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Abstract

In real life, we often face ordering problems of items: sorting items with some prior-
ities, processing many tasks sequentially, ranking search results on the Web, traveling
famous sites one by one, and so on. In mathematical terms, ordering of items is called
a permutation. Since a permutation can be considered as a bijective function on a set,
permutations can also represent e.g., reversible functions and pair-matching of items.

There are a lot of previous research results to find a “good” permutation for prob-
lems on which solutions can be described as permutations. For example, the traveling
salesman problem requires us to find a “shortest” path consisting of a permutation of all
vertices, and the single-machine scheduling problem requires us to find a permutation
of all tasks with the “minimum” penalty. On the other hand, in real situations, condi-
tions such as roads or priorities can be dynamically changed. In such cases, we have to
calculate a “good” permutations again and again.

Enumeration of permutations is a way to overcome difficulties of dynamic changes. If
we store all solutions and index to extract a “good” permutation from the solutions, we
may obtain a “good” permutation faster than repeatedly calculating under new condi-
tions. Furthermore, enumeration of all solutions is useful for other applications: obtain
the number of solutions, random sampling of solutions, extracting solutions satisfying
additional conditions, etc. For several conditions, enumeration of permutations has been
also deeply studied. However, the number of the permutation is huge, namely factorial
in the number of items. Hence the listing all permutations seems to be infeasible even
for a few items.

An idea to avoid the factorial explosion is the usage of a compressed data structure to
store and to index solutions. In this thesis, we focus on permutation decision diagrams
(πDDs) as such a data structure. This data structure can store permutations compactly
and possesses a permutation-set algebra including union and intersection. Moreover,
manipulation and extraction of permutations in the data structure can be achieved in
time depending only on the size of πDDs, not on the number of permutations repre-
sented by πDDs. This means that if the solutions could be well compressed by a πDD,
manipulation of the solutions can also be efficiently processed.

Although a πDD is a powerful data structure, there are few results applying πDDs



to permutation problems. Hence, in the present thesis we purposely use πDDs for sev-
eral permutation problems, and analyze their performance experimentally and theoreti-
cally. Chapter 3 provides results indicating that the usage of πDDs is effective for the
following two applications: reversible circuit debugging and cycle-type partition of a
permutation set. For these problems, it is worthless that we explicitly enumerate all the
solutions and add them to a πDD because we cannot avoid calculation for a factorial
number of permutations. We thus analyze the properties of the problems and propose
πDD-construction algorithms for each problem based on the properties, utilizing πDD
operations cleverly and/or reducing the number of πDD operations in the algorithms. In
Section 3.1, we tackle reversible circuit debugging problems. Reversible circuits specify
reversible functions, whose inputs are uniquely identified by their output. This property
means reversible functions are permutations. For manufacture of reversible circuits, it
is desirable to check whether a circuit specify an expected function or not. In previous
work, a SAT-based algorithm and a πDD-based algorithm have been proposed for this
purpose, they however cannot scale for circuits with many inputs and gates, and cannot
identify error-responsible gates. We gives a theoretically faster algorithm to debugging
circuit with a single error gate compared with previous methods. Although this algo-
rithm does not use πDDs, the algorithm can be extended to a problem with multiple
errors thanks to πDDs. This algorithm is the first algorithm to detect error positions for
multiple errors model. In Section 3.2, cycle-type partition of permutation sets is investi-
gated. The cycle-type of a permutation is a vector representing the distribution of cycles
in the permutation. Two permutations are called cycle-type equivalent if they have the
same cycle-type. The partition of a permutation set with respect to cycle-type equiva-
lence plays an important role in combinatorics. We indicate that cycles of permutations
have a property suitable to πDD representation, and provide a partition algorithm uti-
lizing the advantage. Experimental evaluation confirms that this algorithm outperforms
a naïve method and an existing πDD-based method.

On the other hand, we also face negative results for some applications, as shown
in Chapter 4. This motivates us to invent a modified version of πDDs, so-called Rot-
πDDs. We show that applying Rot-πDDs to such problems, which include enumeration
of Eulerian trails, topological orders of directed graphs, and pattern-avoiding permuta-
tions, improves compression ratio and runtime of construction methods. In Section 4.2,
we enumerate Eulerian trails, walks in an undirected graph such that each edge is used
exactly once. Although listing algorithms have been proposed, they have never aimed
to compress Eulerian trails and thus suffer from the time and space complexity to ma-
nipulate solutions on memory. We propose a Rot-πDD-construction algorithm based on
a dynamic programming technique for counting, and show that the size of Rot-πDDs
are theoretically bounded, and the analysis indicates that Rot-πDDs are preferable to
πDDs. In Section 4.3, we enumerate topological orders, vertex orders on a directed



graph such that there is no edge from right to left in the order. For the topological or-
dering problem, enumeration and finding a solution under dynamic graph modifications
have been individually studied. For enumeration, we show that the similar dynamic
programming approach for Rot-πDD construction can also be applied to the topolog-
ical ordering problem. Moreover, we propose a new Rot-πDD operation that realizes
dynamic addition of edges. This implies Rot-πDDs can store all topological orders on
a dynamic growing graph, and such an algorithm has never been proposed as far as
the author know. In Section 4.4, we enumerate pattern-avoiding permutations, which
are permutations whose subsequences do not have the same relative order as a pattern
permutation. Some classes of pattern-avoiding permutations correspond to solutions
of several other permutation problems. Thus permutation patterns are frequently used
as the characterization of permutation problems. For enumeration of pattern-avoiding
permutations, search-based algorithms have been proposed for general permutation pat-
terns, and several specific algorithms have been proposed for restricted classes of pat-
terns. We propose a πDD construction algorithm as a first step. This algorithm runs
faster than the previous methods for general patterns. In addition, we show that, by
using Rot-πDDs instead of πDDs, the sizes of Rot-πDDs in the middle of the algo-
rithm are exactly smaller than the sizes of πDDs. This indicates that Rot-πDDs seem
to be preferable to πDDs for the problem, and experimental results indeed confirm the
prediction. It is a natural question how we choose preferable decision diagrams for
each permutation problem. Section 4.5 includes suggestions for selection of decision
diagrams with additional experimental data. We mainly investigate the effects of disor-
der measures for permutations, which evaluate hardness of sorting for the permutations
from several aspects.

In Chapter 5, we attack a permutation problem for decision diagrams themselves:
variable ordering of decision diagrams. Ordering of variables dramatically affects the
size of a decision diagram, as we will see later. However, it is known that the variable
ordering problem is NP-complete in general. We focus on decision diagrams to repre-
sent subgraphs of a given graph. We investigate that the size of decision diagrams can
be bounded by a well-known graph parameter path width. Thus we propose a heuristic
search algorithm optimizing the path width yielded by a variable order. Experimental
results show that this algorithm generates orders with smaller path widths than the ex-
isting meta-heuristic approach, and hence may accelerate many decision diagram based
algorithms.

Through a series of studies in this thesis, we develop several techniques to apply
πDDs and Rot-πDDs to various permutation problems, and show the effectiveness of
permutation decision diagrams by theoretical and experimental evaluations of the per-
formance. Furthermore, we give commonly utilized ideas among similar problems and
preliminary experiments for efficiency evaluations focusing on disorder measures of



permutations. These will be hints when we utilize πDDs and Rot-πDDs for other per-
mutation problems. In addition, we provide a new method that improves a part of exist-
ing decision diagram based algorithms. It can be expected that the results in this thesis
will lead to efficient methods for practical applications of permutation problems in this
thesis and many other permutation problems.
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Chapter 1

Introduction

1.1 Background
A permutation is a bijective function π : A→ A from a set A to itself. Without loss of

generality, we suppose A is a finite set of integers {1, . . . ,n}, then π can be considered
as a numerical sequence (π(1), . . . ,π(n)). Since each of {1, . . . ,n} appears exactly once
in this sequence, a permutation can represent ordering of items.

In real life, we often face problems related to permutations. For example, we some-
times want to know short routes to visit all the places we should visit exactly once for
a given road network. This is known as the traveling salesman problem, and we should
compute appropriate permutations of places in the problem. For another instance, we
sometimes want to process many tasks with deadlines sequentially as less deadline vi-
olations as possible. This is known as the single-machine scheduling problem, and we
should compute appropriate permutations of tasks in the problem. We call problems
whose solutions can be described by permutations permutation problems. There are
many other permutation problems, briefly:

• Sorting: Rearrange books into a bookshelf in the order of their volumes.

• Ranking: Suggest search results on the result pages in the order according to
somehow demands.

• Matching: Make n pairs each of which consists of a person from a group A and
another person from a group B, where the number of persons of A and B is n.

• Encoding: Store strings in the form of secure/compressed codes. One-to-one
correspondence ensures decoding ability.

Thus, permutations play a important role in combinatorial problems related to several
real-life applications, and it is desired to efficiently solve such permutation problems.
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Many researches investigate different types of objectives for individual permutation
problems. As an instance of permutation problems, we focus on the topological sort
problem here, which will be also discussed later in Section 4.3. In the topological sort
problem, for given a directed graph, we aim to compute a topological order, which
is a vertex order of a directed graph such that there is no directed edge contradicting
the vertex order, i.e., if an edge from vi to v j, then i < j must hold in the vertex order
(v1, . . . ,vn). It corresponds to a scheduling problem of tasks with relative priorities.
Several types of objectives for the topological sort problem have been investigated, for
example:

• Finding a single (optimal) solution [44, 78],

• Sampling a uniformly random solution [18],

• Enumerating all solutions [70, 64],

• Counting the number of solutions [53], and

• Updating a solution under dynamic graph modifications [8, 65].

Since application problems require different types of objectives, researchers have stud-
ied algorithms to obtain each type of solutions individually, as described above.

On the other hand, if we store a set of all the permutations, we can immediately obtain
a permutation, a uniformly random permutation, all the permutations, and the number
of solutions from the set. We also can find an optimal permutation from the set by
evaluating each permutation and handle dynamic modification of the set by applying
modifications to each permutation or adding/removing permutations. Therefore, storing
all permutations has a comprehensive potential for several objectives of each permuta-
tion problem. However, the number of permutations on the set {1, . . . ,n} is n!, very
huge to store them in a naïve way. In addition, it is inefficient to evaluate and apply
modifications to all the permutations because it requires time linear in the cardinality
of a solution set. Thus we aim to compress a set of permutations and to index them for
manipulation of permutations in the set without restoring and traversing them. This is
our target problem in the present thesis: for permutation problems, we store all the so-
lutions of the problem in a compact and indexed form to efficiently manipulate them on
memory, such as random sampling, counting the cardinality, and dynamic modification.

1.2 Related Work
Many researches investigated compression of a single permutation. An important fact

to study compression of a permutation is that naïve array representation of permutations
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on integers is already an asymptotically optimal encoding from a point of view of in-
formation theory; to distinguish n! permutations, we need ⌈log(n!)⌉ ≃ n logn− 1.44n
bits1 for each permutation, and naïve array representation stores n integers encoded
in ⌈logn⌉ bits. This means that the naïve array representation has the redundancy of
n⌈logn⌉−⌈log(n!)⌉ ≃ n(⌈logn⌉− logn)+ 1.44n ≤ 2.44n = Θ(n) bits only, compared
with the theoretical lower bound.

One of research directions of compression of a single permutation is to reduce the
redundancy of Θ(n) term of the naïve array representation. In this context, Munro
et al. [62] have proposed a succinct data structure for permutations with ⌈log(n!)⌉+
O(n(log logn)5/(logn)2) bits representation, which supports π() and π−1() queries in
O(logn/ log logn) time. This means that the succinct data structure has only o(n) redun-
dancy for function calculation queries, and thus improves the redundancy of the naïve
array representation.

Another direction of single-permutation compression is adaptive compression: the
smaller disorderedness a given permutation has, the shorter encoding the compres-
sion scheme assigns to the permutation. Barbay and Navarro [5] have proposed a
data structure with at most n+ n logRuns(π) bits, which supports π() and π−1() in
O(logRuns(π)/ log logn) time for a given permutation π , where Runs(π) is the number
of runs in π , which are the positions i of descents π(i)> π(i+1).

Unfortunately, the above two directions are for a single permutation. These ap-
proaches cannot avoid factorial explosion for a large permutation set, because it re-
quires the size linear in the cardinality of a permutation set. On the other hand, the
lower bound of the size of an encoded permutation set is also factorial: ⌈log2n!⌉ = n!
bits are required. Thus, we would need to introduce a similar idea to adaptive compres-
sion: we assign short encodings to permutation sets that frequently arise in application
problems.

For permutation groups, there is a well-known compact representation by a strong
generating set. Sims [75] has proposed the first algorithm, called Schreier-Sims algo-
rithm, to compute a strong generating set for given generators of a permutation group,
and Knuth [49] gives the complexity analysis: O(n5 +n2m) time and O(n3 logn) space,
where m is the number of given generators. This representation can process several
queries, e.g. membership query, and thus it is implemented in several computer algebra
systems, e.g. GAP [34]. However, this representation can be used for only permutation
groups and thus cannot be used for arbitrary permutation sets directly, because it repre-
sents a permutation group as the set of its generators, whereas an arbitrary permutation
set cannot be generated by a generator set in general.

Permutation decision diagrams (πDDs) [60] are data structure for arbitrary permuta-
tion sets derived from Zero-suppressed Binary Decision Diagrams (ZDDs) [59], which

1in this thesis, we use a notation log to represent the logarithm to the base 2.
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are used to represent a set of combinations. The key idea of πDDs is transposition de-
composition of permutations, the sequence of exchanges (transpositions) to make the
identity permutation to a given permutation. A permutation set can be represented by a
decision tree with transposition nodes: a path to a true-node (resp. a false-node) repre-
sents the transposition decomposition of a permutation in the set (resp. not in the set).
A πDD is a decision tree compressed by sharing and deleting nodes.

The precise upper bound of the size of a πDD is not revealed: although a rough upper
bound is 2n2

, in several practical cases, a πDD can store permutations compactly. πDDs
also support permutation-set algebra such as union and intersection between permuta-
tion sets. Moreover, manipulation and extraction of permutations in the data structure
can be achieved by recursive procedures that run in time depending only on the size of
πDDs, not on the number of permutations represented by πDDs. This means that if the
solutions can be well compressed as a πDD, manipulation of the solutions would also
be efficiently processed.

Although a πDD is a powerful data structure, there are few results applying πDDs to
permutation problems, e.g. counting primitive sorting networks [46]. Thus many open
problems about πDDs remain as follows:

• Applications for several permutation problems should be examined to evaluate
the practical performance (e.g., compression ratio and runtime for construction
and queries) of πDDs.

• Are there problems for which the usage of πDDs is very effective or not? If
so, what kind of properties of such problems affects the performance of πDDs?
Can we categorize such problems by mathematical characterization and use the
same (or similar) techniques with πDDs to efficiently solve problems in the same
category?

• For problems unfavorable for πDDs, can we improve the performance of πDDs
by modifying πDDs?

• Can we theoretically evaluate the performance of πDDs? This seems to be chal-
lenging work because the theoretical-size analysis of ZDDs is known to be diffi-
cult in general.

We tackle the above problems in this thesis. We hence purposely use πDDs for several
permutation problems, and analyze their performance experimentally and theoretically.

1.3 Contributions
Contributions in this thesis are summarized as follows:
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1. We apply πDDs to the following two permutation problems:

• Debugging erroneous reversible circuits: A Reversible circuit specifies a
reversible function, whose inputs and outputs have one-to-one correspon-
dence, i.e., a permutation. Incidental errors in manufacture may make a
reversible circuit work as an unexpected function. We use πDDs for an al-
gorithm to check whether a reversible circuit has errors or not, and if so,
detect the error positions and debug them. This is a first algorithm to debug
erroneous circuits with multiple errors.

• Cycle-type partition of a permutation set: Permutations can be decomposed
into cycles, and the cycle-type of a permutation is the distribution of the
length of cycles. Cycle-type partition of a permutation set can be obtained
by the equivalence relation with respect to cycle-types. We provide an al-
gorithm such that for given a πDD representing an input permutation set, it
returns a set of πDDs each of which corresponds to a permutation set in the
partition. For this problem, there is an existing work utilizing πDDs [87].
We indicate a good relation between cycle decomposition and πDD struc-
ture, and the proposed method utilizing this property outperforms the exist-
ing method in computational experiments.

2. We propose a new variation of πDDs, Rotation-based πDDs (Rot-πDDs). We
also apply Rot-πDDs to the following three permutation problems:

• Enumeration of Eulerian trails: Eulerian trails are traversals of a graph in
which each edge of the graph is passed exactly once, i.e., a permutation of
edges. We utilize a dynamic programming approach to count the number
of all Eulerian trails for construction of a Rot-πDD representing all Eulerian
trails. Complexity analysis of the construction algorithm indicates that com-
putation time and the size of a resulting Rot-πDD are theoretically bounded,
and Rot-πDDs are preferable to πDDs for Eulerian trails.

• Enumeration of topological orders: Topological orders, which are briefly
introduced in Section 1.1, are also studied in this thesis. We show that a
dynamic programing based construction can be utilized for the topological
sort problem, and the time and space complexity of the algorithm are well-
bounded by a graph parameter, minimum path cover. We also provide a Rot-
πDD operation for extracting permutations in which an element a precedes
another element b. This corresponds to processing dynamic addition of an
edge to a directed graph. Experimental results confirm the efficient com-
pression of Rot-πDDs: 3.7×1041 topological orders can be represented by
a Rot-πDD with the size 2.2×107.
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• Enumeration of pattern-avoiding permutations: A text permutation τ con-
tains a pattern permutation π if there are subsequences of τ that have the
same relative order to π . Otherwise, τ avoids π . We propose enumeration
algorithms for pattern-avoiding permutations using πDDs and Rot-πDDs.
We show that the sizes of Rot-πDDs in the middle of the algorithm are
smaller than ones of πDDs. Experiments demonstrate that decision dia-
gram based algorithms perform faster than a naïve method and the existing
method used in a software for permutation pattern analysis, and confirm the
Rot-πDD based algorithm is superior to the πDD-base algorithm in terms
of both of construction time and the size of decision diagrams.

3. We investigate what parameters of permutations affect compression ratio of de-
cision diagrams. We focus on disorder measures as parameters of permutations,
which are measures for hardness to sort a permutation. We give some suggestions
to properly use decision diagrams for each problem based on the contributions for
the above permutation problems and preliminary experiments for disorder mea-
sures.

4. We tackle to ordering problem in decision diagrams, variable ordering. As we
will see in the following chapters, an order of variables dramatically affects the
compression performance of decision diagrams. On the other hand, computation
of a variable order yielding the minimum decision diagram is known to be NP-
complete in general [11]. In this thesis, we focus on ZDDs representing subgraphs
of a given graph and frontier-based search, a ZDD construction algorithm for
subgraphs. We indicate the relation between frontier-based search and a graph
parameter path width of a given graph. We provide a meta-heuristic algorithm
utilizing this relation for computation of a good variable order. In computational
experiments, the proposed algorithm yields better orders compared with variable
orders calculated by the algorithms used in a frontier-based search library.

1.4 Thesis Organization
In the following Chapter 2, we introduce definitions and notations about permuta-

tions, graphs, and decision diagrams, which are our objectives and tools used in this
thesis. In Chapter 3, we provide the two instances of applications of πDDs: reversible
circuit debugging and cycle-type partition of a permutation set. These results show that
appropriate πDD usage makes algorithms faster and less space, or gives new ideas to
enumerate permutations. Chapter 4 introduces a new variation of πDDs, Rot-πDDs,
invented by the author. Chapter 4 also includes the three applications of Rot-πDDs:
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enumeration of Eulerian trails, topological orders, and pattern-avoiding permutations.
Furthermore, we investigate proper choice of πDDs and Rot-πDDs for permutation
problems in the last of Chapter 4, focusing on disorder measures of permutations. In
Chapter 5, we introduce a permutation problem for decision diagram construction: vari-
able ordering. We give an algorithm to find a good variable order, namely a permutation
of variables, in terms of yielding smaller decision diagrams. Chapter 6 summarizes the
results in this thesis and indicates future work.





Chapter 2

Preliminaries

In this chapter, we introduce required definitions and notations to describe the contribu-
tions in this thesis. More precisely, we first introduce permutations, which are the main
objectives of this thesis. Next, we introduce graphs since our data structure “decision
diagrams” are in the form of directed graphs, and they also arise on our application
problems frequently. Finally, we introduce decision diagrams, which are our main tools
to solve permutation problems efficiently.

2.1 Permutations
We first provide basic definitions and notations of permutations. We denote the set
{1, . . . ,n} by [n].

Definition 2.1.1. A permutation is a bijective function mapping a set onto itself. With-
out loss of generality, a permutation on a finite set with cardinality n can be con-
sidered as a function π : [n]→ [n], and we call it a permutation of length n, or an
n-permutation shortly. An n-permutation π can be written in the one-line form as
π = (π(1),π(2), . . . ,π(n)), and we denote πi = π(i). Thus, an n-permutation can be
considered as a numerical sequence of length n such that each of integers 1, . . . ,n ap-
pears exactly once in the sequence.

Example 2.1.1. A numerical sequence π = (4,3,1,2) represents a 4-permutation, and
π3 = 1.

Since a permutation is a function, we can define composition of two permutations.

Definition 2.1.2. The composition π ·σ of two permutations π and σ is π ·σ =(σ(π(1)),
. . . ,σ(π(n)) = (σπ1, . . . ,σπn). Note that we apply the leftmost permutation first. We
sometimes omit · when it is obvious from the context.
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・ =

Figure 2.1. An example of composition of two permutations

Example 2.1.2. Let x = (4,5,2,1,3) and y = (4,1,3,5,2), then x ·y = (5,2,1,4,3) (see
Figure 2.1 for visualization).

We notice that composition of permutations is non-commutative.
We also define some special permutations.

Definition 2.1.3. We say that a permutation π fixes i if πi = i. An n-permutation π is
an identity permutation if π fixes all the elements 1, . . . ,n. As a numerical sequence, the
identity permutation of length n is the increasing sequence (1,2, . . . ,n). We denote an
identity permutation by ι .

Definition 2.1.4. The inverse π−1 of a permutation π is the inverse function of π , i.e.,
π−1(π(i)) = i for all 1≤ i≤ n. Hence, π ·π−1 = π−1 ·π = ι holds.

Definition 2.1.5. A transposition τi, j (i < j) is a permutation fixes all the elements
except i and j, and τi, j(i) = j and τi, j( j) = i. Namely, τi, j = (1, . . . , i−1, j, i+1, . . . , j−
1, i, j+1, . . .n).

We can decompose a permutation into a sequence of transpositions [60].

Definition 2.1.6. Transposition decomposition of a permutation π is a sequence of
transpositions recursively computed as follows: If π is an identity permutation, we
return an empty sequence. Otherwise, let x be the maximum unfixed element. Then
π ′ = π · τx,πx is recursively decomposed and compose τx,πx to the right of the obtained
composition. This is correct since π ′ · τx,πx = π · τx,πx · τx,πx = π . This procedure will
terminate because π ′ · τx,πx fixes x and hence the maximum unfixed element properly
decreases in the recursive procedure.

Proposition 2.1.1. Any n-permutation can be uniquely represented as a transposition
decomposition with at most n−1 transpositions.

Example 2.1.3. We demonstrate the transposition decomposition of a permutation π =

(5,4,2,1,3) (see Figure 2.2 for visualization). The maximum unfixed element of π is
5, and the 5-th element π5 is 3, hence we exchange 5 and 3, and obtain π ′ = π · τ3,5 =
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τ2,3 τ1,4 τ3,5・ ・ ・

Figure 2.2. An example of transposition decomposition of a permutation

(3,4,2,1,5). Since the maximum unfixed element of π ′ is 4 and the 4-th element of π ′

is 1, we then obtain π ′′ = π ′ · τ1,4 = (3,1,2,4,5). Repeating this procedure, we finally
obtain π = (5,4,2,1,3) = τ1,2 · τ2,3 · τ1,4 · τ3,5.

Permutations can be decomposed by another fashion: cycle decomposition.

Definition 2.1.7. A cycle (a1 . . . ak), where ai ∈ {1,2, ...,n} and ai ̸= a j for i ̸= j,
denotes a permutation π such that π(ai) = ai+1 for 1 ≤ i < k and π(ak) = a1, and π
fixes the other elements. Here, k is called the length of a cycle, and (a1 . . . ak) is called
a k-cycle.

Definition 2.1.8. Any permutation can be uniquely decomposed into composition of
disjoint cycles. The cycle decomposition of a permutation is a sequence of disjoint
cycles such that composition of the cycles is the permutation.

Although the order of elements in cycles and the order of compositions are arbitrary,
we define the normal form of cycle decomposition as follows. First, we cyclically shift
each cycle such that the minimum element in the cycle is at the first position. Next, we
reorder cycles in increasing order of the first elements.

