
Efficient Node Proximity and Node Significance Computations in Graphs

by

Jung Hyun Kim

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2017 by the
Graduate Supervisory Committee:
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ABSTRACT

Node proximity measures are commonly used for quantifying how nearby or other-

wise related to two or more nodes in a graph are. Node significance measures are

mainly used to find how much nodes are important in a graph. The measures of node

proximity/significance have been highly effective in many predictions and applica-

tions. Despite their effectiveness, however, there are various shortcomings. One such

shortcoming is a scalability problem due to their high computation costs on large

size graphs and another problem on the measures is low accuracy when the signifi-

cance of node and its degree in the graph are not related. The other problem is that

their effectiveness is less when information for a graph is uncertain. For an uncertain

graph, they require exponential computation costs to calculate ranking scores with

considering all possible worlds.

In this thesis, I first introduce Locality-sensitive, Re-use promoting, approximate

Personalized PageRank (LR-PPR) which is an approximate personalized PageRank

calculating node rankings for the locality information for seeds without calculating

the entire graph and reusing the precomputed locality information for different lo-

cality combinations. For the identification of locality information, I present Impact

Neighborhood Indexing (INI) to find impact neighborhoods with nodes’ fingerprints

propagation on the network. For the accuracy challenge, I introduce Degree Decou-

pled PageRank (D2PR) technique to improve the effectiveness of PageRank based

knowledge discovery, especially considering the significance of neighbors and degree

of a given node. To tackle the uncertain challenge, I introduce Uncertain Person-

alized PageRank (UPPR) to approximately compute personalized PageRank values

on uncertainties of edge existence and Interval Personalized PageRank with Integra-

tion (IPPR-I) and Interval Personalized PageRank with Mean (IPPR-M) to compute

ranking scores for the case when uncertainty exists on edge weights as interval values.
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Chapter 1

INTRODUCTION

There has been a growing interest in the research area of node proximity computation

in a graph. Given data such as history, interest, and connections, people have tried

to find relevant nodes for nodes in different graph-structured application domains

such as social networks, biology, web search, and recommendation systems[66]. Node

distance/proximity measures are commonly used for quantifying how nearby or oth-

erwise related to two or more nodes on a graph are. In many graph applications, how

a given pair of nodes on a graph relates to each other is determined by the underlying

graph topology. Given a graph, measures of node proximity are available as estimates

of node similarity and can be defined in two different ways. The first definition is

a Path-length based definition. This is useful when the relatedness can be captured

solely based on the properties of the nodes and edges on the shortest path (based on

some definition of path-length). The straightforward approach is to use a recursive

breath-first search (BFS) to find the path between nodes but this approach is very

costly. To overcome the time complexity for the use of online query, the shortest

path problems for the distance between nodes can be solved with two steps that are

preprocessing and answering queries [4, 110, 115]. Preprocessing algorithm computes

certain information such as an index of data or a data structure between every pair

of nodes for the preparation of the second step in the offline. On the second step, the

distance can be answered very efficiently in almost constant time. The main prob-

lems on this shortest path query are the size of indexing and the execution time of

the answer on the online query. When the graph size is very large, it is inefficient for

the space cost.
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On the other hand, random-walk based definitions, such as hitting distance [24,

82] and PageRank score [17, 70], of node relatedness, also take into account the

density of edges: unlike in path-based definitions, random walk-based definitions of

relatedness also consider how tightly connected two nodes are and argue that nodes

that have many paths between them can be considered more related. Many web

search and recommendation algorithms rely on random-walks to identify significant

nodes in the graph. Since enumerating all paths among the graph nodes would require

time exponential in the size of the graph, random-walk based techniques encode the

structure of the network in the form of a transition matrix of a stochastic process

from which the node significance can be inferred.

A stochastic process is said to be Markovian if the conditional probability distri-

bution of future states, given the present, depends only on the present. A Markov

chain is a discrete-time stochastic process which is conditionally independent of the

past states. A basic random walk on a graph, G(V,E), on the other hand, is a

Markov chain whose state at any time is described by a vertex of G and the transi-

tion probability is distributed equally among all outgoing edges. These random-walk

based models are used heavily in many application domains, including data mining,

bioinformatics, and queuing theory. Since the next state of a Markovian chain only

depends on current state and given the current state, is conditionally independent of

the past states, for a process with finite number of states, the transition probability

distribution can be represented as a matrix. The (i, j)’th element of this matrix,

Tij, describes the probability that, given that the current state is i, the process will

be in state j in the next time unit; i.e., Tij = P (Snow+1 = j∣Snow = i). Given this 1-step

transition probability, the n-step transition probabilities can be computed as the n’th

extrapolation of the transition matrix. If the transition matrix T is irreducible (each

state is accessible from all other states) and aperiodic (for any state si, the greatest
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common divisor of {n ≥ 1∣Tn
ii > 0} is equal to 1), then in the long run the Markov chain

has a unique stationary distribution independent of the initial distribution.

Stationary distribution of a random walk is a convergence vector (probability

distribution), where no subsequent steps change the probability distribution. It can

be shown that if an undirected random walk graph is strongly connected and non-

bipartite, then it can be modeled as a Markov Chain with a stationary distribution

(the fundamental theorem of Markov Chains). Of course, not all transitional matrices

have these properties. Furthermore, it is not always that users are interested in the

steady state behaviors of the system, but whether a condition is true in any time in

the (bounded) future. In other words, given an initial probability distribution vector

π, users may aim finding if Θ(T kπ) for a k, here Θ denotes some (linear) condition.

function. For example, the graph node nj is said to be with ∆ hitting distance of the

node ni, of a random walk on the corresponding random-walk graph starting from ni

is expected to visit nj in at most ∆ steps [24].

Hitting time distance[69] is the expected number of steps to reach a target node

via random walk from a node. It is similar to Path-length based distance, but it

takes into account the density of the edges in the graph: given a node n, nodes

within hitting distance δ are those nodes a random walk starting from n is expected

to visit in at most δ steps.

PageRank [17] is one of the most widely-used random-walk based methods for

measuring node significance. The basic idea of PageRank is that a node is important

if it is pointed to by other important nodes – it takes into account the connectivity of

nodes in the graph by defining the score of the node vi as the amount of time spent on

vi in a sufficiently long random walk on the graph. The PageRank algorithm associates

a single importance score to each node: Let us consider a weighted, directed graph
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G(V,E), where the weight of the edge ej ∈ E is denoted as wj(≥ 0) and where

⎛

⎝
∑

ej∈outedge(vi)

wj
⎞

⎠
= 1.0.

The PageRank score of the node vi ∈ V is the stationary distribution of a random

walk on G, where at each step

� with probability α, the random walk moves along an outgoing edge of the current

node with a probability proportional to the edge weights and

� with probability 1 − α, the walk jumps to a random node in V .

More specifically, given a graph G(V,E) where V is a set of nodes in G and E is

a set of edges in G, the PageRank scores are represented as r⃗, where

r⃗ = αTr⃗ + (1 − α)e⃗

where T is a transition matrix corresponding to the graphG, e⃗ is a teleportation vector

(such that e⃗[i] = 1
∥V ∥

), and α is the residual probability (or equivalently, (1 − α) is

the so-called teleportation probability). Unless the graph is weighted, the transition

matrix, T, is constructed such that for a node v with k (outgoing) neighbors, the

transition probability from v to each of its (outgoing) neighbors will be 1/k. If the

graph is weighted, then the transition probabilities are adjusted in a way to account

for the relative weights of the (outgoing) edges. The basic definition of PageRank

associates a convergence score to each node in the graph irrespective of content and

context of search.

An alternative to this approach is to modify the teleportation vector, j⃗: instead

of jumping to a random node in V with probability 1−α, the random walk jumps to

one of the nodes in the seed set, S, given by the user. More specifically, if we denote

the personalized PageRank (PPR) scores of the nodes in V with a vector φ⃗, then

φ⃗ = αTφ⃗ + (1 − α)s⃗,
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where s⃗ is a re-seeding vector, such that if vi ∈ S, then s⃗[i] = 1
∥S∥ and s⃗[i] = 0,

otherwise. Intuitively, since at each step the random-walk has a non-zero probability

of jumping back to the seed nodes from its current node (independently of where the

current node is in the graph), the nodes closer to the nodes in S will have larger

stationary scores than they would have if the random walk jumped randomly in the

entire graph. One key advantage of this approach over modifying the transition matrix

as in [19] is that the term 1 − α can be used to directly control the degree of seeding

(or personalization) of the scores.

1.1 Shortcomings of Existing Techniques

For the measure of node proximity, personalized PageRank (PPR) is an effective

measure but there are several shortcomings. A particular shortcoming is that the use

of personalized PageRank for large graphs is difficult due to the high cost of solving

for the vector φ⃗, given 1−α, transition matrix T, and the seeding vector s⃗. One way

to obtain φ⃗ is to rewrite the stationary state equation of personalized PageRank as

φ = (1 − α)(I − αT)−1s⃗,

and solve the above equation for φ⃗ mathematically. Alternatively, PowerIteration

methods [56] explicitly simulate the dissemination of probability mass by repeatedly

applying the transition process to an initial distribution φ⃗0 until a convergence crite-

rion is satisfied as follows:

φ⃗n = αTφ⃗n−1 + (1 − α)s⃗.

Unfortunately, for large data sets, both of these processes are prohibitively expensive.

For the mathematical way, it requires a preprocessing step to pre-compute the (I −

αT)−1 which takes long time on the inverse matrix computation. Though T is a sparse
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matrix, (I − αT)−1 is a dense matrix, so it needs a large amount of memory cost to

save the precomputed inverse matrix. Additionally, the preprocessing step takes long

time to compute the inverse matrix. For PowerIteration methods, it requires repeated

matrix-vector multiplications until the difference between φ⃗n and φ⃗n−1 converges to a

criterion but it can be unrealistic in the real world.

Another shortcoming of PageRank (or personalized PageRank) computation is

that the ranking scores are tightly coupled with the degrees of the graph nodes.

Let us consider an undirected graph G(V,E). There are two distinct factors that

contribute to the PageRank of a given node, v ∈ V :

� Factor 1: Significance of Neighbors: The more significant the neighbors of a

node are, the higher its likelihood to be also significant.

� Factor 2: Number of Neighbors (Degree of the Node) : Even if the neighbors

are not all significant, a large number of neighbors would imply that the node,

v, is well-connected and, thus, likely to be structurally important.

The first factor is how significant the nodes that are neighboring v are through

edges incoming to v, and the second factor is the number of edges incident onto these

nodes. Intuitively, the more significant the neighbors of a node are, the higher its

likelihood to be also significant. Secondly, even if the neighbors are not all significant,

a larger number of neighbor implies that the node, v, is well-connected and, thus,

likely to be structurally important. Therefore, in theory, these two factors should

complement each other. In practice, however, the PageRank formulation described

above implies that there is a very tight coupling between the degrees of the nodes in

the graph and their PageRank scores.

The problem is that it is possible that the node degree and the node significance

are in fact inversely related and that the tight- coupling between node degrees and
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PageRank scores might be counter-productive in generating accurate recommenda-

tions. Additionally, the mismatch between PageRank score and node significance is

not limited to the cases where node degrees are inversely related to the node signif-

icance. There are other scenarios where PageRank may, in fact, fail to sufficiently

account for the contribution of the node degrees to their significances. In certain

applications, the significance of the node may be negatively or not correlated with

the node degree, whereas in others PageRank may not be sufficient in accounting

for degree contributions. Naturally, in such applications, the naive application of

PageRank in generating recommendations may return poor results.

The last shortcoming of personalized PageRank measure is that despite their ef-

fectiveness when the underlying graph is certain, these measures become inapplicable

and difficult to apply in the presence of graph uncertainties, as they are not designed

for graphs that include uncertain information. Consequently, they can be used only

for proximity computations when all node and edge information in the given graph are

certain/complete. Unfortunately, in many real world web and social-network based

applications, it may not be possible to obtain a perfect and complete structure of the

underlying knowledge graph for various reasons: genuine lack of information, noise

in data collection, or privacy issues, where one is provided with a reduced, clustered,

or intentionally noisy and obfuscated version of the graph to hide information[61].

Most existing works on graph uncertainty consider existence uncertainty, where

a given edge exists probabilistically and the existence probabilities of the individual

edges are assumed to be independent from each other [14, 28, 61, 75, 118, 116, 93, 121].

In practice, however, this assumption does not always hold: we may be aware of the

existence of an edge, but we may not know between which pairs of nodes the edge

exists. For example, we may be able to deduce that one of the several friends of an

individual in a social network may be his/her father, but we may not know which
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(a) Ambiguity in data (b) Uncertain edge

Figure 1.1: Ambiguity in Wikipedia and Its Potential impact on the Proxim-
ity/Cluster Analysis

friend. As another example, we may know that a name referred to in a web document

is one of the many named entities in a knowledge base, but we may not know which

one is the correct entity (Figure 1.1(a)). Obtaining node rankings in such a graph

is difficult because addition or removal of one single edge can have a drastic effect

on proximity [30, 32]: e.g., addition of just one edge may be sufficient to link two

otherwise distant node clusters, thereby significantly altering the proximities of a

large number of pairs of nodes in the graph (Figure 1.1(b)).

The another type of uncertainty in a graph is an interval value of weights on

edges. When the weights of edges are uncertain with interval values, the adjacency

matrix and transition matrix of a graph become interval matrices. For the interval

matrix, personalized PageRank (PPR) scores can be computed PPR equations φ⃗ =

αTφ⃗ + (1 − α)s⃗ with interval arithmetics [49]. The problem of this approach is that

it requires a lot of time on the interval matrix computations because the interval

matrix computation requires a combination of minimum values and maximum values

of matrices. For example, for the interval multiplications, let a and c be scalar values.

The multiplication is a × c which takes one computation. When the values have

interval with [a, b] and [c, d], the multiplication is

[a, b] × [c, d] = [min(a × c, a × d, b × c, b × d),max(a × c, a × d, b × c, b × d), ]
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which takes four times computation. If we compute the interval matrix multiplication

of two interval matrices, it takes much longer time than scalar valued matrix com-

putations. There are some tools such as IntLab [94] which is optimized to compute

interval matrix arithmetics but it still requires long execution compared to scalar val-

ued matrix computations when the size of a matrix is large or the density of a matrix

is high.

The another way to compute PPR scores in interval matrices is a sampling tech-

nique such as Monte Carlo method[7, 37]. For each interval edge, we randomly sam-

ples some values within an interval range. This sampling makes the interval values into

discrete values. Given discrete values on edge weights, PPR scores can be computed

for all the possible worlds of combination of edge weights. After PPR computations,

the average of PPR values becomes the PPR scores of an interval graph. The problem

of this approach is that the number of possible worlds may be exponential depending

on the number of samples and the number of edges.

To overcome this problem, Ishii and Tempe[51, 52] proposed how to compute

PageRank scores in an interval weighted graph. They used the center and the ra-

dius of values in the interval matrix and compute PageRank scores with finding the

smallest interval vector which are close to the expected PageRank vector by linear

programming. Though it finds PageRank scores minimizing the interval range, it does

not guarantee the accuracy of PageRank scores since they focus on how to minimize

the range of intervals with approximation.
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Figure 1.2: Locality-sensitivity: Computation of PPR Should Focus on The neigh-
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Figure 1.3: Re-use Promotion: Two PPR Queries Sharing a Seed Node (v1) should
Also Share Relevant Work

1.2 Research Contributions

1.2.1 Locality-sensitive, Re-use promoting, approximate Personalized PageRank

In this thesis, I propose a Locality-sensitive, Re-use promoting, approximate per-

sonalized PageRank (LR-PPR) algorithm[63, 64] for efficiently computing the PPR

values relying on the localities of the seed nodes on the graph to improve both scala-

bility and accuracy: The LR-PPR algorithm is

� locality sensitive in the sense that it reduces the computational cost of the PPR

computation process and improves accuracy by focusing on the neighborhoods

of the seed nodes (Figure 1.2); and

� re-use promoting in that, instead of performing a monolithic PPR computation

for a given seed node set S (where the intermediary results cannot be re-used
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for a different, but similar, seed set S′), LR-PPR divides the work into localities

of the seeds and enables caching and re-use of significant portions of the inter-

mediary work for the individual seed nodes in future queries (Figure 1.3): In

other words, LR-PPR is able to leverage temporal locality in the users queries:

– This temporal locality may be due to a slow evolution of a given users inter-

est: for example when a user watches a new online movie, this will change

the recommendation context only slightly as the users recent movie history

(say the last 10 movies watched by the user) will be mostly preserved in

the seed set.

– This temporal locality may also be due to popular seeds shared by a lot of

users: for example a new hit movie (or say the top 10 movies of the week)

may be shared in the seed set of a large portion of the users. LR-PPR

leverages such temporal localities to reduce redundant work.

1.2.2 Impact Neighborhood Indexing (INI) in Diffusion Graph

A locality graph consists of a set of graph nodes that are nearby or otherwise

related to a seed node. In many applications, relatedness of a pair of graph nodes

depends on how information (or influence) flows from one node to the other in the un-

derlying topology, and various algorithms have been proposed to identify influencers

or to maximize overall influence in such networks [26, 59, 108]. These algorithms rely

on various cascade, contagion, and diffusion models (such as the order-independent

cascade and threshold based models) to capture the dynamics of flow within net-

work. In the order-independent cascade model, for example, the likelihood of a node,

n, becoming influenced at a given point depends on (a) whether n’s neighbors are

already influenced, (b) whether they attempt to influence n, and (c) the degree of
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influence they have on n. In threshold-based model, however, the influence is as-

sumed to accumulate over time and n becomes influenced when the accumulation

passes a threshold. Note that, while their details differ, these various propagation

models have two properties in common: (a) decay with distance, meaning that as

one moves further away from the source of information/influence, the less likely s/he

is to be impacted and (b) reinforcement, meaning that multiple paths over which in-

formation/influence is received can reinforce the core message, increasing its impact.

Relying on this observation, I introduce the concept of impact neighborhoods, which

capture both topological and propagative characteristics of graphs, including decay

and reinforcement: We say that a node n is likely to impact another node m in a

given network (with decay and reinforcement), if information originating at n reaches

m. We define the impact neighborhood of a given node n as the set of nodes that are

impacted by n. Impact Neighborhood Indexing in Diffusion Graphs (INI) algorithm

computes zero-erasure neighborhoods (ZENs) and impact neighborhoods (for a given

impact radius, r). INI propagates fingerprints in the network subject to bit-erasures,

modeling decay. During query time, impact neighborhoods are identified by querying

the network nodes for the query node’s fingerprint.

1.2.3 Relationship between Node Degrees and Node Significances

As I discussed above, one key shortcoming of the conventional PageRank scores is

that they are often tightly coupled with the degrees of the graph nodes and in many

applications the relationship between the significance of the node and its degree in

the underlying network may not be as implied by PageRank-based measure. Degree

De-coupled PageRank (D2PR) algorithm[65] improves the effectiveness of PageRank

based knowledge discovery and recommendation systems. These techniques suitably
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penalize or (if needed) boost1 the transition strength based on the degree of a given

node to adapt the node significances based on the network and application charac-

teristics.

To de-couple the PageRank score from node degrees, it requires to modify the

transition matrix. To control the transition matrix, I define a parameter, p which

adjusts the transition based on the number of degree of neighbors. When p is negative,

it boost the transition probabilities of neighbors which has high degree than other

neighbors. When p is positive, it penalize the transition probabilities of neighbors

which has high degree. When p is zero, the transition matrix is same as the standard

PageRank probabilities. With the de-coupled transition matrix, we can compute de-

coupled PageRank scores with the conventional PageRank equation. D2PR algorithm

shows how to build degree de-coupled transition matrices for different graphs such as

undirected unweighted, directed unweighted, and weighted graphs.

1.2.4 Personalized PageRank in Uncertain Graphs with Mutually Exclusive Edges

In addition to the above challenges on PPR measure, there is another challenge

which is a node proximity measure in uncertainty. As it was mentioned in Section 1.1,

there is an assumption that all node and edge information in a graph should be com-

plete, so when uncertain data exits, it fails to measure the accurate node proximity.

To tackle with this challenge, I propose an efficient Uncertain Personalized PageRank

(UPPR) algorithm [67] to approximately compute personalized PageRank values on

an uncertain graph with edge uncertainties. The proposed UPPR measure can be

applied in uncertain graphs when the existence of edges is uncertain. For the uncer-

tainty of edge existence, there are two semantics which are probabilistic edge existence

1In this context, de-coupled does not necessarily imply de-correlated. In fact, D2PR can boost

correlation between node degree and PageRank if that is required by the application.
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under 1) mutual Exclusion and 2) multiple edge selections. The number of possible

worlds in an uncertain graph can be exponential both on different semantics, so it is

hard to compute PPR scores with naive approach. UPPR approach avoids enumera-

tion of all possible worlds, yet it is able to achieve comparable accuracy by carefully

encoding edge uncertainties in a data structure that leads to fast approximations.

1.2.5 Personalized PageRank in Uncertain Interval Valued Graphs

To overcome the problem that uncertainty exists on edge weights as interval val-

ues with range instead of scalar values in an uncertain graph, I propose an effec-

tive Interval Personalized PageRank with Mean (IPPR-M) and Interval Personalized

PageRank with Integration (IPPR-I) algorithms which compute personalized PageR-

ank scores when the edge weights are interval values. Instead of sampling the interval

values of edge weights and then computing PPR scores for the possible worlds ap-

proaches, IPPR-I which is an optimal solution, gives the integral formulas to compute

the weights of scalar edge weights and interval edge weights and then compute PPR

scores. IPPR-M computes approximate PPR scores effectively with the mean of in-

tervals.

1.3 Dissertation Overview

The rest of the dissertation is structured as follow:

� In Chapter 2, I review background and related works in the literature.

� In Chapter 3, I present a Locality-sensitive, Re-use promoting, approximate

Personalized PageRank (LR-PPR) algorithm for efficiently computing the PPR

values relying on the localities of the seed nodes on the graph.

� In Chapter 4, I present an impact neighborhood indexing (INI) algorithm that
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creates data structures to help quickly identify impact neighborhood of any

given node.

� In Chapter 5, I present degree decoupled PageRank (D2PR) techniques to im-

prove the effectiveness of PageRank based knowledge discovery and recommen-

dation systems.

