes 2 h 15 min 4 s 54 ms.
In total, the black-box solver of PHCpack needs 6 h 7 min 45 s 270 ms to
solve E2 .

7. CONCLUSIONS AND FUTURE DIRECTIONS

In the paper we have presented an embedding of polynomial systems to
compute generic points on components of solutions. The homotopies
recycle solutions while moving down to the isolated solutions. The major
advantage compared to the method in [54] is that fewer solution paths
diverge. We provide practical evidence for the efficiency of the embedding
technique.

Besides the reported progress on homotopy methods, we want to point
out that our embedding technique might be of independent interest, in the
sense that it allows us to focus on one component of a particular dimen-
sion. The main novelty of the embedding consists in the fact that the solu-
tions of the embedded system that do not lie on the focused component
provide meaningful information about the components of lower dimension.
We hope that besides homotopy methods, other solvers for polynomial
systems could benefit from our embedding technique.

An important problem is to measure the amount of randomness that is
needed to guarantee the success of our algorithms. Allowing singular solu-
tions, taking into account the numerical precision being used, the ``problem
dependent'' system numbers, e.g., degrees, Be� zout numbers, number of
variables, some sort of compactification, etc. the task is to quantify the
actual probabilities involved for the measure zero events that occur in
solving polynomial systems by numerical continuation.

It is sometimes said that every scientific problem solved generates three
other questions. Here we briefly indicate three different directions for future
research. First of all, the embedding leads to higher-dimensional systems
with special structure. It would be worthwhile to exploit this structure to
obtain a more efficient mixed-volume computation to alleviate the com-
plexity of the first stage. Secondly, the computed generic points on the
components are an interesting starting point for future computational
explorations of the solution components. Note that continuation is a very
natural tool to scan the component while wiggling the added hyperplanes.
Lastly, in the final stage of the cascade of embedded homotopies, it remains
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difficult to separate solution paths converging to components from other
possibly ill-conditioned isolated solutions. End games that produce
certificates in the form of a random hyperplane through a nonisolated
solution will have to be developed.
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