Example 2.1.4. Since (4,6,1,3,5,2) = (5)(6 2)(4 3 1), a permutation (4,6,1,3,5,2) is
decomposed into three disjoint cycles: (5), (2 6), and (1 4 3). This can be confirmed by
the graph visualization in Figure 2.3. Its normal form is (1 4 3)(2 6)(5). For instance,
(1 4 3) is a 3-cycle.

We denote the set of all the n-permutations by Sn. Unless otherwise noted, we here-
after use Greek alphabets for a permutation (e.g. π), and uppercase English letters for a
permutation set (e.g. P) in the context of permutations.

2.2 Graphs
We introduce basic definitions and notations for undirected graphs.
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Figure 2.3. Graph representation of the cycle decomposition of a permutation (4,6,1,3,5,2)
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Figure 2.4. A graph, its subgraph, and its induced subgraph

Definition 2.2.1. An undirected graph G consists of two sets V and E, where V is a
vertex set and E is an edge multiset. An edge is unordered pairs of vertices in V . We
denotes the cardinality |V | of V by n and the cardinality |E| of E by m. Without loss of
generality, we assume that V = [n].

Example 2.2.1. Figure 2.4(a) illustrates an undirected graph G with n = 6 vertices and
m = 7 edges.

Unless otherwise noted, we call an undirected graph as a graph for short.

Definition 2.2.2. An edge e = {u,v} is called a self-loop if u = v. Two different edges
e and f are said to be multiple edges if e = f . A graph is simple if the graph has no
self-loop and no multiple edge.

Example 2.2.2. A graph G in Figure 2.4(a) is not simple because it has a self-loop
d = {3,3} and multiple edges a and b.

Next, we introduce some concepts about graphs that will be used later.
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Definition 2.2.3. Two vertices u and v is adjacent if an edge {u,v} is in E. For edge
e = {u,v}, u and v are called endpoints of e, and e is incident to u and v. The degree
d(v) of a vertex v ∈ V of G = (V,E) is the number of edges incident to v, here each
self-loop is counted twice. Vertices with degree 0 are called to be isolated. Neighbors
of a vertex v are a set of vertices adjacent to v, and denoted by N(v). Neighbors of a
vertex set S are similarly defined as N(S) = ∑v∈S N(v)\S.

Example 2.2.3. We refer the graph G in Figure 2.4(a). The degree of the vertex 5 in G
is 3, and the degree of the vertex 3 is 4. The vertex 4 is an isolated vertex. The neighbors
of the vertex 2 is {1,3}, and the neighbors of {2,5} is {1,3,6}.

Definition 2.2.4. A walk on a graph is an alternating sequence (v1,e1,v2,e2, . . . ,vk,ek,vk+1)

of vertices and edges such that ei = {vi,vi+1}. A trail is a walk on which the same edge
appears at most once. A path is a walk on which the same vertex appears at most once.
A cycle is a closed path, i.e., v1 = vk+1. The length of a walk (resp. trail, path, and
cycle) is defined by the number k of edges in a walk (resp. trail, path, and cycle). When
the vertices in a walk (resp. trail, path, and cycle) is obvious from the context, we use
an edge sequence (e1,e2, . . . ,ek) to represent a walk (resp. trail, path, and cycle).

Example 2.2.4. In the graph G in Figure 2.4(a), a sequence (6,g,5, f ,3,d,3, f ,5,e,1)
is a walk with length 5, but not a trail because edge f is appears twice. A sequence
(5, f ,3,c,2,b,1,a,1) is a trail with length 4, but not a path because vertex 1 is ap-
pears twice. A sequence (6,g,5,e,1,a,2,c,3) is a path with length 4. A sequence
(1,b,2,c,3, f ,5,e,1) is a cycle with length 4.

Definition 2.2.5. A graph G′ = (V ′,E ′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V
and E ′ ⊆ E. We denote a subgraph induced by S as G[S] = (S,E(S)), where E(S) is a
multiset of all the edges in E incident to at least one vertex in S. We call G[S] an induced
subgraph of G.

Example 2.2.5. The graphs of Figure 2.4(b) and (c) are subgraphs of G in Figure 2.4(a).
The graph of Figure 2.4(c) is also an induced subgraph G[{1,3,4,5}] of G, whereas the
graph of Figure 2.4(b) is not because, for example, vertices 1 and 2 are in the graph but
edge a is not used.

Definition 2.2.6. Two vertices u and v are connected if there is a path from u to v. A
graph G is connected if any two vertices in G are connected. Connected components of
a graph is maximal connected subgraphs, i.e., connected induced subgraphs G[S] such
that for all v ∈V \S, G[S∪{v}] is not connected.

Example 2.2.6. In the graph G in Figure 2.4(a), vertices 2 and 6 are connected while
vertices 3 and 4 are not connected. The connected components in G are G[{1,2,3,5,6}]
and G[{4}].
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(a) a directed graph (b) a rooted tree

Figure 2.5. An example of directed graph

We also introduce directed graphs.

Definition 2.2.7. A directed graph G is an ordered pair of two sets V and E, where V is
a vertex set and E is an edge multiset. Each edge in a directed graph is an “ordered”
pair of vertices in V . Thus, we consider that directed edges (u,v) and (v,u) are different,
while undirected edges {u,v} and {v,u} are the same.

Definition 2.2.8. Out-going edges of a vertex v ∈V is the edges {e | e = (v,x) ∈ E,x ∈
V}. In-coming edges of a vertex v ∈ V is the edges {e | e = (x,v) ∈ E,x ∈ V}. Out-
degree d−(v) of a vertex v is the number of out-going edges of v. In-degree d+(v) of a
vertex v is the number of in-coming edges of v.

Example 2.2.7. Figure 2.5(a) shows an example of a directed graph. The out-degree of
the vertex 2 is 3, and the in-degree of the vertex 2 is 1.

Definition 2.2.9. A walk on a directed graph is an alternating sequence (v1,e1,v2,e2, . . . ,

vk,ek,vk+1) of vertices and edges such that ei = (vi,vi+1). Trails, paths, and cycles on
a directed graph are similarly defined ones on an undirected graph. Directed acyclic
graphs (DAG) are directed graphs having no cycles.

Example 2.2.8. The directed graph in Figure 2.5(a) has no cycle. Hence the directed
graph is a DAG.

Definition 2.2.10. A rooted tree is a DAG T with a root vertex r such that for all vertex
v in T , there is only one path from r to v. We sometimes denote vertices in rooted trees
by nodes. A node v is at the i-th level if the length of the path from r to v is i− 1. A
node with at least one out-going edge is called an internal node, whereas a node with
no out-going edge is called a leaf. A node u pointed by an out-going edge from a node
v is called a child node of v. Then, v is a parent of u.

Example 2.2.9. Figure 2.5(b) illustrates a rooted tree. At the 2-th level, there are three
nodes 2, 3, and 4. Nodes 1, 2, 3, and 4 are internal nodes, and nodes 5, 6, and 7 are
leaves. A node 6 is a child node of a node 4.
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x2

x1

x2

0 0 1 0 0 1 1 0

x3 x3 x3 x3

0 1
x1 x2 x3 f(x1,x2,x3)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Figure 2.6. The truth table and the binary decision tree representing a logic function

(x1∨ x2)∧ (x2⊕ x3)

2.3 Decision Diagrams
Permutation decision diagrams (PiDDs, or πDDs) [60] are data structures which

canonically represent and efficiently manipulate a set of permutations. The structure
of πDDs is based on Zero-suppressed Binary Decision Diagrams (ZDDs) [59], which
are decision diagrams for sets of combinations (families of sets). In this section, we
briefly review some decision diagrams related to contributions in this thesis.

2.3.1 Binary Decision Diagrams (BDDs)

In order to represent a logic function f : {0,1}n→ {0,1}, we can use a binary deci-
sion tree, which is a rooted tree with nodes labeled by variables. To construct a binary
decision tree, we first fix a variable order: the i-th variable appears only at the i-th level
of a decision tree. Each internal node at the i-th level is labeled with the i-th variable
xi, and has exactly two out-going edges: a 0-edge and a 1-edge. Each leaf is labeled
with 0 or 1. Each path from a root to a leaf corresponding to an assignment of variables;
if a 1-edge from a node labeled with xi is in a path, xi is set to 1 in the corresponding
assignment, whereas a 0-edge means that xi is set to 0. If the path reaches a leaf, for the
assignment corresponding to the path, f returns the label of the leaf, 0 or 1. Figure 2.6
provides an example of a logic function and its binary decision tree.

Binary decision Diagrams (BDD) [16] are compressed binary decision trees. The
following two rules reduce a binary decision tree to a BDD, as visualized in Figure 2.7:

• sharing rule: equivalent nodes, which have the same labels and the same child
nodes, are unified to one node and all 0-/1-edges pointing to these nodes re-point
to the unified node.

• deleting rule: delete all nodes of which the 0-/1-edges point to the same node.



16 Chapter 2. Preliminaries

x
0 1

f

f
x

0

f1

x

f2

1 0

f1

x

f2

1

(a) sharing rule (b) deleting rule

Figure 2.7. Two reduction rules for BDDs
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Figure 2.8. A binary decision tree and its reduced BDD

Figure 2.8 shows an example of a reduced BDD representing the logic function in Fig-
ure 2.6. This reduction can be achieved in time linear in the size of an original binary
decision tree (or a non-reduced BDD) by, e.g., Algorithm R in [50]. We notice that the
rule must reduce all leaves labeled with 0 (resp. 1) into a leaf labeled with 0 (resp. 1).
We call the unified leave as the 0-sink and the 1-sink, respectively.

We also notice that a BDD obtained by repetition of applying the two rules whenever
possible is canonical: A BDD has one-to-one correspondence to a logic function. Hence
changing variable orders is only a way to affect the BDD structure and the compression
ratio. We define the size of a BDD as the number of nodes in the BDD. Variable or-
dering of a BDD dramatically affects the size of BDDs for some logic functions. This
indicates an appropriate variable order may achieve exponential improvement of com-
pression. Unfortunately, Bryant [17] has proved that there is a function for which any
variable orders yield exponentially large BDDs. In addition, the problem determining
the best variable order, i.e. the order yields a BDD with the minimum size, is NP-
complete [11]. However, in practice, many logic functions can be represented by a
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x1 x1

x2 x2 x2

x3x3

10

F1 F3F2

Figure 2.9. Three BDDs for F1, F2, and F3 share a part of sub-BDDs.

small BDD in heuristically-detemined orders. We will deal with the variable ordering
problem in Chapter 5 more deeply.

We also notice that a BDD is a DAG, not a tree, due to the reduction rules. Here,
a sub-BDD, namely a subgraph consisting of a BDD node and its reachable nodes, is
also a BDD. For example, in Figure 2.8, the sub-BDD pointed by the 1-edge from the
root node (labeled with x1) can be considered as a BDD for a logic function f (x2,x3) =

x2⊕ x3. This sub-BDD property is important in the following points of view:

• Shared BDD: two or more BDDs can share its sub-BDDs. Thus the nodes gener-
ated to construct multiple BDDs can be less than the sum of the size of the BDDs
(see Figure 2.9 for example).

• Binary operations: logical binary operations such as AND, OR, and XOR be-
tween two BDDs can be calculated without explicitly restoring their truth tables.
Briefly, recursive procedures compute binary operations between two BDDs, whose
complexity is the product of the sizes of two BDDs.

Since the complexity of many operations on BDDs depends on the size of BDDs, rather
than on the number of literals and clauses, we can also consider BDDs as data structure
accelerating calculation on logic functions.

Hereafter, we refer a BDD B as a tuple (x,Bl,Br) of three elements: the label x of
the root node of B, the sub-BDD Bl pointed by the 0-edge from the root node, and the
sub-BDD Br pointed by the 1-edge from the root node. We can uniquely determine a
BDD from this notation since two BDDs represented by the same notation should be
unified into a single BDD according to the sharing rule.

2.3.2 Zero-suppressed Binary Decision Diagrams (ZDDs)

A zero-suppressed binary decision diagram (ZDD) is a modified version of BDDs to
represent combinatorial set more efficiently. A BDD corresponds to a logic function,
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Figure 2.10. Two reduction rules for ZDDs, where (a) is the same as the BDD’s sharing rule

and a logic function can be considered to represent a set of combinations as follows:
For an assignment x for a logic function f , the variables xi with xi = 1 in the assignment
compose a subset of variables. If f (x) = 1, then the combination {xi : xi = 1} is in the
set corresponding to f , whereas assignment x such that f (x) = 0 is not in the set.

Example 2.3.1. A 4-arguments logic function f in Figure 2.6 corresponds to the set of
combinations {{x1,x2},{x1,x3},{x2}}.

A ZDD is derived from a binary decision tree like a BDD. To obtain ZDDs, we use
the same sharing rule as BDDs. On the other hand, the different deleting rule is used (as
shown in Figure 2.10):

• deleting rule: delete all nodes of which the 1-edge points to the 0-sink.

Figure 2.11 shows the ZDD for the combination set {{x1,x2},{x1,x3},{x2}}. Com-
pared with BDDs, the deleting rule of ZDDs intends to compress sparse combinations
more efficiently, since elements that do not appear in combinations are deleted. An ex-
ample in Figure 2.11 indicates that the size of the ZDD is smaller than the size of the
BDD for a sparse combinatorial set.

2.3.3 Permutation Decision Diagrams (πDDs)

We introduce πDDs, which represent sets of permutations, by utilizing the structure
of ZDDs. As defined in Definition 2.1.6, any permutation can be uniquely decomposed
into composition of transpositions. Hence, by assigning transpositions to nodes in a
ZDD, each path in the ZDD represents a permutation. This is the basic idea of πDDs.

We introduce the order of transpositions < so that τx1,y1 < τx2,y2 if y1 > y2 holds, or
y1 = y2 and x1 < x2 holds. We use this order as the fixed order in a πDD. In πDDs,
the 0-sink represents an empty set and the 1-sink represents a singleton of the identity
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Figure 2.11. A binary decision tree and its reduced ZDD
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τ1,4

Figure 2.12. The πDD for {(2,1,4,3),(2,4,3,1),(4,3,2,1)}= {τ1,2 · τ3,4,τ1,2 · τ1,4,τ2,3 · τ1,4}.

permutation ι . We obtain compact and canonical πDDs by applying the two reduction
rules in the same way to ZDDs. Figure 2.12 shows an example of a πDD.

Unless otherwise noted, we hereafter use calligraphic letters for decision diagrams
(e.g. P for a permutation set P). We also refer a ZDD and a πDD as a tuple (x,Zl,Zr) of
a label and two sub-DDs like BDDs.

Set operations on πDDs are inherited from ZDDs. Table 2.1 shows the πDD opera-
tions proposed in [60], which will be used in this thesis. While intersection, union, and
set difference operations are available like ZDDs, the swap and Cartesian product oper-
ations are unique to πDDs. Here the Cartesian product of πDDs differs from the usual
Cartesian product of sets: the set of compositions for all pairs of permutations in one
permutation set and those in the other permutation set. In particular, the Cartesian prod-
uct is very useful because compositions over permutations results in rearrangements.
That is, by applying the Cartesian product operator, we can simultaneously execute re-
arrangements of multiple numerical sequences.



20 Chapter 2. Preliminaries

Table 2.1. πDD operations on two πDDs P and Q.

P∩Q return intersection {π | π ∈ P and π ∈ Q}.
P∪Q return union {π | π ∈ P or π ∈ Q}.
P\Q return difference {π | π ∈ P and π /∈ Q}.
P.Swap(x,y) return swapped permutations {π · τx,y | π ∈ P}.
P×Q return Cartesian product {α ·β | α ∈ P and β ∈ Q}.

1

τ1,4

τ2,3

τ3,4

τ1,2

τ2,4

τ1,3

Figure 2.13. The πDD for S4.

A permutation set Sn is a good example to demonstrate high compression of πDDs.
Let Sn denote the πDD for Sn. We can recursively construct Sn. Suppose we already
obtained Sn−1. We consider (n−1)-permutations as n-permutations with πn = n. Thus,
Sn−1.Swap(k,n) consists of all n-permutations π such that πn = k. Therefore, Sn can
be obtained by computing Sn−1.Swap(1,n)∪ Sn−1.Swap(2,n)∪ ·· · ∪ Sn−1.Swap(n−
1,n)∪Sn−1. Algorithm 2.3.1 realizes this procedure by loops. Figure 2.13 shows S4.
While the cardinality of Sn is n!, the number of internal nodes in Sn is n(n− 1)/2 as
shown in Figure 2.13.
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Algorithm 2.3.1 Construct Sn.
1: procedure CONSTRUCTSN(n)
2: S0← the 1-sink
3: for i = 1 to n do
4: Si← Si−1

5: for j = 1 to i−1 do
6: Si← Si∪Si−1.Swap( j, i)
7: end for
8: end for
9: return Sn

10: end procedure





Chapter 3

Applications of transposition-based
πDDs

In this chapter, we give use cases of πDDs for permutation problems: reversible circuit
debugging in Section 3.1 and cycle-type partition in Section 3.2. For each problem, we
provide new algorithms utilizing πDDs and confirm effectiveness of πDDs by theoreti-
cal analyses and experiments.

3.1 Debugging Erroneous Reversible Circuit
Computation is reversible if we can determine an input pattern for a given output

pattern. Reversible computation is a fundamental technology for next generation com-
putation. The reversible property indicates that reversible computation is information-
lossless. Therefore, reversible computation is used for low power design [9, 51] and
optical computing [24]. In addition, quantum computation [63] is also related to re-
versible computation. Quantum computation exploits quantum mechanical phenomena
such as superposition, entanglement, etc. and utilizes qubits rather than conventional
bits for computation. Since quantum computation can be described as multiplication of
unitary matrices, quantum computation is inherently reversible and thus design meth-
ods for reversible circuits are frequently utilized for automatic design of quantum cir-
cuits [6, 58, 73, 85].

Due to the reversible property, a reversible circuit, which is a circuit for reversible
computation, has neither fan-out nor feedback, i.e. formed as a cascade of reversible
logic gates. This distinguishes synthesis of reversible circuits from irreversible ones,
and attracts many researchers to study synthesis approaches [20, 26, 55, 71, 83]. While
synthesis of reversible circuits is a hot topic in the area of reversible computation, there
are few results concerning debugging such circuits, which is another important process
to analyze reversible circuits.
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Wille et al. [84] proposed the first algorithm to debug reversible circuits using SAT
formulation and SAT solvers based on debugging techniques for irreversible circuits.
Frehse et al. [32] gave a simulation-based approach and combined it with the SAT-
based approach. Tague et al. [77] provided another approach for a single gate error using
πDDs. Since their methods consider only a single gate error, Jung et al. [43] proposed
an extended approach for multiple gate errors. However, there are two problems to be
considered:

• These algorithms use exponential algorithms or data structures, i.e. they are in-
tractable in the worst case.

• These algorithms only detect error positions, i.e. cannot fix errors efficiently.

In this section, we address these tasks with different approaches for a single error and
multiple errors, respectively.

3.1.1 Contribution Summary

For a single error, we propose a theoretically improved debugging algorithm. This
algorithm uses the lemma in [84] and new valid gate checking methods. For multiple
errors, we provide a dynamic programming approach using πDDs. Although this algo-
rithm has the worst-case complexity similar to the approach of Tague et al. [77] for a
single error, it can fix multiple errors and debug them.

We evaluate the efficiency of our algorithms using computational experiments. For
single error circuits, our algorithm achieves a significant improvement compared with
previous approaches. For multiple error circuits, our algorithm succeeds to fix errors in
circuits with few lines by the minimal corrections.

3.1.2 Reversible Functions, Circuits, and Gates

A function f : {0,1}n→ {0,1}n is reversible if it is bijective, i.e., we can determine
an input from the corresponding output. Hence, a function f is considered as a per-
mutation on {0,1, . . . ,2n− 1}, by considering inputs as a binary number. We denote
the permutation corresponding to a reversible function f by π f : {0,1, . . . ,2n− 1} →
{0,1, . . . ,2n−1}.

Reversible circuits realize reversible functions and consist of reversible gates. A re-
versible circuit for an n-bit Boolean function has n lines as shown on the right of Fig-
ure 3.1. Reversible circuits have no fan-out or feedback due to their reversible proper-
ties. Therefore, a reversible circuit is a cascade of reversible gates. Several reversible
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Figure 3.1. Truth table of a reversible function f and a reversible circuit G realizing f .

gates have been invented to synthesize reversible circuits, such as Toffoli [79], Fred-
kin [31], and Peres [67] gates.

Let L = [n] be a set of lines. Toffoli gates have multiple (possibly zero) control lines
C = {c1, . . . ,ck} ⊂ L and one target line t ∈ L \C. For example, the Toffoli gate g3

in Figure 3.1 has the control lines C = {1,3} and the target line t = 2. A Toffoli gate
inverts the target line when inputs for all the control lines are 1. Let xi and yi be the i-th
line’s input and output of a Toffoli gate, respectively. Then, we formally define Toffoli
gates as follows:

yt = xt⊕ xc1 · · ·xck ,

yi = xi if i ̸= t.

Fredkin gates are similar to Toffoli gates, but have two target lines t1, t2 (t1, t2 /∈C) and
swap target lines when all the control lines are 1. Fredkin gates are defined as follows:

yt1 = xt1xc1 . . .xc|C| ∨ xt2xc1 . . .xc|C|

yt2 = xt2xc1 . . .xc|C| ∨ xt1xc1 . . .xc|C|

yi = xi if i ̸= t1, t2

Peres gates are also similar to the two gates, but little bit complicated:

yt1 = xt1⊕ xt2xc1 . . .xc|C|

yt2 = xt2⊕ xc1 . . .xc|C|

yi = xi if i ̸= t1, t2

In this section, we mainly focus on debug of circuits that consists of Toffoli gates.
Our method can be easily extend to Fredkin gates and Peres gates as discussed in Sec-
tion 3.1.3 and 3.1.4.
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Figure 3.2. An erroneous circuit G′ and two fixed circuits realizing f .

Since these gates themselves represents a reversible function, we can represent the
function corresponding to a gate as a permutation. We denote by πg the permutation cor-
responding to a gate g as well as a reversible function. Then the permutation representa-
tion πG of the function realized by a reversible circuit G = g1 · · ·gd equals πg1 · · · · ·πgd .

3.1.3 Debugging Single Error

We define the single error debugging problem of reversible circuits. Let f : {0,1}n→
{0,1}n be a reversible function and G = g1 . . .gd be a reversible circuit with n lines such
that πG = π f . We define G′ to be a single error circuit for f if πG′ ̸= π f and G′ has:

• a replaced error: there is a gate g′ ̸= gi s.t. G′ = g1 . . .gi−1g′gi+1 . . .gd ,

• an inserted error: there is a gate g′ s.t. G′ = g1 . . .gi−1g′gigi+1 . . .gd , and

• a removed error: G′ = g1 · · ·gi−1gi+1 · · ·gd .

The goal of the single error debugging problems is to find the position of an error in
an erroneous circuit G′ and fix it in order to realize f correctly. We note that even if
the number of embedded errors is only one, sometimes there are several ways to debug
the circuit. For example, Figure 3.2 describes an erroneous circuit G′ and an objective
function f . At this instance, we have the two ways to debug G′: replacing g2 with g′2
or inserting g′ between g3 and g4. In general, we cannot determine which of them the
original error is. Therefore, we set our goal to list all the ways to debug G′.
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Related Work

Wille et al. proposed a debugging method using SAT solvers [84]. They used SAT
(Boolean satisfiability) formulation for debugging problems and solved it with SAT
solvers. This method has three problems to be overcome:

• There are O(nd) variables in SAT formula. Though state-of-the-art SAT solvers
work practically fast, solving SAT is believed to require exponential time in the
worst case. This is therefore not scalable for a large d.

• Their method can find only error candidates, which may include non-errors.

• Their method can debug only a replaced error.

We also note that this method requires verification preprocess to obtain some counterex-
amples.

Frehse et al. provided a simulation-based debugging algorithm [32]. Their method
eliminates error candidates based on the fact that an error gate must be activated (i.e. all
the inputs of control lines are 1) for all counterexamples. This method is fast because
it runs in linear time with respect to the number of gates and lines. However, outputs
of this method also can contain non-errors, since the activation property is a necessary
condition but not a sufficient condition.

Tague et al. gave a debugging method using πDDs for a removed error [77]. They
considered a gate as a permutation, and used πDDs to represent the set of gates. They
insert a πDD into an erroneous circuit G′ as an arbitrary gate, and calculate the compo-
sitions by Cartesian product operations. If the compositions contain f , it means G′ has
a removed error. This method also has two problems:

• The size of πDDs for a set of N-permutations is O(2N2
), and now N = 2n. It is

not scalable for even small n.

• Their method can detect an error but cannot find its position and fix it.

We provide an algorithm overcoming these problems. More precisely, we propose a
worst-case O(n2nd) time algorithm, which can find and fix all the three types of errors.

