236 research outputs found

    The Physics of Communicability in Complex Networks

    Full text link
    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.Comment: Review Article. 90 pages, 14 figures. Contents: Introduction; Communicability in Networks; Physical Analogies; Comparing Communicability Functions; Communicability and the Analysis of Networks; Communicability and Localization in Complex Networks; Computability of Communicability Functions; Conclusions and Prespective

    Mining and analysis of real-world graphs

    Get PDF
    Networked systems are everywhere - such as the Internet, social networks, biological networks, transportation networks, power grid networks, etc. They can be very large yet enormously complex. They can contain a lot of information, either open and transparent or under the cover and coded. Such real-world systems can be modeled using graphs and be mined and analyzed through the lens of network analysis. Network analysis can be applied in recognition of frequent patterns among the connected components in a large graph, such as social networks, where visual analysis is almost impossible. Frequent patterns illuminate statistically important subgraphs that are usually small enough to analyze visually. Graph mining has different practical applications in fraud detection, outliers detection, chemical molecules, etc., based on the necessity of extracting and understanding the information yielded. Network analysis can also be used to quantitatively evaluate and improve the resilience of infrastructure networks such as the Internet or power grids. Infrastructure networks directly affect the quality of people\u27s lives. However, a disastrous incident in these networks may lead to a cascading breakdown of the whole network and serious economic consequences. In essence, network analysis can help us gain actionable insights and make better data-driven decisions based on the networks. On that note, the objective of this dissertation is to improve upon existing tools for more accurate mining and analysis of real-world networks --Abstract, page iv

    Homophily Outlier Detection in Non-IID Categorical Data

    Full text link
    Most of existing outlier detection methods assume that the outlier factors (i.e., outlierness scoring measures) of data entities (e.g., feature values and data objects) are Independent and Identically Distributed (IID). This assumption does not hold in real-world applications where the outlierness of different entities is dependent on each other and/or taken from different probability distributions (non-IID). This may lead to the failure of detecting important outliers that are too subtle to be identified without considering the non-IID nature. The issue is even intensified in more challenging contexts, e.g., high-dimensional data with many noisy features. This work introduces a novel outlier detection framework and its two instances to identify outliers in categorical data by capturing non-IID outlier factors. Our approach first defines and incorporates distribution-sensitive outlier factors and their interdependence into a value-value graph-based representation. It then models an outlierness propagation process in the value graph to learn the outlierness of feature values. The learned value outlierness allows for either direct outlier detection or outlying feature selection. The graph representation and mining approach is employed here to well capture the rich non-IID characteristics. Our empirical results on 15 real-world data sets with different levels of data complexities show that (i) the proposed outlier detection methods significantly outperform five state-of-the-art methods at the 95%/99% confidence level, achieving 10%-28% AUC improvement on the 10 most complex data sets; and (ii) the proposed feature selection methods significantly outperform three competing methods in enabling subsequent outlier detection of two different existing detectors.Comment: To appear in Data Ming and Knowledge Discovery Journa

    Location Analytics for Location-Based Social Networks

    Get PDF

    Efficient Node Proximity and Node Significance Computations in Graphs

    Get PDF
    abstract: Node proximity measures are commonly used for quantifying how nearby or otherwise related to two or more nodes in a graph are. Node significance measures are mainly used to find how much nodes are important in a graph. The measures of node proximity/significance have been highly effective in many predictions and applications. Despite their effectiveness, however, there are various shortcomings. One such shortcoming is a scalability problem due to their high computation costs on large size graphs and another problem on the measures is low accuracy when the significance of node and its degree in the graph are not related. The other problem is that their effectiveness is less when information for a graph is uncertain. For an uncertain graph, they require exponential computation costs to calculate ranking scores with considering all possible worlds. In this thesis, I first introduce Locality-sensitive, Re-use promoting, approximate Personalized PageRank (LR-PPR) which is an approximate personalized PageRank calculating node rankings for the locality information for seeds without calculating the entire graph and reusing the precomputed locality information for different locality combinations. For the identification of locality information, I present Impact Neighborhood Indexing (INI) to find impact neighborhoods with nodes' fingerprints propagation on the network. For the accuracy challenge, I introduce Degree Decoupled PageRank (D2PR) technique to improve the effectiveness of PageRank based knowledge discovery, especially considering the significance of neighbors and degree of a given node. To tackle the uncertain challenge, I introduce Uncertain Personalized PageRank (UPPR) to approximately compute personalized PageRank values on uncertainties of edge existence and Interval Personalized PageRank with Integration (IPPR-I) and Interval Personalized PageRank with Mean (IPPR-M) to compute ranking scores for the case when uncertainty exists on edge weights as interval values.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Mining complex trees for hidden fruit : a graph–based computational solution to detect latent criminal networks : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Technology at Massey University, Albany, New Zealand.