� In Chapter 6, I present an efficient Uncertain Personalized PageRank (UPPR)

algorithm to approximately compute personalized PageRank values on an un-

certain graph with edge uncertainties.

� In Chapter 7, I present Interval Personalized PageRank with Integration (IPPR-

I) and Interval Personalized PageRank with Mean (IPPR-M) algorithms that

compute personalized PageRank scores efficiently when the edge weights are

uncertain with interval edge weights in graphs.

� In Chapter 8, I conclude the dissertation.

� In Chapter 9, I discuss the future works.
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Chapter 2

RELATED WORKS

2.1 Context-Sensitive PageRank

An early attempt to contextualize the PageRank scores is the topic sensitive

PageRank [48] approach which adjusts the PageRank scores of the nodes by assign-

ing the teleportation probabilities in vector j⃗ in a way that reflects the graph nodes’

degrees of match to the search topic. [19, 20] were among the first works which rec-

ognized that random-walks can also be used for measuring the degree of association,

relatedness, or proximity of the graph nodes to a given seed node set, S ⊆ V : [19]

constructs a transaction matrix, TS, where edges leading away from the seed nodes

are weighted less than edges leading towards the seed nodes. Consequently, the con-

vergence probabilities of the nodes capture both (a) the separations between the seeds

and the graph nodes and (b) the connectivity of the nodes in the graph relative to

nodes in S.

An alternative approach for contextualizing PageRank scores is to use the PPR

techniques [11, 23] discussed in the introduction. One key advantage of this tele-

portation vector modification based approach over modifying the transition matrix,

as in [19], is that the term α can be used to directly control the degree of seeding

(or personalization) of the PPR score. In fact, these personalized random-walk and

PageRank based measures of node significance have been shown to be highly effec-

tive in many prediction and recommendation applications. [24, 82] rely on a random

walk hitting time based approach, where the hitting time is defined as the expected

number of steps a random walk from the source vertex to the destination vertex will
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take.

2.2 Improvements to the PageRank Function

2.2.1 Approximate Personalized PageRank

Naive personalized PageRank requires a lot of time to compute node proximity

when the size of graphs is too large, so there have been some efforts to separate the

matrix into sparse matrices and dense matrices and then, use different kind of matrix

decomposition techniques to compute approximate PPR scores efficiently. The Fas-

tRWR algorithm, presented in [106], partitions the graph into subgraphs and indexes

partial intermediary solutions. Given a seed node set S then relevant intermediary so-

lutions are combined to quickly solve for approximate PPR scores. Fujiwara et al. [40]

permuted the adjacency matrix for sparse matrix, computed the QR decomposition

of the matrix in preprocessing, and finally get the node proximity for a single node.

Similarly, Shin et al. [97] proposed a method to compute PPR scores by reordering

and partitioning the matrix and using block elimination with LU decomposition. The

algorithm optimized the computation time with sparsity patterns of the matrices and

make the matrix as sparse as possible with reordering. [79] proposed GMRES based

algorithm to compute the PPR scores with least number of iterations by exploiting

graph structure. They compute core-tree-decomposition, partition into blocks, and

compute LU decomposition of the graph in pre-processing step. On the query step,

they compute the PPR scores of blocks with pre-conditioned GMRES.

Another way to compute PPR score efficiently is to use sampling technique such

as Monte Carlo method. [7, 37] introduced a Monte Carlo End-Point algorithm

to compute approximated values of personalized PageRank scores that achieves full

personalization by pre-computation of simulated random walks. [9] showed a Person-
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alized PageRank algorithm for the incremental graphs with Monte Carlo methods.

They pre-compute and store a small number of random walks starting from each

node and then fetch the all walk segments for a seed node in query time. In [77], they

proposed a distributed Personalized PageRank computation with Monte Calro Full

Path algorithm. They pre-process fingerprint that is the approximate PPR vectors

for each node and then, in query time, the ranking scores are returned by a linear

combination of related fingerprints.

2.2.2 Partial Matrix Computation for Personalized PageRank

Since, in practice, personalized PageRank use only small parts of graph to compute

node proximity, [54, 42, 64] used partial information of the graph for PPR compu-

tations. Jeh and Widom[54] proposed a procedure using partial vectors and a hubs

skeleton. Instead of using and computing the entire web matrix, they constructed a

hubs skeleton and hub vectors as partial vectors with identifying interrelationships

between vectors and compute PPR scores using these vectors. It reduced the com-

plexity of matrix computation using partial information instead of the entire graph

information. Gleich and Polito[42] also used partial information of the graph to com-

pute PPR scores. Given a graph, they divide the nodes into two sets which are active

nodes and inactive nodes. Only the set of active nodes is expanded including more

nodes that have higher probabilities to have high PPR scores. After the expansion,

they computed an approximate PPR scores only using the set of active nodes and

their outgoing edges. In [64], they reduced the cost of PPR computation focusing on

the neighborhoods of the seed nodes. Instead of the entire graph, they consider the

localized graphs which are a subset of nodes and edges that are close to the seeds

and an external node that is a set other nodes which are outside of localized graphs

and compute approximate PPR scores with small amount of matrix computations
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effectively.

2.3 PageRank Optimization

Due to the obvious relationship between ranking and monetary rewards (e.g.

through selling of advertisements on web search applications), there has been consid-

erable effort in engineering (or manipulating) graphs in a way to maximize ranking

scores of particular nodes. This is commonly referred to as PageRank optimization.

One way to achieve this goal is carefully adding or removing certain links: If, for

example, one or more colluding web masters can add or remove edges, PageRank

scores of target web pages or domain can be increased in the set of domains by co-

operating reinforcement learning [6, 88]. [81] established several bounds indicating

to what extent the rank of the pages of a website can be changed and the authors

derived an optimal referencing strategy to boost PageRank scores. PageRank can be

maximized and optimized when Websters can select some edges from a set of edges

that are under their control [30, 32].

A related, but opposite, problem is to protect the PageRank scores against nega-

tive links (which may indicate, for example, negative influence or distrust in a social

network), artificial manipulation, and spam pages. Finding and accounting for nega-

tive links [101] and locating and eliminating noisy links can help improve PageRank

scores[107]. [12], for example, focused on identifying spam pages and link farms and

showed that better PageRank scores can be obtained after filtering spam pages and

links. [36] proposed a link spam detection and PageRank demotion algorithm called

MaxRank whose ranking of a page takes into account the frequency of visit to the

page by a random surfer, but minimizing an average cost per time unit. In [86], to

recover link spamming susceptibility, authors showed a refined PageRank with the

intuition of exploiting web’s decomposability and its hierarchical nature. Eiron et
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al. [34] proposed to improve the web page ranking by modifying the PageRank algo-

rithm in a way that penalizes pages based on having fallen out of maintenance. [117]

proposed an improvement on the PageRank function to take into account out-degrees

of the nodes that are nearby. In particular, the authors proposed to compute a new

transition matrix that takes into account out-degrees of those nodes that are within

k steps – intuitively, the higher the k-hop out-degree from a given node, the better

the node is in terms of being able to serve as a hub from which the user can reach to

more information.

2.4 Influential Node Identification

2.4.1 Information Flows within Networks and Influential Node Identification

During the past few years, there has been growing interest in the analysis of in-

formation flow within networks. Adar et al. [1], for example, consider information

propagation across blog entries. Choudry et al. [31] investigate the impact of data

sampling strategies on the analysis of social networks for information diffusion. Other

related work in influence diffusion models include [5, 10]. Our work is orthogonal, but

nevertheless related, to work that aims locating influencers of a given network. Kempe

et al. were one of the first teams who have investigated the problem of optimizing the

network for maximum influence spread [58, 59]. Watts and Dodds also studied the

conditions under which nodes in a network become influential [108]. [26] proposed a

heuristic algorithm, based on local influence regions, to identify nodes in a social net-

work that maximize the spread of influence. Shakarian et al. [96] focused on learning

diffusion models and studying the impact of one node on the others in the networks.

The authors focus on reasoning with previously learned diffusion models, expressed

via generalized annotated programs. More specifically, [96] deals with social network
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optimization problems in which -given a goal to achieve (e.g. minimizing the spread

of a disease) and given limited resources (e.g., medications)- ”key nodes” at which

the resources should be allocated are identified. [73] focuses on the related problem of

optimal sensor placement to observe information cascades within the network, includ-

ing disease outbreaks in a population information flow within the blogosphere. In the

social network, the information propagation and influential node identification has

been main issues on predicting the links [111], understanding the phenomenon [43],

and discovering how the internal and external influence of the information can reach

a node [83].

2.4.2 Network Distance: Definitions and Indexing

The simplest way to define the distance between a pair of nodes in a network is

in terms of the smallest number of edges or hops that separate the nodes. [90, 14],

for example, propose algorithms for (approximately) identifying the number of nodes

reachable within a given number of hops from a source node. [27, 110, 115] propose

algorithms for indexing shortest paths to speed up the hop-distance computation. In

[19], Candan and Li presented a random walks based proximity measure for mining

associations between nodes in a graph. [11, 23] and others used personalized page

rank values to measure proximity in graphs. Work in this direction also includes

[104] which uses a connection subgraph constructed by giving each node a goodness

score with respect to the query nodes by using random walks with restarts. Similarly,

[105] proposes several algorithms based on random walks. [99] also presents methods

that approximate a family of proximity measures relying on random-walk techniques.

[24] proposed a random walk hitting time based definition of network distance, where

the hitting time is defined as the expected number of steps a random walk from the

source vertex to the destination vertex will take. [82] also relies on a hitting time based
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definition of network distances for query suggestion. [38, 95] proposed algorithms for

efficiently computing hitting times; in particular [95] proposes approximate algorithms

to tackle the exact hitting time problem.

2.5 Graphs with Uncertainty

Uncertain graphs are commonly used in many applications. For example, in bio-

logical networks for the protein interaction, where proteins are represented as nodes

and the interactions between them as edges, uncertainty may be introduced when the

existence of certain interactions are often only statistically probable [60, 75]. In com-

munication networks, possibility of link failure needs to be accounted for in finding

stable and reliable paths for packet delivery with minimum cost: this involves taking

into account several forms of uncertainty, including existence uncertainty, ambiguity,

and confusion on edges [28].

In web-based applications, such as social networks, uncertainties may exist due to

inherent lack of prior knowledge regarding the existence of friendship or influence flow

among the users in the underlying network [61] and it may be critical to take into ac-

count such forms of uncertainty in predicting which nodes are likely to be connected

to which other nodes [76]. Other graph analysis operations that are affected from

graph uncertainty include shortest paths, reachability analysis, and subgraph search-

ing. A common challenge in all of these is that, in the presence of uncertainty, the

complexity of (already expensive) graph operations becomes more expensive. [22] pre-

sented an interval labeled edge model and discussed efficient computation of minimum

paths and trees on such uncertain graphs without having to enumerate all possible

worlds. [93] and [116] also focused on shortest paths, but on graphs where edges have

probabilistic interpretations for existence in uncertain graphs. Given edges that are

accompanied with the probability of existence, [55, 60, 75, 118] propose ways to com-
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pute reliability and reachability efficiently through Monte-Carlo sampling. [116, 121]

proposed pruning techniques to reduce the complexity of subgraph searching and

subgraph pattern mining in uncertain graphs by avoiding enumeration of all possible

worlds of the uncertain graph.

Several works considered the problem of ranking on graphs with different forms

of uncertainties. [51] considered PageRank when web graphs contain erroneous link

information and proposed an approximate solution using interval matrices – the pro-

posed approach captures the PageRank scores of the nodes affected by fragile links

in terms of lower and upper bounds of PageRank values. A different node-centric

uncertain graph model and node ranking approach are presented in [87]: in particu-

lar, [87] collapses the uncertain parts of a graph into a cloud graph, where the end

of every undetected link is connected to this cloud graph and computes PageRank

scores on this transformed graph. [33] considered uncertain graphs, where edges are

annotated with existence probabilities and extended the SimRank measure [53] under

probabilistic interpretations of edge existence and transition matrices.
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Chapter 3

LOCALITY-SENSITIVE, RE-USE PROMOTING, APPROXIMATE

PERSONALIZED PAGERANK COMPUTATION

3.1 Introduction

In many graph applications, how a given pair of nodes on a graph are related to

each other is determined by the underlying graph topology. Node distance/proximity

measures are commonly used for quantifying how nearby or otherwise related to two

or more nodes on a graph are. Random-walk based definitions, such as personalized

PageRank (PPR) score [11, 23, 54, 104, 105], of node relatedness take into account

the density of the edges: intuitively, a node can be said to be more related to another

node if there are short paths between them and two nodes are tightly connected and

argue that nodes that have many paths between them can be considered more related.

Naturally, any distance measure which would require all paths among two nodes to be

enumerated would require time exponential in the size of the graph and, thus, would

be intractable. When it exists, the convergence probability of a node n gives the

ratio of the time spent at that node in a sufficiently long random walk and, therefore,

neatly captures the connectivity of the node n in the graph. Therefore, many web

search and recommendation algorithms, such as HITS [69] and PageRank [17], rely

on random-walks to identify significant nodes in the graph.

Unfortunately, for large data sets, random-walk processes are prohibitively ex-

pensive. Recent advances on personalized PageRank includes top-k and approximate

personalized PageRank algorithms [6, 9, 37, 23, 39, 46, 106, 99] and parallelized im-

plementations on MapReduce or Pregel based batch data processing systems [9, 80].
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The FastRWR algorithm, for example, separates a graph into two subgraphs based

on inter-edges and intra-edges of clusters and save partial intermediary solutions.

For intra-edge subgraphs which are relatively dense, it precomputes the inverse of

them and for inter-edge subgraphs, it applies low rank approximation with matrix

decomposition. Given a seed node set S then relevant intermediary solutions are

combined to quickly solve for approximate PPR scores. Naturally, there is a trade-off

between the number of partitions created for the input graph G and the accuracy: the

higher the number of partitions, the faster the run-time execution (and smaller the

memory requirement), but higher the drop in accuracy. Unfortunately, as we see in

Section 3.5.1, for large data sets, FastRWR requires large number of partitions to en-

sure that the intermediary metadata (which requires dense matrix representation) fits

into the available memory and this negatively impacts execution time and accuracy.

To tackle this problem, I propose an efficient Locality-sensitive, Re-use promoting,

approximate personalized PageRank (LR-PPR) algorithm which is approximate but

efficient in the execution time and accurate close to naive PPR computation.

In the following chapter, I first formally introduce the problem and then present

our solution for locality-sensitive, re-use promoting, approximate personalized PageR-

ank computations. In Section 3.4, we discuss optimization and parallelization oppor-

tunities. We evaluate LR-PPR for different data sets and under different scenarios in

Section 3.5.

3.2 Proposed Approach

Let G = (V,E) be a directed graph. For the simplicity of the discussion, without

any loss of generality, let us assume that G is unweighted. Let us be given a set S ⊆ V

of seed nodes and a personalization parameter, β. Let GS = {Gh(Vh,Eh) ∣ 1 ≤ h ≤K}
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be K = ∥S∥ subgraphs1 of G, such that

� for each vi ∈ S, there exists a corresponding Gi ∈ GS such that vi ∈ Vi and

� for all Gh ∈ GS, ∥Gh∥ ≪ ∥G∥.

We first formalize the locality-sensitivity goal:

Desideratum 1: Locality-Sensitivity. Our goal is to compute an approximate

PPR vector, φ⃗apx, using GS instead of G, such that φ⃗apx ∼ φ⃗, where φ⃗ represents the

true PPR scores of the nodes in V relative to S: i.e.,

φ⃗apx ∼ φ⃗ = (1 − β)TG × φ⃗ + βs⃗,

where TG is the transition matrix corresponding to G and s⃗ is the re-seeding vector

corresponding to the seed nodes in S.

We next formalize the re-use promotion goal:

Desideratum 2: Reuse-Promotion. Let S1 and S2 be two sets of seed nodes

and let vi be a node such that vi ∈ S1 ∩ S2. Let also the approximate PPR vector,

φ⃗apx,1 corresponding to S1 have already been computed using GS1 and let us assume

that the approximate PPR vector, φ⃗apx,2 corresponding to S2 is being requested.

The part of the work performed when processing Gi ∈ GS1 (corresponding to vi)

should not need to be re-performed when processing Gi ∈ GS2 , when computing φ⃗apx,2

using GS2 .

3.2.1 Combined Locality and its Boundary

Unlike existing approximate PPR algorithms [8, 9, 37, 23, 46, 106, 99], LR-PPR

is location sensitive. Therefore, given the set, S, of seed nodes and the corresponding

localities, GS, the computation focuses on the combined locality G+(V +,E+) ⊆ G,

1We discuss alternative ways to select these in Section 3.4.
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Figure 3.1: Incoming and Outgoing Boundary Nodes/Edges and a Node Shared
between Two Localities

where

V + = ⋃
1≤l≤K

Vl and E+ = ⋃
1≤l≤K

El.

Given a combined locality, G+, we can also define its external graph, G−(V −,E−),

as the set of nodes and edges of G that are outside of G+ and boundary nodes and

edges. As shown in Figure 3.1, we refer to vi ∈ Vl as an outgoing boundary node of

Gl if there is an outgoing edge ei,j = [vi → vj] ∈ E, where vj ∉ Vl; the edge ej is also

referred to as an outgoing boundary edge of Gl. The set of all outgoing boundary

nodes of Gl is denoted as Voutbound,l and the set of all outgoing boundary edges of Gl

is denoted as Eoutbound,l. Note that Voutbound,l ⊆ Vl, whereas Eoutbound,l ∩El = ∅.

We also define incoming boundary nodes (Vinbound,l) and incoming boundary edges

(Einbound,l) similarly to the outgoing boundary nodes and edges of Gl, but considering

inbound edges to these subgraphs. More specifically, Einbound,l consists of edges of the

form [vi → vj] ∈ E, where vj ∈ Vl and vi ∉ Vl.

3.2.2 Localized Transition Matrix

Since LR-PPR focuses on the combined locality, G+, the next step is to combine

the transition matrices of the individual localities into a combined transition matrix.

To produce accurate approximations, this localized transition matrix, however, should
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Figure 3.2: An Equivalence Set Consists of the Copies of a Node Shared across
Multiple Seed Locality Graphs

nevertheless take the external graph, G−, and the boundaries between G− and G+,

into account.

Transition Matrices of Individual Localities

Let v(l,i) (1 ≤ l ≤ K) denote a re-indexing of vertices in Vl. If v(l,i) ∈ Vl and vc ∈ V

s.t. v(l,i) = vc, we say that v(l,i) is a member of an equivalence set, Vc (Figure 3.2).

Intuitively, the equivalence sets capture the common parts across the localities of the

individual seed nodes. Given Gl(Vl,El) ⊆ G and an appropriate re-indexing, we define

the corresponding local transition matrix, Ml, as a ∥Vl∥ × ∥Vl∥ matrix, where

� (∄ei,j = [v(l,i) → v(l,j)] ∈ El) →Ml[j, i] = 0 and

� (∃ei,j = [v(l,i) → v(l,j)] ∈ El) →Ml[j, i] =
1

out(v
(l,i))

, where out(v(l,i)) is the number

of outgoing edges of vi.

The m ×m matrix M2 is also defined similarly considering edges in E2.

Localization of the Transition Matrix

Given the local transition matrices, M1 through MK , we localize the transition matrix

of G by approximating it as

Mapx = Mbd +M0,
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-

(a) Mbd matrix (b) corresponding graph

Figure 3.3: The Matrix, MBd and the Corresponding Graph

where Mbd is a block-diagonal matrix of the form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1 0∥V1∥×∥V2∥ . . . 0∥V1∥×∥VK∥ 0∥V1∥×1

0∥V2∥×∥V1∥ M2 . . . 0∥V2∥×∥VK∥ 0∥V2∥×1

. . . . . . . . . . . . . . .

0∥VK∥×∥V1∥ 0∥VK∥×∥V2∥ . . . MK 0∥VK∥×1

01×∥V1∥ 01×∥V2∥ . . . 01×∥VK∥ MK+1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where MK+1 is equal to the 1 × 1 matrix 01×1. Intuitively, Mbd combines the

K subgraphs into one transition matrix, without considering common nodes/edges

or incoming/outgoing boundary edges and ignoring all outgoing and incoming edges

(Figure 3.3). All the external nodes in G− are accounted by a single node represented

by the 1 × 1 matrix MK+1.

As we see later in Section 3.3, a key advantage of Mbd is that it is block-diagonal

and, hence, there are efficient ways to process it. However, this block-diagonal matrix,

Mbd, cannot accurately represent the graph G as it ignores potential overlaps among

the individual localities and ignores all the nodes and edges outside of G+. We

therefore need a compensation matrix to
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� make sure that nodes and edges shared between the localities are not double

counted during PPR computation and

� take into account the topology of the graph external to both localities G1

through GK .

Compensation Matrix, M0

Let t be (∥V1∥+∥V2∥+ . . .+∥VK∥+1). The compensation matrix, M0, is a t× t matrix

accounting for the boundary edges of the seed localities as well as the nodes/edges

in G−. M0 also ensures that the common nodes in V1 through VK are not double

counted during PPR calculations. M0 is constructed as follows:

Row/column indexing: Let vl,i be a vertex in Vl. We introduce a row/column

indexing function, ind(), defined as follows:

ind(l, i) = ( ∑
1≤h<l

∥Vh∥) + i

Intuitively the indexing function, ind(), maps the relevant nodes in the graph to their

positions in the M0 matrix.

Compensation for the common nodes: Let el,i,j be an edge [v(l,i) → v(l,j)] ∈ El

and let v(l,j) be a member of the equivalence set Vc for some vc ∈ V . Then, if ∥Vc∥ > 1

� M0[ind(l, j), ind(l, i)] = −(
1

out(Gl,vl,i)
−

∥Vc∥−1
∥Vc∥

× 1
out(G,vl,i)

) and

� ∀v(h,k) ∈ Vc s.t. v(h,k) ≠ v(l,j), we have

M0[ind(h, k), ind(l, i)] =
1

∥Vc∥
×

1

out(G,vl,i)
,

where out(G,v) is the outdegree of node v in G and out(Gl, v) is the outdegree of

node v in the subgraph Gl. Intuitively, the compensation matrix re-routes a portion

of the transitions going towards a shared node in a given locality Vl to the copies
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w
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v(1,k)

v(1,i)

v(2,j) w/2

M0

Figure 3.4: Accounting for Shared Nodes in the Compensation Matrix, M0

in other seed localities (Figure 3.4). This prevents the transitions to and from the

shared node from being mis-counted.