Proposed Method for Single Error

Our method is based on Lemma 3 in [84]:

Theorem 3.1.1 (Lemma 3 in [84]). Let f be an objective reversible function and G =

g1 . . .gi . . .gd be an erroneous circuit for f . Then G can be fixed by replacing any gate
gi of G with a cascade of gates specifying a function πG f ix

i
= π−1

gi−1
. . .π−1

g1
f π−1

gd
. . .π−1

gi+1
.
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This theorem states that, if πG f ix
i

can be represented by a single Toffoli gate, the i-th
gate is a replaced error and we can fix it by replacing it with the Toffoli gate corre-
sponding to πg f ix

i
. Hereafter, we assume gates gi are represented as permutations, and a

cascade of gates means the composition of permutations. In other words, gi is directly
used instead of πgi . Then the single replaced error circuit problem can be solved as fol-
lows: checking whether Grep

i = g−1
i−1 . . .g

−1
1 f g−1

d . . .g−1
i+1 can be represented as a single

Toffoli gate for all 1≤ i≤ d. Similarly, debugging problems for the other types of errors
can be solved too:

• an inserted error : checking whether Gins
i = g−1

i−1 · · ·g
−1
1 f g−1

d · · ·g
−1
i+1 can be repre-

sented as an identity permutation ι (with length 2n) for all 1≤ i≤ d.

• a removed error : checking whether Grem
i = g−1

i · · ·g
−1
1 f g−1

d · · ·g
−1
i+1 can be repre-

sented as a single Toffoli gate for all 0≤ i≤ d.

Note that the position of a removed error is between two gates or two ends. We say a
removed error occurs at the 0-th position if the error position is the left g1, and at the
i-th position if the error position is the right of gi.

We let N = 2n for brevity. If we had an O(h(n)) time algorithm checking whether
a given permutation represents a Toffoli gate, we could solve the single error circuit
problem in O(d(Nd + h(n))) by calculating the products Grep

i ,Gins
i , and Grem

i of O(d)
N-permutations and running a checking algorithm for all 0 ≤ i ≤ d. We can improve
this complexity by using the following properties:

• Grep
i = Gins

i ,

• Grem
i = g−1

i Gins
i ,

• Gins
i = Grem

i−1gi.

That is, incremental calculation of Gx
i from Gx

i−1 costs only O(N) time for N-permutation
composition. Hence we can solve a single error circuit problem in O(d(N +h(n))). Al-
gorithm 3.1.1 gives the entire procedure.

The Toffoli gate checking problem is also solved in O(nN) time by Algorithm 3.1.2.
A permutation representing a Toffoli gate works as a transposition between integers a
and b if a and b differ exactly a target bit, and all the control bits are 1. Lines 3–22
of Algorithm 3.1.2 identify control lines and a target line, eliminating cases that do not
satisfy necessary conditions. Lines 24–31 check whether control lines and a target line
work as an expected Toffoli gate.

This algorithm not only checks whether a given permutation can be specified by a
single Toffoli gate, but also identifies the corresponding Toffoli gate. That is, we can
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Algorithm 3.1.1 Debugging a single error circuit
1: procedure DEBUGSINGLEERROR( f ,G)
2: Grem

0 ← f g−1
d g−1

d−1 · · ·g
−1
1

3: if ISTOFFOLI(Grem
0 ) then

4: Report a removed error: the gate Grem
0 was removed at the 0-th position.

5: end if
6: for i = 1 to d do
7: Gins

i ← Grem
i−1gi

8: if Gins
i = ι then

9: Report an inserted error: gi is an extra gate.
10: else if ISTOFFOLI(Gins

i ) then
11: Report a replaced error: gi should be replaced with Gins

i .
12: end if
13: Grem

i ← g−1
i Gins

i
14: if ISTOFFOLI(Grem

i ) then
15: Report a removed error: the gate Grem

i was removed at the i-th position.
16: end if
17: end for
18: end procedure

directly debug G′ with the Toffoli gate returned by the procedure. It costs O(nN) time
and therefore we can solve the single error circuit problem in O(nNd) time1.

We can design checking algorithms for Fredkin gates and Peres gates similarly. Gen-
erally speaking, given a set of gates, we can solve the single error circuit problem in
O(d(N +h(n))) time if we have an O(h(n)) time checking algorithm for the gates. We
also can easily adapt to deal with negative control lines. A Toffoli gate with positive
and negative control lines inverts its output of the target line when the inputs of all the
positive controls are 1 and all the negative controls are 0.

3.1.4 Debugging Multiple Errors

We extend the single error circuit problem to the multiple errors circuit problem. We
define k-error circuits as circuits including k errors. Note that k errors can consist of
different kinds of errors: replaced errors, inserted errors, and removed errors can be
included together. We also note that k-error circuits may be debugged by less than k
corrections. For example, two inserted errors of the same Toffoli gate at adjacent posi-

1If we assume w-bit word RAM model, we can improve it to O(⌊ n
w⌋Nd) by adopting bit parallel

techniques to manage control lines C in Algorithm 3.1.2.
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tions need not to be debugged, in other words these can be debugged by 0 corrections.
In the multiple errors circuit problem, we set our goal to find the minimum corrections.

Algorithm 3.1.2 Checking whether a given permutation represents a Toffoli gate.
1: procedure ISTOFFOLI(π)
2: C←{1, . . . ,n}, T ← ϕ
3: for i = 0 to N−1 do
4: if ππi ̸= i then ▷ πi is neither i nor swapped with ππi

5: return False
6: end if
7: if i and πi are swapped then
8: if i and πi differ only the j-th bit in binary then
9: T ← T ∪{ j}

10: if |T |> 2 then ▷ there are two or more candidates of target lines
11: return False
12: end if
13: else ▷ there are two or more candidates of target lines
14: return False
15: end if
16: for j = 1 to n do
17: if the j-th bit of i in binary is 0 then
18: C←C \{ j} ▷ eliminate candidates of control lines
19: end if
20: end for
21: end if
22: end for
23: ▷ The Toffoli gate corresponding to π must have controls C and a target t ∈ T
24: for i = 0 to N−1 do
25: if ∀ j ∈C, the j-th bit of πi in binary is 1, but πi = i then
26: return False ▷ all the controls are 1 but the target is not inverted
27: end if
28: if ∃ j ∈C, the j-th bit of πi in binary is 0, but πi ̸= i then
29: return False ▷ some controls are 0 but the target is inverted
30: end if
31: end for
32: return True
33: end procedure
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Related Work

Jung et al. [43] proposed a SAT based debugging algorithm for multiple errors, which
is an extension of [32]. They used pruning based on the hitting set problem and encoded
it into SAT formulation. Although their method can process large circuits, it has two
problems to be considered:

• Their method can debug only replaced errors.

• Their method can detect only error candidates, which includes non-errors and
cannot fix them directly.

In this section, we try to overcome these problems.

Naïve extension of Existing Method

Our proposed method for k-error circuits is derived from Tague’s πDD-based ap-
proach for single error circuits [77]. For an inserted error, this approach tries to insert
a πDD representing all available gates (e.g. all possible Toffoli gates) into all possible
positions. It can be easily extend to replaced errors and removed errors. If we insert
(or replace, remove) k πDDs for a set of available gates at all the k-subsets of posi-
tions, we can detect all error positions and error types. However, there are the following
problems:

• The number of all combinations of k out of d positions are
(d

k

)
= O(dk). Further-

more, we consider three types of errors for each position, i.e. there are 3k ways
of combinations of error types. That is, this algorithm requires O(3kdk+1) πDD
operations.

• All error positions can be detected. However correct gates for replaced errors and
removed errors cannot be determined.

We attack these problems with our algorithm proposed below.

Proposed Method for Multiple Errors

We propose a debugging algorithm requiring only O(dk) πDD operations2 for k-error
circuits. Our approach uses dynamic programming calculating Si, j, defined as a set of
permutations representing functions which can be realized by the first j gates with i

2Note that each πDD operation costs exponential time in 2N2
in the worst case.
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errors. The minimum x such that f ∈ Sx,d is the number of minimum corrections. We
can calculate Si, j by the following recurrence relations:

S0,0 := /0,

Si, j := (Si, j−1×{g j})∪ (Si−1, j−1×L)∪ (Si−1, j×L)∪Si−1, j−1,

where L is a set of available gates, which are Toffoli gates in our case. The first term rep-
resents non-error, the second term represents a replaced error, the third term represents
an inserted error, and the last term represents a removed error is at the j-th position,
respectively.

Since each Si, j is a set of permutations, we can use πDDs to represent them. Fur-
thermore, calculation of recurrence relations requires only permutation set operations,
union and Cartesian product, which are supported by πDDs. Each calculation of Si, j

requires at most a constant number (i.e. 6) of operations. Hence this algorithm takes
only O(dk) πDD operations. In addition, we can calculate this recurrence relation by
incrementing k. This means if the minimum corrections of a given k-error circuit is k′,
this algorithm only costs O(dk′) πDD operations, instead of O(dk).

This algorithm can determine the minimum corrections, but cannot identify error
positions and types yet. Error identification can be realized by starting from Sk′,d with
a permutation f and reversely traversing to S0,0. For example, if we now consider Si, j

with a permutation π and ({π}×L−1)∩Si−1, j−1 ̸= ϕ , where L−1 is the set of inverses
of permutations in L, then a replaced error is detected at the position j. Furthermore,
let π ′ ∈ ({π}×L−1)∩Si−1, j−1, we identify the original gate is π ·π ′−1. We then restart
traversal from Si−1, j−1 with π ′ until the first index is not 0.

3.1.5 Experiments

We implemented all algorithms in C++3 and carried out experiments on a 3.20GHz
CPU machine with 64GB memory. We randomly generate d Toffoli gates with n lines
and concatenate them to make correct reversible circuits G. We prepare objective func-
tions f for each circuit by simulating the circuit. Next, we generate erroneous reversible
circuits G′ with k errors based on correct circuits by repeating the following step k times:
we randomly select a position and replace with a random gate, insert a random gate, or
remove a gate.

Our implementation uses f and G′ as inputs. For single error circuits, our imple-
mentation detects all corrections but only outputs the number of ways of corrections in

3Note that our implementation of Algorithm 3.1.2 uses bitwise operations of 64-bit integer (unsigned
long long int in C++) to manage control lines C.
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Table 3.1. Computation time (seconds) for single error circuits.
d

10 50 100 500 1000 5000 10000 50000 100000

n

2 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.10
4 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.09 0.17
6 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.12 0.24
8 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.21 0.41

10 0.00 0.00 0.01 0.01 0.01 0.05 0.11 0.54 1.08
12 0.00 0.00 0.01 0.03 0.04 0.21 0.40 2.05 3.99
14 0.01 0.02 0.04 0.20 0.38 1.90 3.78 8.83 17.64
16 0.03 0.10 0.19 0.89 1.75 8.78 17.61 87.71 149.00
18 0.16 0.52 1.03 4.81 9.46 48.37 97.47 493.42 987.10
20 0.60 1.87 3.88 18.28 35.90 187.28 377.66 — —

order to reduce I/O time and concentrate the evaluation of the performance of our algo-
rithm. For multiple error circuits, since the way of minimum corrections can be huge,
our implementation detects only one way of minimum corrections and outputs it.

Experiments for Single Error

Computation time of Algorithm 3.1.1 for single error circuits (i.e. k=1) is shown in
Table 3.1. This table shows that our algorithm is linear with the number of gates d and
almost exponential with the number of lines n. It agrees with the theoretical complexity
of our algorithm analyzed in Section 3.1.3.

In [84], the SAT solver-based algorithm takes about 2000 seconds or more for n≥ 8
and d≥ 5000 circuits. On the other hand, our algorithm takes under 1 second for circuits
of such scale. Furthermore, in [77], the πDD-based algorithm takes more than 100
seconds for n≥ 4 and d ≥ 1000 cases, while our algorithm takes under 0.01 seconds for
these cases. This significant improvement is likely due to the theoretical improvement
of our algorithm, and not simply to hardware and test case differences.

The simulation-based approach proposed by Frehse et al. in [32] seems to be faster
than or equal to our algorithm: Their method completed simulation to detect error can-
didates in 20 seconds for the n = 15 and d = 716934 circuit. However, their method
output over 30000 error candidates, including non-errors. This is impractical to check
manually. In contrast, our algorithm returned only one correction for the n = 16 and
d = 100000 erroneous circuit embedded a replaced error.

Experiments for Multiple Errors

We also carried out experiments for multiple error circuits. We randomly embedded
k errors in circuits consisting of d gates with n lines. Figures 3.3–3.6 show experimental
results for 1-, 2-, 3-, and 4-error circuits, respectively.
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For 1-error circuits in Figure 3.3, i.e. single error circuits, our πDD-based algorithm
can perform in 1000 seconds for n = 5 and d = 600 circuits. For 2-error circuits in
Figure 3.4, however, all the cases with n = 5 are time-outs even at d = 50. Almost
all n = 4 cases also time-out; the algorithm can debug up to 100-gate circuits. Results
in [43] show that the SAT based method is more scalable: e.g. this method can process
n = 8 and d = 637 circuits in about 300 seconds. However, outputs of this method can
include non-errors, and cannot fix them automatically. On the other hand, our method
can fix them. For sufficiently small circuits, our method can provide richer debugging
information.

Results of 3- and 4-error circuits in Figures 3.5 and 3.6. Our algorithm seems to be
enough scalable for the circuits with n ≤ 3. Debugging time for 3-errors and one of
4-errors seems similar. This is because in random circuits we prepared, the minimum
correction of n = 2 circuits is usually 1, and for n = 3 circuits is usually 2, regardless of
the number of embedded errors. In Figure 3.6, d = 50 and d = 500 in n = 3 cases seem
to be somehow outliers. It is because the minimum correction size of the d = 50 circuit
is 3, and for d = 500 circuit it is 1.

These results indicate that the minimum correction and the number of lines exponen-
tially affect computation time. On the other hand, the number of gates seems to affect
linearly for small gates (n = 2,3), but affect quadratically or exponentially for slightly
larger gates (n = 4,5).

3.1.6 Concluding Remarks for Debugging Reversible Circuits

In order to debug erroneous reversible circuits, we propose two kinds of algorithms.
The first one is an efficient method for circuits having at most one error. This method
uses permutation properties of reversible gates and gate checking algorithms. This
method can handle more general gate library if we achieve to design gate checking
algorithms for the library. The efficient performance of this method is shown theoreti-
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cally and experimentally, comparing with existing methods. The second algorithm can
debug multiple error circuits based on a dynamic programming approach and πDDs.
Although the scalability of this algorithm is exponentially worse than the first one, the
algorithm enables us to debug more general erroneous reversible circuits.

For future work, we would like to modify the first algorithm to handle circuits with
garbage output lines. Garbage lines can output arbitrary values, i.e. multiple permuta-
tions can realize desired behavior. This means that multiple Gi’s should be considered.
Of course πDDs can handle this, but such an algorithm will lose the efficiency of our
first approach.

For multiple errors, more scalable algorithms are desirable. We are also interested
in the expected number of the minimum corrections for circuits with n lines, d gates,
and k randomly-embedded errors. From experimental results, we guess that minimum
correction tend to become relatively small with the number of embedded errors. If we
show that the size is sufficiently small with high probability, perhaps we need not to
consider debugging circuits with a large number of errors.
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3.2 Cycle-type Partition of Permutation Sets
Cycle-type is an index for permutations. The cycle-type of a permutation π is a vector

c⃗π such that the l-th element cπ
l indicates the number of l-cycles in π . We can partition

a permutation set into equivalence classes of permutations such that each class con-
sists only of permutations having the same cycle-type. This is cycle-type partition of a
permutation set.

Cycle-types are useful for analysis of permutation sets. For example, the cycle index
of a permutation set P, which is a polynomial ∑π∈P ∏n

k=1 x
cπ

k
k , is used as a generating

function for the Pólya enumeration theorem [86]. Another instance of applications is
complexity analysis of algorithms processing permutations, e.g., sorting. Thus, cal-
culation of the cycle-type class partition for a given permutation set contributes basic
understandings of mathematical characterization of permutation sets.

In this section, our goal is computation of the cycle-type class partition for a given
permutation set. Since calculation of the cycle-type of a permutation runs in time linear
in the length of the permutation, we can classify each permutation according to its cycle-
type one by one, if a given permutation set can be stored on memory in naïve array
representation. On the other hand, we sometimes know only some characteristics of
a permutation set, e.g. generators or restrictions for a permutation set, rather than an
explicit list of permutations because the cardinality of the permutation set is too large
to store all of them on memory. In such cases, the naïve algorithm by one-by-one
classification will not work in feasible time.

3.2.1 Contribution Summary

We propose an algorithm to overcome this issue by compression with πDDs. This
algorithm supposes that an input permutation set is given in the form of a πDD, and
directly constructs the πDDs corresponding to the partitioned sets. Hence if a given
permutation set can be compactly represented by a πDD, this algorithm can work well
even if the cardinality of the set is huge. This feature may also enable us to calculate a
cycle-type partition faster and less memory, and manipulate and analyze each set in the
partition by using πDD operations on memory.

In [87], Yamada and Minato have proposed another method to construct πDDs rep-
resenting a cycle-type partition. The existing method must construct the πDDs for the
cycle-type partition of Sn regardless of a given set, where n is the length of permutations
in a given permutation set. On the other hand, our method does not require other than
the πDD for the input set. This may discriminate between our algorithm and the exist-
ing method in terms of time and space efficiency in the cases such that computation of
the cycle-type partition for Sn is the bottleneck of the existing method. In addition, our
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method can construct the πDDs for the cycle-type partition of Sn faster than the existing
method, as shown by the experimental results in Section 3.2.4. This means our method
can be used to accelerate the existing method by replacing the construction algorithm in
the existing method with our method.

3.2.2 Definitions and Notations of Cycle-types

We have introduced the cycle decomposition of permutations in definition 2.1.7.

Definition 3.2.1. The cycle-type of an n-permutation π is a vector c⃗π with length n such
that the i-th element cπ

i of c⃗π is the number of i-cycles in the cycle decomposition of π .

For example, a permutation π =(4,6,1,3,7,2,5) is decomposed into (2 6)(5 7)(1 4 3),
thus c⃗π = (0,2,1,0,0,0) because the cycle decomposition of π has two 2-cycles and
one 3-cycle. The cycle-type of permutations defines an equivalence relation on permu-
tations.

Definition 3.2.2. Two permutations π and σ are cycle-type equivalent, noted as π ∼cy

σ , if their cycle-types are the same, i.e. c⃗π = c⃗σ .

For example, two permutations π = (4,6,1,3,5,2) and σ = (1,4,6,2,3,5), which
are decomposed into (5)(2 6)(1 4 3) and (1)(2 4)(3 6 5) respectively, are cycle-type
equivalent because they have the same cycle-type (1,1,1,0,0,0).

Definition 3.2.3. The cycle-type partition of a permutation set P is the equivalence
partition of P with respect to the cycle-type equivalence ∼cy.

Note that the number of cycle-types of n-permutations is equals to the number of
integer partitions of n, because the sum of the elements in c⃗π is always n. This means
the number of sets in cycle-type partition for an n-permutation set is at most the number
of integer partitions of n.

We also provide the definition of conjugacy classes to introduce the existing method
by Yamada and Minato [87].

Definition 3.2.4. Two permutations π and σ in a permutation group G are conjugate if
there exists g ∈ G such that π = g ·σ · g−1. This can be considered as binary relation
π ∼c j σ . The conjugacy classes of G are defined as equivalence classes of G with
respect to ∼c j.

The conjugacy classes of Sn has an important characteristic related to cycle-type.

Theorem 3.2.1. Each conjugacy class of Sn has one-to-one correspondence with a class
in the cycle-type partition of Sn. In other words, the conjugacy classes of Sn is equals to
the cycle-type partition of Sn.
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Proof. This is followed by Lemma 1 in Appendix of [87].

Note that this relation does not hold for a general permutation set.

3.2.3 Cycle-type Partition Algorithm

Before proceeding to our algorithm, we briefly review two algorithms compared with
our algorithm in our experiments. Next, we provide our proposed algorithm.

Previous Methods

The first algorithm is a naïve method: for each permutation in a given permutation
set, compute its cycle-type in linear time and assign it into the corresponding class. The
complexity of the naïve method is O(n|P|), where P is a given permutation set and n is
the maximum length of permutations in P.

The second algorithm is proposed by Yamada and Minato in [87]. This algorithm
uses πDDs as input and output like our proposed method. Yamada’s algorithm consists
of two steps: At first, it constructs πDDs corresponding to the cycle-type partition of
Sn. Next it computes intersections of a given permutation set P and each cycle-type
class of Sn with πDD operations. From Theorem 3.2.1, the cycle-type partition of Sn

is obtained by computation of the conjugacy classes of Sn. Hence, they proposed an
algorithm to compute the conjugacy classes of a given permutation group G, and apply
it to Sn for this purpose. They also propose sophisticated techniques based on group
theory to reduce the runtime of the algorithm. Unfortunately, it is difficult to analyze
the complexity of their method since the number of loops in their algorithm seems not
to be obvious.

Proposed Method

Our proposed method constructs objective πDDs in bottom-up manner, traversing the
input πDD. To achieve this, the proposed method uses a relation between transpositions
and cycle decompositions.

Proposition 3.2.1. Let π = (a1,1 . . . a1,l1) · · ·(ak,1 . . . ak,lk) be a permutation. A trans-
position with two elements in different cycles merges the two cycles into one cycle. More
precisely, π ·τax,i,ay, j = · · ·(ax,1 . . . ax,i−1 ay, j . . . ay,ly ay,1 . . . ay, j−1 ax,i . . . ax,lx) · · · . On
the other hand, a transposition with two elements in the same cycle divides the cycle into
two cycles. More precisely, π ·τax,i,ax, j = · · ·(ax,1 . . . ax,i−1 ax, j . . . ax,lx) (ax,i . . . ax, j−1) · · · .



3.2. Cycle-type Partition of Permutation Sets 39

6

5

4

1

2

3

6

5

4

1

2

3

6

5

4

1

2

3

τ2,3

τ1,3

Figure 3.7. Union and separation of cycles by a transposition

An example for this proposition is shown in Figure 3.7.
Here, we consider about πDD’s transpositions. Let P1 be a sub-πDD pointed by the

1-edge from a node labeled with τi, j. Then, this represents the compositions of all the
permutations in the set represented by P1 and τi, j. Here, all the permutation π in P1

satisfy π j = j, since the transposition decomposition of π must not include τx,y(x,y≥ j)
due to the transposition ordering rule of πDDs. This means all the permutations in
P1 have the cycle consisting only of j. Therefore, τi, j merges the cycle including i
and the cycle ( j) in all the permutations in P1 according to Proposition 3.2.1. Namely, a
transposition sequence on a πDD path represents a series of processes adding an element
to one of the cycles.

We introduce a new equivalence relation to utilize this property.

Definition 3.2.5. The cycle-set of a permutation π = (a1,1 . . .a1,l1) · · ·(ak,1 . . .ak,lk) is
the set {{a1,1 . . .a1,l1}, . . . ,{ak,1 . . .ak,lk}}, i.e., the family of sets each of which consists
of all the elements of a cycle in π . Two permutations π and σ are cycle-set equivalent
if they has the same cycle-set. The cycle-set partition of a permutation set is an equiva-
lence partition with respect to cycle-set equivalence, and a cycle-set class is a set in a
cycle-set partition.

Then, applying τi, j to cycle-set equivalent permutations in P1 yields cycle-set equiv-
alent permutations due to the property. Hence, we can design a recursive algorithm to
construct πDDs corresponding to the cycle-set partition, as shown in Algorithm 3.2.1.
In Algorithm 3.2.1, P denotes the family of πDDs and PS means a πDD representing
a cycle-set class for a cycle-set S in P. Algorithm 3.2.1 is recursively called for 0-child
and 1-child, and obtain the cycle-set partitions of them respectively. Then, it unites the
two cycle-set partitions, taking the union of πDDs with the same cycle-set in the two
cycle-set partitions.

The cycle-set partition of a given permutation set is useful to computing cycle-type
partition due to the following proposition.
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Algorithm 3.2.1 Algorithm calculating the family of πDDs representing the cycle-set
partition of the permutation set represented by πDD P

1: procedure CYCLESETPARTITION(P)
2: Let P= (τi, j,L,R)
3: L← CYCLESETPARTITION(L)
4: R← CYCLESETPARTITION(R)
5: for all S ∈ set partitions of {1, . . . , j−1} do
6: A←S∪{{ j}}
7: PA← PA∪LS

8: B← the family of sets s.t. j is added to the set including i in S

9: PB← PB∪ (τi, j, the 0-sink,RS)

10: end for
11: return P

12: end procedure

Algorithm 3.2.2 Algorithm calculating the family of πDDs representing the cycle-type
partition of the permutation set represented by πDD P

1: procedure CYCLETYPEPARTITION(P)
2: P← CYCLESETPARTITION(P)
3: for all S ∈ set partitions of {1, . . . , j−1} do
4: c⃗← a vector s.t. ck is the number of sets with the cardinality k in S

5: Xc⃗← Xc⃗∪PS

6: end for
7: return X

8: end procedure

Proposition 3.2.2. All the permutations in a cycle-set class are cycle-type equivalent.