    Get PDF
    The detection of crime is a complex and difficult endeavour. Public and private organisations – focusing on law enforcement, intelligence, and compliance – commonly apply the rational isolated actor approach premised on observability and materiality. This is manifested largely as conducting entity-level risk management sourcing ‘leads’ from reactive covert human intelligence sources and/or proactive sources by applying simple rules-based models. Focusing on discrete observable and material actors simply ignores that criminal activity exists within a complex system deriving its fundamental structural fabric from the complex interactions between actors - with those most unobservable likely to be both criminally proficient and influential. The graph-based computational solution developed to detect latent criminal networks is a response to the inadequacy of the rational isolated actor approach that ignores the connectedness and complexity of criminality. The core computational solution, written in the R language, consists of novel entity resolution, link discovery, and knowledge discovery technology. Entity resolution enables the fusion of multiple datasets with high accuracy (mean F-measure of 0.986 versus competitors 0.872), generating a graph-based expressive view of the problem. Link discovery is comprised of link prediction and link inference, enabling the high-performance detection (accuracy of ~0.8 versus relevant published models ~0.45) of unobserved relationships such as identity fraud. Knowledge discovery uses the fused graph generated and applies the “GraphExtract” algorithm to create a set of subgraphs representing latent functional criminal groups, and a mesoscopic graph representing how this set of criminal groups are interconnected. Latent knowledge is generated from a range of metrics including the “Super-broker” metric and attitude prediction. The computational solution has been evaluated on a range of datasets that mimic an applied setting, demonstrating a scalable (tested on ~18 million node graphs) and performant (~33 hours runtime on a non-distributed platform) solution that successfully detects relevant latent functional criminal groups in around 90% of cases sampled and enables the contextual understanding of the broader criminal system through the mesoscopic graph and associated metadata. The augmented data assets generated provide a multi-perspective systems view of criminal activity that enable advanced informed decision making across the microscopic mesoscopic macroscopic spectrum

    A treatment of stereochemistry in computer aided organic synthesis

    Get PDF
    This thesis describes the author’s contributions to a new stereochemical processing module constructed for the ARChem retrosynthesis program. The purpose of the module is to add the ability to perform enantioselective and diastereoselective retrosynthetic disconnections and generate appropriate precursor molecules. The module uses evidence based rules generated from a large database of literature reactions. Chapter 1 provides an introduction and critical review of the published body of work for computer aided synthesis design. The role of computer perception of key structural features (rings, functions groups etc.) and the construction and use of reaction transforms for generating precursors is discussed. Emphasis is also given to the application of strategies in retrosynthetic analysis. The availability of large reaction databases has enabled a new generation of retrosynthesis design programs to be developed that use automatically generated transforms assembled from published reactions. A brief description of the transform generation method employed by ARChem is given. Chapter 2 describes the algorithms devised by the author for handling the computer recognition and representation of the stereochemical features found in molecule and reaction scheme diagrams. The approach is generalised and uses flexible recognition patterns to transform information found in chemical diagrams into concise stereo descriptors for computer processing. An algorithm for efficiently comparing and classifying pairs of stereo descriptors is described. This algorithm is central for solving the stereochemical constraints in a variety of substructure matching problems addressed in chapter 3. The concise representation of reactions and transform rules as hyperstructure graphs is described. Chapter 3 is concerned with the efficient and reliable detection of stereochemical symmetry in both molecules, reactions and rules. A novel symmetry perception algorithm, based on a constraints satisfaction problem (CSP) solver, is described. The use of a CSP solver to implement an isomorph‐free matching algorithm for stereochemical substructure matching is detailed. The prime function of this algorithm is to seek out unique retron locations in target molecules and then to generate precursor molecules without duplications due to symmetry. Novel algorithms for classifying asymmetric, pseudo‐asymmetric and symmetric stereocentres; meso, centro, and C2 symmetric molecules; and the stereotopicity of trigonal (sp2) centres are described. Chapter 4 introduces and formalises the annotated structural language used to create both retrosynthetic rules and the patterns used for functional group recognition. A novel functional group recognition package is described along with its use to detect important electronic features such as electron‐withdrawing or donating groups and leaving groups. The functional groups and electronic features are used as constraints in retron rules to improve transform relevance. Chapter 5 details the approach taken to design detailed stereoselective and substrate controlled transforms from organised hierarchies of rules. The rules employ a rich set of constraints annotations that concisely describe the keying retrons. The application of the transforms for collating evidence based scoring parameters from published reaction examples is described. A survey of available reaction databases and the techniques for mining stereoselective reactions is demonstrated. A data mining tool was developed for finding the best reputable stereoselective reaction types for coding as transforms. For various reasons it was not possible during the research period to fully integrate this work with the ARChem program. Instead, Chapter 6 introduces a novel one‐step retrosynthesis module to test the developed transforms. The retrosynthesis algorithms use the organisation of the transform rule hierarchy to efficiently locate the best retron matches using all applicable stereoselective transforms. This module was tested using a small set of selected target molecules and the generated routes were ranked using a series of measured parameters including: stereocentre clearance and bond cleavage; example reputation; estimated stereoselectivity with reliability; and evidence of tolerated functional groups. In addition a method for detecting regioselectivity issues is presented. This work presents a number of algorithms using common set and graph theory operations and notations. Appendix A lists the set theory symbols and meanings. Appendix B summarises and defines the common graph theory terminology used throughout this thesis
    corecore