Compensation for outgoing boundary edges: The compensation matrix needs

to account also for outgoing boundary edges that are not accounted for by the neigh-

borhood transition matrices M1 through MK :

� Accounting for boundary edges from nodes in Vl to nodes in Vh: ∀[v(l,i) →

v(h,j)] ∈ Eoutbound,l

– M0[ind(h, j), ind(l, i)] =
1

out(v
(l,i))

and

– M0[ind(l, p), ind(l, i)] = −( 1
out(Gk,vl,i)

− 1
out(G,v

(l,i))
), where ∃ei,p = [v(l,i) →

v(l,p)] ∈ El and vl,p is not a member of the equivalence set Vc for any vc ∈ V

� Accounting for boundary edges from nodes in Vl to graph nodes that are in V −:
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Figure 3.5: Accounting for the Edges That Are Outgoing from a Locality

if ∃[v(l,i) → v] ∈ Eoutbound,l s.t. v ∈ V −

– M0[t, ind(l, i)] =
bnd(v

(l,i))

out(v
(l,i))

, where bnd(v(l,i)) is the number of edges of the

form [v(l,i) → v] ∈ Eoutbound,l where v ∈ V −

else M0[t, ind(l, i)] = 0

The process of compensating for outgoing boundary edges for a sample case when

K = 2 is visualized in Figure 3.5. The compensation matrix records all outgoing

edges, whether they cross into another locality or they are into external nodes in G−.

If a node has more than one outgoing edge into the nodes in G−, all such edges are

captured using one single compensation edge which aggregates all the corresponding

transition probabilities.

Compensation for incoming boundary edges (from G−): Similarly to the out-

going boundary edges, the compensation matrix needs also to account for incoming
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Figure 3.6: Accounting for the Edges That Are Originating from The nodes That
Are Outside of the Localities of G1 and G2

boundary edges that are not accounted for by the neighborhood transition matrices

M1 through MK . Since incoming edges from other localities have been accounted for

in the previous step, here we only need to consider incoming boundary edges (from

G−). Following the formulation in [114], we account for incoming edges where the

source is external to G+ and the destination is a vertex v(l,i) in Vl by inserting an

edge from the dummy node to v(l,i) with a weight that considers the outdegrees of all

external source nodes; i.e., ∀v(l,i) s.t. ∃[vk → v(l,i)] ∈ Einbound,l where vk ∈ V − and v(l,i)

is in the equivalence set Vc for a vc ∈ V , M0[ind(l, i), t] is equal to

1

∥Vc∥

∑([vk→v(l,i)]∈Einbound,l)∧(vk∈V −)
1

out(G,vk)

∥V −∥
,

where out(G,v) is the outdegree of node v in G. The process of compensating for

incoming edges originating from outside of the locality graphs of the seeds is visualized

in Figure 3.6.
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Compensation for the edges in G−: We account for edges that are entirely in G−

by creating a self-loop that represents the sum of outdegree flow between all external

nodes averaged by the number of external nodes; i.e.,

M0[t, t] =
∑v∈V −

out(G−,v)
out(G,v)

∥V −∥
,

where out(G−, v) and out(G,v) are the outdegrees of node v in G− and G, respectively.

The process of compensating for edges that are outside of the seed localities is also

visualized in Figure 3.6.

Completion: For any matrix position p, q not considered above, no compensation is

necessary; i.e., M0[p, q] = 0.

3.2.3 L-PPR: Locality Sensitive PPR

Once the block-diagonal local transition matrix, Mbd, and the compensation ma-

trix, M0, are obtained, the next step is to obtain the PPR scores of the nodes in V +.

This can be performed using any fast PPR computation algorithm.

Note that the overall transition matrix Mapx = Mbd + M0 is approximate in the

sense that all the nodes external to G+ are clustered into a single node, represented

by the last row and column of the matrix. Otherwise, the combined matrix Mapx

accurately represents the nodes and edges in the “merged localities graph” combining

the seed localities, G1 through GK . As we see in Section 3.5, this leads to highly

accurate PPR scores with better scalability than existing techniques.

3.2.4 LR-PPR: Locality Sensitive and Reuse Promoting PPR

Our goal is not only to leverage locality-sensitivity as in L-PPR, but also to

boost sub-result re-use. Let us restate the problem: Given the block-diagonal local

transition matrix, Mbd, and the compensation matrix, M0 (that together make up
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the overall transition matrix, Maxp) computed as described above, and a re-seeding

(or restart) probability, β, we seek to find φ⃗apx, where

φ⃗apx = β(I − (1 − β)Maxp)
−1s⃗,

where s⃗ is the re-seeding vector for seeds. Remember that, as discussed above, the

localized transition matrix Mapx is equal to Mbd +M0 where (by construction) Mbd

is a block-diagonal matrix, whereas M0 (which accounts for shared, boundary, and

external nodes) is relatively sparse. We next use these two properties of the decom-

position of Mapx to efficiently compute approximate PPR scores of the nodes in V +.

In particular, we rely on the following result due to [106], which itself relies on the

Sherman-Morisson lemma [92]:

Let C = A +USV. Let also (I − cA)−1 = Q−1. Then, the equation

r⃗ = (1 − c)(I − cA)−1e⃗

has the solution

r⃗ = (1 − c)(Q−1e⃗ + cQ−1UΛVQ−1e⃗),

where

Λ = (S−1 − cVQ−1U)−1.

If A is a block diagonal matrix consisting of k blocks, A1 through Ak,

then Q−1 is also a block diagonal matrix consisting of k corresponding

blocks, Q−1
1 through Q−1

k , where Q−1
i = (I − cAi)

−1.

We use the above observation to efficiently obtain PPR scores by setting c = (1 − β),

C = Mapx, A = Mbd, and USV = M0. In particular, we divide the PPR computation

into two steps: a locality-sensitive and re-usable step involving the computation of
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the Q−1 term using the local transition matrices and a run-time computation step

involving the compensation matrix.

Locality-sensitive and Re-usable Q−1
bd

Local transition matrices, M1 through MK corresponding to the seeds v1 through

vK are constant (unless the graph itself evolves over time). Therefore, if Q−1
h =

(I − (1 − β)Mh)
−1

is computed and cached once, it can be reused for obtaining Q−1
bd ,

which is a block diagonal matrix consisting of Q−1
1 through Q−1

K+1 (as before, the last

block, Q−1
K+1, is simply equal to 11×1):

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q−1
1 0∥V1∥×∥V2∥ . . . 0∥V1∥×∥VK∥ 0∥V1∥×1

0∥V2∥×∥V1∥ Q−1
2 . . . 0∥V2∥×∥VK∥ 0∥V2∥×1

. . . . . . . . . . . . . . .

0∥VK∥×∥V1∥ 0∥VK∥×∥V2∥ . . . Q−1
K 0∥VK∥×1

01×∥V1∥ 01×∥V2∥ . . . 01×∥VK∥ Q−1
K+1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Computation of the LR-PPR Scores

In order to be able to use the above formulation for obtaining the PPR scores of

the nodes in V +, in the query time, we need to decompose the compensation matrix,

M0, into U0S0V0. While obtaining a precise decomposition in run-time would be

prohibitively expensive, since M0 is sparse and since we are looking for an approxi-

mation of the PPR scores, we can obtain a fairly accurate low-rank approximation of

M0 efficiently [106]:

M0 ≃ Ũ0S̃0Ṽ0.

Given this decomposition, the result vector φ⃗apx, which contains the (approximate)

PPR scores of the nodes in V +, is computed as

φ⃗apx = β (Q−1
bd s⃗ + (1 − β)Q−1

bd Ũ0ΛṼ0Q
−1
bd s⃗) ,
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where Λ = (S̃−1
0 − (1 − β)Ṽ0Q−1

bd Ũ0)
−1
.

Note that the compensation matrix M0 is query specific and, thus, the work done

for the last step cannot be reused across queries. However, as we experimentally

verify in Section 3.5, the last step is relatively cheap and the earlier (costlier) steps

involve re-usable work. Thus, caching and re-use through LR-PPR enables significant

savings in execution time. We discuss the overall complexity and the opportunities

for re-use next.

Error Analysis of LR-PPR

In this section, we describe and analyze the two kind of possible errors for LR-PPR.

Error with the external graph G−: The fist error can be generated by the com-

pensation part on the incoming boundary edge from the external graph G−. When we

combined all outside nodes from locality graphs into a graph G− with a node V−, the

compensation for incoming boundary edges from V− to V+ could include some errors.

As Figure 3.7(a), in the original transition matrix, the probability P(vi,vj) from vi

to from vj is 1
outdeg(vi)

. With no error, in Figure 3.7(b), we expect that P′(vi,vj),

the probability from vi which is included in V− to vj would be same as P(vi,vj). For

the ideal case, to get the same probability as P(vi,vj), the probability P′(vi,vj) can

be computed as

P′
ideal(vi,vj) =

P (vi)

∑v∈V − P (v)
×

1

outdeg(vi)
,

where P (vi) is the probability that the current node on the random walk is vi among

all nodes that are included in V−. The problem of Pideal(V−,vj) is that we do not

know the probability P (vi). Instead of using P (vi), in LR-PPR, we assume that

P (vi) follows the normal distribution and then, P(vi,vj) is computed as

P′(vi,vj) =
1

∣V ∣
×

1

outdeg(vi)
.
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(a) original graph (b) locality graph with an external node

Figure 3.7: (a) The Probability from Node vi to Node vj in the original Graph G
and (b) Locality Graph G+ with an external Node G−

Therefore, the error ε between PPR and LR-PPR is defined as ε = T −Mapx

where T is a transition matrix of G and Mapx is a transition matrix of LR-PPR.

Note that ε is only related to the incoming boundary edges.

This error is described and shown in [114] but their analysis is not tight enough.

They show the L1 distance between the ideal PageRank and approximated PageRank

scores, but the problem is that L1 distance only shows the average of each score

distance though there exists a critical error on a node’s score compared other nodes’

scores.

We provide more precise and tight bound on the errors The linear equation of

Power iteration for PageRank can be written

A0v0i = λ0iv0i,

where A0 is a transition matrix of a graph, λ0i is the eigenvalues, and v0i is the

eigenvectors for i = 1, ...,N . Now suppose that we have a changed matrix and find

the eigenvalues and eigenvectors of

Avi = λivi,

where A = A0 + δA with the perturbations δA is much smaller than A. The new

eigenvalues and eigenvectors can be defined as λi = λ0i+δλi and vi = v0i+δvi. At first,
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we assume that we have scaled the eigenvectors such that

v⊺0jv0i = δij,

where δij is the Kronecker delta. For Avi = λivi, after substituting and expanding, we

can get

A0v0i + δAv0i +A0δvi + δAδvi = λ0iv0i + λ0iδvi + δλiv0i + δλiδvi.

After canceling from A0v0i = λ0iv0i, it becomes

δAv0i +A0δvi + δAδvi = λ0iδvi + δλiv0i + δλiδvi.

For δλiδvi, we remove the higher-order terms, and it is simplified as

δAv0i +A0δvi + δAδvi = λ0iδvi + δλiv0i.

As the basis for the perturbed eigenvectors, we construct δvi = ∑
N
j=1 ωijv0j where ωij

are small constants that are to be determined and substitute it to

δAv0i +A0

N

∑
j=1

ωijv0j + δAδvi = λ0i

N

∑
j=1

ωijv0j + δλiv0i.

We can remove the summations by left multiplying by v⊺0i using v⊺0jv0i = δij,

v⊺0iδAv0i + v
⊺
0iA0ωiiv0i + v

⊺
0iδAδvi = v

⊺
0iλ0iωiiv0i + v

⊺
0iδλiv0i.

We know that v⊺0iA0v0i = v
⊺
0iλ0iv0i, so it leaves

v⊺0iδAv0i + v
⊺
0iδAδvi = v

⊺
0iδλiv0i.

Rearranging by δλi with v⊺0iv0i = 1, we can get

δλi = v
⊺
0i(δAv0i + δAδvi).
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We also can calculate ωia by left-multiplying δAv0i+A0∑
N
j=1 ωijv0j+δAδvi = λ0i∑

N
j=1 ωijv0j+

δλiv0i by v0a.

ωia =
v⊺0aδA(v0i + δvi)

λ0i − λ0a

, i ≠ a

By replace a to j, we can get

ωij =
v⊺0jδA(v0i + δvi)

λ0i − λ0j

, i ≠ j

Because vi = v0i + δvi,

ωij =
v⊺0jδAvi

λ0i − λ0j

and after applying to δvi = ∑
N
j=1 ωijv0j, we can get

δvi =
N

∑
j=1
j≠i

v⊺0jδAvi

λ0i − λ0j

v0j.

Because vi is ordered such that λ1 = 1, v1 can be written

v1 =
N

∑
j=2

v⊺0jδAv1v0j

1 − λ0j

.

Note that δA is related to the error edges incoming from the external node and located

on the rightmost in the transition matrix (N ×N) and vi is a eigenvector (N × 1).

This means that the only last index value of vi which is an external node probability

is multiplied to the rightmost values, so δAvi become a scalar.

Therefore, We define a function of the incoming boundary edges δv1 as

δv1 =
N

∑
j=2

(
prob(V −)

1 − λ0j

)(v⊺0jεincomingv0j),

where prob(V −) is a transition probability among nodes which both of them are in

the external node and εincoming is the incoming boundary edge probability errors. On

this function, there are some considerable error dependencies.

� If the error of prob(V −) is small and is not significant, the overall error becomes

small.
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� If the incoming boundary edge probability is accurate with small εincoming (e.g.

P ′
ideal(vi, vj) − P

′(vi, vj)), the overall error becomes small.

� The overall error depends on the separation of eigenvectors. If all eigenvectors

which are λ02, ..., and λ0N are small, the overall error becomes small.

Error with low rank approximation: The error can be generated by the approxi-

mation using low rank approximation. In [106], the error bound of the approximation

is described as

∥r⃗ − ˆ⃗r∥ = β
∥V ∥

∑
i=t+1

1

(1 − (1 − β)λi)
,

where r⃗ and ˆ⃗r be the ranking vectors, t is the rank of the low-rank approximation,

and λi is the ith largest eigenvalues of the transition matrix, TG. Note that this error

bound equation also depends on the separation of eigenvectors. Though they showed

the error bound of the low-rank approximation for eigenvalue decomposition, it is

hard to find the error boundary for the general number of partition. The error bound

for the approximation with the graph partition can be defined with some extreme

cases of the number of partition. In LR-PPR, Mbd part is accurate and the only error

part is related to the low-rank approximation on the compensation matrix M0 with

graph partition.

For the upper bound error, when each node has a separate partition and the

low-rank approximation is applied, the error rate on LR-PPR is high because the

compensation matrix M0 becomes an original matrix and all transition values are

approximated.

For the lower bound error, when most of edges are in the locality graphs, the

compensation matrix M0 becomes very sparse. and Intuitively, the less number of

locality graphs goes to low-rank approximation and the error become less.
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3.3 Complexity and Re-use

We can divide the work underlying the LR-PPR algorithm into five sub-tasks,

each processed using only local nodes and edges:

Sub-task 1. The preparatory step in which the localities of the seeds are identified.

The computational cost of this depends on the definition of locality. But, in general,

the cost of this is linear in the size of the network G+; i.e., O(∥G+∥), where ∥G+∥ ≪

∥G∥. Note that the work in this sub-task is entirely re-usable.

Next, the combined local transition matrix, Mbd, and the compensation matrix,

M0, are computed:

Sub-task 2a. Assuming a sparse matrix representation, computation and storage

of the combined local transition matrix, Mbd, takes O(∑1≤l≤K ∥Gl∥) time and space.

Note that (while the matrix Mbd is not re-usable, unless the same set of seeds are

provided) the constituting matrices M1 through MK are re-usable.

Sub-task 2b. With a sparse representation, computation and storage of the com-

pensation matrix takes O(K ×max in degree × ∥V ∥ + (∥E∥ −∑1≤l≤K ∥El∥)) time and

space:

1. Row/column indexing: This takes O(∑1≤l≤K ∥Vl∥) time.

2. Identification of common nodes (i.e., equivalence classes): To locate the common

nodes and to create the equivalence classes, we need to go over each node

once and see if the node occurs in which of the remaining K − 1 localities.

Thus, assuming a hash-based implementation, this step takes O(∑1≤l≤K ∥Vl∥) to

identify the equivalence classes.

3. Identification of outgoing boundary edges: In order to identify the outgoing

boundary edges, we go over the nodes in V1 through VK and check if their
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outgoing edges are to a node within the same locality or not. If not, we check

whether it is to a node within V + or not; if it is to a node in V +, then the edge is

labeled as an outgoing boundary edge among localities, otherwise, it is labeled

as an outgoing boundary edge to G−. Assuming that the nodes are labeled

with their equivalence classes in the previous step, the cost of this operation is

O(∑1≤l≤K∑v∈Vl
out(v)).

Note that, while the sub-task as a whole is not re-usable when the seed set

changes, the part of the work involving identification of the outgoing edges

from an individual locality is re-usable.

4. Identification of incoming boundary edges from G−: In order to identify the

incoming boundary edges from G−, we go over the nodes in V1 through VK and

check if their incoming edges are from a node marked with an equivalence class

label. If not, the edge is from a node in G−. The cost of this operation is

O(∑1≤l≤K∑v∈Vl
in(v)).

Note that, while the sub-task as a whole is not re-usable when the seed set

changes, the part of the work involving identification of the incoming edges into

a single individual locality from nodes outside of the locality is re-usable.

5. Compensation for the common nodes: Once the ∥V +∥ equivalence classes are

identified, the edges in the localities’ incoming edges need to be rerouted (at

most K times), leading to O(K ×∑1≤l≤K ∥El∥) time cost in the worst case.

6. Compensation for the outgoing boundary edges: This step involves considering

once each outgoing boundary edge. Since all necessary information can be

collected during the earlier identification pass (Subtask 2b. 3), the worst case

time complexity of this operation is the same as that of the corresponding
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identification step.

7. Compensation for the incoming boundary edges: This step involves considering

once each incoming boundary edge identified earlier. For each vertex, v, with

one or more incoming edges, we create an edge whose weight captures the out-

degrees of all corresponding external source nodes. Assuming that all nodes in

the graph have been annotated with their out-degrees during a pre-processing

step, the worst-case time complexity is the same as that of the corresponding

identification step (Subtask 2b. 4).

8. Compensation for the edges in G−: In the first look, it appears that this step

cannot be executed without considering all nodes in V −. However, this is not

true: First of all, assuming that we know ∥V ∥, we can compute ∥V −∥ using ∥V ∥

and ∥V +∥. Secondly, the term ∑v∈V − out(G−, v)/out(G,v) can be rewritten as

∑
v∈V

out(G,v)

out(G,v)
− ∑
v∈V +

out(G+, v)

out(G,v)
− ∑

⟨v→vj⟩∈(inbound(G+)∪outbound(G+))

1

out(G,v)
,

where inbound(G+) and outbound(G+) are the incoming and outgoing edges to

G+, both of which have been computed in earlier steps. Also, the first term is

simply ∥V ∥. Thus, this step can be computed using only local information, in

worst-case time complexity the same as the identification steps (Subtask 2b. 3

and Subtask 2b. 4).

Sub-task 3. Next, the Q−1
bd matrix is obtained. The execution cost of this step is

O(∑1≤l≤Kmatrix inversion cost(Ml)). There exists a O(n2.373) algorithm for matrix

inversion [113], where n×n is the dimensions of the input matrix. Thus, we can rewrite

the execution cost as O(∑1≤l≤K ∥Vl∥2.373). Assuming a sparse matrix representation,

we need O(∑1≤l≤K ∥Vl∥2) space to store the resulting matrix Q−1
bd . Note that the work

in this sub-task is, again, entirely re-usable.
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Sub-task 4. Next, the compensation matrix, M0 is decomposed. While exact ma-

trix decomposition is expensive, we use highly efficient approximate low-rank (r)

decomposition [106], which leverages sparsity of M0, where r is the selected rank.

Sub-task 5. The matrix, Λ, is obtained. The matrix multiplications and inversions

in this step take O(r2.373 + r × ∥V +∥2 + r2 × ∥V +∥) time, where r is the selected rank.

Sub-task 6. Finally, φ⃗apx of PPR scores is computed through matrix multiplications

in O(r × ∥V +∥2 + r2 × ∥V +∥) time.

Summary. This cost analysis points to the following advantages of the LR-PPR:

First of all, computation is done using only local nodes and edges. Secondly, most of

the results of the expensive sub-tasks 1, 2, and 3 can be cached and re-used. Moreover,

costly matrix inversions are limited to the smaller matrices representing localities and

small matrices of size r × r.

It is important to note that various subtasks have complexity proportional to

∥V +∥2, where ∥V +∥ = ∑1≤l≤K ∥Vl∥. While in theory the locality Vl can be arbi-

trarily large, in practice we select localities with a bounded number of nodes; i.e.,

∀1≤l≤K , ∥Vl∥ ≤ L for some L≪ ∥V ∥.

3.4 Optimizations

The LR-PPR scheme involves: (a) initialization (where localities are identified and

the local transition and compensation matrices are computed); (b) local transition

matrix inversion, and (c) compensation matrix decomposition, r×r matrix inversion,

and PPR computation. As mentioned above, tasks for (a) and (b) are cacheable and

re-usable, whereas decomposition needs to be executed in query time. In this section,

we discuss various optimization and parallelization opportunities.
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3.4.1 Locality Selection

In the initialization phase of the algorithm, the first task is to identify localities

for the given seed nodes (if they are not already identified and cached). A local-

ity graph consists of a set of graph nodes that are nearby or otherwise related to

a seed node. Note that localities can be distance-constrained or size-constrained.