Thus, it is sufficient to merge cycle-set classes obtained by Algorithm 3.2.1 with
the same cycle-type into a cycle-type class. Algorithm 3.2.2 provides the procedure to
achieve this.

The complexity of Algorithm 3.2.1 is bounded by the sum of the cardinality of the
family in each step. The cardinality of the family is bounded by the number of set parti-
tions of {1, . . . , j} for τi, j, and it is known as Bell number B j. Therefore, the complexity
of Algorithm 3.2.1 is roughly bounded by O(|P|Bn) for a πDD P representing a set of
n-permutations, where |P| is the size of P. However, in practice, a given permutation
set may not include permutations with some of cycle-sets, and then the algorithm will
work faster than the theoretical estimation. On the other hand, Algorithm 3.2.2 compute
the union of πDDs at most Bn times. Unfortunately, because it is hard to estimate the
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Table 3.2. Results of cycle-type partition algorithms for Sn
Naïve Yamada and Minato [87] Proposed

n time (sec) memory (MB) time (sec) memory (MB) time (sec) memory (MB)
8 0.01 4.6 0.31 35.8 0.02 34.4
9 0.11 30.0 2.70 269.8 0.12 56.0

10 1.09 297.5 21.50 1182.3 1.25 280.7
11 12.52 3821.6 169.88 9047.8 10.21 2053.9
12 154.14 44972.8 1479.63 64558.5 78.56 15035.3

complexity of union operations of πDDs, the entire complexity of Algorithm 3.2.2 is
not obvious.

3.2.4 Experimental Results

We conducted computational experiments to evaluate the practical performance of
our algorithm, compared with the other methods. We implemented all the algorithms in
C++ with gcc 4.9.3 compiler. We carried out experiments on a 3.20 GHz CPU machine
with 64 GB memory.

Table 3.2 shows the performance of algorithms for Sn. Our method is 20-fold faster
and 5-fold less memory usage than Yamada’s method. Comparing with naïve method,
while our method is less efficient for n ≤ 10 cases, our method is 2-fold faster and 3-
fold less memory usage. The bottleneck of all the algorithms is memory usage: all the
algorithm cannot work in n = 13 case due to memory shortage.

3.2.5 Concluding Remarks for Cycle-Type Partition

In this section, we use πDDs to partition a given permutation set with respect to cycle-
type equivalence relation. Computational experiments indicate our method is more ef-
ficient than previous methods especially for lager n.

Since large memory usage is the bottleneck of algorithms including our method, im-
provement of space efficiency is most important future work. We also aim to apply our
techniques in this paper to the conjugacy class partition. In addition, we will try to use
constructed πDDs for practical and/or mathematical applications related to cycle-types,
such as counting and analyses.





Chapter 4

Rotation-based πDDs and Their
Applications

4.1 Rotation-based πDDs
To derive πDDs from ZDDs, we use transposition decomposition of permutations

and assign transpositions to ZDD nodes as labels. Because there are many other ways
to decompose permutations, we can use another decomposition to design permutation
decision diagrams. Here, we focus on left-rotations.

Definition 4.1.1. A left-rotation ρi, j (i < j) is a permutation (1, . . . , i+1, i+2, . . . , j−
1, j, i, j+1, . . . ,n). That is,

ρi, j(k) =


i if k = j
k+1 if i≤ k < j
k otherwise.

Example 4.1.1. Composition of ρl,r and an n-permutation π achieves the left-rotation
in the interval [l,r] of π , i.e., ρl,r ·π = π1 . . .πl+1 . . .πrπl . . .πn.

Left-rotations also uniquely decompose a permutation as follows.

Definition 4.1.2. Left-rotation decomposition of a permutation π is defined as follows:
We start with π ′ = ι and repeatedly apply left-rotations to π ′ in order to obtain π . At
the k-th step, we apply left-rotation ρi,n+1−k, where i is the position of πn+1−k in π ′, i.e.,
π ′i = πn+1−k, and update π ′← ρi, j ·π ′. The sequence of left-rotations to obtain π from
ι is the left-rotation decomposition of π .

Example 4.1.2. For example, consider to decompose (4,3,1,5,2) into a sequence of
left-rotations. We start with π ′ = ι = (1,2,3,4,5). At the 1st step, we want to move 2
from the 2nd position to the 5th position. Thus, we obtain π ′ = ρ2,5 · ι = (1,3,4,5,2).
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1

ρ1,2

0

ρ2,3ρ3,4

ρ1,4

ρ1,3

Figure 4.1. The Rot-πDD for {(2,1,4,3),(2,4,3,1),(4,3,2,1)}= {ρ1,2 ·ρ3,4,ρ2,3 ·ρ1,4,ρ1,2 ·ρ1,3 ·ρ1,4}.

At the 2nd step, we move 5 from the 4th position to the 4th position, i.e., we have not to
rotate. At the 3rd step, we want to move 1 from the 1st position to the 3rd position. Thus,
we obtain π ′ = ρ1,3 ·ρ2,5 = (3,4,1,5,2). At the 4th step, we want to move 3 from the 1st
position to the 2nd position. Thus, we obtain π ′ = ρ1,2 ·ρ1,3 ·ρ2,5 = (4,3,1,5,2) = π .
Hence we obtain the left-rotation decomposition ρ1,2 ·ρ1,3 ·ρ2,5 of π = (4,3,1,5,2).

Here, we propose Rotation-based πDD (Rot-πDD) by using left-rotation decompo-
sition instead of transposition decomposition. Ordering of left-rotations is in the same
manner for transpositions: ρx1,y1 < ρx2,y2 if y1 > y2 holds, or y1 = y2 and x1 < x2 holds.
Figure 4.1 is an example of a Rot-πDD for a permutation set {(2,1,4,3),(2,4,3,1),(4,3,2,1)}.

Rot-πDDs also have operations same as πDDs, e.g. union, intersection, and set dif-
ference. On the other hand, we should redesign an operation for P×{ρl,r} instead of
P.Swap(x,y) of πDDs for P×{τx,y}, because this operation is used in Cartesian product
operation, which is useful in many applications. (For details of algorithms for the Swap
and the Cartesian product operation of πDDs, please see [60].) We refer the Rot-πDD
operation for P×{ρl,r} as P.LeftRot(l,r).

As a first step, we assume that a permutation set P is a singleton {π} and π is decom-
posed into left-rotations ρx1,y1 . . .ρxk,yk . We should compute left-rotation decomposition
of the new permutation (ρx1,y1 . . .ρxk,yk) · ρl,r = ρx1,y1 . . .ρxk,ykρl,r. If yk < r, it is al-
ready left-rotation decomposition and thus there is nothing to do anymore. Otherwise,
we should reform the composition of left-rotations. If we can transform ρxk,ykρl,r into
ρl′,r′ρx′k,yk

with r′ < yk, we achieve to obtain left-rotation decomposition by repeating
to transform ρxi,yiρl′,r′ for i < k until r′ ≤ yi holds. In fact, such a transformation rule
exists:

Theorem 4.1.1. Let 1≤ x < y≤ n, 1≤ l < r≤ n, and r≤ y. ρx,yρl,r can be transformed
into the form of ρl′,r′ρx′,y with r′ < y.

Proof. We consider four cases distinguished by the relation between l, x, and y.
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(a) r < x (b) r = x

(c) l ≤ x < r (d) x < l < r

ρl,r

ρx,y ρl,r

ρx,y

ρl,y

l r x y l r,x y

l rx y l rx y

ρl,r

ρx,y

ρl,r ρx+1,y

ρx,y ρl,r-1

ρl,r ρx,y

ρx,y ρl-1,r-1

Figure 4.2. Transformation of compositions of two left-rotations

• If r < x, the intervals [l,r] and [x,y] are distinct, thus simply ρx,yρl,r = ρl,rρx,y.

• If r = x, ρl,r moves the l-th element to the r = x-th position, and then ρx,y moves it
to the y-th position. All the other elements in [l,y] are shifted to left by one. Thus
ρx,yρl,r = ρl,y

1.

• If l ≤ x < r, ρl,r moves the x+1-th element to the x-th position and ρx,y moves it
to the y-th position. ρl,r moves the l-th element to the r-th position and ρx,y moves
it to left by one. The elements in [l +1,x] and [r+1,y] are shifted to left once by
ρl,r and ρx,y, respectively, and the elements in [x+ 2,r] are shifted to left twice.
This moves is simulated by ρl,r−1ρx+1,y.

• If x < l < r, ρl,r fix the x-th element and ρx,y moves it to the y-th position. ρl,r

moves the l-th element to the r-th position, and ρx,y moves it to left by one. The
elements in [x+ 1, l− 1] and [r + 1,y] are shifted to left once by ρl,r and ρx,y,
respectively, and the elements in [l +1,r] are shifted to left twice. This moves is
simulated by ρl−1,r−1ρx,y.

All the cases are visualized in Figure 4.2 for intuitive understandings.

Based on Theorem 4.1.1, we can design a recursive algorithm to calculate the Rot-
πDD for P×{ρl,r} from a Rot-πDD P for P. Let P= (ρx,y,P0,P1). This means that a
set of the permutation whose left-rotation decomposition ends with ρl,r in P is exactly
represented by P1×{ρx,y}, and the other is corresponding to P0. Thus, P.LeftRot(l,r)
is obtained by (ρx′,y, P0.LeftRot(l,r), P1.LeftRot(l′,r′)). Algorithm 4.1.1 describes the
entire procedure.

1We can consider ρl,y is in the form of ρl′,r′ρx′,y by introducing a dummy left-rotation ρ1,1ρl,y.
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Algorithm 4.1.1 Compute a Rot-πDD for P×{ρl,r} (l < r).

1: procedure LEFTROT(P, l,r)
2: if P is the 0-sink then
3: return the 0-sink
4: else if P is the 1-sink then
5: return (ρl,r, the 0-sink, the 1-sink)
6: end if
7: if the result of LEFTROT(P, l,r) is memorized on cache then
8: return the memorized result
9: end if

10: Let P= (ρx,y,P0,P1).
11: if y < r then
12: return (ρl,r, the 0-sink, P)
13: end if
14: P′0← LEFTROT(P0, l,r)
15: if r < x then
16: x′← x, P′1← LEFTROT(P1, l,r)
17: else if r = x then
18: x′← l, P′1← P1

19: else if l ≤ x then
20: x′← x+1, P′1← LEFTROT(P1, l,r−1)
21: else
22: x′← x, P′1← LEFTROT(P1, l−1,r−1)
23: end if
24: Memorize (ρx′,y, P′0, P′1) on cache
25: return (ρx′,y, P′0, P′1)
26: end procedure

In the following sections, we will see the impact of Rot-πDDs with three instances:
enumeration of Eulerian trails, enumeration of topological orders, enumeration of pattern-
avoiding permutations. Utilizing Rot-πDDs makes algorithms empirically and theoret-
ically more efficient than πDDs on the applications.
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4.2 Enumeration of Eulerian Trails
Eulerian trails are trails passing through every edge in a graph exactly once. Eulerian

circuits are defined as Eulerian trails that start and end at the same vertex. Eulerian paths
have been first introduced by Euler [30] to solve “Seven Bridges of Königsberg prob-
lem” in 1736. Eulerian trails are attractive not only in mathematical points of view, also
have industrial applications such as DNA fragment assembly [68] and CMOS circuit
design [72].

Hierholzer and Wiener [36] have proposed an algorithm finding an Eulerian trail in
time linear in given graph size. For counting the number of Eulerian trails in a given
directed graph, there is a polynomial time algorithm called BEST algorithm based on
matrix tree theorem [80]. On the other hand, for undirected graphs, the counting prob-
lem is known as a #P-complete problem [15]. Approximation algorithms for several
undirected graph classes have been proposed [57]. For exactly counting, we can use a
naïve backtracking search algorithm and improve its time complexity by using dynamic
programming technique, which is still an exponential time algorithm. The enumeration
problem for Eulerian trails is also considered. Kikuchi has proposed a linear time de-
lay algorithm for enumeration of Eulerian trails [90], which output an Eulerian trails in
O(m) time after the previous output of another Eulerian trail.

In this section, we tackle enumeration of Eulerian trails in a given undirected graph.
Since the number of Eulerian trails are exponential, we aim to store the Eulerian trails
in the compressed data structure. We can use Rot-πDDs for this purpose because an
Eulerian trail is a permutation of edges in a graph: each edge appears in a trail exactly
once.

4.2.1 Contribution Summary

We propose an algorithm directly constructing a Rot-πDD representing the set of
Eulerian trails, namely permutations of edges, in a given graph. We intentionally use
Rot-πDDs instead of πDDs because the time and space complexity of the Rot-πDD-
based algorithm can be well-bounded theoretically; as shown in Section 4.2.3, the time
and space complexity of our algorithm is O(m2m), which is significantly less than the
maximum number m! of the Eulerian trails. We also conduct computational experiments
to evaluate the performance of our algorithm. Experiments show that our algorithm
succeeded to construct a Rot-πDD representing 3× 1013 Eulerian trails of a random
graph in 3 minute with 5× 107 nodes. This means our method achieved six orders of
magnitude compression.
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4.2.2 Eulerian Trails

An Eulerian trail in a given graph is a sequence (e1, . . . ,em) of edges that composes
a trail and includes all edges exactly once, i.e., ei ̸= e j if i ̸= j. This implies an Eulerian
trail corresponds to a (restricted) permutation of edges in a given graph. Note that an
Eulerian trail is a trail, thus it may pass through a vertex multiple times. Especially, if
the start vertex and the end vertex is the same one in an Eulerian trail, it is called as an
Eulerian circuit.

We assume that a given graph is undirected, and has no self-loop and no isolated
vertex.2 In general, an undirected graph may have neither Eulerian trail nor Eulerian
circuit. An undirected graph is Eulerian if it has at least one Eulerian circuit, while
an undirected graph is semi-Eulerian if it has at least one Eulerian trail. It is the well-
known property that a graph is Eulerian if and only if the graph is connected and every
vertex has even degree. The property of semi-Eulerian graphs is also well-known: a
graph is semi-Eulerian if and only if the graph is connected and exaclty two vertices
only have odd degree. This means we can examine whether a given graph has at least
one Eulerian trail or not in linear time. We hence assume that a given graph is Eulerian
or semi-Eulerian.

If a given graph is Eulerian, there are multiple equivalent Eulerian circuits: for an
Eulerian circuit (e1, . . . ,em), a circuit (ei+1, . . . ,em,e1, . . . ,ei) is also an Eulerian circuit.
Therefore, we enumerate Eulerian circuits that start with a certain fixed edge, and we
call it e1. In addition, we use e1 in a fixed direction, and we call the start vertex v1. If
a given graph is semi-Eulerian, the reverse of an Eulerian trail is also an Eulerian trail.
Therefore, we enumerate Eulerian trails that start with a certain fixed vertex, which is
one of two vertices with odd degree, and we call it v1.

We denote the set of Eulerian trails (for semi-Eulerian case) and circuits (for Eulerian
case) in a graph G by eu(G), and the number of Eulerian trails and circuits by EU(G) =

|eu(G)|. For example, the graph G in Figure 4.3 has EU(G) = 6 Eulerian trails with a
start vertex b: eu(G) = {(1,2,3,4,6,5),(1,2,5,6,4,3),(3,2,1,4,6,5),(3,5,6,4,1,2),
(4,6,5,2,3,1),(4,6,5,3,1,2)}.

A simple algorithm to enumerate all Eulerian trails is backtracking. At the beginning,
we fix a start vertex v = v1 and set v as a current vertex. Next we choose an edge
e = {v,u} from edges incident to v, add e to the used-edge list, and set u as a current
vertex. We recursively traverse the graph without using used-edges again. When the
recursive traversal is done, we restore the search state, i.e., set v as a current vertex and
remove e from the used-edge list, and try other edges incident to v one by one. This
backtracking algorithm finds an Eulerian trail in O(m) time3. Since EU(G) is m! in the

2We can easily extend our proposed algorithm to be able to process directed graphs and/or graphs
with self-loops and isolated vertices.

3More precisely, the complexity is bounded by O(n+m). Here, we now assume that a given graph is
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Figure 4.3. An example of semi-Eulerian graphs

worst case, this algorithm runs in O(m ·m!).
We can improve the time complexity of this algorithm if we only count EU(G), not

enumerate eu(G). If two traversals reach the same state, i.e., the same current vertex
with the same used-edge list in the middle of the traversals, the valid traversals of unused
edges after the state will also be the same. For example, on the graph in Figure 4.3, two
traversals (1,2,3) and (3,2,1) reach the same current vertex b with the same used-edge
list {1,2,3}. In fact, the two traversal have only the same valid traversal (4,6,5) after
this state. This indicates that if a traversal reaches the same state reached in a previous
traversal, the number of valid traversal after the state is the same as previous one. Thus
we can reduce duplicated traversals by memorizing the number of valid traversals after
each state in the middle of traversals.

This algorithm can be considered as dynamic programming with the following recur-
sion:

EU(v,E ′) = ∑
e={v,u}∈E ′

EU(u,E ′ \{e}),

where E ′ stands for a unused-edge sets, and set EU(w,Φ) = 1 for all w ∈ V . Then
we obtain EU(G) = EU(v1,E). The space and time complexity of this algorithm is
bounded by O(n2m) and O(m2m), respectively: Since the states is defined as a pair of
a vertex and a used-edge list, the number of states is bounded by the product of the
number n of vertices and the number 2m of the valid used-edge list. The space required
by this algorithm is bounded by the number of states, i.e., O(n2m). The number of steps
of this algorithm is bounded by the sum of the number of valid edge-selection at each
state. For each vertex v, the upper bound of the edge-selection is its degree d(v). Hence
the number of steps is bounded by O(m2m). This is exponential improvement from the
complexity O(m ·m!) of the naïve backtracking.

connected. This means n−1≤ m and hence n+m = O(m).
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4.2.3 Proposed Method

We aim to construct the Rot-πDD representing the set of edge-permutations that cor-
respond to Eulerian trails. We first try to design an algorithm to construct the πDD
representing Eulerian trails based on dynamic programming, and observe that dynamic
programming cannot be directly applied to construction of the πDD. Next we notice
that a property of left-rotation operations suits dynamic programming based approach.
We thus introduce a Rot-πDD construction algorithm based on dynamic programming
using the property.

To construct the πDD representing Eulerian trails, we utilize a property that a permu-
tation can also represent a state in the middle of a traversal. We assume a state at which
we already use k edges. Then, we use a permutation and k to represent the state: first
k elements are used edges in the used order, and remaining m− k elements are unused
edges. When k = m, a permutation represents an Eulerian trail. For example, if we tra-
verse edges (3,2,1,4) in this order on the graph in Figure 4.3, this state is represented
by (3,2,1,4,5,6) with k = 4, for example. Since we fix a start vertex as v1, we can
determine the vertex at the second step from the first used-edge, and then we can deter-
mine the vertex at the third step, and so on. Hence we can also determine the current
vertex from the used-edge order and k. Furthermore, we can use a transposition to add
an edge to the used-edge list in permutation representation. In the above example, we
assume to use edge 6 in next step of a traversal. Then we should move 6, at the 6-th
position, to the 5-th position. Hence transposition τ5,6 realizes this move, and then the
new state is represented by (3,2,1,4,6,5) with k = 5. More formally, using the edge
with id x at the k-th step can be realized by a transposition τi,k, where i is the position of
element x in the permutation representing a state.

We use this permutation representation of states in backtracking algorithm, and simul-
taneously construct πDDs in top-down manner. In a traversal with a state permutation
π and the number k of steps, if we use an edge and the usage corresponds to a transpo-
sition τx,y, we recursively construct the πDD P for the state τx,y ·π with k+1 and let the
1-edge from the node with τx,y point to P, and let the 0-edge from the node point to the
πDDs corresponding to using other edges incident to the current vertex. We notice that,
hereafter, we reverse the order of permutation representation because transpositions in
πDDs are ordered in decreasing order from the top to the bottom, which means we
should determine the elements in a permutation from the right to the left in traversals.
For example, (6,5,4,1,2,3) with k = 4 represents the used-edge list (3,2,1,4) in the
used order, and unused-edges 5 and 6.

If two states in different traversals have the same (m−k)-prefix of permutation repre-
sentations and the same k, the same πDD represents the valid traversals after the states.
Therefore we can share the πDD nodes for such equivalent states. However, this is less
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compressed than dynamic programming approach for counting: even if two permuta-
tions have the same unused-edge list, the order of the unused edges in the permutations
can be different. For example, two states (6,5,4,3,2,1) with k = 3 and (4,5,6,1,2,3)
with k = 3 are yielded by the traversals (1,2,3) and (3,2,1), respectively, and have the
same unused-edges and the same current vertex. However they are not shared in a πDD
because the order of unused edges are different in their permutations. This indicates
the compression by πDDs and construction time will be properly worse than dynamic
programming.

Instead of transpositions, we can also use left-rotations to represent using edges: us-
ing an edge with id x at the k-th step can be realized by a left-rotation ρi,k, where i
is the position of the element x in the permutation representing a state. For example,
we assume that we want to use edge 5 on the state represented by (4,5,6,1,2,3) with
k = 3, Then we use left-rotation ρ2,3, and obtain the new permutation representation
(4,6,5,1,2,3). We notice that the first k elements in a permutation after left-rotations
from m to k+ 1 must be in the increasing order because ρi, j must not change the rel-
ative order of the first j− 1 elements. This means unused edges in a state must be in
increasing order in its permutation representation. Thus, if two states have the same
unused-edge list, the (m− k)-prefixes of their permutation representations are also the
same. Hence using left-rotations makes Rot-πDDs be compact as well as dynamic pro-
gramming.

Algorithm 4.2.1 show the pseudo code of our Rot-πDD construction algorithm. We
call EulerianTrail(G, v1, ι , 0) to construct the Rot-πDD representing all Eulerian Trails
in a graph G. The time complexity of our algorithm is O(m2m), which is same as
dynamic programming. On the other hand, he size of a resulting Rot-πDD is bounded
by O(m2m), which is worse than dynamic programming; binary branching of Rot-πDDs
requires us to make at most d(v) Rot-πDD nodes for edge-selection from a vertex v.

4.2.4 Computational Experiments

We conducted computational experiments to evaluate the practical performance of
our algorithms. We implemented our algorithm in C++ with gcc 4.9.3 complier. We
carried out experiments on a 3.20 GHz CPU machine with 64 GB memory. We use
two types of graphs: complete graphs and random graphs. The complete graph with n
vertices, denoted by Kn, is a graph with n(n−1)/2 edges for all the pair of two vertices.
A random graph with n vertices and m edges is generated by a random walk, which
repeats to select a next vertex randomly and add an edge connects the current vertex and
the next vertex.

A complete graph Kn for n ≥ 3 is Eulerian if and only if n is odd. Hence we use
Kn’s for n = 3,5,7,9. Table 4.1 shows the experimental results for complete graphs.
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Algorithm 4.2.1 Algorithm to construct a Rot-πDD representing all Eulerian trails.
1: procedure EULERIANTRAILS(G, v, π , k)
2: if k = m then
3: return the 1-sink
4: else if have never memorized the Rot-πDD P for (m− k)-prefix of π then
5: P← the 0-sink
6: for i from m− k to 1 do
7: if an endpoint of edge πi is v then
8: u← another endpoint of πi

9: P← (ρi,m−k, P, EULERIANTRAIL(G,u,π ·ρi,m−k,k+1))
10: end if
11: end for
12: end if
13: return P
14: end procedure

Table 4.1. The experimental results for complete graphs Kn with odd n
n m EU(G) the size of Rot-πDD runtime (sec)
3 3 2 2 0.00
5 10 528 284 0.00
7 21 389928960 422988 0.55
9 36 - - > 1000.00

Since the growth of the number of edges in a complete graph is quadratic to the number
of vertices, EU(Kn) and calculation time dramatically increase. This result follows the
complexity analysis of our algorithm. In n = 9 case, the algorithm cannot finish in the
time limit 1000 seconds. This requires us to improve the performance if we aim to
handle larger dense graphs. On the other hand, n = 7 case shows our algorithm achieve
to compress 400 million Eulerian trails into a Rot-πDD with 400 thousand nodes.

Table 4.2 shows the experimental results for random graphs. Compared to complete
graphs, our algorithm runs faster for random graphs even if its vertex set and edge set are
larger. It may be because in practice, the number of valid traversals on random graphs is
less than one on complete graphs. Our algorithm achieves to construct a Rot-πDD for
an m = 36 random graph in about 3 minutes, while it fails for m = 36 complete graph
K9. The compression is extremely high; the compression ratio, namely EU(G) divided
by the size of a Rot-πDD, is about 680,000. The results for random graphs indicates
that our algorithm will run faster than the estimation from the theoretical complexity.
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Table 4.2. The experimental results for random graphs
n m EU(G) the size of Rot-πDD runtime (sec)
8 11 4 21 0.00
9 14 576 286 0.00

10 18 20736 1894 0.00
11 22 1990656 18726 0.01
12 26 240537600 30534 0.11
13 31 24365629440 1150285 3.55
14 36 32985223004160 48657136 182.04
15 42 - - > 1000.00

4.2.5 Concluding Remarks for Eulerian Trail Enumeration

In this section, we provide an algorithm to enumerate Eulerian trails in the form
of a Rot-πDD. We theoretically analyze the complexity of the Rot-πDD construction
algorithm and conclude that Rot-πDDs are preferable to πDDs.