Common definitions include h-hop neighborhoods [14, 27, 110, 115, 120], reachability

neighborhoods [27], cluster/partition neighborhoods [35, 57, 84], or hitting distance

neighborhoods [24, 82]. One straight-forward way to identify the locality of a seed

node n is to perform breadth-first search around n to locate the closest L nodes in lin-

ear time to the size of the locality. Alternatively, one can use neighborhood indexing

algorithms, such as INI [62], to identify the neighborhood of a given node in a way

that captures topological characteristics (e.g., density of the edges) of the underlying

graph.

3.4.2 Caching

As described above LR-PPR algorithm supports caching and re-use of some of

the intermediary work. Sub-tasks 1 and 2 result in local transition matrices, each of

which can be cached in O(∥El∥) space (where El is the number edges in the locality)

assuming a sparse representation. Sub-task 3, on the other hand, involves a matrix

inversion, which results in a dense matrix; as a result, caching the inverted matrix

takes O(∥Vl∥2) space (where Vl is the number of vertices in the locality). If the

locality is size-constrained, this leads to constant space usage of O(L2), where L is

the maximum number of nodes in the locality. If the inverted matrix of a locality

is cached, then the local transition matrix does not need to be maintained further.

Once the cache-space is full, we need to either push the cached inverted matrices into
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the secondary storage or drop some existing cached results from the memory. For

cache replacement, any frequency-based or predictive cache-replacement policy can

be used.

3.4.3 Parallelization Opportunities

Sub-task 1, which involves identifying localities of the seeds, is highly paralleliz-

able: each seed can be assigned to a different processing unit; and the locality search

can be parallelized through graph partitioning. If being leveraged, the INI algorithm

(which relies on hash signatures) is highly parallelizable through signature partition-

ing [62]. Sub-task 2, which involves construction of the local transition matrices and

the compensation matrix is also parallelizable. Different localities and edges can be

mapped to different servers for parallel processing. Sub-task 3, which involves matrix

inversion of the local transition matrices is also parallelizable: different local matrices

can be assigned to different processors; moreover, each matrix inversion itself can

be parallelized [91]. Sub-task 4 involves decomposition of the compensation matrix

M0. Since M0 is sparse, this step can also be parallelized effectively [45]. Finally,

Sub-tasks 5 and 6 involve matrix multiplications and inversions. As discussed above,

matrix inversion operation can be parallelized. Similarly, there are well-known clas-

sical algorithms for parallelizing matrix multiplication [44].

3.5 Experimental Evaluation

In this section, we present results of experiments assessing the efficiency and ef-

fectiveness of the Locality-Sensitive, Re-use Promoting Approximate Personalized

PageRank (LR-PPR) algorithm. Table 6.1 provides overviews of the four data sets

(from http ∶ //snap.stanford.edu/data/) considered in the experiments. We con-

sidered graphs with different sizes and edge densities. We also varied numbers of

47



Table 3.1: Data Sets

Overall Graph Locality Graph

Data Set Characteristics Characteristics

# # # nodes per # edges per

nodes edges neighborhood neighborhood

Epinions ∼76K ∼500K from ∼200 to ∼2000 from ∼10K to ∼75K

SlashDot ∼82K ∼870K from ∼700 to ∼5000 from ∼10K to ∼75K

WikiTalk ∼2.4M ∼5M from ∼700 to ∼6000 from ∼10K to ∼75K

LiveJournal ∼4.8M ∼69M from ∼900 to ∼6000 from ∼10K to ∼75K

Data Set Seeds

# seeds seed distances (hops)

Epinions 2-3 3-4

SlashDot 2-3 3-4

WikiTalk 2-3 3-4

LiveJournal 2-3 3-4

seeds and the distances between the seeds (thereby varying the overlaps among seed

localities). We also considered seed neighborhoods (or localities) of different sizes.

Most of Experiments were carried out using a 4-core Intel Core i5-2400, 3.10GHz,

machine with 1024 KB L2 cache size, 6144 KB L3 cache size, 8GB memory, and

64-bit Windows 7 Enterprise. For some experiments that were required for the large

size data set, 8-core Intel Core i7-4770, 3.40 GHz machine with 32.0 GB Memory

and 1024 L2Cache and 8192 Cache size was used. Codes were executed using Matlab

7.11.0(2010b). All experiments were run 10 times and averages are reported.
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3.5.1 Alternative Approaches

In this section, we consider the following approaches to PPR computation:

� Global PPR: This is the default approach where the entire graph is used for

PPR computation. We compute the PPR scores by solving the naive PPR

equation.

� FastRWR: This is an approximation algorithm, referred to as NB LIN in [106].

The algorithm reduces query execution times by partitioning the graph into sub-

graphs and preprocessing each partition. The pre-computed files are stored on

disk and loaded to the memory during the query stage. Naturally, the number

of partitions impacts the execution time, query time memory usage, as well as

approximation quality. As shown in Table 3.2, in our experiments, to be fair

against FastRWR, we selected the number of its partitions in a way that min-

imizes its execution time and memory and maximizes its quality. This table

shows the FastRWR performance for different data sets and configurations; the

bold entries correspond to the high accuracy low time and memory configu-

ration selected for the experiments in this section. For LiveJournal data set,

even with large number of partition, the pre-computational stage could not be

finished for ’out of memory.’ As 8GB memory machine, 32GB memory memory

machine also got the same ’out of memory’ error for different number of parti-

tions. Note that, especially for large data sets, FastRWR requires large number

of partitions to ensure that the intermediary metadata (which requires dense

matrix representation) fits into the available memory (8GB) and this negatively

impacts accuracy.

� GMRES-PPR: This is a recent scalable algorithm on computing PPR scores [79].
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Data Set # part. Time (sec.) Top-10 Memory

Disk I/O In-Memory Sp. Correl. (MB)

Epinions 3 18.02 0.58 0.96 1547

∼76K nodes 40 0.22 0.04 0.97 178

∼500K edges 400 0.15 0.03 0.95 140

1000 0.16 0.02 0.95 138

SlashDot 3 Out of memory in Q−1
1 calculation

∼82K nodes 10 0.79 0.23 0.96 616

∼870K edges 40 0.40 0.08 0.96 302

400 0.27 0.05 0.92 244

1000 0.28 0.04 0.95 250

WikiTalk 3 Out of memory in Q−1
1 calculation

∼2.4M nodes 40 Out of memory in Q−1
1 calculation

∼5M edges 200 Out of memory in Q−1
1 calculation

400 24.03 17.60 0.86 1454

1000 16.75 15.15 0.87 1429

LiveJournal 1000 Out of memory in Λ̂ calculation

∼4.8M nodes 3000 Out of memory in Λ̂ calculation

∼69M edges 5000 Out of memory in Λ̂ calculation

Table 3.2: FastRWR Performance for Different Data Sets and Configurations
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The algorithm is a GMRES based algorithm to calculate PPR values with ex-

ploiting the structure of a graph. We compare PPR results with our proposed

algorithms’ results in execution time and correlation for given seeds. In this

experiment, we used d=10 for the bag size.

� L-PPR: This is our locality sensitive algorithm, where instead of using the

whole graph, we use the localized graph created by combining the locality nodes

and edges as described in Section 3.2.2. Once the localized transition matrix is

created, the PPR scores are computed by solving the naive PPR equation.

� LR-PPR: This is the locality sensitive and re-use promoting algorithm de-

scribed in detail in Section 3.2.4.

In the experiments, we set the restart probability, β, to 0.15 for all approaches.

3.5.2 Evaluation Measures

We consider three key evaluation measures:

� Efficiency: This is the amount of time taken to load the relevant (cached) data

from the disk plus the time needed to carry out the operations to obtain the

PPR scores.

� Accuracy: For different algorithm pairs, we report the Spearman’s rank cor-

relation

∑i(xi − x̄)(yi − ȳ)
√
∑i(xi − x̄)

2∑i(yi − ȳ)
2
,

which measures the agreement between two rankings (nodes with the same score

are assigned the average of their positions in the ranking). Here, x and y are

rankings by two algorithms and x̄ and ȳ are average ranks. To compute the rank

coefficient, a portion of the highest ranked nodes in the merged graph according
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Table 3.3: Summary of Execution Time Results for Different Configurations on 10K
Seed Localities

Seeds Merged Network Execution Time (sec.)

Data set # # Avg Avg Global Fast GMRES- L- LR-

seeds hops # nodes # edges PPR RWR PPR PPR PPR

Epinions 2 3 ∼0.7K ∼17K 26.44 0.20 0.12 0.05 0.03

∼76K nodes 2 4 ∼0.6K ∼15K 28.06 0.21 0.12 0.05 0.04

∼500K edges 3 3 ∼0.7K ∼19K 30.40 0.22 0.12 0.07 0.04

3 4 ∼0.8K ∼20K 30.36 0.22 0.12 0.17 0.05

SlashDot 2 3 ∼1.3K ∼15K 21.56 0.34 0.20 0.08 0.07

∼82K nodes 2 4 ∼1.9K ∼17K 21.96 0.34 0.18 0.08 0.07

∼870K edges 3 3 ∼1.8K ∼19K 22.25 0.35 0.18 0.10 0.09

3 4 ∼2.5K ∼25K 22.54 0.35 0.19 0.15 0.10

WikiTalk 2 3 ∼4.1K ∼19K 677.32 17.18 0.39 0.23 0.21

∼2.4M nodes 2 4 ∼4.8K ∼20K 741.08 16.51 0.40 0.29 0.26

∼5M edges 3 3 ∼4.4K ∼24K 709;35 16.71 0.42 0.34 0.31

3 4 ∼5.2K ∼29K 763.10 16.61 0.41 0.37 0.21

LiveJournal 2 3 ∼2.0K ∼19K - - - 0.16 0.17

∼4.8M nodes 2 4 ∼0.9K ∼20K - - - 0.24 0.22

∼69M edges 3 3 ∼3.0K ∼30K - - - 0.21 0.19

3 4 ∼1.0K ∼30K - - - 0.26 0.18

to x are considered. As default, we considered 10% highest ranked nodes; but

we also varied the target percentage (5%, 10%, 25%, 50%, 75%) to observe how

the accuracy varies with result size.

� Memory: We also report the amount of data read from the cache.

3.5.3 Results and Discussions

Proposed Algorithms (L-PPR and LR-PPR) vs. FastRWR vs. GMRES-

PPR

Tables from Table 3.3 to Table 3.8 presents experiment results for FastRWR, GMRES-

PPR, L-PPR, and LR-PPR on different different size of locality graphs.

For the execution time, First of all, all four algorithms are much faster than
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Table 3.4: Summary of Accuracy Results for Different Configurations on 10K Seed
Localities

Seeds Merged Network Top-10% Correl. (vs. Global PPR)

Data set # # Avg Avg Fast GMRES- L- LR-

seeds hops # nodes # edges RWR PPR PPR PPR

Epinions 2 3 ∼0.7K ∼17K 0.954 0.826 0.990 0.988

∼76K nodes 2 4 ∼0.6K ∼15K 0.959 0.825 0.992 0.993

∼500K edges 3 3 ∼0.7K ∼19K 0.958 0.823 0.991 0.986

3 4 ∼0.8K ∼20K 0.958 0.823 0.987 0.985

SlashDot 2 3 ∼1.3K ∼15K 0.921 0.810 0.984 0.958

∼82K nodes 2 4 ∼5.7K ∼125K 0.922 0.818 0.987 0.977

∼870K edges 3 3 ∼1.8K ∼19K 0.921 0.813 0.973 0.973

3 4 ∼2.5K ∼25K 0.921 0.818 0.982 0.974

WikiTalk 2 3 ∼4.1K ∼19K 0.868 0.853 0.957 0.983

∼2.4M nodes 2 4 ∼4.8K ∼20K 0.871 0,854 0.994 0.984

∼5M edges 3 3 ∼4.4K ∼24K 0.866 0.852 0.986 0.988

3 4 ∼5.2K ∼29K 0.855 0.852 0.973 0.964

Table 3.5: Summary of Memory Usage Results for Different Configurations on 10K
Seed Localities

Seeds Merged Network Memory usage(MB)

Data set # # Avg Avg Fast GMRES- L- LR-

seeds hops # nodes # edges RWR PPR PPR PPR

Epinions 2 3 ∼2.2K ∼90K 0.63 4.40

∼76K nodes 2 4 ∼3.0K ∼99K 178.3 8.55 0.71 5.69

∼500K edges 3 3 ∼2.7K ∼108K 0.96 7.30

3 4 ∼3.5K ∼120K 1.03 8.09

SlashDot 2 3 ∼5.9K ∼117K 0.64 4.40

∼82K nodes 2 4 ∼5.7K ∼125K 302.1 12.16 1.43 16.66

∼870K edges 3 3 ∼7.1K ∼141K 2.08 27.92

3 4 ∼7.2K ∼159K 2.17 23.36

WikiTalk 2 3 ∼5.7K ∼102K 5.66 26.74

∼2.4M nodes 2 4 ∼5.8K ∼100K 1429.0 20.97 5.51 31.44

∼5M edges 3 3 ∼6.3K ∼101K 8.82 40.46

3 4 ∼6.7K ∼103K 8.49 76.08

LiveJournal 2 3 ∼2.0K ∼19K 1.70 23.55

∼4.8M nodes 2 4 ∼0.9K ∼20K - - 3.19 17.96

∼69M edges 3 3 ∼3.0K ∼30K 3.25 37.97

3 4 ∼6.7K ∼103K 3.64 22.71
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Table 3.6: Summary of Execution Time Results for Different Configurations on
∼75K Seed Localities

Seeds Merged Network Execution Time (sec.)

Data set # # Avg Avg Global Fast GMRES- L- LR-

seeds hops # nodes # edges PPR RWR PPR PPR PPR

Epinions 2 3 ∼2.2K ∼90K 26.44 0.21 0.12 0.37 0.14

∼76K nodes 2 4 ∼3.0K ∼99K 27.58 0.22 0.12 0.51 0.20

∼500K edges 3 3 ∼2.7K ∼108K 27.30 0.21 0.12 0.58 0.26

3 4 ∼3.5K ∼120K 27.90 0.22 0.12 0.76 0.36

SlashDot 2 3 ∼5.9K ∼117K 21.79 0.35 0.20 0.70 0.53

∼82K nodes 2 4 ∼5.7K ∼125K 21.85 0.35 0.18 0.78 0.42

∼870K edges 3 3 ∼7.1K ∼141K 21.74 0.36 0.18 1.12 0.95

3 4 ∼7.2K ∼159K 22.93 0.38 0.19 1.39 0.83

WikiTalk 2 3 ∼5.7K ∼102K 681.08 16.28 0.39 0.75 0.37

∼2.4M nodes 2 4 ∼5.8K ∼100K 693.44 16.22 0.40 0.73 0.37

∼5M edges 3 3 ∼6.3K ∼101K 701.34 16.32 0.42 0.75 0.37

3 4 ∼6.7K ∼103K 706.26 16.34 0.41 0.78 0.36

LiveJournal 2 3 ∼7.9K ∼144K - - - 1.66 0.83

∼4.8M nodes 2 4 ∼2.9K ∼149K - - - 1.06 0.32

∼69M edges 3 3 ∼9.8K ∼207K - - - 3.05 1.01

3 4 ∼4.8K ∼213K - - - 2.63 0.57

Table 3.7: Summary of Accuracy Results for Different Configurations on ∼75K Seed
Localities

Seeds Merged Network Top-10% Correl. (vs. Global PPR)

Data set # # Avg Avg Fast GMRES- L- LR-

seeds hops # nodes # edges RWR PPR PPR PPR

Epinions 2 3 ∼2.2K ∼90K 0.963 0.823 0.997 0.990

∼76K nodes 2 4 ∼3.0K ∼99K 0.960 0.824 0.998 0.990

∼500K edges 3 3 ∼2.7K ∼108K 0.967 0.826 0.998 0.990

3 4 ∼3.5K ∼120K 0.967 0.825 0.997 0.991

SlashDot 2 3 ∼5.9K ∼117K 0.955 0.816 0.973 0.990

∼82K nodes 2 4 ∼5.7K ∼125K 0.943 0.816 0.965 0.983

∼870K edges 3 3 ∼7.1K ∼141K 0.957 0.815 0.971 0.990

3 4 ∼7.2K ∼159K 0.958 0.815 0.976 0.986

WikiTalk 2 3 ∼5.7K ∼102K 0.868 0.851 0.958 0.944

∼2.4M nodes 2 4 ∼5.8K ∼100K 0.870 0.848 0.930 0.929

∼5M edges 3 3 ∼6.3K ∼101K 0.877 0.852 0.937 0.927

3 4 ∼6.7K ∼103K 0.869 0.851 0.976 0.967
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Table 3.8: Summary of Memory Usage Results for Different Configurations on ∼75K
Seed Localities

Seeds Merged Network Memory usage(MB)

Data set # # Avg Avg Fast GMRES- L- LR-

seeds hops # nodes # edges RWR PPR PPR PPR

Epinions 2 3 ∼2.2K ∼90K 2.9 36.3

∼76K nodes 2 4 ∼3.0K ∼99K 178.3 8.55 3.1 55.2

∼500K edges 3 3 ∼2.7K ∼108K 4.6 57.6

3 4 ∼3.5K ∼120K 4.7 77.7

SlashDot 2 3 ∼5.9K ∼117K 5.0 228.1

∼82K nodes 2 4 ∼5.7K ∼125K 302.1 12.16 4.9 172.8

∼870K edges 3 3 ∼7.1K ∼141K 7.6 325.9

3 4 ∼7.2K ∼159K 7.2 256.0

WikiTalk 2 3 ∼5.7K ∼102K 15.5 114.5

∼2.4M nodes 2 4 ∼5.8K ∼100K 1429.0 20.97 16.2 120.7

∼5M edges 3 3 ∼6.3K ∼101K 24.0 211.6

3 4 ∼6.7K ∼103K 28.7 197.5

LiveJournal 2 3 ∼7.9K ∼144K 10.99 322.87

∼4.8M nodes 2 4 ∼2.9K ∼149K - - 8.24 68.10

∼69M edges 3 3 ∼9.8K ∼207K 15.12 374.91

3 4 ∼4.8K ∼213K 13.48 138.25

Global PPR. As Table 3.3, Table 3.4, and Table 3.5, when the seed locality graph size

is small, L-PPR and LR-PPR significantly outperform than FastRWR and GMRES-

PPR. The major effect on L-PPR and LR-PPR execution time is not the entire

graph size but the size of merged network. If the locality graphs are small, L-PPR

and LR-PPR can be calculated very effectively. When the locality When graph size

is relatively large as Table 3.6, Table 3.7, and Table 3.8, in small data sets (Epinions

and Slashdot) FastRWR and GMRES-PPR work slightly faster than L-PPR and

LR-PPR as expected. In large data sets (WikiTalk), however, both L-PPR and LR-

PPR significantly outperform FastRWR and LR-PPR takes less time than GMRES-

PPR in terms of query processing efficiency. Though WikiTalk graph size is larger

than Slashdot, the WikiTalk execution time takes less than Slashdot because the

number of nodes and edges in the merged network is less. On LiveJournal data set,
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because of ’out of memory,’ we could not get Global PPR and FastRWR results.

For GMRES-PPR, the preprocessing time takes much longer than it is reported, the

preprocessing could not be finished. We received the tree-decomposition source code

from the author, but tree-decomposition and LU decomposition did not be completed

as expected on same experimental setup as they did.

In terms of accuracy, the proposed locality sensitive techniques, L-PPR and LR-

PPR, constantly outperform FastRWR and GMRES-PPR and the accuracy gap is

still especially large in large data sets, such as WikiTalk. This is because, for Fas-

tRWR, it tries to approximate the whole graph, whereas the proposed algorithms

focus on the relevant localities. As also discussed in Section 3.5.1, FastRWR requires

large number of partitions to ensure that the intermediary metadata (which requires

dense matrix representation) fits into memory and this negatively impacts accuracy.

Our locality-sensitive algorithms, L-PPR and LR-PPR, avoid this and provide high

accuracy with low memory consumption, especially in large graphs, like WikiTalk.

Note that Figure 3.8 confirms that the accuracies of L-PPR and LR-PPR both stay

high as we consider larger numbers of top ranked network nodes for accuracy assess-

ment, whereas the accuracy of FastRWR and GMRES-PPR suffers significantly when

we consider larger portions of the merged locality graph.

Figure 3.9 compares in further detail the execution times, accuracies, and amounts

of data read by L-PPR, LR-PPR, FastRWR, and GMRES-PPR from the cache per

query as a function of the size of the merged locality network for different seeds

and target locality sizes of the Epinions data set. As the figure re-confirms, L-PPR

and LR-PPR provide significantly higher accuracies than other algorithms. LR-PPR

needs more space than L-PPR to fetch the cached localities for reuse, but it uses

this memory effectively to significantly reduce the execution time. The figure also re-

confirms the execution time results presented in Table 3.3 and Table 3.6: as the figure
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Figure 3.8: Accuracies of L-PPR, LR-PPR, FastRWR, and GMRES-PPR Against
the Global PPR for Different Numbers of Target Nodes

shows, the time cost increases for all algorithms as the number of seeds increases; but,

the cost of LR-PPR (which leverages re-use) increases much slower than the cost of

L-PPR. In the case of the Epinions data set shown in this figure, FastRWR works

slightly faster than LR-PPR for large numbers of seeds and larger neighborhoods;

however, this comes with a significant loss in accuracy and also higher memory usage

than L-PPR and LR-PPR. Note that, since FastRWR does not scale as well as L-

PPR and LR-PPR with the overall graph size, this slight execution time advantage

of FastRWR also disappears in the case of large graphs like WikiTalk (as presented

in from Table 3.3 to Table 3.8 and summarized in Figure 3.10). On GMRES-PPR,

it takes more compared to L-PPR and LR-PPR with small number of nodes and less

with large number of nodes with small amount of memory usage. This time advantage

also disappears because the accuracy is much less than L-PPR and LR-PPR.

The results for the SlashDot data set (which have similar graph structure as the

Epinions data set; see Table 6.1) are similar to the Epinions results and, hence,

presented in the Appendix. The WikiTalk data set however has a different structure

and, thus, we also present the execution times, accuracies, and amounts of data read
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Figure 3.9: Performances of L-PPR, LR-PPR, FastRWR, and GMRES-ppr on the
Size of the Combined Localities Network (Epinion Data Set)
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by L-PPR, LR-PPR, FastRWR, and GMRES-PPR. for the WikiTalk data set in

Figure 3.11. The most important thing to recognize when comparing Figures 3.9 (for

the Epionions data set) and 3.11 (for the WikiTalk data set) is that when the graph

is larger (i.e., for the WikiTalk data set), the execution time gains of L-PPR and

LR-PPR relative to other algorithsm are even more pronounced. Similarly, as the

problem size gets larger (e.g., WikiTalk data, 3 seeds, ∼ 4 hops), the accuracy gains

of L-PPR and LR-PPR relative to FastRWR and GMRES-PPR also become even

more significant. This re-confirms that the proposed locality-sensitive (and re-use

promoting) techniques provide not only better scalabilities, but also better accuracies

than existing algorithms. We also present the execution times and amounts of data

read for LiveJournal data set in the Appendix.

Detailed Studies of L-PPR and LR-PPR

As we see in Figure 3.8 and tables from Table 3.3 to Table 3.8, locality-sensitive and re-

use promoting LR-PPR constantly outperforms only locality-sensitive L-PPR (∼ 1.5×

to 2×), while returning almost as accurate results. Figure 3.12 further investigates
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Figure 3.11: Performances of L-PPR, LR-PPR, and FastRWR on the Size of the
Combined Localities Network (WikiTalk Data Set)
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how the execution times of L-PPR and LR-PPR are distributed among their sub-

tasks. As predicted in Section 3.2.4, LR-PPR spends significant portions of its time

in loading data from the cache, reindexing nodes, and creating compensation matrices.

Creating the low-rank approximation of M0, computing the matrix Λ, and solving

for PPR scores take relatively little time. Therefore, significant gains in time can

be obtained by parallelizing and further optimizing the initial steps of the LR-PPR

algorithm (as discussed in Section 3.4.3).

Figure 3.13 shows the execution times, accuracy, and amount of data read by

LR-PPR from the cache per query as a function of the size of the merged locality

network. As the figure shows, the execution time (Figure 3.13(a)) tracks the amount

of data brought into the memory (Figure 3.13(b)), whereas the accuracy is relatively

constant (Figure 3.13(c)).

Impact of the Boundary Edges on the Performances of L-PPR and LR-

PPR

Recall from Section 3.2.2, Figures 3.5 and 3.6, that the merged graph represents nodes

outside of the seed localities using a single combined node, which is then connected
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(a) Execution times for LR-PPR (b) Data read into the buffer for LR-PPR

(c) Accuracy for LR-PPR

Figure 3.13: Performance of LR-PPR as a Function of the Size of the Combined
Localities Network (Epinion Data Set, 3 Seeds, ∼4 Hops)

to the nodes in the seed localities, with outgoing and incoming boundary edges.

Figure 3.14 shows the impact of the amount of edges at this boundary. As the figure

shows, for a fixed merged locality graph size, the larger the number of boundary

edges, the higher the execution times for both L-PPR and LR-PPR; moreover, the

larger the merged graph, the faster the increase in the cost. However, the figure also

shows that LR-PPR is much less affected from the boundary edges than the basic

L-PPR.

Figure 3.15 confirms the impact of the boundary edges on a second data set. As

we have seen in tables from Table 3.3 to Table 3.8, for the SlashDot data set, LR-

PPR shows a slightly different behavior than for Epinions and WikiTalk data sets:

while LR-PPR still outperforms basic L-PPR, the difference is smaller under some

configurations. Figure 3.15(a) and (b) explain the reason in terms of the ratio of the
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(a) effect of boundary (3 seeds, ∼3 hops) (b) effect of boundary (3 seeds, ∼4 hops)

Figure 3.15: Impact of the Boundary Edges for the SlashDot Data Set (3 Seeds)

boundary edges: in the SlashDot data set, when the seeds are close (i.e, when localities

overlap significantly), the boundary edges are relatively few and the impact of the

boundary edges are similar for both LR-PPR and L-PPR; when the seeds are further

away, on the other hand there are more boundary edges and LR-PPR’s effectiveness

in dealing efficiently with the boundary edges becomes more pronounced. Thus, since

the accuracy is not affected and stays high for both LR-PPR and L-PPR, the ratio

of the boundary edges in the merged graph can be used as an indicator for when to

use LR-PPR and when to simply leverage basic locality-sensitive L-PPR.
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Parallelization of The Off-line Process

As we see in Section 3.4.3, there are multiple opportunities that tasks can be par-

allelized. One of them is parallelizing the Sub-Task 1 which is generating locality

graphs and calculating Q−1
h processes for each seed node. Figure 3.16 shows the ex-

ecution time of Sub-Task 1 on no-parallelization and different number of cores with

parallelization for four seeds. ’no-parallel’ means that all cores are used for the cal-

culation without parallelization and ’1-4 cores’ means the used number of cores on

the parallelization. When the number of core is 1, the execution time takes more

than no-parallelization. For other cases whose number of cores are larger than 1, the

execution time was decreased significantly. The degree of dropping rate on the large

size locality graph is larger than the small size one. All execution time dropping are in

same pattern on different data sets and locality graphs. We ran these experiments on

the machine with 8GB memory, but for the LiveJournal data set, the results was not

static. Even the four cores with parallelization takes longer for the computation. In

this case, This is because our experimental machine does not have enough cache size

with 1024 KB L2 cache and the 6144 KB L3 cache. We tried run the parallelization

on a machine with 32.0 GB Memory and 1024 L2 cache and 8192 cache size and as

shown in Figure 3.16 (d), the result show that the pattern follows the same patterns

as other data set results.

Figure 3.17 compares in further detail the execution times, accuracies, and amounts

of data read by L-PPR, LR-PPR, FastRWR, GMRES-PPR from the cache per query

as a function of the size of the merged locality network for different seeds and target

locality sizes of the SlashDot data set. Since the SlashDot and Epinions Data sets

are similar (Table 6.1), the results in Figure 3.17 are also similar to the results for

the Epinions data set presented in Section 3.5.3, Figure 3.9.
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Figure 3.16: Offline Parallelization Execution Time of LR-PPR Generating Locality
Graphs and Calculating Q−1

h for Four Seeds on Different Number of Cores

Figure 3.18 also shows and compares the execution times and amounts of data

read by L-PPR and LR-PPR from the cache per query as a function of the size of the

merged locality network for different seeds and target locality sizes of the LiveJournal

data set. Note that we could not compare the accuracies because we could not

compute Global PPR. The difference from other datasets is that the number of nodes

in 3 hops is larger than the number of nodes in 4 hops. Because we generated our

locality graph The results shows that it follows the same pattern as other data sets’

results on the execution time and the size of cached data.
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Figure 3.17: Performances of L-PPR, LR-PPR, and FastRWR on the Size of the
Combined Localities Network (SlashDot Data Set)
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Figure 3.18: Performances of L-PPR, LR-PPR, and FastRWR on the Size of the
Combined Localities Network (LiveJournal Data Set)
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Chapter 4

IMPACT NEIGHBORHOOD INDEXING IN DIFFUSION GRAPHS

4.1 Introduction

A graph neighborhood consists of a set of graph nodes that are nearby or otherwise

related to each other. Common definitions include h-hop neighborhoods [14, 27, 110],

reachability neighborhoods [27], cluster/partition neighborhoods [57], hitting distance

neighborhoods [24, 82], or random walks based proximity measures [19, 11, 23, 105,

99].

Impact neighborhoods are fundamentally different from h-hop [14, 27, 110] and

hitting-distance neighborhoods [24, 82, 95], both of which place (direct or indirect)

limits on the number of steps. In contrast, impact neighborhood depends on the

efficiency with which the nodes and the edges propagate information. In probabilistic

definitions of reachability neighborhoods [27], entire messages can be lost at nodes or

edges of the graph with some probability. In this sense, our definition of impact neigh-

borhood is related to probabilistic reachability neighborhoods. The key difference,

however, is that the definition of impact neighborhood allows multiple imperfect (or

weakened) messages received at a node to be recombined to strengthen (or reinforce)

its impact.

4.1.1 Contributions and Structure of the Chapter

The structure of this chapter is as follows: In Section 4.2, I introduce the key

concepts, leading to the problem definition in Section 4.2.3. Intuitively, I associate to

each node in the network a random, binary string that acts as the node’s fingerprint.
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Figure 4.1: The Fingerprint of Node ni Propagates in the Graph, Subject to Bit
Erasures

The impact propagation within the network is modeled as transmissions of these

fingerprints in the form of signatures. Random bit erasures are introduced to model

the decay in the network and signature composition is used to model reinforcement.

The impact n has on m is modeled as the likelihood that n’s fingerprint is correctly

transmitted (i.e., propagates) from n to m.

In Section 4.3, I present the outline of the basic INI algorithm to compute zero-

erasure neighborhoods (ZENs) and impact neighborhoods (for a given impact radius,

r). INI propagates fingerprints in the network subject to bit-erasures, modeling de-

cay. During query time, impact neighborhoods are identified by querying the network

nodes for the query node’s fingerprint. In this section, I also highlight key efficiency

and effectiveness challenges, including communication, processing, and space costs

and potential false positives. In Section 4.4, I focus on the reduction of communi-

cation and processing costs through the use of combined signatures that eliminate

the need for each node ni to explicitly propagate the fingerprint of each node nj. In

Section 4.5, I introduce the concept of “noise” in combined signatures. Such noise

(remnants of partially erased signatures) may lead to false positives and increase pro-

cessing, communication, and space costs. I thus propose a novel grid-signature scheme

which significantly reduces the noise in the system, thereby improving accuracy. In

69



Section 4.6, I discuss how to re-use an index structure originally created for impact

radius r, for identifying impact neighborhoods with radius different from r. I follow

this with a discussion, in Section 4.7, of implementation details and parallelization

opportunities for INI. I evaluate the proposed algorithms for querying impact neigh-

borhoods in Section 4.8. Experiment results show that impact neighborhoods can be

quickly and effectively identified using INI algorithms.

4.2 Key Concepts

As briefly discussed in the introduction, we associate each node in the network

with a random, binary fingerprint.

Definition 1 (Node Fingerprint) Let G(V,E) be a graph. Each node ni ∈ V has

a fingerprint which is a b-length bit-string, with c bits set to 1.

4.2.1 Propagation

Propagation is modeled as transmissions of fingerprints within the graph; random

bit erasures are introduced to model the decay in the network. We say that a node n

impacts another node m, if n’s fingerprint reaches m intact (Figure 4.1).

Definition 2 (Propagation efficiency) Let G(V,E) be a graph and let ni, nj ∈ V

be two nodes on the network, with an edge from ni to nj. Let σi be a b-length bit-

string, with c bits set to 1, on node ni. We say that information/influence/impact

propagates from ni to nj with E efficiency if one of the c non-zero bits of σi may be

erased (i.e., set to 0) during the transmission from ni to nj with erasure probability,

pe = 1 − E .

Propagation and erasure characteristics of the network are taken to be consistent

over sufficiently long periods of time. In other words, if σi is transmitted from ni to
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Figure 4.2: Node ni Receives the Fingerprints of the Nodes Within Its zero-erasure
Neighborhood Intact

nj multiple times and if any bit is erased the first time, then the same bit is erased

during each and every transmission of the message: We refer to this as the persistency

property of the information propagation network.

Definition 3 (Persistent Erasure Mask) Let G(V,E) be a graph and let ni, nj ∈

V be two nodes on the network, with an edge from ni to nj. A persistent erasure

mask corresponding to this edge is a b-length bit-string marking the positions of bit

erasures.

4.2.2 Reinforcement

As shown in Figure 4.1, when there are multiple paths from n to m, a given bit

of n’s fingerprint has more opportunities for reaching m intact.

Definition 4 (Propagation with Reinforcement) Let G(V,E) be a graph and

let nj ∈ V be a node on the network. Let in(nj) ⊆ V be a subset of nodes with edges

towards nj. The reinforced copy of the message, σi,j, originating at node ni ∈ V ,

received at node nj is σi,j = ⋁nh∈in(nj) σi,h, where σi,h is the copy of the message σi at

node nh and ⋁ is the bit-wise or operation (due to erasures σi,h can differ from σi).
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...

(a) a linear graph (without reinforcement)

...

...

(b) a graph with reinforcement
Figure 4.3: Propagation with Reinforcement: Darker Shaded Nodes Have higher
Probability of Receiving the Message Intact

4.2.3 Zero-Erasure Neighborhoods (ZENs)

The zero-erasure neighborhood of n is the set of nodes that receive n’s fingerprint

intact. (Figure 4.2).

Definition 5 (Zero-erasure neighborhood) Let G(V,E) be a graph with efficiency

E and let ni ∈ V be a node on the network. Let also σi be a b-length bit-string, with c

bits set to 1. The zero-erasure neighborhood, ZE(ni) of ni is a subset of V :

ZE(ni) = {nj ∣ (σi,j = σi) ∧ (nj ∈ V )}.

Note that how far information propagates from a given source node depends on

the propagation efficiency as well as the degree of reinforcements enabled by the con-

nectivity. Compare for example the two graphs in Figure 4.3: information propagates

further in the second graph due to reinforcements. It is important to note that, in Fig-

ure 4.3(b), the node in the “third” layer is, in some sense, nearer to source node than

the two nodes in the “second” layer, because it has a better likelihood of receiving

the source’s fingerprint intact.
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ZENs in Linear Graphs

Due to reinforcements, the relationship between the size of the zero-erasure neigh-

borhood (ZEN) and the topology of the graph is complex. Therefore, we first study

ZENs on linear graphs , as in Figure 4.3(a), which do not provide opportunities for

reinforcement.

Definition 6 (Zero-Erasure Radius in Linear Graphs) Let S(V,E) be a linearly-

structured (infinite) graph, such that n0 ∈ V has no incoming edges and there is an

edge from node ni ∈ V to ni+1 ∈ V (and there are no other edges in E). Let E be the

propagation efficiency of the network and let σ0 be a b-length bit-string, with c bits set

to 1, on n0. The distance to which σ0 is expected to propagate without any erasures

of 1 bits is referred to as the zero-erasure radius (or ZE-radius, rze) of ZE(n0).

The following theorem relates the zero-erasure radius, rze, and the efficiency, E , of a

(linearly-structured) network.

Theorem 1 (Zero-Erasure Radius in Linear Graphs) Let S(V,E) be a linearly-

structured (infinite) graph, such that n0 ∈ V has no incoming edges and there is an

edge from node ni ∈ V to ni+1 ∈ V (and there are no other edges in E). Let E be the

propagation efficiency of the network and let σ0 be a b-length bit-string, with c bits

set to 1, on n0. The zero-erasure propagation radius, rze, is less than or equal to 1
pe

,

where pe = 1 − E is the erasure probability; i.e. rze ≤
1
pe

< rze + 1.

We can restate this theorem in the form of a constraint on E :

Radius Constraint ∶ 1 −
1

rze
≤ E < 1 −

1

rze + 1
.

A corollary of this formulation is that the zero-erasure radius rze does not need to

be an integer; we can talk about non-integer radii, such as 2.3, meaning that the

expected number of hops information will propagate without errors is 2.3.

73



ZENs with Reinforcement

Since, as we have seen in Figure 4.1, there can be gaps in the zero-erasure neigh-

borhood of a given node, instead of attempting to directly measure the radius of

a zero-erasure neighborhood in a graph with reinforcement, we associate a linear-

equivalent radius: , reflecting the underlying propagation efficiency:

Definition 7 (Linear-Equivalent Radius) Let G(V,E) be a graph with propaga-

tion efficiency E and ni ∈ V be a node on the graph. Let also σ be a b-length bit-string,

with c bits set to 1. Let ZE(ni) be the zero-erasure neighborhood of ni on G. The cor-

responding linear-equivalent zero-erasure radius of ZE(ni) is defined by two bounds,

rle,� and rle,⊺:

rle,� =
1

1 − E
− 1 and rle,⊺ =

1

1 − E
.

Intuitively, the definition of the linear-equivalent radius of ZE(ni) reflects the

observation that nodes that are in ZE(ni) should have a similar chance of receiving

the fingerprint of ni intact as its rle-hop neighbors would have on a linearly structured

graph.

4.2.4 Impact Neighborhoods

Let us be given a graph G(V,E), a node n, and a target (linear-equivalent) radius,

r, and asked to identify the nodes within the zero-erasure neighborhood defined by

of node n. and the radius, r, this alternative formulation of the problem requires

leveraging of the relationship between the (linear equivalent) network radius and the

propagation efficiency formulated in Theorem 1. In particular, We use Theorem 1 to

identify two bounds, E� and E⊺, on the required propagation efficiency corresponding

to radius, r:

E�(r) = 1 −
1

r
and E⊺(r) = 1 −

1

r + 1
.
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Given these we define the impact neighborhood with (linear equivalent) radius, r, as

follows:

Definition 8 (r-Radius Impact Neighborhood) The r-radius impact neighbor-

hood, N(r, ni), of ni is the neighborhood defined by the propagation efficiency, E�(r);

i.e., N(r, ni) = ZE�(r)(ni).

In other words, the r-radius impact neighborhood is the neighborhood defined by the

lowest possible propagation efficiency corresponding to the target (linear-equivalent)

radius, r.

4.3 Impact Neighborhood Indexing (INI): Overview and Challenges

In this section, I propose an off-line zero-erasure (or impact) neighborhood in-

dexing (INI) algorithm for querying zero-erasure impact neighborhoods. Given an

input graph, G(V,E) and a target radius, r, the off-line zero-erasure (or impact)

neighborhood indexing (INI) algorithm creates a signature-based index structure, by

selecting a corresponding erasure rate, pe, and by propagating the node signatures

in the network with this erasure rate. In this section, we first present the outline of

the basic INI algorithm and highlight the key efficiency and effectiveness challenges,

including communication, processing, and space costs and potential false positives.

4.3.1 Outline of the Basic INI Process

Let us be given a graph G(V,E), a node n, and a propagation efficiency E . The

basic INI algorithm consists of three steps.

Step 1 (Initialization): In its very first step, the INI algorithm associates to each

node ni in the graph an (almost) unique fingerprint, σi, which is a b-length bit-string,

with c random bits set to 1. To prevent collisions, b and c need to be selected carefully.
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Since with b bits, c of which are set to 1, we can represent (
b
c
) unique node fingerprints,

b and c need to satisfy the following uniqueness constraint:

Uniqueness Const. ∶
∣V −1∣

∏
h=1

(
b
c
) − h

(
b
c
)

∼ 1.

Intuitively, this constraint implies that b and c need to be selected in a way that allows

sufficient diversity in fingerprints (i.e., b≫ c). (In the basic version of the algorithm)

at this step, we also associate to each node ni an erasure mask to be applied to the

fingerprint of another node nj if that node’s fingerprint propagates over ni.

Step 2 (Propagation): Next, the INI algorithm propagates these fingerprints

within the graph, subject to erasures reflecting the underlying network efficiency,

E . At each step, each node receives fingerprints from its incoming edges, applies its

own signature and the corresponding erasure mask to each fingerprint, and forwards

the updated fingerprints. A key theorem states that cycles in the network have no

effect on how far information propagates:

Theorem 2 (Cycle-Agnosticity of Propagation) Let G(V,E) be a graph and let

ni, nj ∈ V be two nodes in V . Let σi be a b-length bit-string, with c bits set to 1, on

node ni. Let also G′(V,E′) be an acyclic subset of G which preserves all simple paths

in G from ni to all other vertices nh ∈ V . Then, if σi,j is the copy of the message σi

at node nj on G and σ′i,j is the copy at node nj on G′, then σ′i,j = σi,j.

The proof follows from the persistency property of the erasures (See Definition 3).

Since propagation is not affected by the cycles, it follows that the impact neighbor-

hoods (that depend on propagation) are also immune to cycles. INI terminates as

soon as the bit-strings propagation within the network reaches a fixed-point.

Step 3 (Indexing): After propagation, each node, ni, aggregates all fingerprints it

received into a combined signature, σcomb(ni). These are which are then stored and

indexed using signature indexing, such as [119].
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Figure 4.4: Combining Signatures for Reduced Cost

Query Processing: Once the INI index is created, a query for the zero-erasure

neighborhood, ZE(ni), of ni is answered by searching the node fingerprint, σi, of the

query node within the combined signature, σcomb(nj), of each node, nj in the graph:

ZE(ni) = {nj ∣ (σcomb(nj) ⋀ σi) = σi} ,

where ⋀ is bitwise-and operation. This search can be performed using any signature

search algorithm [119].

4.4 Reducing Costs

Obviously, propagating individual fingerprints until a fixed-point is achieved and

maintaining at each node a different erasure mask for each and every other node

would be very inefficient. As shown in Figure 4.4, we associate to each node a single

erasure mask. At each iteration, each node combines all incoming signatures into a

single combined signature, σcomb (by “or”ing the bit-strings) and applies this single

erasure mask to this combined signature.

Let us assume that we use a combined signature, σcomb, integrating a set, S, of

b-length signatures, each with c non-zero bits. If we erase one non-zero bit of σcomb

with probability pcomb, then the chance that the erased bit corresponds to one of the c

non-zero bits of σ ∈ S, is c
b . Hence, given pcomb, we can compute the single bit erasure
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probability, pind, for individual signatures, σ ∈ S, as pind = pcomb ×
c
b . Therefore, if the

erasure rate in the network for the individual signatures is pind = pe = 1 − E , we need

to erase one bit from the combined signature, σcomb, with probability,

Singlebit Erasure Const. ∶ pcomb = (1 − E) ×
b

c

to match the erasure rate of the individual signatures. Note that, as long as (1−E)×

b
c ≤ 1, this constraint can be used for computing the single bit erasure rate for the

combined signature. However, if the value (1−E)× b
c is larger than 1, we need to erase

more than 1 bit. Thus, we achieve the necessary degree of erasure by erasing k > 1

random bits from the combined signature with p∗ probability instead. In that case,

the probability that exactly l > 1 one bits have been erased on a given individual bit

string will be

pind(l) = p
∗(
k

l
)
l−1

∏
i=0

c − i

b − i

k−l−1

∏
j=0

b − c − j

b − l − j
.