Application to practical problems such as DNA fragment assembly and circuit design
is one of future directions. In addition, we would like to consider algorithms for enu-
meration problems of generalized version of Eulerian trails: we can ignore at most k
edges or use at most k edges twice for fixed k.

Furthermore, our technique, construction of a Rot-πDD based on dynamic program-
ming, can be considered as a framework for several ordering problems on a graph. For
instance, Hamiltonian paths, which is defined the path passing through every vertex ex-
actly once, is solved similar dynamic programming for the vertex set of a given graph,
instead of the edge set. Hence a Rot-πDD for Hamiltonian paths is also obtained by an
adjusted version of our algorithm. Topological ordering problem in the next section is
also an instance of such problem, and we propose an algorithm for the problem based on
dynamic programming approach too. It is important future work to reveal and formalize
what kind of problems are solved with this framework.
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4.3 Enumeration of Topological Orders
Topological sort is one of the classical and important concepts of graph algorithms.

Vertex orders obtained by topological sort are used to analyze characteristics of a di-
rected graph structure and support several graph algorithms [22]. Furthermore, topo-
logical orders are equivalent to linear extensions of a poset, i.e., total orders which are
in no contradiction with the partially ordered set defined by directed edges in a graph.
Thus, topological sort plays an important role in several research areas such as discrete
mathematics and computer science, and has many applications such as graph problems
and scheduling problems [70].

Linear time algorithms calculating a topological order are classical and well-known
algorithms, and dealt with by Cormen et al. [22]. In recent researches, two derived prob-
lems are mainly discussed. One of these is an online topological sort, i.e., calculation
of a topological order on a dynamic graph. Bender et al. [8] proposed a topological sort
algorithm which allows edge insertions, and Pearce et al. [65] proposed an algorithm
which can also handle edge deletions. Another problem is the enumeration problem of
all topological orders. Ono et al. [64] presented a worst case constant delay time gen-
erating algorithm using family trees. The complexity of the counting problem has been
studied from several aspects since Brightwell et al. [15] proved that it is #P-complete.
Bubley et al. [18] proposed a randomized algorithm to approximate the number of all
linear extensions. Li et al. [53] provided an experimentally fast algorithm counting all
topological orders based on Divide & Conquer technique. There are many polynomial
time counting algorithms when we restrict the graph structure or fix some graph param-
eters, e.g., trees and bounded poset width [3, 21].

In this section, we deal with both of these problems. That is, our goal is generation
of all topological orders of given graphs and manipulation of these orders when the
graph is dynamically changed, e.g., edge addition. In addition, we implicitly store all
topological orders as a compressed data structure in order to handle graphs as large
graph as possible.

The proposed method is based on πDDs. Although a πDD can be used to achieve our
purpose, compression ratio and query processing are not efficient enough practically or
theoretically. Thus, we use Rot-πDDs. The key idea of our modification is a direct
construction of a decision diagram based on the dynamic programming approach. This
modification realizes the practical efficiency of compression and query processing, and
the theoretical complexity is also bounded.

4.3.1 Contribution Summary

Contributions for this problem are summarized as follows.
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Figure 4.4. (a) A DAG and (b) the subgraph induced by the vertex set {2,5,6}.

• We provide the first algorithm for implicit generation of all topological orders
with dynamic manipulation.

• Time and space for construction and query processing of our algorithm are effi-
cient experimentally and theoretically, while in general, it is difficult to estimate
the size and computation time of decision diagrams.

Experimental results, which will be described later, show that the proposed algorithm
and data structure work very well: 3.7×1041 topological orders of a directed graph with
50 vertices are generated in 36 seconds, and the compressed data size is only about 1
gigabyte. Furthermore, an edge addition query for a directed graph with 25 vertices is
done in 1 second.

4.3.2 Topological Orders

We first define topological orders of a directed graph, which are our objectives in this
section.

Definition 4.3.1. A topological order of a directed graph G is an ordering (v1,v2, . . . ,vn)

of all vertices such that vi must precede v j if (vi,v j) ∈ E.

Example 4.3.1. The graph in Figure 4.4(a) has four topological orders: (5,2,6,4,1,3),
(5,2,6,4,3,1), (5,6,2,4,1,3), and (5,6,2,4,3,1).

In this section, we assume that given graphs are DAGs because we can determine
whether or not a directed graph has cycles in linear time, and if so, there is no topological
order.

There are many linear time algorithms for computing a topological order of a given
graph [44, 78]. One of the key ideas is deleting vertices whose out-degree is 0. If
there is no edge from v, v can be the rightmost element in a topological order, because
there is no element that must be preceded by v. We delete such v and its incident
edges, i.e., after the deletion of v, we can consider only the subgraph induced by the
vertex subset V \{v}. Then, we repeat the same procedure for the induced subgraph and
obtain a topological order of the induced subgraph recursively. Finally, we concatenate
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a topological order of the induced subgraph and v to obtain a topological order of the
given graph. The time complexity of this algorithm is O(n+m).

Similarly, an algorithm counting all topological orders of a given graph can be de-
signed recursively. For each recursion, we assume that the current vertex subset is
V ′. Then, for each vertex v whose out-degree is 0 in G[V ′], we sum up the num-
bers of all topological orders of G[V ′ \ {v}]. The time complexity of this algorithm
is O((n+m)TO(G)), where TO(G) is the number of the topological orders of G. Since
TO(G) =O(n!), the time complexity of the worst case is O((n+m)n!). We can improve
this complexity by a dynamic programming (DP) approach.

For example, in Figure 4.4(a), we can delete vertices {1,3,4} in the order (1,3,4)
or (3,1,4), where we note that a deletion order is the reverse of a topological order.
Then we obtain the same induced subgraph on {2,5,6}. Although TO(G[{2,5,6}]) is
not changed, we redundantly count TO(G[{2,5,6}]) in each recursion of (1,3,4) and
(3,1,4). Thus, by memorizing the calculation result TO(G[V ′]) for G[V ′] at the first cal-
culation, we can avoid duplicated calculations for each G[V ′]. In other words, this is DP
in top-down manner, which recursively calculates TO(G[V ′])=∑v∈V ′,d−(v)=0 TO(G[V ′\
{v}]). We define valid induced subgraphs of G as induced subgraphs G[V ′] that can ap-
pear in the above DP recursion. Let IS(G) denote the number of the valid induced sub-
graphs of G. Then, this DP algorithm uses O((n+m)IS(G)) time and O(IS(G)) space.
In the worst case, IS(G) = 2n, which is the number of all the subsets of V . Therefore,
we improve the complexity from factorial O((n+m)n!) to exponential O((n+m)2n).

The idea of valid induced subgraphs is equivalent to upsets in a poset in the talk of
Cooper [21]. Cooper provided another upper bound O(nw) of IS(G), where w is the
width of a poset corresponding to G. The proof of this bound and more precise analyses
will be described in Section 4.3.5.

Here, we remember our goal in this section again. Our goal is generating and indexing
all topological orders, which are permutations of vertices. Thus, it is reasonable to
expect that a compressed and indexed data structure for permutations can be useful for
this purpose. And if we can compress permutations in the same way as the above DP, the
compression size is bounded by IS(G) = O(min{2n,nw}), which can be quite smaller
than TO(G).

4.3.3 Decision Diagram Construction Method

In this section, we first discuss whether or not compression of a πDD is suitable for
the DP approach. As a result, it is no; a similar problem for enumeration of Eulerian
trails in Section 4.2 appears. Thus we consider to use Rot-πDDs for DP and provide a
construction algorithm.
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Figure 4.5. The πDD representing {(5,2,6,4,1,3),(5,2,6,4,3,1),(5,6,2,4,1,3),(5,6,2,4,3,1)}.

DP Approach and πDDs

Now, we consider whether or not we can directly construct a πDD in the same way
as the DP approach described in Section 4.3.2.

Here, we note that transposition decomposition behaves as deletions of a vertex on
an induced subgraph. We can represent the current recursive state in DP procedure as a
permutation, i.e., let k be the number of vertices of the current induced subgraph, then
the k-prefix of an n-permutation represents the vertex set of the induced subgraph, and
the (n− k)-suffix of the permutation represents the reverse order of deletions, like edge
set for Eulerian trails in Section 4.2.3. Furthermore, a deletion of a vertex v can be
described as a transposition τi,k, where i is the position of v in the permutation. For
example, we can consider a permutation (6, 2, 5, 4, 3, 1) represents the subgraph in
Figure 4.4(b) such that the deletion order is (1,3,4). When we delete the vertex 6, we
swap the 1st position, which is 6, and the 3rd position, which is the rightmost of the k-
prefix representing the vertex subset. Then, we obtain (5,2,6,4,3,1), which represents
the subgraph induced by {2,5} and the reverse order of deletions.

By compressing swap sequences into a πDD, we can recursively construct a πDD
for all topological orders. That is, for each recursion represented as a permutation π ,
if we apply τi, j to delete πi, we create the new πDD such that its root node is τi, j, its
1-edge child is the πDD for transposition sequences of the induced subgraph yielded by
deleting πi, and its 0-edge child is the πDD for transposition sequences without deleting
πi at the (n− j)-th step. The πDDs for the 1-edge and 0-edge child are recursively
constructed. Figure 4.5 illustrates an example of a πDD representing topological orders
of the graph in Figure 4.4(a).

However, deletions by transpositions are not available for DP. In order to use DP
approach, transposition sequences for the same induced subgraph must be uniquely de-
termined. Even if different prefixes of permutations represent the same induced sub-
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Figure 4.6. The Rot-πDD representing {(5,2,6,4,1,3),(5,2,6,4,3,1),(5,6,2,4,1,3),(5,6,2,4,3,1)}.

graph, their transposition sequences can differ. For example, consider the DAG in
Figure. 4.4. Deletion sequences (3,1,4) and (1,3,4) generate the same induced sub-
graph on {2,5,6}, and these states are represented as (5,2,6,4,1,3) and (6,2,5,4,3,1),
respectively. The induced subgraph on {2,5,6} has a topological order (5,2,6). In or-
der to obtain this, we apply no transposition to (5,2,6,4,1,3), while we apply τ1,3 to
(6,2,5,4,3,1). This means there are multiple πDDs corresponding to the same induced
subgraph.

DP Approach and Rot-πDDs

As described in the previous subsection, the DP approach cannot be used to directly
construct a πDD. To overcome this problem, we use a left-rotation decomposition of a
permutation. Left-rotations realize the unique representation of an induced subgraph as
a prefix of a permutation, because a prefix is always in an increasing order. Left-rotation
ρi, j only changes the relative order between the ith element and the elements in [i+1, j],
i.e., relative orders in [1, j−1] are not changed. This means the ( j−1)-prefix is always
in increasing order when we start with ι and apply ρi, j in decreasing order of j.

Thus, we can use the DP approach by using Rot-πDDs Figure 4.6 illustrates the
Rot-πDD for the same set as Figure 4.5. We can see that topological orders of the
induced subgraph G[{2,5,6}] yielded by deletion sequences (3,1,4) and (1,3,4) are
shared as the sub-Rot-πDD with a root node ρ1,3, whereas the πDD fails to share them.
Algorithm 4.3.1 describes the DP based construction algorithm of a Rot-πDD.

4.3.4 Rot-πDD Operation for Dynamic Edge Addition

Some queries such as random samplings and counting the cardinality of the set rep-
resented by a Rot-πDD are available to analyze topological orders in a Rot-πDD. The
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Algorithm 4.3.1 Rot-πDD construction for all topological orders of G = (V,E).
1: procedure CONSTRUCTROTPIDD(G)
2: if V is empty then
3: return 1-sink
4: else if have never memorized the Rot-πDD PG for G then
5: PG← the 0-sink
6: for each v whose out-degree is 0 in G do
7: i← v’s position in the increasing sequence of V , j← |V |
8: PG← (ρi, j, PG, CONSTRUCTROTPIDD(G[V \{v}]))
9: end for

10: end if
11: return PG

12: end procedure

runtime of these operations depends on only the size of the Rot-πDDs by using memo
cache techniques.

On the other hand, some queries have to be newly designed. For example, the prece-
dence query Precede(P,u,v) returns the Rot-πDD that represents only permutations π
extracted from the Rot-πDD P such that u precedes v in π . This query is equivalent to
addition of the edge (u,v) to a DAG. This query can be designed as a recursive proce-
dure described in Algorithm 4.3.2.

The idea of the algorithm is simulation of moves of the two elements u and v. Initially,
we start with the identity permutation, i.e. u and v are at the u-th position and the v-th
position, respectively. After a rotation, the positions of u and v may be changed. If u
or v are out of the range of later rotations, their relative order is fixed and we can check
whether or not u precedes v. The runtime of a precedence query also depends on only
the size of the Rot-πDDs thanks to memo cache.

4.3.5 Theoretical Analysis

In this section, we analyze the time and the space complexity of DP based counting
and Rot-πDD construction. Here, we remember the definition of IS(G): IS(G) is the
number of the induced subgraphs of G that can be obtained by deletions of vertices
with out-degree 0. We start by proving the upper bound O(nw) of IS(G). According to
Dilworth’s theorem [25], the width w of a poset equals the minimum path cover of the
DAG corresponding to the poset, where a path cover of a graph G is a set of paths in
G such that each vertex of G must appear in at least one of the paths. Therefore, it is
sufficient to prove the following theorem.
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Algorithm 4.3.2 Precedence query for a Rot-πDD P.
1: procedure PRECEDE(P,u,v)
2: if P is the 0-sink then
3: return the 0-sink
4: else if P is the 1-sink then
5: if u < v then
6: return the 1-sink
7: else
8: return the 0-sink
9: end if

10: end if
11: if the result of PRECEDE(P,u,v) is memorized on cache then
12: return the memorized result
13: end if
14: set x and y such that the root node of P is ρx,y.
15: if y < u and v < u then ▷ if u will not move and u is on the right of v
16: return the 0-sink
17: else if y < v and u < v then ▷ if v will not move and v is on the right of u
18: return P
19: end if
20: P0← the left child of P, P1← the right child of P
21: nu← u,nv← v
22: if x = u then
23: nu← y ▷ ρx,y moves u at the y-th position
24: else if x < u then ▷ Note that Line 15 ensures u≤ y
25: nu← u−1 ▷ ρx,y moves u at the (u−1)-th position
26: end if
27: if x = v then
28: nv← y ▷ ρx,y moves v at the y-th position
29: else if x < v then ▷ Note that Line 17 ensures v≤ y
30: nv← v−1 ▷ ρx,y moves v at the (v−1)-th position
31: end if
32: Memorize (ρx,y, PRECEDE(P0,u,v), PRECEDE(P1,nu,nv)) on cache
33: return (ρx,y, PRECEDE(P0,u,v), PRECEDE(P1,nu,nv))
34: end procedure
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Theorem 4.3.1. Given a DAG G with n vertices and minimum path cover w, IS(G) ≤
(n+1)w holds.

Proof. Let pi be the i-th path of the minimum path cover and li be the length of pi.
Here, all vertices in a valid induced subgraph must be consecutive in prefix of each pi

due to precedence. The number of the possible prefixes of each path is at most li + 1,
and the number of paths is w. Therefore, IS(G) is bounded by ∏w

k=1(lk +1). Since li is
also bounded by n, IS(G)≤ (n+1)w holds.

In this proof, we use the rough estimation li ≤ n, but in fact ∑w
k=1 lk = n holds. We

can prove a tighter bound using this restriction.

Lemma 4.3.1. If ∑w
k=1 lk = n holds, ∏w

k=1(lk + 1) ≤ (n/w+ 1)w holds for all positive
integers n, 1≤ w≤ n, and 1≤ li ≤ n.

Proof. The proof is done inductively over w.

(Induction Basis)

When w = 1,
1

∑
k=1

lk = n implies l1 = n. Therefore,

1

∏
k=1

(lk +1) = l1 +1 = n+1 =

(
n
1
+1

)1

holds. This directly proves the induction basis.

(Induction Step)

We suppose
x

∏
k=1

(lk +1)≤
(

n
x
+1

)x

holds when
x

∑
k=1

lk = n. We will prove that
x+1

∏
k=1

(lk +

1)≤
(

n
x+1

+1
)x+1

holds when
x+1

∑
k=1

lk = n. First, we have

x+1

∏
k=1

(lk +1) = (lx+1 +1) ·
x

∏
k=1

(lk +1).

Here,
x+1

∑
k=1

lk = n implies
x

∑
k=1

lk = n− lx+1. Therefore, we have

x+1

∏
k=1

(lk +1)≤ (lx+1 +1) ·
(

n− lx+1

x
+1

)x

= f (lx+1)
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from the induction hypothesis. Let a be lx+1 to simplify. The first-order differentiation
of f (a) is calculated as follows.

f ′(a) =
(

n−a
x

+1
)x

+(a+1) ·
(
− 1

x

)
· x
(

n−a
x

+1
)x−1

=

(
n−a

x
+1−a−1

)
·
(

n−a
x

+1
)x−1

=
n− (x+1)a

x
·
(

n−a
x

+1
)x−1

.

If x= 1, f ′(a) = n−(x+1)a
x and hence the maximum is f ( n

x+1) = ( n
x+1 +1)x+1. Therefore,

this satisfies the induction step. If x≥ 2, we obtain the extrema f ( n
x+1) = ( n

x+1 +1)x+1

and f (n+x) = 0. The second-order differentiation of f (a) is also calculated as follows.

f ′′(a) =−x+1
x
·
(

n−a
x

+1
)x−1

+
n− (x+1)a

x
·
(
− 1

x

)
· (x−1)

(
n−a

x
+1

)x−2

=

{
− (x+1) ·

(
n−a

x
+1

)
− (x−1) · n− (x+1)a

x

}
· 1

x

(
n−a

x
+1

)x−2

= {(x+1)a−2n− x−1} · 1
x

(
n−a

x
+1

)x−2

.

Since 1
x (

n−a
x +1)x−2 is always positive when 1≤ a≤ n and 2≤ x, f (a) is upward-convex

if a < 2n
x+1 + 1, while f (a) is downward-convex otherwise. Because n

x+1 < 2n
x+1 + 1 ≤

n+ x holds, we can conclude f ( n
x+1) = ( n

x+1 + 1)x+1 is the maximum of f (a) for all
1≤ a≤ n, and

x+1

∏
k=1

(lk +1)≤ (lx+1 +1) ·
(

n− lx+1

x
+1

)x

= f (lx+1)≤
(

n
x+1

+1
)x+1

holds. This proves the induction step.

Corollary 4.3.1. Given a DAG G with n vertices and minimum path cover w, IS(G) ≤
(n/w+1)w holds.

Proof. The proof follows from the proof of Theorem 4.3.1 and Lemma 4.3.1.

Corollary 4.3.1 gives a new bound of IS(G). Since (n/w + 1)w is monotonically
nondecreasing for all positive integers n and w, the range of (n/w+1)w is [n+1,2n] for
1≤ w≤ n. This means the previous bound O(min{2n,nw}) can be directly replaced by
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O((n/w+ 1)w). Hence, we obtain the time complexity O((n+m)(n/w+ 1)w) and the
space complexity O((n/w+1)w) of the DP.

We can also estimate the size of a Rot-πDD representing all topological orders and
the time of the construction. The size of such a Rot-πDD is at most w times larger
than the space of DP because each DP recursion has at most w transitions, while each
node of a Rot-πDD has exactly two edges. Therefore, the size of such a Rot-πDD is at
most O(w(n/w+1)w)4. On the other hand, the time of the construction is as fast as DP,
because each node is only created for each vertex deletion in constant time. Hence, the
time complexity of the construction of a Rot-πDD representing all topological orders is
O((n+m)(n/w+1)w).

4.3.6 Computational Experiments

We measured the performance of our Rot-πDD construction algorithm by computa-
tional experiments. Experiment setting is as follows.

• Input: A DAG.

• Output: The number of topological orders of the given DAG.

• Test Cases: For each n = 5,10,15, . . . ,45,50 and k = 1,3,5,7,9, we generate
exactly 30 random DAGs with n vertices and ⌊ k

10 ×
n(n−1)

2 ⌋ edges. (That is, k
provides the edge density of DAGs.)

We also compared with other methods on the same setting. Comparisons are πDD con-
struction, DP counting, and Divide & Conquer counting [53]. Since direct construction
of a πDD seems to be inefficient, we apply precedence queries for each edge individu-
ally. We implemented all algorithms in C++ and carried out experiments on a 3.20 GHz
CPU machine with 64 GB memory.

Figure 4.7 and Figure 4.8 show the average runtime and memory usage on n = 20
cases. Divide & Conquer method times-out on some cases of k = 1. These results
indicate that the worse cases of all algorithms are sparse graphs. In general, sparse
graphs tend to have a large poset width. In fact, the average w of k = 1 cases is 10.6,
while that of k = 5 cases is 3.3. Therefore, the complexity O((n/w+1)w) also tends to
become large on the sparse graph cases.

We therefore focus on sparse graphs. Table 4.3 shows the average numbers of topo-
logical orders, the sizes of Rot-πDDs, and runtimes on the case k = 1. It shows the
amazing efficiency of Rot-πDDs: 3.7× 1041 topological orders are compressed into a

4Note that this bound is valid only for all topological orders. For any permutation set, the worst size
of Rot-πDDs is O(2n2

), which is same as the size bound of πDDs.
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Table 4.3. Experimental results on the cases k = 1.
n The number of topological orders Rot-πDD size Time (sec)
5 60 16 0.00

10 270816 310 0.00
15 3849848730 3990 0.00
20 84248623806362 35551 0.04
25 1729821793136903967 179205 0.18
30 166022551499377802024339 695029 0.90
35 18897260805585874040859189398 2634015 3.78
40 192246224377065271125689349980187 4649639 6.68
45 7506858927008084384591070452622456252 8288752 12.69
50 375636607794991518114274279559952431497225 22542071 35.51

Rot-πDD that has only 2.2× 107 nodes in 36 seconds on the case n = 50. Note that
each node of Rot-πDDs consumes about 30 bytes.

Figure 4.9 and Figure 4.10 show the average runtime and memory usage on k = 1
cases. πDD and Divide & Conquer time-out on the case n ≥ 25 and n ≥ 20, respec-
tively. We can obtain a Rot-πDD, which supports many operations for queries, with
only tenfold increase in runtime and memory usage compared to DP. We guess that the
overhead time is used to store new nodes of a Rot-πDD into the hash table, and the
overhead memory is caused by the difference of the space complexities between DP
and Rot-πDD as described in Section 4.3.5.

We also carried out experiments to measure the performance of query processing. On
these experiments, we use 30 random DAGs with 25 vertices and 90 edges. We start
with a graph having no edge, and add each edge individually. The Rot-πDD method
uses precedence queries for each edge addition, while DP recomputes TC(G) for each
addition. We measure the runtime and the size of a Rot-πDD and a DP table. Note that
the DP table size equals IS(G).

Figure 4.11 and Figure 4.12 show the results for query processing. In almost all
cases, Rot-πDDs can generate and index all topological orders faster than or equal to
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DP. Especially in sparse cases, query processing of Rot-πDDs is very efficient. It may
be because Rot-πDDs (and πDDs) can represent the set of all n-permutations with n(n−
1)/2 nodes.

4.3.7 Concluding Remarks for Topological Orders

In this section, we gave an efficient method for generating and indexing all topo-
logical orders of a given DAG. We showed that Rot-πDDs are suitable for indexing
topological orders in terms of both of theory and practice. In addition, we proposed a
query algorithm for dynamic edge addition to a DAG and it efficiently works on our
computational experiments.

Future work is to apply Rot-πDDs to solve several scheduling problems. We would
like to develop new operations to process required queries and optimizations for each
problem. Another topic is to apply the Rot-πDD construction technique to other graph
generation problems which can be solved by considering induced subgraphs recursively,
e.g. perfect elimination orderings [56].
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4.4 Enumeration of Pattern-avoiding Permutations
A permutation π avoids a pattern σ if no subsequence in π is order isomorphic to σ .

Two numerical sequences a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bm) are order isomor-
phic if a and b have the same length and satisfy the rule ai < a j if and only if bi < b j

for all i, j. Permutations that avoid pattern σ are called σ -avoiding permutations.
Research of pattern-avoiding permutations dates back to stack sort, which was pro-

posed by Knuth in [48]. In stack sort, we can use a single stack to sort elements. Knuth
showed that a permutation is stack sortable if and only if it is a 231-avoiding permu-
tation. Several variations of the stack sorting problem, such as the twice stack sorting
problem [81] and the double-ended queue sorting problem [69], have been proposed,
and pattern-avoiding permutations were developed in that context.