Given this, the expected number of bit erasures is Xind = ∑
c
l=1 l × pind(l). This implies

that the values of p∗ and k have to be selected such that the expected number of one

bits erased during propagation is close to 1−E ; in other words Xind = (1+ ε)×(1−E),

for an error rate ε very close to 0. Note that, since b ≫ c, we can simplify the

computation of p∗ and k as follows: Let us assume that we erase k bits out of the

overall b bits; we can write the probability, E , that none of the c non-zero bits will be

erased as (1 − p∗) + p∗ (1 − k
b
)
c
. In our experiments presented in Section 4.8, we set

p∗ = 1 (i.e., perform erasure in each and every step of propagation) and thus pick k

such that

Multibit Erasure Const. ∶ k ≃ b × (1 − E
1
c ) .
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Figure 4.5: Partial Signatures ni Receives from the Nodes Outside of Its Zero-erasure
Neighborhood Makes up the Exo-neighborhood Noise on ni

4.5 Reducing False Positives

While the search for neighborhood nodes using the combined signatures can be im-

plemented efficiently, there may be false positives in the query results. Bits remaining

in the partially erased signatures of the nodes outside the zero-erasure neighborhood

(i.e., exo-neighborhood noise) Figure 4.5) may contribute to false positives. False

positives can also arise when the fingerprints of two or more nodes inside the zero-

erasure neighborhood may combine in a way that matches the fingerprint of a node

which is in reality not in the neighborhood – the in-neighborhood noise.

Let us be given a graph G(V,E) and node ni ∈ V on which we are measuring

the exo-neighborhood noise. Intuitively, the likelihood, pexo(ni), of exo-neighborhood

noise on ni depends on the number of nodes outside the zero-erasure neighborhood of

ni and how far they are located from ni. Here, we first treat exo-neighborhood noise

along with the in-neighborhood noise to obtain an upper bound on the false positive

rate. Then, in Section 4.5.2, we discuss how to reduce exo-neighborhood noise.
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4.5.1 Signature Length and False Positives

Let us consider the combined signature, σcomb(ni), at node ni. The combined

signature is composed of m = ∣ZE(ni)∣ signatures from the nodes within the zero-

erasure neighborhood of ni and also the exo-neighborhood noise from outside the

neighborhood. Remember from Section 4.2, that each of the m node signatures

contributing to σcomb(ni) is a b-length bit-string, with c random bits set to 1. Thus,

we can compute the probability of a given bit in the combined signature, σcomb(ni),

being set to 1 as follows: pbitset(ni) ∼ 1 − ((1 − pexo(i)) × e
−mc
b ) . Now, let us consider

a query q to identify the zero-erasure neighborhood of ni. Let us assume that we are

given an upper-bound on the false positive rate ρfp. We can formalize the false positive

rate constraint as (1 − ((1 − pexo(ni)) × e
−cm
b ))

c
≤ ρfp. Since ZE(ni) ⊆ V , we remove

dependency on m by tightening this constraint as (1 − ((1 − pexo(ni)) × e
−c∣V ∣

b ))
c

≤

ρfp. Intuitively, this constraint treats all the nodes in V as if they are in the zero-

erasure neighborhood. Thus, to prevent double counting of the exo-neighborhood

noise, we can set pexo(i) to 0. As a result, the above constraint can be simplified to

False Positive Const. ∶ (1 − e
−c∣V ∣

b )
c

≤ ρfp.

Note that this is a pessimistic constraint and will in practice result in unnecessarily

large values of b.

4.5.2 Grid-Signatures

Due to the probabilistic nature of the erasures and the possible existence of exo-

neighborhood noise in the system, in individual runs, the propagation may differ

from the predicted distance. Thus, we need to tighten the probabilistic spread of

the propagation. We achieve this by associating to each node, ni ∈ V , not a single

combined signature, but a set, Σcomb(ni), of u × v signatures, logically arranged into
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Figure 4.6: Grid-signatures

grid consisting of u rows, each with v signatures1. (Figure 4.6). Intuitively, the

combined signature at each grid-cell corresponds to an independent run of the INI

propagation algorithm and there is a different erasure mask corresponding to each

grid-cell (i.e., run). Let ni be a node in the graph and let Σcomb(ni) consist of u × v

combined signatures at node ni:

� Each row of Σcomb(ni) represents a conjunction: Let Rh ⊆ Σcomb(ni) be a row

of v (column) signatures (1 ≤ h ≤ u). A bit in the row signature corresponding

to Rh is said to be set only if it is also set in all v (column) signatures. Thus, if

the erasure probability corresponding to the single bit-signature is p, then the

overall erasure probability of the row signature is prow = 1 − (1 − p)v.

� Σcomb(ni) represents a disjunction of its rows: If a bit is set in the row signa-

ture corresponding to any row R1, . . . ,Ru, then it is also set in the signature

corresponding to Σcomb(ni). Thus, the erasure corresponding to the u × v grid-

signature is poverall = puΣ = (1 − (1 − p)v)u.

1A similar multi-hashing technique is leveraged for nearest neighboring searching in high dimen-

sional spaces [41]
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Based on this, given a target erasure probability, pe, if u, v, and p are selected in such

a way that

Erasure Equivalence Const. ∶ pe = (1 − (1 − p)v)u,

then the expected propagation distance with erasure probability p when using a grid-

signature with u rows and v columns will be the same as the original expected propa-

gation distance with erasure probability pe without using a grid-signature. As we see

next, having u > 1 and v > 1 helps the INI indexing scheme reduce the false positive

rates as well as (perhaps counter-intuitively) the overall space, communication, and

processing costs.

Reductions in the False Rates

Let pok be the probability of a zero-erasure neighborhood node being successfully

located using a single combined signature, whereas pfp be the probability of a node

being returned as a false positive. When using a grid-signature corresponding to

u×v combined signatures as described above, the probability of a neighborhood node

being successfully located becomes p′ok = 1 − (1 − (pok)v)u. Similarly, the probability

of a node outside of the neighborhood being returned as a false positive becomes

p′fp = 1−(1−(pfp)v)u. Note that the function 1−(1−(p)v)u has a separating effect on

the probabilities: relatively large values of p are pushed even higher, whereas values

that are close to 0 are pulled even lower. As a consequence, assuming that initially

we have pfp < pok, the separating nature of the function 1 − (1 − (p)v)u, ensures that

p′fp ≪ p′ok: in other words, using u rows and v columns of bit-signatures helps bring

the likelihood of false positives down, without affecting the radius.
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Figure 4.7: Creation of Grid-signatures

Reductions in Operating Costs

In practice, we do not perform u × v individual propagations for each cell in the grid

for each node. Instead, for each row, we create a single combined row erasure mask,

with erasure probability prow = 1 − (1 − p)v, recording the combined positions of era-

sures for each row and apply this row erasure mask on the signatures at each step

(Figure 4.7). Since the distance to which each bit can propagate is reduced, com-

bined row signatures of the nodes may carry lesser exo-neighborhood noise, and the

propagation step may require fewer iterations to reach a fixed-point.
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4.6 Index Reuse

In applications where the propagation efficiency is variable or we are interested in

different impact radii, however, we may want to re-use an existing INI index created

specifically for a given E or r for a different efficiency, E ′, or radius, r′. In this section,

we propose two different schemes for allowing the re-use of INI indexes: bit masking

and ε-erasure.

4.6.1 Bit Masking

Remember from Section 4.2.3 that the (linear-equivalent) propagation radius, r, is

the largest integer, less than or equal to 1
pe

, where pe = 1−E is the erasure probability

of the graph:

r ≤
1

pe
< r + 1.

r ≤ (1/pe) < r + 1. This inequality implies that, in order to increase the radius of the

impact neighborhood to r′ = κ×r, for κ > 1, we need to reduce the erasure probability

by a corresponding factor of κ.

However, since the erasure rate is a design parameter of the INI index, we cannot

change its value freely (without re-indexing the entire graph). But, we can alter

the effective rate of erasure by masking one or more random bits in the combined

signatures during query processing.

Consider b-length node fingerprints, with c random bits set to 1. Let us assume

that, during query processing, we mask (i.e., ignore) x bits of the query node’s fin-

gerprint (and the combined signatures in the database). Then, the probability with

which a bit-erasure is detected will drop by a factor b
b−x . This implies that, if we want

to increase the radius of the zero-erasure neighborhood by κ > 1, we need to ignore x
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bits such that

Bit Masking Const. ∶ κ ≥
b

b − x
.

Note that bit masking carries some risk: bits ignored during retrieval may contribute

to an increase in the false positive rate. When x bits are ignored, assuming that

b≫ c, the upper bound on the false positive rate (discussed in Section 4.5.1) becomes

∼ (1 − e
−c∣V ∣
b−x )

c

.

An alternative way to increase the radius of the impact neighborhood is to relax

the matching constraint and look for ε-erasure neighborhoods, where ε > 0. We

discuss this next.

4.6.2 ε-Erasure Neighborhoods

Allowing a 1-bit erasure between the query node’s fingerprint and the combined

signatures would (roughly) double the effective radius of the 1-erasure neighborhood.

Similarly, allowing 2-bit erasures would (roughly) triple the effective radius of the

neighborhood. To see why, remember from Section 4.4 that, given b-length node

fingerprints, with c random bits set to 1, the relationship between the erasure rate,

pcomb, on the combined signatures and the erasure rate on the individual node signa-

tures is as follows: pind = pcomb × (c/b). Therefore, the radius, r0, of the zero-erasure

neighborhood (i.e., before the 1st bit erasure) is

r0 ≤
b

pcomb × c
< r0 + 1.

Now let us consider the 1-erasure neighborhoods. Let r1 denote the (linear-equivalent)

radius of the 1-erasure neighborhood and let d1 = (r1 − r0) be the number of hops

between the 1st and 2nd bit erasures. Since one of the non-zero bits has already been

zeroed due to the 1st erasure, the individual erasure probability, pind,1, in the range
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between the 1st and 2nd bit erasures becomes pcomb × ((c − 1)/b). Hence, we have

d1 = r0 × (c/c − 1). In other words,

r1 = r0 + d1 = r0 × (1 +
c

c − 1
) .

It is easy to see that we can generalize this to the radius of any ε-erasure neigh-

borhood: More generally, the impact radius of the ε-erasure neighborhood of a given

node can be calculated as

ε −Erasure Const. ∶ rh = r0 × (
ε

∑
i=0

c

c − i
) ,

where d(= d0) r0 is the radius of the zero-erasure neighborhood.

Note that while the use ε-erasure neighborhoods will also impact the false positive

rates, the increase is likely to be lower than when using bit-masking. While the proof

of this is outside of the scope of this chapter, it is easy to see why this is the case:

Bit-masking simply ignores x randomly selected bit positions in the query; thereby

effectively reducing the signature length from b to b − x bits. Since there are many

more 0s in nodes’ combined signatures than there are 1s, this has the unwelcome

impact of reducing the discriminating power of these 0s during retrieval. The ε-

erasure approach, on the other hand, does not reduce the effective length of the

signatures: For example, in the case of 1-erasure neighborhoods, in addition to the

original query signature where c out of b bits are set to 1, we simply perform searches

for query signatures where only c − 1 out of the original c bits are set to 1. Since,

for each query, we still use all b signature bits, this does not necessarily reduce the

discriminating power provided by the signature length.

4.7 Implementation Discussions

The INI indexing scheme consists of three major phases: (Step 1) initialization

(where fingerprints and erasure masks are created); (Step 2) propagation; and (Step
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3) aggregation and indexing:

The initialization step (Step 1) is easy to parallelize by (randomly) assigning each

node in the graph onto a server. Since node fingerprints and erasure masks have only

few 1s but many 0s (i.e., c≪ b), it is more effective to use a storage scheme which only

records positions of 1s in the signature and erasure masks. In our implementation

of INI, we rely on the JavaEWAH package [71] to maintain all the signatures in

the compressed form and perform the necessary logical operations on them in the

compressed domain.

The propagation step (Step 2) can be parallelized in multiple ways: First of all, (a)

large-scale graph computing frameworks, such as Pregel [80] and Hama [98], which rely

on the bulk synchronous parallel (BSP) model, can help parallelize the propagation

process. Secondly, (b) the b length signatures can be divided into div partitions

and each partition can be propagated independently (possibly in parallel) from the

others. Finally, (c) when using the grid-signature approach, each row-signature can

be propagated independently (possibly in parallel) from the others.

The aggregation step (Step 3) can also be parallelized similarly to Step 1 by (ran-

domly) assigning each node in the graph onto an available server and performing the

aggregation on that server. If the b length signature itself is split into div partitions,

then each signature partition can be aggregated independently (possibly in parallel)

from the others.

Once the index is created, the search for the zero-erasure neighborhood of a query node

can be performed efficiently using any signature search algorithm [119]. Moreover,

the search for a query node’s fingerprint is trivially parallelizable by splitting the b

bit positions of the signatures into div partitions and assigning each partition to a

different server. Also, since bit-erasures are related to Hamming errors, in the case

of ε-erasure neighborhood searches, algorithms for string searching with Hamming
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Figure 4.8: Simple Graph Topologies: (a) in a Linear Graphand (b) in a Lattice
Graph

errors, including [41, 68], can be used for identifying initial candidates.

4.8 Experiments

Data sets. First, small linearly structured graphs are used for assessing whether

the proposed impact neighborhood schemes work as expected in controlled settings.

Then, real data sets are used for observing the effectiveness and efficiency of the

algorithm in larger networks: the sparse “co-authorship network science” data set,

with 1591 nodes and 2744 edges is obtained from [84]. The dense “online student
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Indexing time (seconds)

INI Performance Erasure generation Propagation Aggregation

(per row, per div) (per row, per div) (per div)

network nodes edges r u1:v1 u3:v3 u1:v1 u3:v3 u1:v1 u3:v3

Co-authors (sparse) 1.5 0.814 1.528 0.124 0.101 N/A 0.013

(div = 1) 1591 2744 2 0.546 1.430 0.121 0.091 N/A 0.012

3 0.326 0.889 0.119 0.088 N/A 0.007

Students (dense) 1.5 1.163 2.209 3.011 2.978 N/A 0.038

(div = 1) 1899 59835 2 0.793 2.035 3.000 2.897 N/A 0.041

3 0.472 1.414 2.935 2.804 N/A 0.039

P2P (sparse) 1.5 56.9 59.2 83.1 70.0 N/A 3.790

(u1 ∶ v1→ div = 10) 36682 88328 2 43.1 54.2 60.9 46.8 N/A 3.951

(u3 ∶ v3→ div = 20) 3 28.2 35.7 50.2 32.0 N/A 4.164

Querying time Storage per node (KB)

INI Performance (seconds) Erasure signature Prop. signature

(per row, per div) (per row, per div)

network nodes edges r u1:v1 u3:v3 u1:v1 u3:v3 u1:v1 u3:v3

Co-authors (sparse) 1.5 0.009 0.010 1.288 1.290 0.208 0.184

(div = 1) 1591 2744 2 0.011 0.010 1.287 1.289 0.214 0.195

3 0.007 0.010 1.285 1.288 0.217 0.206

Students (dense) 1.5 0.020 0.014 1.532 1.533 1.497 1.497

(div = 1) 1899 59835 2 0.020 0.013 1.531 1.533 1.497 1.497

3 0.022 0.013 1.529 1.532 1.497 1.497

P2P (sparse) 1.5 0.091 0.074 2.912 1.478 2.823 1.418

(u1 ∶ v1→ div = 10) 36682 88328 2 0.126 0.114 2.912 1.478 2.825 1.408

(u3 ∶ v3→ div = 20) 3 0.144 0.127 2.912 1.478 2.825 1.432

Table 4.1: Index Creation and Querying times, and Memory Usage for INI

community” data set, with 1899 nodes and 59835 edges, is from [89]. The “peer-to-

peer network” data set, with 36682 nodes and 88328 edges, is from [72].

Default parameters. For all experiments, the signature length, b, and the number,

c, of bits set to 1 are selected using the worst-case formulation in Section 4.5 such

that the false positive rate is ≤ 0.05. Also, as Section 4.2, the default probability of

erasure, pe, is set to 1/r, where r is the target radius.
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Implementation. The code has been implemented using Java. We run our experi-

ments on a Intel Core i5-2400 CPU @ 3.1GHz with 8GB of RAM (of which 1GB was

allocated as the Java heap size). During propagation, all data structures are main-

tained in memory; when all signatures do not fit into memory of a single server, they

are divided into multiple independent partitions, each of which fits into memory, and

run in parallel. Similarly, different rows of a grid signature are processed in parallel.

Once the propagation is over, the aggregated signatures are indexed in a bit-sliced

manner.

4.8.1 Verification of INI’s General Properties

In this subsection, we first confirm the key ideas on graphs with simple structures:

this allows us to directly observe the effects of the various design decisions and pa-

rameter settings. Experiments for the ”online student community” sets are run 50

times; for the larger ”peer-to-peer network” data set, each experiment is run 10 times.

Relationship between Erasure and Target Radius. In the first experiments,

we aimed to verify the relationship between the target neighborhood radius and the

erasure rate described in Section 4.4. For these experiments, we have used simple

graphs with ∼ 30 nodes each. The linear graph (Figure 4.8(a)) is the simplest graph

with no reinforcement; thus it provides the best verification tool. The simple lattice

graph (Figure 4.8(b)) helps observe the impact of influence reinforcement in the graph.

The charts in the figure show the average number of matches for 1000 runs.

Signature Length. Figure 4.9 confirms that using smaller signatures than the

signature length, b (192 bits in these experiments), obtained using the worst-case

formulation in Section 4.5, may lead to an increase in the number of false positives

(though the false positives stay small even with up to 50% drop in signature length).

Grid-Signatures. In Figure 4.10, we study the impact of increasing the number of

90



0

2

4

6

8

10

1 1.5 2 2.5 3 3.5 4 4.5 5

#
 o

f 
m

a
tc

h
in

g
 n

o
d

e
s 

radius (r) 

Relationship between signature length and false 

positives(linear graph) 

1xb

0.5xb

0.25xb
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rows and columns. As can be seen in Figure 4.10(a) naively increasing the number

of grid columns results in misses, whereas increasing the number of rows results in

false positives. However, in line with the discussion in Section 4.5.2, one can adjust

the erasure rate to match the target radius Figure 4.10(b). As shown in Figure 4.11,

when using only one signature per node (u = 1, v = 1), there is a large variance (misses

or false positives) in the number of nodes retrieved in individual runs. When using a

grid-signature (u = 2, v = 2), on the other hand, the variance in the number of matches

is greatly reduced (with the mean being around the target radius – 3 in this example)

as predicted in Section 4.5.2.

Index Reuse Strategies. As discussed in Section 4.3, the proposed algorithm

creates an index structure for a given target effective distance d by selecting a corre-

sponding erasure rate, pe. This implies that a given index structure can only be used

for a single neighborhood radius. However, as we have seen in Section 4.6, it is possi-

ble to revise the effective distance of an already existing technique using bit masking

or by relying on ε-erasure. in matching. Figures 4.12 and 4.13 confirm that both bit

masking and ε-erasure relaxation techniques can be leveraged for index reuse, but

ε-erasure approach leads to more precise distance revisions.
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4.8.2 Efficiency of INI on Real Graphs

Table 4.1 shows the indexing and query execution times for networks of different

densities of connectivities. The table shows that (a) the number of nodes impacts the

amount of computation that needs to be performed for each iteration, whereas the

number of edges impacts how far the information travels (i.e., how many iterations are

needed); (b) the use of grid signatures increases erasure signature generation time, but

(especially in larger graphs and larger impact radii) it also reduces the propagation
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times (by eliminating noise, which may contribute to additional propagation work);

(c) querying times are very fast, even for large graphs and different radii; (d) as

the graphs grow in size and/or become dense, the lengths of the signatures grow

– the growth in signature length can be limited by using multi-row grid signatures

(which eliminate noise, thus the number of bits to be encoded); and (e) the per-server

memory footprint of the index creation process can be kept under control by using

multiple divisions, processed in parallel.
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Chapter 5

PAGERANK REVISITED: RELATIONSHIP BETWEEN NODE DEGREES AND

NODE SIGNIFICANCES

5.1 Introduction

In recent years, there has been considerable interest in measuring the significance

of a node in a graph and relatedness between two nodes in the graph, as if measured

accurately, these can be used for supporting many knowledge discovery, search, and

recommendation tasks [9, 19, 23, 36, 103]. The significance of a node in a given

graph often needs to reflect the topology of the graph. Measures like the betweenness

measure [112] and the centrality/cohesion [15], help quantify how significant any

node is on a given graph based on the underlying graph topology. The betweenness

measure [112], for example, quantifies whether deleting the node would disconnect or

disrupt the graph. Centrality/cohesion [15] measures quantify how close to a clique

the given node and its neighbors are. Other authority, prestige, and prominence

measures [11, 17, 15] quantify the significance of the node through eigen-analysis or

random walks, which help measure how reachable a node is in the graph.

5.1.1 Tight Coupling of PageRank Scores of Nodes and their Degrees

Let us consider an undirected graph G(V,E). Given a node, v ∈ V , the ranking

score of v in PageRank measure is decided by two distinct facts which are a) signifi-

cance of neighbors and b) number of neighbors. Intuitively, the more significant the

neighbors of a node are, the higher its likelihood to be also significant. Secondly, even

if the neighbors are not all significant, a larger number of neighbor implies that the

95



Listener Graph Article Graph Movie Graph

Data Set (Friendship (co-author (co-contributor

edges, Last.fm) edges, DBLP) edges, DBLP)

Correlation between PageR-

ank and Degree

0.988 0.997 0.848

Table 5.1: Spearman’s Rank Correlation Between the Node Degree Ranks and The
Node Ranks’ Based on PageRank Scores for Various Data Graphs

node, v, is well-connected and, thus, likely to be structurally important. Therefore,

in theory, these two factors should complement each other. In practice, however,

the PageRank formulation described above implies that there is a very tight cou-

pling between the degrees of the nodes in the graph and their PageRank scores (see

Table 5.1).

Problem I: When a Large Node Degree Does Not Indicate High Node

Significance

In this chapter, I highlight (and experimentally show) that, in many applications,

node degree and node significance are in fact inversely related and that the tight- cou-

pling between node degrees and PageRank scores might be counter-productive in

generating accurate recommendations.