After pattern-avoiding permutations were proposed, many researchers were engaged
in studies to compute the number of the permutations that avoid given patterns. For
example, 1342-avoiding permutations have been enumerated by a mathematical ap-
proach [12], and 1324-avoiding permutations can be counted by computer programs [54].
Moreover, the relation of classes on pattern-avoiding permutations has also been exam-
ined. Two permutations π and σ are Wilf-equivalent if the number of n-permutations
avoiding π is equals to the number of σ -avoiding n-permutations for all positive inte-
gers n. In [76], the nontrivial Wilf-equivalence between the 4132-avoiding permutations
and the 3142-avoiding permutations was discovered. The generation of pattern-avoiding
permutations can contribute to not only the discovery of unknown Wilf-equivalent classes,
but also the identification of bijective functions between such classes.

Relations between pattern-avoiding permutations and mathematical problems have
been studied actively [19, 33]. In particular, Yao et al. [88] revealed a bijection between
mosaic floorplans and Baxter permutations, which are generalized pattern-avoiding per-
mutations, and Ackerman et al. proposed a simple encoding and decoding between them
in [1]. A floorplan is a topological partition of a rectangle into multiple rectangles, and a
mosaic floorplan is a subclass of floorplans. Floorplans have practical applications in ar-
eas such as VLSI design [37]. Storing all pattern-avoiding permutations into a database
is equivalent to preparing a database of floorplans. Database queries such as search-
ing by criteria and random sampling are useful for VLSI design. Therefore, generating
pattern-avoiding permutations can contribute to solving practical problems.

Wilf provided an amortized polynomial-delay algorithm that generates all permu-
tations avoiding the identity pattern, and posed the question about the complexity of
generation for other patterns [82]. In [13], Bose et al. proved that the general count-
ing problem is #P-complete. Generating algorithms for some particular patterns were
proposed [28]. For practically fast enumeration, PermLab [2] has been developed by
Albert. This is a software to analyze permutation patterns in several aspects, and has
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a function to enumerate pattern-avoiding permutations. Therefore, fast enumeration al-
gorithms for pattern-avoiding permutations are desired in both of practical applications
and theoretical researches.

4.4.1 Contribution Summary

We provide a practically efficient algorithm for implicitly generating pattern-avoiding
permutations with πDDs. Furthermore, we extend this algorithm to handle some gen-
eralized patterns, such as vincular patterns and bivincular patterns. This algorithm runs
practically faster than naïve listing algorithm and less space than naïve array represen-
tation.

Furthermore, we use Rot-πDDs for the previous algorithm instead of πDDs. We
prove that the sizes of Rot-πDDs used in the middle of algorithm are theoretically
bounded by O(n2), while the sizes of corresponding πDDs seems to be difficult to
estimate and experimentally larger than the sizes of Rot-πDDs. Experimental results
shows that Rot-πDDs indeed accelerates the whole time of the algorithm.

4.4.2 Permutation Patterns

We first define containment and avoidance of permutation patterns.

Definition 4.4.1. Two numerical sequences a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bm)

are order isomorphic if a and b have the same length and ai < a j if and only if bi < b j

for all 1≤ i, j ≤ n.

Definition 4.4.2. A permutation π contains a permutation σ if there is at least one
subsequence in π which is order isomorphic to σ , where the subsequence need not
consist of consecutive numbers in π . Such σ is called a (permutation) pattern and π is
called a text. Conversely, π avoids σ if π does not contain σ , and π is a σ -avoiding
permutation. We may briefly write a pattern in the one line form without parentheses
and commas.

Example 4.4.1. A permutation (4,2,1,3) contains a pattern (3,1,2) because (4,2,3)
and (4,1,3) are order isomorphic to the pattern. Thus, (4,2,1,3) is a 312-avoiding
permutation.

The patterns defined above are also called classical patterns because some gener-
alizations have been proposed. Vincular patterns, which are also called generalized
patterns, are one of well-known generalizations [4].
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Definition 4.4.3. Vincular patterns requires not only order isomorphism, but also adja-
cency of some positions in the permutation. If a vincular pattern requires that the i-th
and the (i+ 1)-th elements are adjacent, the corresponding elements in the text must
be adjacent. We use the underline notation to represent adjacencies: If the ith and the
(i+1)th elements are consecutively underlined, they must be adjacent.

Example 4.4.2. For example, we consider the permutation (4,2,1,3) and the vincular
pattern 312. Both (4,2,3) and (4,1,3) are order isomorphic to 312, but (4,2,3) does
not match 312 because the second and third elements are not adjacent in the text. In
contrast, (4,1,3) matches the pattern because 1 and 3 are adjacent in (4,2,1,3). Thus,
(4,2,1,3) contains 312.

Vincular patterns have been further extended to bivincular patterns [14].

Definition 4.4.4. A bivincular pattern is restricted by restrictions same as vincular pat-
terns and additionally by consecutiveness of element values. If a bivincular pattern re-
quires that the i-th and the (i+1)-th values are consecutive, the corresponding elements
in the text must differ exactly by one. We use the two-line form with bars and under-
lines to represent bivincular patterns. The first row represents consecutiveness and the
identity permutation ι , and the second row represents adjacencies and a relative order.

Example 4.4.3. A bivincular pattern
123
312

represents a pattern where the 1st and the

2nd smallest values must be consecutive, the 2nd and the 3rd elements in a subsequence
must be adjacent in a text, and the relative order must match 312. Thus, the permu-

tation (4,2,1,3) avoids
123
312

. Indeed both subsequences (4,2,3) and (4,1,3) are order

isomorphic to 312 but (4,2,3) does not match the bivincular pattern because 2 and 3
are not adjacent in the text, and (4,1,3) does not match the bivincular pattern either
because 1 and 3 are not consecutive.

The problem considered in this section can be stated as follows: for given a positive
integer n and a pattern σ , generate all σ -avoiding permutations of length n. Hereafter,
unless otherwise noted, we denote the length of a given pattern σ by k.

4.4.3 πDD-based Method

In this section, we review the previous algorithm for generating all σ -avoiding n-
permutations with πDDs. This algorithm makes use of the following fact: the set of
σ -avoiding permutations is the complement of the set of permutations that contain σ .
Hereafter, Avn(σ) denotes the set of σ -avoiding n-permutations and Cn(σ) denotes the
set of n-permutations that contain σ . As stated above, Avn(σ) = Sn \Cn(σ) holds. In
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{1234, 1243, 1342, 2341}

n = 4, σ = 312, k = 3

Step A

{3124, 4123, 4132, 4231}Step B

{3124, 3142, 3412, 4312,
  4123, 4132, 4312, 3412,
  4132, 4123, 4213, 2413,
  4231, 4213, 4123, 1423 }

Step C {3124, 3142,
  3412, 4312,
  4123, 4132, 
  4213, 2413,
  4231, 1423 }

Remove
duplicated
permutations

= C4(312)

Figure 4.13. The process of generating C4(312).

general, the time to compute set difference depends on the cardinalities of the sets. On
the other hand, the set difference operation of πDD can be efficient because it depends
on the size of the πDDs.

We already have the algorithm for construction of Sn. We provide the algorithm for
generating Cn(σ) for classical patterns. In order to generate Cn(σ), we must generate
all permutations which have at least one subsequence order isomorphic to σ . This is
achieved in three steps as follows.

A. Generate all permutations whose k-prefix is ordered in increasing order.

B. Rearrange the k-prefix of each permutation which was generated in step A so that
the k-prefix becomes order isomorphic to σ .

C. Distribute the k-prefix of each permutation π which was generated in step B over(n
k

)
possible positions in π .

Figure 4.13 shows the process of generating C4(312). Step A generates all
(n

k

)
com-

binations in the k-prefix of the permutations. Step B rearranges the k-prefix of each
permutation into the numerical sequence order isomorphic to σ . All possible numerical
sequences order isomorphic to σ appear in the k-prefix of the permutations which are
generated in step B. The distribution by step C generates all permutations π such that
at least one of

(n
k

)
subsequences in π exactly matches one of the numerical sequences

order isomorphic to σ . Note that they may have some duplications.
Steps B and C involve the rearrangements of multiple permutations. This means that

this process can be done by Cartesian products of πDDs as shown in Section 2.3.3. Let
A denote the πDD for permutations which are generated in step A, and let B and C
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{1234, 1243,
  1342, 2341}

n = 4, σ = 312, k = 3

{3124}{1234, 1243,
  1423, 4123}

{3124, 3142,
  3412, 4312,
  4123, 4132, 
  4213, 2413,
  4231, 1423 }

C4(312)

=

=

××

××

Figure 4.14. Cartesian product for generating C4(312).

denote the πDDs for the rearrangements which correspond to steps B and C, respec-
tively. Note that the permutations represented in B are not the permutations obtained
after step B by rearranging those in A. The permutations in B are the permutations as
operations to apply those in A. The same applies to C. Then, Cn(σ) can be obtained by
computing C×B×A. Figure 4.14 may help to understanding the relation between the
process in Figure 4.13 and the Cartesian product. We indeed do not have to consider the
duplications since we achieve the process via πDD operations.

We provide the method for the construction of A at the end because it is similar to the
construction of C but more complicated.

Construction of B

In order to rearrange the k-prefix of all permutations in A so that it becomes order
isomorphic to σ , we define B to be the πDD consisting only of the permutation σ . To
construct this πDD, we first decompose σ into composition of transpositions as given
in Definition 2.1.6. The πDD forms one path based on this decomposition, and can be
easily constructed in a bottom-up fashion.

Construction of πDD C

We define C to be the πDD for the set of n-permutations π such that there are k
indices 1 ≤ p1 < p2 < · · · < pk ≤ n with πpi = i. This means that each permutation in
C must have the numerical sequence (1,2, . . . ,k) as its subsequence. There is a simple
method to construct C. First, for each n-permutation which satisfies the above condition,
we construct one πDD like the construction of B. And then, we take the union of the
πDDs. This algorithm is simple and easy to implement. However, this is not efficient
because this algorithm has to repeat constructions and union operations

(n
k

)
times.

An idea to reduce the number of πDD operations is based on Pascal’s triangle, in
which the recursion

(n
k

)
=
(n−1

k

)
+
(n−1

k−1

)
holds. Let Posi, j be the set of all n-permutations
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Algorithm 4.4.1 Construct πDD C.
1: procedure CONSTRUCTC(n,k)
2: Pi, j← the 1-sink for j = 0, otherwise the 0-sink
3: for j = 1 to k do
4: for i = j to n do
5: Pi, j← Pi−1, j∪Pi−1, j−1.Swap( j, i)
6: end for
7: end for
8: return Pn,k

9: end procedure

π containing at least one subsequence πk1πk2 . . .πk j satisfying the following two condi-
tions:

1. 1≤ k1 < k2 < .. . < k j ≤ i,

2. πk1πk2 . . .πk j = 12 . . . j.

It is obvious that C is the πDD for Posn,k. If we can calculate Posi, j using Posi−1, j and
Posi−1, j−1 like Pascal’s triangle, we can obtain C with only O(kn) operations. In order
to make this idea work, we restrict Posi, j with the additional condition as follows:

3. For each i+1≤ x≤ n, x is fixed, i.e., πx = x.

Here, we can partition Posi, j into the two sets: the set including π with πi ̸= j and the
other set. The former set equals Posi−1, j, and the latter one can be obtained by as-
signing j to the ith position of permutations in Posi−1, j−1. Hence, this is achieved by
Pi−1, j−1.Swap(j,i), where Pi, j denotes the πDD for Posi, j, because the ith element is i
from the third condition and j is not assigned yet. Thus, Pi, j =Pi−1, j∪Pi−1, j−1.Swap(j,i)
holds. The dynamic programming for this recursion is shown in Algorithm 4.4.1.

Construction of πDD A

As stated above, A is the πDD for the set of all n-permutations whose k-prefix is
ordered in increasing order. More precisely, a permutation π in A satisfies 1 ≤ π1 <

π2 < .. . < πk ≤ n.
We can obtain A by repeating assignments in a similar way to the construction of

C. However, if we assign elements in increasing order, it does not work. In order
to assign v to the p-th position by Swap(p,v), p must be fixed to the p-th position.
But p can be at another position by other swaps before executing Swap(p,v) because
p ≤ v holds. Otherwise, on the construction of Pp,v, there is no problem because after
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Swap(p,v) assigns v to the p-th position, there is no assignment to the vth position due
to v≤ p. Therefore, in order to fix the position of elements which will be used later, we
reverse the order of assignments. Let Inci, j be the set of all n-permutations satisfying
the following conditions:

1. i+1≤ π j+1 < π j+2 < .. . < πk ≤ n,

2. for each 1≤ x≤ j, x is fixed, i.e., πx = x.

These conditions mean that for each permutation π in Inci, j, the (k− j)-suffix of the
k-prefix of π is already used and the j-prefix of the k-prefix of π is fixed. We execute
the constructions from Incn,k = {ι} to Inc0,0. Let Ii, j denote the πDD for Inci, j. Here,
Ii, j = Ii+1, j ∪ Ii+1, j+1.Swap( j + 1, i+ 1) holds because Ii, j can be partitioned into the
set including π with π j+1 = i+1, which is Ii+1, j+1.Swap( j+1, i+1) and the other set,
which is Ii+1, j, like Pi, j.

The construction of A is not completed yet because the (n−k)-suffix of each permu-
tation in I0,0 is in one fixed order. We must generate all orders of the (n− k)-suffix of
each permutation in I0,0. It is realized by Sn,k× I0,0, where Sn,k is the πDD for the set
including the n-permutations π in which πi = i holds for 1≤ i≤ k and the (n−k)-suffix
is in any order. We can obtain Sn,k by the construction like Algorithm 2.3.1 for Sn.
Algorithm 4.4.2 describes the entire process.

Generating permutations containing a vincular pattern

The additional restriction of vincular patterns is adjacency of positions. Therefore,
we can generate vincular pattern-avoiding permutations by a slight modification of step
C. We call the modified step C’. We denote by C′ the πDD which corresponds to step
C’.

If the j-th and the ( j + 1)-th elements must be adjacent, j + 1 is the right-hand
neighbor of j for all permutations in C′. In other words, if we assign j to the i-th
position, we must assign ( j + 1) to the (i+ 1)-th position. For C′, we define P′i, j =
P′i−1, j−1.Swap( j, i) if the j-th and the ( j+1)-th elements must be adjacent, and other-
wise P′i, j = P′i−1, j ∪P′i−1, j−1.Swap( j, i) as Pi, j. As shown for Algorithm 4.4.1, P′i−1, j
consists only of permutations π such that πi ̸= j, and P′i−1, j−1.Swap( j, i) consists only
of π such that πi = j. Thus, if the j-th and the ( j+1)-th elements must be adjacent, P′i, j
includes only permutations π such that πi = j, and P′i, j.Swap( j+1, i+1) includes only
permutations π such that πi = j and πi+1 = j+1, that is, j and j+1 are adjacent. There-
fore, P′i+1, j+1 = P′i, j+1∪P′i, j.Swap( j+1, i+1) includes only the permutations in which
j and j+1 are adjacent because P′i, j.Swap( j+1, i+1) satisfies the adjacency as above,
and P′i, j+1 also satisfies the adjacency recursively. Therefore, we obtain C′ = P′n,k by
adding a branch to Algorithm 4.4.1.
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Algorithm 4.4.2 Construct πDD A.
procedure CONSTRUCTA(n,k)

In,k← the 1-sink
for i = n−1 to 0 do

for j = k to 0 do
if j < k then

Ii, j← Ii+1, j∪ Ii+1, j+1.Swap( j+1, i+1)
else

Ii, j← Ii+1, j

end if
end for

end for

Sk,k← the 1-sink
for i = k+1 to n do

Si,k = Si−1,k

for j = k+1 to i−1 do
Si,k← Si,k∪Si−1,k.Swap( j, i)

end for
end for
return Sn,k× I0,0

end procedure

Generating permutations containing a bivincular pattern

Bivincular patterns have three restrictions: a relative order, adjacencies of positions,
and consecutiveness of values. Hence, we use step C’ and change step A to A’ in
a similar way as C was changed to C’. If the i-th and the (i+ 1)-th values must be
consecutive, we define I′i, j = I′i+1, j+1.Swap( j+1, i+1).

Summary of our algorithms

Our algorithms can be summarized as follows. First, we construct Sn. Next, we
construct the πDD for Cn(σ) by choosing the steps to take according to the pattern to
avoid. Finally, we calculate the set difference of Sn and Cn(σ) by using πDDs, and
hence obtain the πDD for Avn(σ). This procedure is illustrated in Figure 4.15.
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1. Generate Sn

2. Generate Cn(σ)

3. Calculate Sn＼Cn(σ)

n,σ

Avn(σ)

Step C’
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Step A’
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Step B

classicalclassical vincular

vincular
bivincular bivincular

× ×

Figure 4.15. The summary of our algorithms with πDDs

4.4.4 Rot-πDD-based method

In this subsection, we provide construction algorithms of Rot-πDDs for A and C.
Then, we estimate and compare the size of πDDs and Rot-πDDs for A and C.

Construction of Rot-πDD C

As stated in the previous subsection, a Rot-πDD C contains only permutations π
such that there are k indices 1≤ p1 < p2 < · · ·< pk ≤ n with πpi = i. The composition
ρ1,p1 ·ρ2,p2 · · · · ·ρk,pk is an instance of such π . This composition can be calculated as
Definition 4.1.2: we start ι , and then left-rotate the interval [k, pk], and next left-rotate
the interval [k−1, pk−1], and so on. Here, intervals [k, pk] are valid since k ≤ pk holds.
In addition, for each left-rotation ρk,pk , it is guaranteed that k is at the k-th position since
elements before the k′-th position are not moved by ρk′,pk′

(k < k′). These facts ensure
that each left-rotation ρk,pk moves k to the pk-th position.

The above observation gives the following recursion: Let Posi, j be a set of permu-
tations such that the largest left-rotation of their left-rotation decompositions is ρ j,i or
smaller, then we can add ρ j+1,i+1 to the end of each permutation in Posi, j, and obtain
Posi+1, j+1. Posn,k is the desired permutation set. Algorithm 4.4.3 realizes this recursion
by dynamic programming. Note that this algorithm quite similar to Algorithm 4.4.1:
only one different point is using LeftRot instead of Swap at line 6.

Construction of Rot-πDD A

Let A be the Rot-πDD for the set of all n-permutations whose k-prefix is ordered
in the increasing order. Here, we can observe that the left-rotation decomposition of
such permutations does not include ρi, j ( j ≤ k) since if such ρi, j exists, the new j-th
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Algorithm 4.4.3 Construct Rot-πDD C.
1: procedure CONSTRUCTC(n,k)
2: Pi, j← the 1-sink for j = 0, otherwise the 0-sink
3: for j = 1 to k do
4: for i = j to n do
5: Pi, j← Pi−1, j∪Pi−1, j−1.LeftRot( j, i)
6: end for
7: end for
8: return Pn,k

9: end procedure

Algorithm 4.4.4 Construct Rot-πDD A.
1: procedure CONSTRUCTA(n,k)
2: Ik← the 1-sink
3: for i = k+1 to n do
4: Ii← Ii−1

5: for j = 1 to i−1 do
6: Ii← Ii∪ Ii−1.LeftRot( j, i)
7: end for
8: end for
9: return In

10: end procedure

element must be smaller than the previous j-th element, and thus the k-prefix is not in the
increasing order. On the other hand, ρi,l (k < l) does not disturb the k-prefix increasing
sequence as shown in Section 4.2.3. Therefore, all the permutations whose left-rotation
decomposition consists only of ρi,l is in A. Consequently, a permutation π is in A if
and only if π can be decomposed into left-rotations except ρi, j ( j≤ k). Algorithm 4.4.4
describes construction of the Rot-πDD including only such permutations.

Sizes of πDDs and Rot-πDDs for A and C

In Algorithm 4.4.1 (resp. Algorithm 4.4.3), the top label of Pi, j is τ j,i (resp. ρ j,i)
for j < i5. This indicates that Pi−1, j−1.Swap( j, i) (resp. LeftRot( j, i)) just places τ j,i

(resp. ρ j,i) on the top of Pi−1, j−1, and increases the size only by one. Thus, the size
of Pi, j ( j < i) is j(i− j) (except the 1-sink), and the size of C is k(n− k) = O(n2).
Figure 4.16 illustrates the beautiful structure of C in the form of a πDD and a Rot-
πDD, which helps intuitive understandings of the exact size of decision diagrams. It is

5We consider i = j for the 1-sink.
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Figure 4.16. A πDD and a Rot-πDD for C with n = 8 and k = 3

also interesting that the πDD and the Rot-πDD for C has the same shape although they
are based on different decomposition manners, because τi,i+1 and ρi,i+1 are the same
permutation: an adjacent transposition.

Size estimation of πDD A from Algorithm 4.4.2 seems to be difficult due to Carte-
sian product operation. In addition, the experimental result shown later in Section 4.4.5
indicates that the size of πDD A is large even if n and k are small. In contrast, Algo-
rithm 4.4.4 is quite simple and has the same property for construction of C: LeftRot( j, i)
just places ρ j,i on the top of Ii−1. Thus the number of nodes of A is equal to the number
of the steps in Algorithm 4.4.4, i.e., n(n−1)/2− k(k−1)/2 = O(n2). The structure of
Rot-πDD A is also regular as shown in Figure 4.17.

Here, all of the Rot-πDDs A, B, C have polynomial size. Although the exact time
complexity of Cartesian product operation has never been revealed, #P-completeness of
the counting problem of pattern-avoiding permutations suggests that Cartesian product
operation seems not to be a polynomial time operation.

4.4.5 Experimental Results

We implemented our algorithms in C++ and carried out computational experiments
on a 3.20 GHz Intel Core i7-3930K CPU machine with Ubuntu 14.04 LTS 64-bit OS
and 64 GB memory.
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Figure 4.17. A Rot-πDD for A with n = 7 and k = 3

Comparison of the Sizes of Decision Diagrams for A

We compare the sizes of πDDs and Rot-πDDs for A by experiments. Table 4.4
summaries the sizes of each decision diagram representing A for n = 11 to 15. The
sizes of Rot-πDDs are exactly n(n− 1)/2− k(k− 1)/2 as estimated in the previous
subsection. On the other hand, the sizes of πDDs are extremely larger than the sizes of
Rot-πDDs for all pairs n and k; in the worst case, the difference of the sizes between a
πDD and a Rot-πDD is four orders of magnitude.

Comparison of the Performance of Enumeration

We conducted experiment to measure the practical performance of our algorithms.
We also compared the performance of our algorithms to the following methods:

1. Naïve method: generates all n-permutations and, for each n-permutation, decides
whether it contains σ or not by checking the order isomorphism between all k-
subsequences and σ .

2. PermLab method: repeatedly extend σ -avoiding permutations with length i−1 to
σ -avoiding permutations with length i, 1 through n. Each extension is accelerated
by pruning the position at which insertion of i will be failed.



78 Chapter 4. Rotation-based πDDs and Their Applications

Table 4.4. The size of πDDs and Rot-πDDs for A (except the 0-/1-sinks)
n

11 12 13 14 15
k πDD Rot-πDD πDD Rot-πDD πDD Rot-πDD πDD Rot-πDD πDD Rot-πDD
2 11910 54 35220 65 111230 77 347688 90 1151934 104
3 11904 52 35214 63 111224 75 347682 88 1151928 102
4 11856 49 35166 60 111176 72 347634 85 1151880 99
5 11496 45 34806 56 110816 68 347274 81 1151520 95
6 8616 40 31926 51 107936 63 344394 76 1148640 90
7 4116 34 19326 45 82736 57 319194 70 1123440 84
8 1312 27 7506 38 40256 50 198234 63 881520 77
9 303 19 2014 30 12938 42 78474 55 440520 69

10 55 10 405 21 2974 33 21252 46 144360 60
11 0 0 66 11 528 23 4250 36 33498 50
12 — — 0 0 78 12 674 25 5906 39
13 — — — — 0 0 91 13 845 27
14 — — — — — — 0 0 105 14
15 — — — — — — — — 0 0

Tables 4.5 and 4.6 show the results for generating permutations avoiding a classical
pattern. The tables show the best, the worst, and the average computation time and
memory consumption over all patterns with length k = 3, 4, and 5. Note that computa-
tion time of our πDD and Rot-πDD methods is time to construct the decision diagram
for Avn(σ), and computation time of the naive and PermLab methods is time to output
all pattern-avoiding permutations to /dev/null.

For computation time, the naïve method cannot finish computation even if the length
of patterns is small. The runtime grows ten-folds or more with respect to the length of
texts. PermLab works averagely three-folds better than πDD method for patterns with
length 3. However, the performance for longer patterns, i.e. the length greater than 3,
is worse than the performance of the πDD method. For example, in the case of n = 14
and k = 4, the πDD method averagely requires only 10% of the time required by the
PermLab method. Using Rot-πDDs dramatically improves the performance of the πDD
method: the Rot-πDD method is two orders of magnitude faster than the πDD method
in the case n = 15 and k = 4, and computation time of the Rot-πDD method for n = 20
and k = 4 cases is less than computation time of the πDD method for n = 15 and k = 4.

It should be noted that there are differences between the best and worst performance
for pattern with the same length in the results of decision diagram-based algorithms,
while the naïve and PermLab methods hardly shows any differences. However, in al-
most all worst-case scenarios, the performance of the Rot-πDD method is better than
the best-case scenario of the search-based ones.

Memory consumption of the πDD and Rot-πDD method is significantly small com-
pared to the number of permutations in the decision diagrams. This indicates that com-
pression of πDDs and Rot-πDDs is effective for pattern-avoiding permutations. Rot-
πDDs show higher compression ratio than πDD other than the best cases of k = 3.
The results intend that runtime and memory consumption seem to have the proportional
relation.
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Table 4.5. Computation time (second) for generating classical pattern-avoiding permutations
Naïve Method PermLab Method πDD Method Rot-πDD Method

k k k k
n 3 4 5 3 4 5 3 4 5 3 4 5

best 1.140 6.000 17.089 0.002 0.028 0.091 0.004 0.016 0.024 0.004 0.005 0.004
10 average 1.173 6.453 18.223 0.003 0.034 0.112 0.011 0.028 0.036 0.005 0.007 0.009

worst 1.200 6.932 19.697 0.006 0.056 0.194 0.020 0.044 0.060 0.006 0.010 0.017
best 13.053 89.494 417.958 0.005 0.173 0.825 0.012 0.044 0.092 0.009 0.011 0.010

11 average 13.216 95.727 435.211 0.007 0.201 0.985 0.029 0.101 0.174 0.009 0.018 0.018
worst 13.365 101.878 453.604 0.011 0.298 1.220 0.052 0.152 0.276 0.010 0.026 0.026
best 171.954 — — 0.016 1.199 8.053 0.024 0.152 0.428 0.020 0.022 0.024

12 average 174.018 — — 0.018 1.358 9.806 0.087 0.444 0.921 0.022 0.031 0.040
worst 175.934 — — 0.020 1.611 11.697 0.156 0.780 1.392 0.028 0.039 0.063
best — — — 0.061 8.324 78.190 0.048 0.568 1.824 0.044 0.053 0.052

13 average — — — 0.068 9.277 98.256 0.284 1.787 4.309 0.050 0.066 0.100
worst — — — 0.077 10.801 130.391 0.544 3.072 6.888 0.054 0.090 0.186
best — — — 0.217 54.934 — 0.116 1.960 6.448 0.115 0.118 0.115

14 average — — — 0.233 65.989 — 1.029 6.769 19.036 0.123 0.158 0.305
worst — — — 0.263 79.993 — 1.968 12.021 32.370 0.140 0.242 0.611
best — — — 0.775 462.942 — 0.300 5.688 23.814 0.301 0.306 0.310

15 average — — — 0.852 381.689 — 3.513 24.771 85.655 0.320 0.422 0.912
worst — — — 0.943 585.620 — 6.860 48.415 160.562 0.354 0.610 1.990
best — — — 2.765 — — 0.705 15.110 70.437 0.840 0.822 0.838

16 average — — — 3.002 — — 10.795 78.113 300.129 0.862 1.110 2.673
worst — — — 3.412 — — 21.002 157.880 585.190 0.887 1.575 6.530
best — — — 10.945 — — 1.807 43.357 — 2.130 2.093 2.095

17 average — — — 12.282 — — 37.014 283.071 — 2.179 2.748 7.557
worst — — — 13.484 — — 73.622 598.761 — 2.250 3.817 19.078
best — — — 41.322 — — 4.231 — — 5.230 5.075 5.031

18 average — — — 43.164 — — 127.887 — — 5.291 6.552 20.604
worst — — — 47.421 — — 254.791 — — 5.407 9.116 60.025
best — — — 147.063 — — 10.283 — — 12.528 12.008 11.910

19 average — — — 155.777 — — 445.950 — — 12.727 15.307 56.159
worst — — — 171.360 — — 906.655 — — 13.175 21.177 198.094
best — — — 561.707 — — — — — 29.717 28.713 28.074

20 average — — — 595.214 — — — — — 29.874 34.986 154.494
worst — — — 654.233 — — — — — 30.169 47.085 680.858

Table 4.6. Memory consumption (kB) for generating classical pattern-avoiding permutations.
#Avn(σ) πDD Method Rot-πDD Method

k k k
n 3 4 5 3 4 5 3 4 5

best 2760 4212 7156 2360 2360 2360
10 average 16796 574150 2171460 3509 6856 7376 2361 2706 2862

worst 4260 7444 7700 2364 2956 2956
best 4208 7676 13720 2952 2960 2956

11 average 58786 3648275 19011623 5876 17641 25233 2954 4139 4354
worst 6792 25084 27000 2956 4624 4644
best 7112 25316 49108 4640 4640 4640

12 average 208012 23771768 173553425 16106 48405 93525 5075 7162 9432
worst 25084 94788 102940 7244 7792 14948
best 12708 51436 188416 7836 13112 13172

13 average 742900 158260498 1641499314 32130 168848 337123 9850 14078 19753
worst 51084 201264 408460 14068 14996 26664
best 24440 187372 396432 24848 24972 24984

14 average 2674440 1073474327 16006197603 111634 542621 1282547 25659 27141 43704
worst 190460 779640 1587600 26156 48472 96904
best 47620 389140 1543108 48748 48404 48860

15 average 9694845 7401901167 160274747099 234836 1560720 4986352 49296 59769 107354
worst 406440 3092572 6471388 49756 97140 197228
best 94488 807736 5924216 97504 97224 97280

16 average 35357670 51789495305 1642837274942 863992 5477517 19534358 97789 129188 251457
worst 1571096 12058376 25328368 98324 193140 758348
best 189892 3016896 — 195956 196272 196136

17 average 129644790 367152104849 13729671069165 3226830 18970784 — 196482 274738 656590
worst 6134872 47290404 — 197384 386564 1558264
best 378448 — — 395404 390964 390652

18 average 477638700 2634072644232 104591644374404 12331948 — — 396304 553176 1564507
worst 23845996 — — 398492 778860 3307180
best 770112 — — 814724 802256 799584

19 average 1767263190 15210871435804 670098267999396 26406442 — — 925279 1263493 4022444
worst 51401392 — — 1477460 1598624 12509448
best — — — 2984852 2979536 2958408

20 average 6564120420 72990438715891 3747149016070295 — — — 2985622 3055231 10593213
worst — — — 2986956 3188512 48122832
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4.4.6 Concluding Remarks for Pattern-Avoiding Permutations

In this section, we proposed an algorithm for generating pattern-avoiding permuta-
tions using πDDs and Rot-πDDs. Our proposed method is easily extended to enable
to process generalized patterns such as vincular pattern and bivincular patterns. In ad-
dition we showed that the exact sizes of Rot-πDDs in the middle of the algorithm are
O(n2). Experimental results demonstrate that proposed algorithms are faster than the
search-based method and costs less memory than the naive storing. Especially, the Rot-
πDD-based method significantly well-performed: the Rot-πDD-based method runs two
or more orders of magnitude faster than the algorithm used in PermLab, a major soft-
ware for manipulation of pattern-avoiding permutations.

Future work is to improve further the computation time and memory consumption of
our algorithm, and to compare our algorithm and other algorithms for some particular
patterns, for example Baxter permutations [7]. Moreover, we are also interested in
analyzing the relationship between pattern-avoiding permutations and floorplans. In
future work, we plan to develop several functions such as search by criteria and random
sampling to use Rot-πDDs as floorplan databases.
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4.5 Proper Usage of Permutation Decision Diagrams
We have seen several applications of permutation decision diagrams, and they include

both of the applications suitable to πDD and the applications suitable to Rot-πDDs. It
is natural that we want to reveal what properties of problems distinguish πDD-suitable
problems and Rot-πDD-suitable problems, and how we choose πDDs and Rot-πDDs
as a data structure for a given problem.

From applications in previous chapters, πDDs are preferable to problems related to
swaps (reversible circuits) or cycles (cycle-type partitions). On the other hand, Rot-
πDDs are preferable to problems solved by a dynamic programming approach on sub-
sets (Eulerian trails and topological orders) or related to relative orders (pattern-avoiding
permutations). Although these can be hints to choose decision diagrams, it is more use-
ful if we know key factors in terms of mathematical characterizations of problems.

In this section, we tackle a proper selection problem of permutation decision dia-
grams. We first review studies on compression of a single permutation to obtain hints
to reveal the relation between compression ratio and permutation parameters. Direct
extension of such study to the decision diagram selection problem seems to be difficult
because we compress a permutation set, not a single permutation. We conduct prelimi-
nary experiments to empirically analyze what parameters of permutations in a set affect
the compression ratio of πDDs and Rot-πDDs.

4.5.1 Compression of a Permutation

In general, naïve representation of a permutation, i.e. an array of integers, is asymp-
totically optimal: since the number of all n-permutations is n!, the lower bound of the
length of bits to represent an n-permutation is log(n!) ≃ n logn− 1.44n, which can be
asymptotically achieved by an array with n integers each of which represented by ⌈logn⌉
bits. Does this mean that we have nothing to do anymore?

Barbay and Navarro [5] state the relation between permutation compression and
adaptive sort [29]. A sorting algorithm is adaptive for a disorder measure if the algo-
rithm runs fast for permutations with small disorder measure, where disorder measures
characterize sorting-hardness of permutations in some sense. For example, the number
of inversions, pairs (i, j) of indices i, j(i < j) satisfying πi > π j is a disorder measure of
permutations. More formally, we define optimally adoptive sorting as follows:

Definition 4.5.1. Let M be a function for a permutation such that M(π) is a disorder
measure of a permutation π . Then a sorting algorithm is optimally adaptive with re-
spect to M if for any n-permutation π , the number of comparison in the algorithm is
at most O(max{n, log |B(M(π),n,M)|}), where B(k,n,M) is the set of permutations σ
with length n or less such that M(σ)≤ k.
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We notice that the theoretical lower bound Ω(n logn) of sorting algorithms comes from
the fact that sorting algorithms need ⌈log(n!)⌉ comparisons to distinguish n! permuta-
tions. Conversely, optimally adaptive sorting algorithms can distinguish a permutation
with a small disorder measure in the small number of comparisons, and thus yields
a short comparison sequence. Since we can decode a permutation from (short) com-
parison sequences, we can assign comparison sequences as short compressed codes to
permutations with small disorder measures. Barbay and Navarro [5] have indeed pro-
posed encoding scheme adaptive to a disorder measure runs, one of disorder measures,
with indexing to calculate π() and π−1().

Here, we introduce the six disorder measures:

Definition 4.5.2. Inv: Inversions of a permutation π are pairs of two indices (i, j) (1≤
i < j ≤ n) such that πi > π j. We denote the number of inversions of π as Inv(π) =
|{(i, j) | 1≤ i < j ≤ n,πi > π j}|.

Example 4.5.1. Let π = (4,2,3,1,6,5), then Inv(π) = 6 because there are inversions
(1,2),(1,3),(1,4),(2,4),(3,4),and(5,6) in π .

Definition 4.5.3. Dis: Dis(π) is defined as the maximum distance between two elements
of an inversion in π . Formally, Dis(π) = max{ j− i | 1≤ i < j ≤ n,πi > π j}.

Example 4.5.2. Let π = (4,2,3,1,6,5), then Dis(π) = 3 because the distance of the
inversion (1,4) in π is 3 and this is the maximum distance.

Definition 4.5.4. Max: Max(π) is defined as the maximum distance between the posi-
tion of an element in π and its position in ι . Formally, Max(π) = max{|πi− i| | 1≤ i≤
n}.

Example 4.5.3. Let π = (4,2,3,1,6,5), then Max(π) = 3 because π1 = 4 gives the
maximum distance.

Definition 4.5.5. Exc: Exc(π) is defined as the minimum number of exchanges to sort
π . In other words, Exc(π) is the minimum number of transpositions to make π by the
composition of the transpositions. It is known that the number of required exchanges
to sort an n-permutation π equals n−∑n

i=1 c⃗π
i , i.e., n minus the number of cycles in π .

Thus, Exc(π) = n−∑n
i=1 c⃗π

i for an n-permutation π .

Example 4.5.4. Let π = (4,2,3,1,6,5), then Exc(π) = 2 because π = (1 4)(2)(3)(5 6)
consists of four cycles.

Definition 4.5.6. Rem: Rem(π) is defined as the minimum number of removed elements
in π to make π an ascending sequence. It is known that the minimum number of removed
elements of an n-permutation equals n−Lis(π), where Lis(π) = max{k | 1≤ i1 < · · ·<
ik ≤ n,πi1 < · · · < πik} is the length of the longest increasing subsequence in π . Thus,
Rem(π) = n−Lis(π) for an n-permutation π .
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Example 4.5.5. Let π = (4,2,3,1,6,5), then Rem(π) = 3 because π has the longest
increasing subsequence with length three, e.g. (2,3,6).

Definition 4.5.7. Runs: Runs in an n-permutation π is a set of step-downs in π , where
an index i is a step-down if πi > πi+1. We denote the number of runs of π as Runs(π) =
|{i | 1≤ i < n,πi > πi+1}|

Example 4.5.6. Let π = (4,2,3,1,6,5), then Runs(π) = 3 because {1,3,5} is the runs
in π .

We can find them in the survey paper of adaptive sorting [29]. Note that all the disorder
measures introduced in this section except Inv are in the range from 0 to n−1, whereas
Inv is in the range 0 to n(n−1)/2, for n-permutations.

4.5.2 Preliminary Experiments for Disorder Measures

In this thesis, we discuss compression of a permutation set, not a single permuta-
tion. The lower bound of the size of compression for a permutation set is log2n! = n!
bits. This means that we have room for reduction by a factor of O(n logn) of the size
O(n!n logn) of naïve array representation. Unfortunately, theoretical analysis of the size
of decision diagrams base on disorder measures seems not to be obvious. However, on
intuitive grounds the author guesses that a set of permutations with small disorder mea-
sures intends to be well compressed because, for instance, permutations with small Exc
are decomposed into a few transpositions, and permutations with a few left-rotations
will be less disordered due to the relative-order keeping property of left-rotations.

We conducted preliminary experiments to empirically verify this prediction and shows
the results in Table 4.7. The results show that decision diagrams can highly compress
permutation sets not only with small measures but also with large measures, especially
when we use preferable one. The author guesses that (some of) these measures have reg-
ular structure in the form of πDDs or Rot-πDDs, like for combinations in Section 4.4.3.
For almost all disorder measures, Rot-πDDs are preferable to πDDs. In particular, for
Inv, Rem, and Runs, Rot-πDDs succeed to compress permutation sets two orders of
magnitude highly than πDDs. On the other hands, for only Exc, the compression of
πDDs is 50-folds more efficient than Rot-πDDs in the best case. An interesting fact is
the relation between Exc and Rem. It is known that Rem-optimally adaptive sorting is
always Exc-optimal; this fact is associated that the compression ratios for Rem and Exc
tend to be close each other. However preferable decision diagrams for Exc and Rem
are different: πDDs are preferable for Exc, while Rot-πDDs are preferable for Rem
according to the experimental results.
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4.5.3 Concluding Remarks of Proper DD Selection

In this section, we consider which of πDDs and Rot-πDDs are used for each prob-
lems, focusing on characterizations based permutation parameters, especially disorder
measures. Preliminary experiments indicate that regularly-disordered permutation sets
are well-compressed by our decision diagrams πDDs and Rot-πDDs. In particular,
Rot-πDDs are preferable to πDDs for almost all disorder measures in the experiments
except Exc. This result suggests that if objective permutation sets looks like regularly
disordered, we try first usage of Rot-πDDs in general. On the other hand, if a given
problem seems to be related to cycles, πDDs may outperform Rot-πDDs.

In future directions, we should discuss theoretical analysis for the relation between
the size of decision diagrams and permutation parameters. From results for Exc and
Rem, the hierarchy of disorder measures in terms of adaptive sorting does not hold for
the size of decision diagrams. On the other hand, disorder measures may be a key to
analyze the compression performance of decision diagrams because decision diagrams
achieve the high compression for regularly disordered permutations. The author con-
siders that theoretical analysis for permutations with disordered measures, including
measures other than ones in this thesis, is a first step to give more theoretical bounds of
the size of permutation decision diagrams.
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Table 4.7. Experimental results for several measures: Inv, Dis, Max, Exc, Rem, and Runs.

“#perms” means the number of the permutations π that the corresponding measure of π is at

most k. “πDD Size” and “Rot-πDD Size” mean the size of the πDD and the Rot-πDD repre-

senting the set, respectively. Note that 0-/1-sinks are not included in the size here.

(a) Inv
k #perms πDD Size Rot-πDD Size
0 1 0 0
1 10 9 9
2 54 31 24
3 209 64 45
4 649 110 69
5 1717 173 97
6 4015 264 128
7 8504 390 158
8 16599 556 189
9 30239 771 220

10 51909 1041 250
11 84592 1365 275
12 131635 1747 299
13 196524 2189 322
14 282578 2712 344
15 392588 3311 365
16 528441 3991 380
17 690778 4734 394
18 878737 5523 407
19 1089826 6345 419
20 1319957 7182 430
21 1563651 8016 440
22 1814400 8818 443
23 2065149 9561 445
24 2308843 10211 446
25 2538974 10760 446
26 2750063 11179 445
27 2938022 11440 443
28 3100359 11511 440
29 3236212 11357 429
30 3346222 10955 417
31 3432276 10305 404
32 3497165 9425 390
33 3544208 8354 375
34 3576891 7158 359
35 3598561 5905 342
36 3612201 4661 324
37 3620296 3491 297
38 3624785 2461 269
39 3627083 1618 240
40 3628151 983 210
41 3628591 549 179
42 3628746 278 147
43 3628790 126 114
44 3628799 61 80
45 3628800 45 45

(b) Dis
k #perms πDD Size Rot-πDD Size
0 1 0 0
1 89 9 9
2 1285 43 38
3 8420 141 125
4 35505 464 351
5 103050 1395 771
6 287280 2933 920
7 756000 2932 618
8 1814400 1152 240
9 3628800 45 45

(c) Max
k #perms πDD Size Rot-πDD Size
0 1 0 0
1 89 9 9
2 2177 51 43
3 19708 220 143
4 95401 880 293
5 329462 2737 289
6 899064 2905 209
7 1865520 1170 133
8 2943360 273 79
9 3628800 45 45

(d) Exc
k #perms πDD Size Rot-πDD Size
0 1 0 0
1 46 45 80
2 916 80 420
3 10366 105 1544
4 73639 120 3769
5 342964 125 5765
6 1066644 120 6042
7 2239344 105 5594
8 3265920 80 4131
9 3628800 45 45

(e) Rem
k #perms πDD Size Rot-πDD Size
0 1 0 0
1 82 87 52
2 2603 498 141
3 40884 2039 303
4 337210 5936 513
5 1438112 10740 660
6 3042210 11321 556
7 3612004 4245 266
8 3628799 61 80
9 3628800 45 45

(f) Runs
k #perms πDD Size Rot-πDD Size
0 1 0 0
1 1014 666 80
2 48854 4370 223
3 504046 9298 315
4 1814400 11908 360
5 3124754 11336 360
6 3579946 7724 315
7 3627786 2313 223
8 3628799 61 80
9 3628800 45 45





Chapter 5

Variable Ordering for High
Compression

5.1 Background
A graph is an important discrete structure in both theoretical and practical areas of

computer science. Many graph problems require us to find “one” solution that is optimal
under some evaluation function. On the other hand, there are few results with the ability
to find “all” solutions and store them, because practically the number of solutions may
be huge, i.e., exponential to the graph size. However, if we store all solutions, we can
analyze and manipulate them to a much greater extent: counting, random sampling,
extraction with criteria, and optimization.

One way to manipulate all solutions on memory is using compressed data structures.
Knuth [50] have used ZDD to store all simple paths. Apart from the compactness of
ZDD that may enable us to store all solutions, ZDD also has set-algebra operations that
work without restoring ZDDs. Therefore, taking intersection of two ZDDs, counting the
number of solutions, and finding the optimal solution are achieved in time depending
only on the size of the ZDDs, rather than on the number of solutions [50].

Furthermore, Knuth [50] have proposed a ZDD construction algorithm, called Sim-
path, to directly construct a ZDD and reduce runtime for explicit simple path enumer-
ation. Frontier-based search [45] is a generalized framework derived from Simpath to
enumerate all subgraphs with other constraints such as no cycle, connected, and degree-
bounded. Frontier-based search has been used in several applications such as grid path
enumeration [42], power networks [39], and puzzle games [89].

Our goal in this chapter is to improve the efficiency of frontier-based search in order
to apply this search technique to as large graphs as possible. We achieve this goal
by focusing on the edge ordering of a graph because the use of frontier-based search
requires us to provide an edge order to the method as input. The performance of the
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method and the size of the resulting ZDD are dramatically affected by the edge order.
Details are discussed in Section 5.2.

Furthermore, we indicate the relation between frontier-based search and the path
width [47] of a well-known graph parameter in Section 5.2.4. This means the edge-
ordering problem is hard as is the minimum path-width problem. We thus propose
meta-heuristics to find an appropriate edge order for frontier-based search. Our algo-
rithm can also be considered as a method to find path decomposition with a small path
width.

We propose our method in Section 5.3. Our ordering is based on beam search with
start vertices found by linear time search. The features of our method are:

• Practical: Most previous algorithms focus on only maximum path width; how-
ever, the complexity of frontier-based search is affected by the entire width. Our
algorithm consciously evaluates the average width in addition.

• Scalable: Frontier-based search proceeds linear to the graph size but exponentially
to the path width (as discussed in Section 5.2.3). Thus, frontier-based search is
scalable for graphs that are not too large with small width, and we should obtain an
edge order with small width for such graphs. Our algorithm runs in O(|V ||E|K),
where V is a vertex set, E is an edge set, and K is a user parameter. Hence, it is
expected to run for graphs with |V |, |E| ≤ 10,000 in feasible time.

In Section 5.4, we provide the experimental results obtained by evaluating the prac-
tical performance of our algorithm. The results show our method succeeds in finding
good path decomposition in terms of both of the maximum and average width. The
results also indicate that our method improves frontier-based search.

5.2 Subgraph Enumeration and Frontier-based search
Subgraph enumeration is the enumeration of all subgraphs satisfying given constraints

such as no cycle, connected, and degree bounded. For example, if a given constraint is
no cycle, it requires us to enumerate all subgraphs that are forests. Since the number of
subgraphs can be huge, in the worst case 2m, listing all subgraphs may be impractical.
An idea to overcome this combinatorial explosion is using compressed data structures
to represent subgraphs.

ZDD facilitates enumeration of a huge number of subgraphs and their analysis; since
a subgraph corresponds to a combination of edges in a graph1, a ZDD can represent
a set of subgraphs. For example, Figure 5.1 shows a ZDD representing cliques with
size 3 in a complete graph with size 4. However, if we construct a ZDD by listing all

1if we do not matter isolated vertices.
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Figure 5.1. A ZDD representing all K3 in K4, where Kn denotes a complete graph with n vertices.

Note that a ZDD has exactly one 0-sink; multiple 0’s are just for visibility.

subgraphs, we indeed cannot avoid exponential calculation time. Frontier-based search
is a ZDD construction framework without trying all possible solutions.

In this section, we review the algorithm of frontier method and define our problem in
this chapter. Then, we proceed theoretical analysis of frontier-based search and relation
between well-known graph parameter path-width, which are useful to design algorithm
for our problem.

5.2.1 Algorithm Overview

Frontier-based search [45] is a ZDD construction framework. Basically, frontier-
based search constructs a binary decision tree in top-down manner, deleting and sharing
redundant ZDD nodes. Thus, how to delete and share the nodes is the core of the
algorithm.

We identify redundant nodes by storing the “state” for each ZDD node. Stored infor-
mation in states depends on given constraints for subgraphs. For example, suppose we
enumerate forests. Then the information in states is the connections between pairs of
vertices. If we add e = {u,v} to a current state (i.e., use a 1-edge in a ZDD) and u and
v are already connected in the current state, this is invalid because it produces cycle(s).
Therefore, the 1-edge from the node with the state should point to the 0-sink. Moreover,
if two ZDD nodes have the same state (e.g., the same connections in the forest case), the
valid edge selections are also the same. Hence, we can share the nodes with the same
state.

In the state, we have to consider only a subset of V , called a frontier, not all vertices
in V . A frontier is a set of vertices adjacent to both of the processed edges and the
unprocessed edges. More formally, for an edge order e1, . . . ,em, the frontier Fi of the
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Figure 5.2. Equivalent states in the middle of frontier-based search to enumerate all sub-forests.

i-th level is defined by Fi = ad j({e1, . . . ,ei})∩ ad j({ei+1, . . . ,em}), where ad j(E) =∪
e∈E e is the set of vertices adjacent to at least one edge of E. Figure 5.2 illustrates an

example of frontiers of the 5-th level. Again, suppose we enumerate forests. Then we
can consider the two subgraphs in Figure 5.2 to have the same state, because b and d
are connected but e is not connected with b and d in both of the subgraphs.