Example 1 Consider, for example, a recommendation application where a movie

graph, consisting of movie and actor nodes, is used for generating movie recommen-

dations. In this application, the first factor (significance of neighbors) clearly has a

positive contribution: a movie with good actors is likely to be a good movie and an

actress playing in good movies is likely to be a good actress. On the other hand, the

second factor (number of neighbors) may in fact be a negative contributor to node sig-

nificance: the fact that an actor has played in a large number of movies may be a sign
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that he is a non-discriminating (’B movie’) actor, whereas an actress with relatively

fewer movies may be a more discriminating (’A movie’) actress.

As we see in Section 5.3, this observation turns out to be true in many applications,

where (a) acquiring additional edges has a cost that is correlated with the significance

of the neighbor (e.g. the effort one needs to invest to a high quality movie) and (b)

each node has a limited budget (e.g. total effort an actor/actress can invest in his/her

work).

Problem II: When PageRank Does Not Sufficiently Account for Contribu-

tions of Degrees

The mismatch between PageRank and node significance is not limited to the cases

where node degrees are inversely related to the node significance. As we see in Sec-

tion 5.3, there are other scenarios where PageRank may, in fact, fail to sufficiently

account for the contribution of the node degrees to their significances.

5.1.2 PageRank Revisited: De-coupling Node Significance from Node Degrees

As it was discussed above, one key shortcoming of the conventional PageRank

scores is that they are often tightly coupled with the degrees of the graph nodes and

in many applications the relationship between the significance of the node and its

degree in the underlying network may not be as strong as is implied by PageRank-

based measure. By this problem, it could return poor results when the connection or

edge degree is not related to the expectation.

To address these challenges, in this chapter, I propose degree de-coupled PageR-

ank (D2PR) techniques to improve the effectiveness of PageRank based knowledge

discovery and recommendation systems. These techniques suitably penalize or (if
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needed) boost1 the transition strength based on the degree of a given node to adapt

the node significances based on the network and application characteristics.

In Sections 5.2, I introduce the proposed network-adaptive degree-decoupled PageR-

ank techniques and after that, I evaluate the proposed techniques in Section 5.3.

5.2 Degree De-Coupled PageRank

The key difficulty of de-coupling node degrees from the PageRank scores is that the

definition of the PageRank, based on random walk transitions, is inherently dependent

on the number of transitions available from one node to the other. As it was mentioned

above, the more ways there are to reach into a node, the higher will be its PageRank

score.

5.2.1 Desideratum

Therefore, to de-couple the PageRank score from node degrees, we need to modify

the transition matrix. In particular, for each node vi in the graph, we would like to

be able to control the transition process with a single parameter (p), such that

� if p ≪ −1, transitions from node vi are ∼ 100% towards the neighbor with the

highest degree,

� if p = −1, transition probabilities from node vi are proportional to the degrees

of its neighbors,

� if p = 0, the transition probabilities mirror the standard PageRank probabilities

(assuming undifferentiated neighbors),

1In this context, de-coupled does not necessarily imply de-correlated. In fact, D2PR can boost

correlation between node degree and PageRank if that is required by the application.
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� if p = 1, transition probabilities from node vi are inversely proportional to the

degrees of its neighbors,

� if p ≫ 1, transitions from node vi are ∼ 100% towards the neighbor with the

lowest degree.

In other words, the transition function should de-couple the transition process from

node-degrees and penalize or boost the contributions of node degrees in the transition

process, as needed.

5.2.2 Degree De-coupling Transition Matrix

In this subsection, we will consider degree de-coupling of the transition matrix as

implied by the above desideratum.

Undirected Unweighted Graphs

Let G = (V,E) be an undirected and unweighted graph. Let α also be a given residual

probability parameter, and deg(v) be a function which returns the number of edges

on the node v. We represent degree de-coupled PageRank (D2PR) scores in the form

of a vector

d⃗ = αTDd⃗ + (1 − α)t⃗,

where t⃗ is the teleportation vector, such that t⃗[i] = 1
∥V ∥

for all i and TD is a degree

de-coupled transition matrix,

TD(j, i) =
deg(vj)−p

∑vk∈neighbor(vi)
deg(vk)−p

, (5.1)

where

� TD(j, i) denotes the degree de-coupled transition probability from node vi to
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node vj over an edge eij = [vi → vj] when there exists at least one edge between

two nodes,

� neighbor(vi) is the set of all neighbors of the source node, vi, and

� p ∈ R is a degree de-coupling weight.

Intuitively, the numerator term, deg(vj)−p, ensures that the edge incoming to vj is

weighted by its degree: if p > 0, then its degree negatively impacts (reduces) transition

probabilities into vj, if p < 0 then its degree positively impacts (boosts2) transition

probabilities into vj, and if p = 0, we obtain the standard PageRank formulation

without degree de-coupling. In other words, the transition function satisfies our

desideratum of de-coupling the transition process from node-degrees and penalizing

or boosting the contributions of node degrees on-demand. Note that, since all tran-

sitions from the node vi are degree de-coupled individually based on the degrees of

their destinations, the denominator term, ∑vk∈neighbor(vi)
deg(vk)−p, ensures that the

transition probabilities from node vi add up to 1.0. Note also that when there is no

edge between node vi and vj, TD(j, i) = 0 and, consequently, the term TD(j, i) is

not affected by the degree de-coupling process.

Example 2 Figure 5.1 shows how the random walk probabilities are differentiated in

a degree de-coupled transition matrix on a sample graph where a node A has three

neighbors, B (with degree 2), C (with degree 3), and D (with degree 1). In conven-

tional PageRank, the transition probabilities from node A to all its neighbor nodes are

equal to 0.33. In degree de-coupled PageRank (D2PR), however, the value of p is used

for explicitly accounting for the impact of node degree on the transition probabilities:

When p = 2, the transition probabilities from A to its neighbors are 0.18, 0.08, and

2In fact, a similar function was used in [29] to quickly locate nodes with higher degrees in a given

graph.
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A 

B 

C 

D 

E 

F 

Dest. deg. Transition probability

vj (vj) from A to its neighbors vj

p = 0 2 −2

B 2 0.33 0.18 0.29

C 3 0.33 0.08 0.64

D 1 0.33 0.74 0.07

(a) A sample graph (b) Transition probabilities from A

Figure 5.1: Transition Probabilities from Node vi = A to All Its Neighbors vj in
Different p Values

Ranks of the graph nodes

node node for different de-coupling weights (p)

id degree −4 −2 0 2 4

53608 883 1 1 69 5549 6793

351 739 2 12 425 1992 1935

. . . . . . . . . . . . . . . . . . . . .

79538 1 7661 7545 4149 195 182

79917 1 7793 7790 7522 2443 2043

Table 5.2: Ranks of Graph Nodes of Different Degrees on a Sample Graph for
Different De-coupling Weights, p

0.74, which penalizes nodes which have larger degrees, whereas when p = −2, D2PR

boosts the transition probabilities to large degree nodes leading to transition probabili-

ties 0.29, 0.64, and 0.07, respectively. ◇

This example shows that, in degree de-coupled PageRank (D2PR), as we also see

in Table 5.2, the value of p can be used to penalize (p > 0) or boost (p < 0) transition

probabilities based on the degree of the destination, vj.
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Directed Unweighted Graphs

The semantics of degree de-coupling is slightly different in directed graphs. In partic-

ular, edges incoming to vi often do not require a particular effort from vi to establish

and hence are often out of the control of vi, but indicate a certain degree of inter-

estingness, usefulness, or authority as perceived by others. The same is not true for

edges outgoing from vi; in particular, a vertex with a large number of outgoing edges

may either indicate a potential hub or simply indicate a non-discerning connection

maker. The distinction between these two situations gains importance especially in

applications where establishing a new connection has a non-negligible cost to the

source node and, thus, a large number of outgoing edges may indicate either (a) a

very strong participant to the network or (b) a very poor participant with a large

number of weak linkages.

Let G = (V,E) be a directed graph and for the simplicity of the discussion, without

any loss of generality, let us assume that G is unweighted. Let us also be given a

residual probability parameter, α and let outdeg(v) be a function which returns the

number of outgoing edges from the node v. The degree de-coupled PageRank (D2PR)

scores can be represented in the form of a vector d⃗, d⃗ = αTDd⃗ + (1 − α)t⃗, where t⃗ is

the teleportation vector, such that t⃗[i] = 1
∥V ∥

for all i and

TD(j, i) =
outdeg(vj)−p

∑[vi→vk]∈out edges(vi)
outdeg(vk)−p

,

where TD(j, i) denotes the degree de-coupled transition probability from node vi to

node vj over an edge eij = [vi → vj], out edges(vi) is the set of out-going edges from

the source node, vi, and p ∈ R is a degree de-coupling weight.

Example 3 Figure 5.2 (a) in Section 5.3 provides an example illustrating the corre-

lations between the degree de-coupled PageRank (D2PR) scores and external evidence
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# of # of Average Standard Median standard

Data Graph nodes edge node deviation of deviation of

degree node degrees neighbors’ degrees

IMDB movie-movie 191,602 4,465,272 23.30 51.86 2.89

actor-actor 32,208 2,493,574 77.42 67.15 114.41

DBLP article-article 8,808 951,798 108.06 171.25 309.92

author-author 47,252 310,250 6.57 8.89 6.39

Last.fm listener-listener 1,892 25,434 13.44 17.31 22.37

artist-artist 17,626 2,640,150 149.79 299.66 998.53

Epinions commenter-commenter 6,703 2,395,176 425.05 438.97 609.39

product-product 13,384 2,355,460 175.99 224.12 202.78

Table 5.3: Data Sets and Data Graphs

for different values of p for some application: here, the higher the correlation, the

better resulting ranking reflects the application semantics. As we see in this exam-

ple, which we will investigate in greater detail in Section 5.3, the optimal de-coupling

weight is not always p = 0 as implied by the conventional PageRank measure. In this

particular case, for example, the correlation between D2PR and external evidence of

significance is maximized when the de-coupling weight, p, is equal to 0.5, implying

that in this application a moderate degree of penalization based on the node degrees is

needed to align PageRank scores and application semantics. ◇

Weighted Graphs

Once again, the semantics of degree de-coupling need to be reconsidered for weighted

graphs. Let G = (V,E,w) be a directed, weighted graph, where w(e) is a function

which returns the weight of the edge associated with edge e. It is important to note

that, in such a graph, the weight of an edge can 1) indicate the strength of the

connection between two nodes (thus positively contributing to the significance of the

destination node); and at the same time and 2) contribute to the degree of a node

as a multiplier (thus positively or negatively contributing to the node significance
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depending on the degree-sensitivity of the application). In other words, given an

edge eij = [vi → vj], from node vi to node vj, the transition probability from vi to vj

can be written as

T(j, i) = βTconn strength(j, i) + (1 − β)TD(j, i),

where

Tconn strength(j, i) =
w(vi → vj)

∑[vi→vh]∈out edges(vi)
w(vi → vh)

,

accounts for the connection strength (as in the conventional PageRank) whereas TD

is a degree de-coupled transition matrix,

TD(j, i) =
Θ(vj)−p

∑[vi→vk]∈out edges(vi)
Θ(vk)−p

,

such that, TD(j, i) denotes the degree de-coupled transition probability from node vi

to node vj over an edge eij = [vi → vj], p ∈ R is a degree de-coupling weight, and

Θ(v) = ∑
[v→vh]∈out edges(v)

w(v → vh).

Note that, above, β controls whether accounting for the connection strength or

degree de-coupling is more critical in a given application. In Section 5.3, we will study

the impact of degree de-coupling in weighted graphs for different scenarios.

5.3 Case Studies

In this section, we present case studies assessing the effectiveness of the degree

de-coupling process and the relationship between the degree de-coupling weight p and

recommendation accuracy for different data graphs.

5.3.1 Setup

For all experiments, the degree de-coupling weight, p, is varied between -4 and 4

with increments of 0.5. The residual probability, α, is varied between 0.5 and 0.9,
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with default value chosen as 0.85. We also varied the β parameter, which controls

whether accounting for the connection strength or degree de-coupling is more critical

in a given application, between 0.0 and 1.0, with the default value set to 0 (indicating

full decoupling).

Datasets

Four real data sets are used for the experiments. Each data set is used to create two

distinct data graphs and corresponding ratings data. Table 5.3 provides further details

about the various graphs created using these four data sets. These recommendation

tasks based on these data graphs are detailed below:

● For the IMDB [50] data set, we created (a) a movie-movie graph, where movie nodes

are connected by an edge if they share common contributors, such as actors, directors,

writers, composers, editors, cosmetic designers, and producers and (b) an actor-actor

graph based on whether two actors played in the same movie. Applications: For

this data set, we consider applications where movies are rated by the users: thus, we

merged the IMDB data with the MovieLens 10M [47] data (based on movie names)

to identify user ratings (between 1 and 5) for the movies in the graph. We consider

the (a) average user rating as the significance of the movies in the movie-movie graph

and (b) average user rating of the movies played in as the significance of the actors

in the actor-actor graph.

● For the DBLP [103] data set, we constructed (a) an article-article graph where

scientific articles were connected to each other if they shared a co-author and (b)

an author-author graph based on co-authorship. Applications: (a) In the article-

article graph, the number of citations to an article is used to indicate its significance.

Similarly, (b) in the author-author graph, average number of citations to an author’s

papers is used as his/her significance.
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● For the Last.fm [21], we constructed (a) a listener-listener graph, where the nodes

are Last.FM listeners and undirected edges reflect friendship information among these

listeners. We also constructed (b) an artist-artist graph based on shared listeners.

Applications: (a) In the listener-listener graph, we considered the total listening

activity of a given listener as his/her significance. (b) In the artist-artist graph, the

umber of times an artist has been listened is considered as his/her significance.

● For the Epinions [102]: We constructed (a) a commenter-commenter graph based

on the products on which two individuals both commented and (b) a product-product

graph based on shared commenters. Applications: (a) For the nodes on the commenter-

commenter graph, the number of trusts the commenter received from others is used as

his/her commenter significance. (b) For each product in the product-product graph,

its average rating by the commenters is used as its node significance.

5.3.2 Measures

In this section, our goal is to observe the impact of different D2PR degree de-

coupling weights on the relationship between D2PR rankings and application specific

significance measures for the above data sets3. We also aim to verify whether de-

coupling weights can also be used to improve recommendation accuracies.

In order to measure the relationship between the degree de-coupled PageRank

(D2PR) scores and the application-specific node significance, we used Spearman’s

rank correlation,

∑i(xi − x̄)(yi − ȳ)√
∑i(xi − x̄)2∑i(yi − ȳ)2

,

which measures the agreement between the D2PR ranks of the nodes in the graph

3In this chapter, we are not proposing a new PageRank computation mechanism. Because of

this (and since the focus is not improving scalability of PR), we do not report execution times and

compare our results with other PageRank computation mechanisms.
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and their application-specific significances. Here, x are rankings by D2PR and y are

significances for an application and x̄ and ȳ are averages of two values.

5.3.3 Impact of De-Coupling in Different Applications (Unweighted Graphs)

In this subsection, we present results that aim to assess D2PR under the settings

described above. For these experiments, the residual probability, α, and the parame-

ter, β, are set to the default values, 0.85 and 0, respectively. In these experiments, we

consider only unweighted graphs (we will study the weighted graphs and the impact

of parameter β later in Section 5.3.5).

Figures 5.2 through 5.4 include charts showing the Spearman’s correlations be-

tween the D2PR ranks and application specific node significances for different values

of p and for different data graphs. These ./figures/chap5 clearly illustrate that differ-

ent data graphs require different degrees of de-coupling4 to best match the application

specific node significance criterion.

Application Group A: When Degree Penalization Helps

The actor-actor (based on common movies) and commenter-commenter (based on

common products) graphs have highest correlation at p = 0.5, with the correlations

dropping significantly when the degrees are over-penalized (i.e., when p≫ 0.5). The

Epinions product-product graph (based on common commenters, Figure 5.2(c)) also

provides the highest correlations with p > 0, but behaves somewhat differently from

the other two cases: the correlations stabilize and do not deteriorate significantly

when degrees are over-penalized, indicating that the need for degree penalization is

especially critical in this case: this is due to the fact that, the larger the number

of comments a product has, the more likely it is that the comments are negative

4Degree penalization or degree-based boosting
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Figure 5.2: Application Group A: p > 0 is Optimal (i.e., Node Degrees Need to Be
Penalized)

(Figure 5.5). In fact, we see that, among the three graphs, this is the only graph

where the traditional PageRank (with p = 0) leads to negative correlations between

node ranks and node significances.

These results indicate that actors who have had many co-actors, commenters who

commented on products also commented by many others, or products which received

comments from individuals who also commented on many other products are not

good candidates for transition during random walk. This aligns with our expectation

that, in applications where each new movie role or comment requires additional effort,

high degree may indicate lower per-movie or per-comment effort and, hence, lower

significance.
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(a) DBLP (author-author) (b) IMDB (movie-movie)

Figure 5.3: Application Group B: p = 0 Is Optimal

Application Group B: When Conventional PageRank is Ideal

Figure 5.3 shows that, for movie-movie (based on common actors) and author-author

(based on common articles) graphs, the peak correlation is at p = 0 indicating that the

conventional PageRank which gives positive weight to node degree, is appropriate.

This perhaps indicates that movies with a lot of actors tend to be big-budget

products and that authors with a large number of co-authors tend to be experts

with whom others want to collaborate. Note that, in these applications, additional

boosting, with p < 0, negatively affects the correlation, indicating that the relationship

between node degree and significance is not very strong (Figure 5.5). The quick

change when p < 0 is because, as we see in Table 5.3, median standard deviations of

neighbors’ degrees are low; i.e., degrees of neighbors of a node are comparable: there

is no dominant contributor to TD(j, i) in Equation 5.1 (Section 5.2) and, thus, the

transition probabilities are sensitive to changes in p, when p < 0.

Application Group C: When Degree Boosting Helps

Figure 5.4 shows that there are scenarios where additional boosting based node de-

grees provides some benefits. The article-article (based on common authors), listener-

listener (based on common artists), and artist-artist (based on common listeners)
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Figure 5.4: Application Group C: p < 0 Is Optimal (i.e., Node Degrees Need to Be
Boosted)

graphs reach their peaks around p ∼ −1, indicating that these also benefit from large

node degrees though improvements over p = 0 are slight.

A significant difference between applications in Group B and Group C is that,

for p < 0, the correlation curve is more or less stable. This is because, as we see in

Table 5.3, in these graphs median standard deviations of neighbors’ degrees are high:

in other words, for each node, there is a dominant neighbor with a high degree and

this neighbor has the highest contribution to TD(j, i); thus, the rankings are not very

sensitive to p, when p < 0.
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Figure 5.5: Correlations Between Node Degrees and Application specific Signifi-
cances for Different Data Graphs

Summary: Correlations between Node Degrees and Application Specific

Significances

The experiments reported above show that degree de-coupling is important as dif-

ferent applications, even on the same data set, may associate different semantics

to node degrees and the conventional PageRank scores are too tightly coupled with

node degrees to be effective in all scenarios. Figure 5.5, which plots correlations be-

tween node degrees and application specific significances for different data graphs,

re-confirms that the ideal value of the p is related to the usefulness of the node degree

in capturing the application specific definition of node significance.

5.3.4 Relationship between α and p

In Figures 5.6 through 5.8, we investigate the relationship between the value α and

the degree de-coupling parameter p for different application types. Here we use the

default value, 0, for the parameter β and present the results for unweighted graphs

(the results for the weighted graphs are similar).

First thing to notice in these ./figures/chap5 is that the grouping of the applica-

tions (into those where, respectively, p > 0, p = 0, or p < 0 is useful) is preserved when

different values of α are considered.
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Figure 5.6: Relationship Between p and α, for Application Group A, Where p > 0
Is Optimal (i.e., Degrees Need to Be Penalized)

Figure 5.6 studies the impact of the value of α in application group A, where degree

penalization helps (p > 0). As we see here, for the IMDB actor-actor (Figure 5.6(a))

and Epinions commenter-commenter (Figure 5.6(b)) graphs, having a lower value of

α (i.e., lower probability of forward movement during the random walk) provides

the highest possible correlations between D2PR ranks and node significance (with

the optimal value of p being ∼ 0.5 independent of the value of α). This indicates

that in these graphs, it is not necessary to traverse far during the random walk.

Interestingly, though, when degrees are over-penalized (i.e., p ≫ 0), smaller values

of α start leading to worse correlations, indicating that (while not being optimal)

severe penalization of node degrees helps make random traversals more useful than

random jumps. As we have already observed in Figure 5.2(c), the Epinions product-

product graph (Figure 5.6(c)) behaves somewhat differently from the other two cases
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Figure 5.7: Relationship Between p and α, For Application Group B, Where p = 0
Is Optimal

where degree penalization (p > 0) leads to larger correlations: in this case, unlike

the other two graphs, the highest possible correlations between D2PR ranks and

node significance are obtained for large values of α, indicating that this application

benefits from longer random walks (though the differences among the correlations for

different α values are very small).

Figure 5.7 shows that the pattern is different for application group B, where

conventional PageRank is ideal (p = 0): in this case, having a larger value of α (i.e.,

larger probability of forward movement during the random walk) provides the highest

correlations between ranks and significance. Interestingly, in these applications, when

p≪ 0 or p≫ 0, higher probabilities of random walk traversal (i.e., larger α) stop being

beneficial and lower values of α lead to larger correlations. This re-confirms that, for

these applications, p ∼ 0 leverages the random walk traversal the best.

As we see in Figure 5.8, in application group C, where degree boosting helps

(p < 0), it is also the case that larger values of α (i.e., larger probabilities of forward

transitions during the random walk) provides the highest correlations between node

ranks and significance. On the other hand, in these applications, p ∼ 0.5 serves as a

balance point where the value of α stops being relevant; in fact, for p > 0.5 the higher

values of α stops being beneficial and lower values of α lead to larger correlations. This
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Figure 5.8: Relationship Between p and α, for Application Group C, Where p < 0
Is Optimal (i.e., Node Degrees Need to Be Boosted)

re-confirms that smaller values of p (which provides degree boosting) help leverage

the random walk traversal the best.