Note that a ZDD produced by frontier-based search may not be well-reduced. We
should use a reduction algorithm (e.g., Algorithm R in [50]) after frontier-based search,
which runs in linear time in the size of a non-reduced ZDD.

For other constraints such as cliques and connected spanning graphs, we would need
to use state and pruning rules other than those discussed in this paper. [45] provides a
list of problems that can be solved by frontier-based search with examples of the state
and the pruning rules.

5.2.2 Our Problem

Our goal is to improve the performance of frontier-based search. There are sev-
eral ways affecting the performance of frontier-based search: changing state definition,
adding sophisticated pruning rules, and using an appropriate edge order.

We focus on edge ordering to accelerate frontier-based search because:

• The other ways cannot be considered separately from the given constraints. On
the other hand, we can determine an edge order only from a given graph, although
the best edge order may also depend on the given constraints.

• A fully reduced ZDD has a canonical form unless it changes its edge order. That
is, the other approaches cannot be used to change the size of the reduced ZDD,
whereas edge ordering can decrease the size.

Hence, our goal is to determine a good edge order only from a given graph such that the
order makes frontier-based search faster and the resulting ZDD smaller.
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5.2.3 Theoretical Analysis

To improve the performance of frontier-based search, we should deeply understand
what factors essentially affect the performance. Time complexity of frontier-based
search is bounded by the number of states and the size of states. For example, a state
for enumeration of sub-forests involves connected components between the vertices in
each frontier F . Thus, the number of states in the level i is bounded by the number of
set partitions of a frontier Fi, which is known as Bell number B|Fi|. The size of states,
i.e., the size of information required to distinguish it from other states, is also bounded
by O(logB|Fi|). Hence, the time complexity of frontier-based search to enumerate all
sub-forests is bounded by O(∑m

i=1 B|Fi| logB|Fi|). On the other hand, the size of a ZDD is
O(∑m

i=1 B|Fi|), because a ZDD does not have to store state information after construction.
The complexity of frontier-based search is generally bounded by O(∑m

i=1 f (|Fi|)),
where f (x) is a function determined by state definition, and exponential in x in many
problems. Thus, we guess edge orders yielding small frontiers are good.

5.2.4 Frontier-based search and Path Decomposition

The definition of a frontier for edge ordering is almost the same as a vertex separator
for vertex ordering. The j-th vertex separator S j on the vertex order v1, . . . ,vn is defined
as S j = {vi | i≤ j,∃k > j,{vi,vk} ∈ E}. We assume the edge order e1, . . . ,em such that
for ex = {vi,v j} (i< j) and ey = {vk,vl} (k < l), x< y if j < l. Then frontier Fx with ex =

{vi,v j} (i< j) satisfies Fx⊆ S j−1∪{v j}. It is because
∪

1≤i≤x ei = {v1, . . . ,v j} holds and
vk (k < j) is in Fx if vk has at least one unprocessed edge, which is {vk,vl} (k < j ≤ l),
and thus vk satisfies the definition of vertex separator S j−1. Furthermore, ex adds only v j

to S j−1, and not vi because vi is already in S j−1 due to i < j. Therefore, |Fx| ≤ |S j−1|+1
holds when we use the above edge order. The relation between vertex separators and a
frontier-based search on BDD has been discussed in [74], for example.

Furthermore, it is known that the maximum size of vertex separators is equivalent
to the path width of a corresponding path decomposition [47]. Path decomposition of
G= (V,E) is a sequence (X1, . . .Xl) of subsets of V , called bags, satisfying the following
requirements:

• For each edge e = {u,v} ∈ E, there is at least one bag Xi such that u,v ∈ Xi.

• For each vertex v ∈V , if there are two bags Xi,X j(i < j) both of which contain v,
for all i≤ k ≤ j, Xk also contains v.

Path-width of a path decomposition is the maximum size max1≤i≤l |Xi| − 1 of bags.
Therefore, path decomposition with a small path width seems to yield a good vertex
order.
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In the context, frontier-based search can be considered as a dynamic programming
(DP) algorithm on a path decomposition. But we purposely use frontier-based search
rather than DP on a path decomposition because:

• We can consider a non-reduced ZDD made by frontier-based search is equivalent
to a DP table of a path decomposition. Thus, the reduced ZDD has the smaller
size than a DP table, which will accelerate DP calculation (i.e. traversal of the
DAG). This is a merit especially when we repeatedly compute different objective
functions and edge-weights dynamically change.

• If there are multiple constraints, designing DP on a path decomposition may
be complex. ZDD framework makes it easy by constructing ZDDs for each
constraint and taking intersections. Moreover, we can also use subsetting tech-
nique [41], which can compute intersections may be faster than ordinary intersec-
tion operation.

5.3 Proposed Method
A path decomposition with small path width will yield a good vertex order for a good

edge order to frontier-based search. We review previous work related to the computation
of a small path width before proceeding with our method.

5.3.1 Previous Work for Path Decomposition

Lengauer [52] showed that computing the minimum of the maximum vertex separator
is NP-complete, and Kinnersley [47] showed this problem is equivalent to finding the
minimum path width. Thus, two goals have been mainly discussed in the literature:
(1) computing the exact optimal width as fast as possible and (2) computing as good a
solution as possible within feasible time by heuristics.

For an exact solution, there are several results providing polynomial time algorithms
for restricted graph classes [10], [35], [66]. For general graphs, Coudert et al. [23] pro-
posed an algorithm based on branch and bound. The paper [23] showed this algorithm
to be faster than the SAT-based algorithm in most cases.

As heuristics, several linear time algorithms have been proposed such as:

• DFS/BFS [61]: Vertices are ordered by a depth-/breadth-first traversal.

• NDS [61]: For the order v1, . . . ,vi−1, let S= {v1, . . . ,vi−1}. Then a vertex v∈V \S
with maximum |N(v)∩S| is chosen as the next vertex vi.
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• DLU2 [27]: For the order v1, . . . ,vi−1, let S = {v1, . . . ,vi−1}. Then a vertex v ∈
V \S with maximum |N(v)∩S|− |N(v)∩ (V \S)| is chosen as vi.

These heuristics must choose a start vertex (typically, with the smallest degree). Many
researchers using frontier-based search use BFS ordering as input. For instance, the
Graphillion package [38], which is a library using frontier-based search, supports DF-
S/BFS ordering and sets BFS ordering as default.

On the other hand, Duarte et al. [27] proposed a meta-heuristic algorithm based on
basic variable neighborhood search (BVNS). BVNS repeats local search with random
shakes of the current best within the time limit. BVNS uses the evaluation function such
that the smaller number of large bags is highly evaluated; Thus, BVNS reduces not only
the maximum size but also the entire size.

5.3.2 Overview of Proposed Method

We focus on improving the practical performance of frontier-based search. Namely,

• Our guess is that the graph size that can be accommodated by frontier-based
search is n,m≤ 10,000 and a path width up to 20, based on the complexity. Thus,
algorithms should require polynomial time. On the other hand, if it runs in linear
time, we can extend the computation to improve the quality.

• Typical optimization focuses on minimizing the maximum width. However, the
complexity of frontier-based search is O(∑m

i=1 f (|Fi|)). Thus, we should also be
concerned about the entire size, not only the maximum one.

Our algorithm consists of three parts:

1. Calculate the appropriate start vertices by using linear time heuristics.

2. Calculate a good vertex order by using beam search with start vertices.

3. Calculate a good edge order from the calculated good vertex order.

We first introduce the core of our algorithm, beam search. Since the preliminary
experiment shows the performance of beam search depends on a start vertex, we also
propose a strategy to choose appropriate start vertices. Finally, we propose an algorithm
to obtain a good edge order from a vertex order.

2Although this algorithm is called C1 in [27], we call it DLU (standing for the difference between
labeled neighbors and unlabeled neighbors).



94 Chapter 5. Variable Ordering for High Compression

5.3.3 Core Algorithm: Beam Search

We use beam search to compute a good vertex order. Beam search is an algorithm for
pruning search space with an evaluation function. The beam search traverses the search
space in a breadth-first manner and expands only the top-K evaluated states in the same
search level. Here, K is a user parameter called beam width.

The i-th step of our beam search determines the i-th vertex as follows: We already
have K orders consisting of i− 1 vertices. For each order, we try to add a vertex v ∈
N(F), where F is the current frontier. Then we obtain a new list of orders consisting
of i vertices. We extract the top-K orders with an evaluation function, and proceed to
the next i+1-th step. Our method finally outputs the most highly evaluated order at the
n-th step.

We use the sum of the squares of frontier sizes ∑i
k=1 |Fk|2 as evaluation function for

the i-th step, where smaller values are highly evaluated. This is for decreasing the max-
imum frontier size and average frontier size simultaneously. For tiebreak, we use an-
other function |N(Fi)∩({vi+1, . . . ,vn})|, smaller is highly evaluated. This is because (1)
neighbors may become a future frontier and (2) decreasing candidates helps to reduce
expansions, i.e., it saves runtime.

The time complexity is O(nK(n + m)): The algorithm proceeds n steps. In each
step, it examines K search nodes. Each expansion of a search node yields at most n
search nodes, and updates evaluation in O(|N(v)|) time for added vertex v. Thus, each
expansion costs O(n+m) time in total. There are at most nK new search nodes, and the
top-K extraction is achieved in linear time O(nK).

5.3.4 Improvement by Using New Light Search Algorithm: RFS

Preliminary experiments indicate the performance of beam search deeply depends on
the start vertex. Hence, we want to choose likely appropriate vertices and attempt using
them as start vertices. In order to obtain appropriate vertices, we propose to use linear
time heuristics. We can run the linear time algorithm n times for our target graph size.
Thus, we evaluate all vertices in terms of the maximum and average frontier size of the
resulting order of heuristic search using it as a start vertex. The top-L vertices, where
L is a user parameter, are chosen as appropriate vertices for beam search; then we run
beam search L times with each start vertex, respectively, and output the best one among
the L results.

Another advantage of using heuristics is that they enable us to output the best result
of the heuristics as our solution, if it is more accurate than the best result of the beam
search. Hence, more sophisticated linear time heuristics is preferable to improve the
result.
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Figure 5.3. Frontier transitions and vertex intervals

We propose a new heuristics Frontier-Reducing Search (FRS): For the order v1, . . . ,vi−1,
let S = {v1, . . . ,vi−1}. First, we choose v ∈ S with minimum |N(v)∩S|.3 Then a vertex
u ∈ N(v)∩ (V \ S) with minimum |N(u)∩ (V \ S)| is chosen as the next vertex. This
intends to choose a vertex that appears to be easily removed from the current frontier to
keep frontier size small. Experiments in Section 5.4.2 suggest FRS is the best heuristics
for many instances.

5.3.5 Computing Edge Order via Vertex Order

Now, we can obtain a vertex order by the algorithm presented in previous subsections.
In the next step, we should transform it to an edge order. In Section 5.2.4, we have seen
the edge ordering such that |Fx| ≤ |S j−1|+ 1 holds. However, this ordering can be
improved in terms of the entire frontier size.

If we fix the vertex order, the frontier transitions are uniquely determined as shown
in Figure 5.3. Here, each vertex v has an interval in the frontier transition such that v
is added to a frontier and v is removed from a frontier. This can be examined by the
relation between frontiers and bags of path decomposition.

A key idea is that edge e = {u,v} can be processed at any time in the intersection of
the intervals of u and v. We use edge e at the minimum frontier in the valid interval.
This reduces the entire frontier size since each edge is assigned into a smaller frontier
than the frontier of the naïve ordering.

5.4 Experimental Results
We conducted experiments to evaluate our algorithm. All algorithms are implemented

in C++ with g++ 4.9.3. We also use the TdZdd library [40] to implement frontier-based
3However, it must be greater than 0; N(v)∩S = ϕ means v is not in the frontier.
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Table 5.1. Comparing edge-ordering algorithms: naïve ordering v.s. proposed ordering.
max frontier size average frontier size

#improved instances
diff: naïve−proposed ratio: naïve/proposed

average min max average min max
Rome 63 0.152 0.065 0.346 1.019 1.007 1.038
VSPLIB 44 0.868 0.000 9.466 1.043 1.000 1.277

Table 5.2. Comparing linear time heuristics: previous algorithms and proposed algorithm.

“#best” means the number of instances for which a corresponding method can compute the

best frontier size. “ave. diff.” means the average of the differences between the frontier size

computed by a corresponding method and the best one.
max frontier size average frontier size

DFS BFS NDS DLU FRS DFS BFS NDS DLU FRS

Rome #best 0 0 1 5 137 0 0 0 4 136
ave. diff. 7.78 7.99 7.11 4.14 0.02 4.63 4.71 4.40 2.48 0.01

VSPLIB #best 5 22 9 21 47 4 21 4 13 42
ave. diff. 38.42 8.33 19.37 10.11 4.25 21.13 4.19 10.86 5.10 2.35

search. We used a 3.20 GHz CPU machine with 64 GB memory.
We use two graph datasets: Rome Graph and VSPLIB. Rome Graph comprises road

networks used as benchmark in [23]. We use 140 graphs with n = 100, 119≤m≤ 158.
VSPLIB is used as benchmark for the vertex separation problem in [27]. We use 73
instances of HB from VSPLIB. Graphs in VSPLIB have 24 ≤ n ≤ 960 and 46 ≤ m ≤
7442.

5.4.1 Performance of Edge Ordering

We first show the results of the edge-ordering algorithm in Section 5.3.5. Here, we
use vertex orders generated by FRS. Table 5.1 presents experimental results. Our edge-
ordering strategy achieves reduction of the maximum frontier size by one in a half of
instances and increases the maximum and average size in no instance. We thus use this
algorithm to obtain an edge order from a vertex order.

5.4.2 Path Decomposition by Linear Time Heuristics

We next compare linear time heuristics, where a start vertex is fixed to a vertex with
the minimum degree. Table 5.2 presents the experimental results. FRS is the best in
terms of both of the maximum and average frontier size. Especially for the Rome Graph
dataset, FRS is the best in almost all cases. Thus, we use FRS as linear time heuristics
to determine the start vertices for the beam search.
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Table 5.3. Comparing frontier sizes by BFS, BVNS, and beam search. “#best” and “ave. diff.”

mean the same as those in Table 5.2.
max frontier size average frontier size

BFS BVNS beam BFS BVNS beam

Rome
#best 0 87 120 0 22 118

ave. diff. 10.707 0.421 0.150 6.296 0.401 0.027

VSPLIB
#best 12 39 63 4 23 58

ave. diff. 11.781 3.795 0.685 5.714 2.097 0.419

5.4.3 Path Decomposition by Meta-heuristics

We evaluate the performance of our beam search in terms of frontier size. We com-
pare our algorithm with BFS, which is usually used in frontier-based search, and the
BVNS in [27] with a time limit of 1000 seconds. We fix the beam width at K = 5000
and the number of start vertices at L= 10. Our algorithm runs in 0.64 to 787.59 seconds.
Table 5.3 describes the experimental results.

Our algorithm achieves obtaining the best size for about 80% instances in both datasets.
Furthermore, even if our algorithm fails to determine the best solution, it finds an order
sufficiently close to the best, as shown in the average difference. On the other hand,
BFS, commonly used heuristics for frontier-based search, seems not to be a sophisti-
cated ordering for path decomposition.

5.4.4 Efficiency of Frontier-based search with Path Decomposition-
based Ordering

Finally, we evaluate the impact of edge orders to frontier-based search. In this exper-
iment, we construct a ZDD for all sub-forests with time limit 1000 seconds.

Table 5.4 provides the relation between the maximum frontier size F and the solved
instances. The total number of solved instances by BFS ordering is really less than those
determined by meta-heuristics, especially in Rome Graph. This shows that ordering
based on a path decomposition is effective to improve the performance of frontier-based
search. The boundary of the solvability of meta-heuristic methods seems to be F = 11
or 12. On the other hand, BFS sometimes constructs a ZDD up to F = 16 cases. This
observation may be the key to improve our algorithm, but we have not revealed the
details yet.

Table 5.5 summarizes the performance of frontier-based search using path decomposition-
based ordering. The results show our method tends to be better than BVNS, especially
in terms of the number of 2-fold or more improved instances. However, it seems to be
a small improvement, whereas the maximum and average frontier size is significantly
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Table 5.4. Relation between the maximum frontier size and the number of succeeded instances,

where “in time” and “timeout” denote the number of instances for which frontier-based search

runs within the time limit and exceeds the time limit, respectively.
BFS BVNS beam

max frontier sum max frontier sum max frontier sum≤ 11 12 13 14 15 16 17≤ ≤ 10 11 12 13≤ ≤ 11 12 13≤

Rome in time 0 0 2 1 3 0 0 6 87 29 7 0 123 121 4 0 125
timeout 0 0 0 3 1 5 125 134 0 0 8 9 17 0 7 8 15

VSPLIB in time 14 3 0 0 1 1 0 19 19 2 1 0 22 24 1 0 25
timeout 0 1 0 0 0 0 53 54 0 1 0 50 51 0 1 47 48

Table 5.5. Comparing the performance of frontier-based search with BVNS and beam search.

“average” is the average of results of instances for which both orderings constructed a ZDD.

“#best” is the number of instances for which the ordering yields the best result. “#2-folds” is the

number of instances for which the result of the ordering is more than twice as good as the other.
runtime non-reduced ZDD size reduced ZDD size

BVNS beam BVNS beam BVNS beam

Rome
average 35.81 s 32.68 s 140,496,029 129,300,247 11,542,286 11,010,751
#best 63 66 60 69 63 66

#2-folds 23 39 21 38 16 32

VSPLIB
average 41.11 s 25.30 s 135,520,389 83,321,337 22,976,532 14,510,650
#best 10 15 10 12 9 12

#2-folds 1 8 0 5 0 5

better than BVNS as shown in Section 5.4.3. This also indicates that there must be other
factors than frontier size to improve frontier-based search.

Before the comparison between our method and BVNS, we notice the impact of the
reduction of ZDDs. On the average, reduced ZDDs are more compact than non-reduced
ones about 11 times in Rome Graph instances and 6 times in VSPLIB. This means DP
calculation can be accelerated 6 to 11 times after ZDD reduction.

In 140 Rome Graph instances, ZDDs for 4 instances are constructed only by BVNS
ordering, ZDDs for 6 instances are constructed only by beam search ordering, and 119
instances are constructed by both ordering. In 73 VSPLIB instances, ZDDs for 0 in-
stances are constructed only by BVNS ordering, ZDDs for 3 instances are constructed
only by beam search ordering, and 22 instances are constructed by both orderings.

The results of the averages and the number of the best looks like there is no big dif-
ference in our method and BVNS. We guess this is because BVNS also decreases the
entire size by the evaluation function. On the other hand, we can find meaningful differ-
ences in the cases with the ratio is twice or more, i.e. there is significant improvement,
especially in VSPLIB. Figure 5.4 illustrates details of the fact. In many cases, the two
methods show close performance. But the number of meaningful improvements by our
method is more than the one by BVNS.
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Figure 5.4. The number of instances with the ratio of reduced ZDD size comparing with the

other method.

5.5 Concluding Remarks for Variable Ordering
We improved frontier-based search by focusing on edge ordering because it is robust

to change constraints and affects not only runtime but also the size of the resulting ZDD.
We proposed a meta-heuristic algorithm capable of determining a small frontier size by
using the relation between frontiers and path decomposition.

Our algorithm has the ability to determine effective path decomposition in terms of
both of the maximum and average bag size. Moreover, our algorithm achieves the
construction of ZDDs for many instances for which the standard ordering BFS can-
not construct ZDDs. Our algorithm also tends to reduce runtime and the size of a ZDD
compared with the previous path decomposition method BVNS. On the other hand, the
performance of frontier-based search with our ordering is sometimes worse than that
with BVNS even for the case in which our algorithm yields more effective path de-
composition than BVNS in terms of its bag sizes. Our future work aims to reveal the
key factor responsible for this phenomenon for further improvement of frontier-based
search.





Chapter 6

Conclusions and Open Problems

In this thesis, we aimed to enumerate all solutions of permutation problems. Since the
number of solutions of permutation problems is factorial in the worst case, we use com-
pressed data structures storing solutions and directly construct the data structure in order
to avoid factorial time calculation. We focused on πDDs and Rot-πDDs as compressed
data structures for permutation sets, because they are not only compact representation
of permutations, also have rich operations to manipulate stored permutations.

In Chapter 3, we provided the algorithms for the two problems: reversible circuit de-
bugging and cycle-type partition of a permutation set. For reversible circuit debugging,
we proposed an efficient debugging algorithm without πDDs for erroneous circuits with
a single error, and extended it to multiple errors by using πDDs to represent candidates
of fixed circuits. This is the first algorithm that exactly debug erroneous circuits with
multiple errors as far as the author knows. For cycle-type partition, we captured the nice
relation between cycles and permutations in πDDs, and designed a construction algo-
rithm by utilizing the advantage. Experimental results show that the algorithm is faster
and less memory than the naïve method and the existing πDD construction method.
These results show that there are many problems for which algorithms utilizing πDDs
outperforms previous methods without decision diagrams, and ideas educing abilities
of πDDs make the algorithms even faster.

In Chapter 4, we proposed a new decision diagram Rot-πDD, which is based on
left-rotation decomposition of permutations. Furthermore, we applied Rot-πDDs to the
three problems: enumeration of Eulerian trails, enumeration of topological orders, and
enumeration of pattern-avoiding permutations. For Eulerian trails, we used dynamic
programming on edge sets to directly construct Rot-πDDs, while DP-based construction
for πDDs is not efficient. For topological orders, we indicated that the same dynamic
programming approach as Eulerian trails also performs well for topological orders, and
proved that the minimum path cover, a parameter of a directed graph, gives the tighter
bound of the complexity. Moreover, we designed a new Rot-πDD operation to process
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dynamic edge additions. For pattern-avoiding permutations, we reviewed a πDD-based
algorithm, and Rot-πDDs can represent permutation sets in the middle of the algorithm
with smaller sizes. This indeed contributes improvement of the practical performance of
the algorithm as shown in the computational experiments. Since these applications re-
veal Rot-πDDs are also useful for permutation problems and which decision diagrams
are preferable depends on problems, we also investigated the factors of problems in
order to determine preferable decision diagrams for each problem. Preliminary exper-
iments suggest that Rot-πDDs seem to have advantages if permutations in a given set
have small disorder parameters except Exc.

In Chapter 5, we tackled a permutation problem in decision diagrams. We focused
on the relation between path width and variable ordering for subgraph enumeration,
and proposed a meta-heuristic search algorithm to optimize the path-width of a given
graph. Experiments demonstrates that frontier based search and its resulting ZDD size
are improved by using a variable order generated by the method.

The author now explores the following future directions:

1. The author guesses that there are many other problems for which algorithms with
πDDs and Rot-πDDs outperforms existing methods. Of course, it is worth con-
tributing the problems by applying decision diagrams to such problems. In addi-
tion, observing the properties of such problems and analyzing the performance of
methods utilizing the properties are also useful to investigate the factor linked to
the abilities of decision diagrams.

2. We may want to find an optimal permutation in a πDD or a Rot-πDD. For some
functions, e.g. the sum of weights of transpositions or left-rotations, we can ob-
tain an optimal one in time linear in the size of decision diagram, using Algorithm
B in [50]. However, the author does not know ways to extract an optimal permu-
tation for common weight-sum functions such as weights defined for pairs of a
position and an element and, weights defined for relative orders between two ele-
ments. Efficient methods to extract optimal one for such functions are desired.

3. More deep theoretical analysis about compression ratio of πDDs and Rot-πDDs
is needed. For compression of a single permutation, Barbay and Nabarro [5] states
the relation between compression and adoptive sorting to disorder measures. The
author guesses that compression ratio of πDDs and Rot-πDDS also theoretically
depends some parameters, maybe some of disorder measures.

4. Conversely, we may be able to design new permutation decision diagrams based
on other permutation decompositions. For example, reversals, reversing elements
in each valid interval, can decompose permutations. For some of decompositions,
we may be able to prove the theoretical size bound of decision diagrams with
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respect to some permutation parameters. In general, we can decompose permu-
tations in a permutation group by its generators. Thus, we can design general
framework of permutation decision diagrams: generator-based πDDs. Here, gen-
erators must satisfy the following conditions:

• unique decomposability: for each permutation, we must define the corre-
sponding generator sequence to make a decision diagram have a canonical
form and path traversals on a decision diagram unique.

• ordered generators: generators must be ordered and applied without viola-
tion of the order. Moreover, each generator can be applied at most once.
This condition corresponds to variable ordering of ZDDs.

• composition transformation: composition of two generators should has an
equivalent composition form of other two generators, like transpositions and
left-rotations. This is not needed for decision diagram structure, but for
basic operations for manipulation of permutations in a decision diagram,
like operations Swap(a,b) and LeftRot(a,b).
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