5.3.5 Relationship between β and p in Weighted Graphs

Finally, in Figures 5.9 through 5.11, we investigate the relationship between the

value β (which controls whether accounting for the connection strength or degree de-

coupling is more critical in a given application) and the degree de-coupling parameter

p for different application types. Here we use the default value, 0.85, for the parameter

α and present the results for weighted graphs:

Figure 5.9 depicts the impact of the value of the parameter β in application group

A, where degree penalization helps (p > 0). As we see here, for all three weighted

graphs, performing degree penalization (i.e., β < 1.0) provides better rank-significance
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Figure 5.9: Relationship Between p and β, for Application Group A, Where p > 0
Is Optimal (i.e., Node Degrees Need to Be Penalized)

correlation than relying solely on the connection strength (i.e., β = 1.0). Note that

the value of β impacts the optimal value of degree penalization parameter p: the

more weight is given to connection strength (i.e., the greater β is), the larger is the

optimal value of p.

Figure 5.10 shows that, for applications in group B, where p ∼ 0 is ideal, when

the connection strength is given significantly more weight than degree de-coupling

(i.e., β ∼ 0), we observe high rank-significance correlations. Interestingly however, for

the movie-movie graph (where the edge weights denote common actors) the highest

correlations are obtained not with p = 0, but with p = 0.5 and β = 0.75, indicating

that degree penalization is actually beneficial in this case: movies that share large

numbers of actors with other movies are likely to be B-movies, which are not good

candidates for transitions during the random walk.
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Figure 5.10: Relationship Between p and β, for Application Group B, Where p = 0
Is Optimal

Figure 5.11 shows that in application group C, where degree boosting (p < 0)

helps, giving more weight to connection strength (i.e., β ∼ 1.0) is a good, but not

necessarily the best strategy. In fact, in these graphs, the highest overall correlations

are obtained with β = 0 or β = 0.25, indicating that degree de-coupling is beneficial

also in these cases. Interestingly, (unlike the case with the unweighted listener-listener

graph, where the best correlation was obtained when p < 0) for the weighted version of

the listener-listener graph (where edge weights denote the number of shared friends),

when β = 0 through 0.5, p = 0 provides the highest correlation and when β = 0.75,

p = 0.5 provides the highest correlation – these indicate that listeners who have large

numbers of shared friends with others are good candidates for random walk.

Note that a key observation from the above results is that the conventional PageR-

ank, based on connection strength (i.e., β = 1.0), is not always the best strategy for

the applications considered.
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Figure 5.11: Relationship Between p and β, for Application Group C, Where p < 0
Is Optimal (i.e., Node Degrees Need to Be Boosted)
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Chapter 6

PERSONALIZED PAGERANK IN UNCERTAIN GRAPHS WITH MUTUALLY

EXCLUSIVE EDGES

6.1 Introduction

Measures of node ranking are used in many web and social media based prediction

and recommendation applications [19, 54, 76, 100, 97]. Due to wide-spread use of

graphs in analysis, mining, and visualization of interconnected data, in the literature

there are several ways to rank nodes in a graph ranking, including the well known

personalized PageRank (PPR) measure [11, 23], which weights the nodes in a given

graph based on their positions relative to a given seed set of nodes.

Despite their effectiveness, the measures become difficult to use in the case when

a graph contains uncertainty. Most of measures on node ranking computations are

designed assuming that a certain information is given but unfortunately, in many real

world applications, it may not be possible to obtain a perfect and intact information

(structure) of the graph for various reasons:

� missing/stale information: edges and nodes can be missed when there are

data crawling problems

� noise: the existence of edges can be changed or uncertain when noise is included

in measurements

� privacy: the data can be modeled with uncertainty because of obfuscating the

identity of users for privacy reasons
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� outdatedness: The webs and social network graphs are continually changed,

so it is not possible to know a structure of the network at a time

Measuring node proximity in an uncertain graph is especially difficult, because

adding or removing one single edge in a given graph can have a drastic effect on the

proximity of nodes in it [30, 32]: addition of just one edge may be sufficient to link

two otherwise distant clusters of nodes, thereby significantly altering the proximities

of a large number of pairs of nodes in the graph.

Given that, under graph uncertainty, we may end up with different node proximity

measurements based on which interpretation of the available graph data we believe,

one way to deal with this uncertainty is to attempt to measure expected node proxim-

ities, which take into account the likelihood of different interpretations and the node

proximity measurements corresponding to each interpretation.

A naive way to deal with this challenge would be to measure expected node

proximities by taking into account the likelihoods of different interpretations and

the node proximity measurements corresponding to each interpretation:

1. one can first enumerate all possible interpretations (or possible worlds) of the

uncertain graph, where each interpretation is a possible certain graph;

2. one can then compute node proximity under each possible world; and

3. finally, one can combine all these node proximity measurements into a single

expected proximity value.

It is, however, easy to see that an exhaustive enumeration based approach will quickly

become intractable since (as we see in Section 6.2) the number of possible worlds can

grow exponentially with the amount of uncertainty in the graph. To tackle this

challenge, in this chapter, I propose an efficient Uncertain Personalized PageRank
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(1)

(2) (3)

Figure 6.1: A Graph with Certain and Uncertain Edges

(UPPR) algorithm to approximately compute personalized PageRank values on an

uncertain graph with edge uncertainties. The proposed UPPR approach avoids enu-

meration of all possible worlds, yet it is able to achieve comparable accuracy by

carefully encoding edge uncertainties in a data structure that leads to fast approxi-

mations. Experimental results for different data sets show that UPPR is very efficient

in terms of execution time (multiple orders faster than other algorithms with similar

accuracy) and its accuracy is close to perfect.

In the next section, I introduce the uncertain graph model relied on in the chapter.

In Section 6.3, I discuss alternative “naive” techniques and discuss their individual

shortcomings. Then, in Section 6.4, I present the proposed efficient and effective un-

certain personalized PageRank (UPPR) technique. I evaluate the various techniques

discussed in the chapter in Section 6.5 using several data sets.

6.2 Problem Formulation

Let G = (V,E) be a directed graph with a set, V , of nodes and a set, E, of edges.

Conventionally, each edge e ∈ E is defined using two nodes in the graph: a source

node source(e) ∈ V and a target node target(e) ∈ V . In this chapter, on the other

hand, we divide the graph edges into certain and uncertain edges.
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Definition 9 (Certain edges) A certain edge e+ ∈ E has a well defined source node,

vsource and a well defined target node, vdest. We denote this with source(e+) = {vsource}

and target(e+) = {vdest}. Also, we denote the subset of E consisting of all of E’s

certain edges as E+. ◇

In Figure 6.1, e+
(1)

= {⟨vi, va⟩} is a certain edge from vi to va. Note that, since

∥source(e+)∥ = ∥target(e+)∥ = 1, this edge type does not include any uncertain infor-

mation. In this chapter, we refer to this certainty as having a unique possible world.

Each uncertain edge, on the other hand, can represent multiple possible worlds:

Definition 10 (Uncertain Edges) An uncertain edge e− ∈ E has a well defined

source node but does not have a well defined target node.More specifically, we have

� source(e−) ⊆ V ,

� target(e−) ⊆ V ∪ {ε} and target(e−) ≠ {ε}, and

� ∥source(e−)∥ = 1 and ∥target(e−)∥ > 1.

Above ε denotes a non-existing node. We denote the subset of E consisting of all of

E’s uncertain edges as E−. ◇

Figure 6.1 includes two uncertain edges, e−
(2)

and e−
(3)

with different degrees. Note

that in Figure 6.1, the uncertain edge e−
(3)

captures a form of uncertainty with mutual

exclusion among the edges from vi to vd, ve, or vf . This uncertainty, however, is

independent from the existence uncertainty of e−
(2)

. Therefore, the proposed model

allows as a special case the independent existence uncertainty model considered by

many of the existing works [13, 28, 60, 75, 118, 116, 93, 121].
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6.2.1 Possible Worlds of an Uncertain Edge

Each uncertain edge implicitly defines multiple possible worlds in which different

interpretations are valid:

Definition 11 (Possible Worlds of an Edge under Mutual Exclusion Semantics)

Let e ∈ E be an edge. Let source(e) denote a source node of the edge and let

target(e) ⊆ V ∪ {ε} denote the potential targets of the edge. Given this edge, we

define all possible worlds covered by this edge, pwunique(e), under mutual exclusion

semantics as

{⟨vi, vj⟩ ∣ (vi = source(e)) ∧ (vj ∈ target(e))}

The possible worlds covered by an uncertain edge consist of all combinations of target

nodes; if a target node is potentially non-existent, then it is also a possible world.

∥pwunique(e)∥ = ∥target(e)∥ is the number of possible worlds on the edge, e ◇

In the example visualized in Figure 6.1, there are three possible worlds defined by

e−
(2)

(= {⟨vi, vb⟩, ⟨vi, vc⟩, ⟨vi, ε⟩} – the last one implying that this edge does not exist)

and four possible worlds defined by e−
(3)

(= {⟨vi, vd⟩, ⟨vi, ve⟩, ⟨vi, vf ⟩, ⟨vi, ε⟩} – again

the last one implying that this edge does not exist).

Note that under a more general interpretation, more than one of the potential

combinations, implied by the uncertainty encoded in the edge, may be possible in the

real world.

Definition 12 (Possible Worlds of an Edge under Multiple Edge Semantics)

Let e ∈ E be a certain or uncertain edge and pwunique(e) be the corresponding possible

worlds covered by this edge under mutual exclusion semantics. Given this edge, we

define all possible worlds covered by this edge under multiple edge semantics as all pos-

sible non-empty subsets of its target set. Note that, since a possible world containing
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ε is equivalent to the world where ε has been removed, we have

∥pwmultiple(e)∥ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2(∥pwunique(e)∥−1), ε ∈ target(e)

2∥(pwunique(e)∥) − 1, otherwise ◇

Under these semantics, in the example in Figure 6.1, there would be 2(3−1) = 4 possible

worlds defined by the uncertain edge e−
(2)

and 2(4−1) = 8 possible worlds defined by

e−
(3)

. For the certain edge e(1), this gives 2(1−1) = 1 possible world.

6.2.2 Possible Worlds of a Graph

Given the above definitions, we can now define the possible worlds of a graph with

uncertainty:

Definition 13 (Possible Worlds of a Graph) Let G = (V,E) be a directed graph

which has a set of nodes V and a set of edges E. For all e ∈ E, let pw(e) denote

the possible worlds (under mutual exclusion or multiple edge semantics) of the edge

e. We define all possible worlds covered by this graph as the Cartesian product of the

possible worlds of edges:

pw(G) = ⨉
e∈E

pw(e). ◇

If we reconsider the example in Figure 6.1, under mutual exclusion semantics, this

graph would have 1 × 3 × 4 = 12 possible worlds. In contrast, under the multiple edge

semantics, the graph would have 1 × 4 × 8 = 32 possible worlds. Note that, since only

uncertain edges have ≥ 2 possible worlds, it is easy to see that the size of the pw(G)

grows exponentially in the number of uncertain edges; i.e., ∥pw(G)∥ is O(2∥E−∥).

6.2.3 PPR under Uncertainty

We now define personalized PageRank under uncertainty.
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Definition 14 ( Personalized PageRank under Uncertainty) Let G(V,E) be

an uncertain graph. Given a seed set, S, of nodes we can define the personalized

PageRank vector, Ð→r , for graph G as follows:

Ð→r = AV G
Gi∈pw(G)

PPR(Gi, S),

where Gi denotes a possible world implied by the uncertain graph G and PPR(Gi, S)

returns a personalized PageRank vector, Ð→r i, corresponding to Gi and seed set S. ◇

Intuitively, under the assumption that all possible worlds are equally likely, the above

definition of personalized PageRank corresponds to the values of the node scores.

6.3 Naive Approaches

In this section, we present several (naive) approaches for computing PPR values

on an uncertain graph (Figure 6.2):

6.3.1 Exhaustive Approaches

The most straightforward way to obtain the PPR values on an uncertain graph

is to exhaustively enumerate all possible worlds, compute the PPRs for each possible

world, and combine (i.e., average) the results. Obviously this exhaustive approach

(exhPPR), visualized in Figure 6.2(a), is likely to be very expensive as it involves

potentially exponential number of PPR computations.

One way to alleviate this cost is to rely on a fast approximate PPR technique (such

as B LIN [106], which partitions the given graph into subgraphs and pre-processes

intra-partition edges, W1, and inter-partition edges, W2, on these subgraphs in a post-

processing phase) to obtain PPR scores for each possible world (Figure 6.2(b)). Note

that, while this exhaustive approximate approach, which we refer to as exhApxPPR,
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Figure 6.2: Alternative (Naive) Approaches for Computing PPR values on an Un-
certain Graph

is likely to be faster than the basic approach, since it involves exponential number of

(approximate) PPR computations, it is still likely to be prohibitively expensive.

6.3.2 Collapsing-based Approaches

Since the major cost of the exhaustive approach is the number of exhaustive PPR

computations, one way to reduce the cost would be to enumerate all possible transition

matrices corresponding to all possible worlds of the uncertain graph and then collapse
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these transition matrices into a single transition matrix by taking their average. After

this, we can obtain the final PPR scores either by solving an exact PPR (collPPR,

Figure 6.2(c)) or approximate PPR (collApxPPR, Figure 6.2(d)) problem.

Another alternative is to first partition each individual transition matrix of each

possible world, Gi, and then collapse the intra-partition, W1i, and inter-partition,

W2i, transition matrices for all possible worlds into aninter-partition and an intra-

partition matrix to be processed using B LIN[106] and combined in a post-processing

phase. In Figure 6.2(e), we refer to this pre-partitioning based alternative approach

as collApx2PPR.

Accuracy Problem with Collapsing: The collapsing based approach can lead

to relatively large errors when uncertainty is concentrated around nodes with large

PPR scores: Let G be an uncertain graph with two possible worlds with transition

matrices, T1 and T2, respectively. Given these, we can compute the expected PPR

scores as defined in the previous section as

Ð→r =

Ð→r 1 +
Ð→r 2

2
=
α (T1

Ð→r 1 + T2
Ð→r 2)

2
+ (1 − α)Ð→s ,

where Ð→s is the teleportation vector representing the seeds. In contrast, when using

the collapsing based approach we instead compute

Ð→r ′ = α(
T1 + T2

2
)
Ð→r ′ + (1 − α)Ð→s .

Given these, the error term, Ð→e =
Ð→r −

Ð→r ′ can be obtained as

Ð→e =
α (T1

Ð→r 1 + T2
Ð→r 2)

2
− α(

T1 + T2

2
)
Ð→r ′.

Assuming that this error term is relatively small; i.e., Ð→r ∼
Ð→r ′, we can replace Ð→r ′

with Ð→r = (
Ð→r 1 +

Ð→r 2)/2, to obtain

Ð→e ∼
α (T1

Ð→r 1 + T2
Ð→r 2)

2
− α(

T1 + T2

2
)(

Ð→r 1 +
Ð→r 2

2
)

∼ (
T1 − T2

4
)
Ð→r 1 + (

T2 − T1

4
)
Ð→r 2.
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Figure 6.3: Flattening of the Uncertain Graph in Figure 6.1 Into an (Approximate)
Certain Graph

In other words, in the collapsing based approach, the error term is especially large

when the uncertainties (i.e., differences between the transition matrices of the possible

worlds) are concentrated around nodes with large PPR scores.

Execution Time Problem with Collapsing: Since they reduce the number of

PPR computations to just one, the collapsing based approaches are likely to be much

faster than the exhaustive approach. Nevertheless, since it involves the enumeration

of all possible worlds before obtaining the collapsed transition matrix, the cost of this

technique is still exponential in the number of uncertain edges.

6.3.3 Flattening-based Approaches

An alternative approach to avoid the enumeration cost of collapsing is to approx-

imate the collapsed transition matrix by constructing it directly from the uncertain

graph G by flattening each uncertain edge into certain edges. Let vi be a node with c

outgoing certain edges and u outgoing uncertain edges. To flatten the outgoing edges

of a node vi, we do the following:

1. Each outgoing certain edge is associated with 1
c+u transition probability.

2. Each outgoing uncertain edge is also associated with 1
c+u transition probability.

127



Let e− be an uncertain edge among outgoing uncertain edges, with t targets.

Each

(a) each non-ε target of e− is given a transition probability of 1
t ×

1
c+u

(b) if ε is a target for e−,

i. if there is c certain edges and u0 ucertain edges which does not have

ε, then the corresponding 1
t ×

1
c+u transition probability is distributed

among the c certain edges of vi and u0 uncertain edges with 1
c ×

1
u0
×

1
t ×

1
c+u .

ii. if the vertex does not have any outgoing certain edges or uncertain

edges without ε as targets, then the probability is re-distributed among

all the nodes with 1
∥V ∥

× 1
c+u in the graph when ∥V ∥ is the number of

nodes in G.

For instance, in the example visualized in Figure 6.1, since there are one certain

outgoing edge and two uncertain outgoing edges, the probabilities of outgoing edges

for vi would be set as 1
3 on the edge going to va,

1
3 ×

1
3 = 1

9 on the edge going to

vb and vc, and 1
3 ×

1
4 = 1

12 on the edge going to vd, ve, and vf . Note that, when ε is

selected for any of the outgoing edges, the only available traversal direction is towards

va. Therefore, this would lead to an additional transition probability of 1
9 +

1
12(=

7
36)

towards va. This is visualized in Figure 6.3. If there is no certain edge from vi to

va,
1
9 ×

1
12 with ε on two uncertain edges is distributed and added to all nodes in the

graph.

Once the flattened transition matrix is obtained, we can solve the final PPR scores

either using an exact PPR (flatPPR, Figure 6.2(f)) or an approximate PPR (flat-

ApxPPR, Figure 6.2(g)) technique. Note that, while they are likely to be faster than

both exhaustive and collapsing-based approaches, flattening-based solutions further
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compound the accuracy problems.

6.4 UPPR: Proposed Approach

In this section, we propose an efficient and effective Uncertain Personalized PageR-

ank (UPPR) algorithm to approximately compute personalized PageRank values on

an uncertain graph with edge uncertainties. In particular, UPPR avoids enumeration

of all possible worlds, yet is able to achieve high accuracy by carefully encoding edge

uncertainties in a data structure that leads to good approximations.

6.4.1 Special Case: Two Possible Worlds

Let G(V,E) be an edge uncertain graph as introduced earlier in this chapter. Let

us split G(V,E) into two subgraphs: a subgraph, Gc(V,Ec), consisting of certain

edges, and a subgraph, Gu(V,Eu), consisting of uncertain edges. Let us first consider

the special case where Gu(V,Eu) defines only two possible worlds. In Section 6.4.2,

we will generalize this to the case where there may be more than two possible worlds.

Let T1 and T2 be transition matrices corresponding to two possible worlds of G.

The personalized PageRank values Ð→r1 and Ð→r2 for T1 and T2 on seed set, S, given by

the user, are defined as

Ð→r1 = αT1
Ð→r1 + (1 − α)Ð→s , and Ð→r2 = αT2

Ð→r2 + (1 − α)Ð→s ,

where α is a residual probability parameter and Ð→s is a re-seeding vector such that

if a node vi ∈ S, then Ð→s [i] = 1
∥S∥ and Ð→s [i] = 0, otherwise. It is easy to see that these

two equations can be re-written as follows to solve for Ð→r1 and Ð→r2 :

Ð→r1 = (1 − α)(I − αT1)
−1Ð→s and Ð→r2 = (1 − α)(I − αT2)

−1Ð→s .

Given these, as defined in Section 6.2.3, we can compute the expected PPR values
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for the edge uncertain graph as

Ð→r =
1

2
(
Ð→r1 +

Ð→r2) =
1 − α

2
((I − αT1)

−1 + (I − αT2)
−1)
Ð→s .

Now, let us split each of the transition matrices, T1 and T2, into three parts:

T1 = TBL + TX + P1 and T2 = TBL + TX + P2,

where TBL+TX corresponds to the certain parts of the graph and P1 and P2 correspond

to the uncertain edges in each of the two possible worlds. Moreover, let TBL be the

block-diagonal matrix, obtained by partitioning the graph into blocks (for example

using METIS [57]), and TX represent (certain) transitions across these partitions.

Note that, in general, we have ∣TBL∣ ≫ ∣TX ∣. As we will see shortly, in this section,

we further assume that ∣TX ∣ ≫ ∣P1∣ and ∣TX ∣ ≫ ∣P2∣. While this is a common assump-

tion in related work [13], in Section 6.4.5, we discuss how to relax this assumption in

cases where the number of uncertain edges involved in each possible world is large. As

proposed in [106], assuming that the blocks are sufficiently small, we can efficiently

compute Q−1
BL = (I−αTBL)−1 by first computing the inverse matrices of each block and

then combining these inverse matrices to obtain Q−1
BL, which itself is in block-diagonal

form. Moreover, since TX , P1, and P2 are all sparse, we can also efficiently decompose

the TX + P1 and TX + P2 into

TX + P1 ≃ U1S1V1 and TX + P2 ≃ U2S2V2, (6.1)

using a sparse approximate decomposition algorithm, such as [16]. Given these, we

can rewrite Ð→r =
Ð→r = 1

2(
Ð→r1 +

Ð→r2) as

≃
1 − α

2

⎛

⎝
(I − α(TBL +U1S1V1))

−1

+ (I − α(TBL +U2S2V2))
−1⎞

⎠

Ð→s .

Then, by applying the well-known Sherman-Morrison lemma [92] on the term (I −
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α(TBL +UiSiVi))−1, we can reformulate the above equation to obtain

Ð→r ≃
1 − α

2
(Q−1

BL + αQ
−1
BLU1(S

−1
1 − αV1Q

−1
BLU1)

−1V1Q
−1
BL+

Q−1
BL + αQ

−1
BLU2(S

−1
2 − αV2Q

−1
BLU2)

−1V2Q
−1
BL)
Ð→s .

When we further apply the Sherman-Morrison lemma on the term (S−1
1 −αV1Q−1

BLU1)
−1

in the above equation, we obtain

(1 − α)Q−1
BL
Ð→s

+
α(1 − α)

2
Q−1
BL(U1(S1 + αS1V1(QBL − αU1S1V1)

−1U1S1)V1

+U2(S2 + αS2V2(QBL − αU2S2V2)
−1U2S2)V2)Q

−1
BL
Ð→s .

This equation can be significantly simplified by introducing the terms M1 = U1S1V1

and M2 = U2S2V2 (where M1 ≃ TX + P1 and M2 ≃ TX + P2):

Ð→r ≃ (1 − α)
⎛

⎝
I +

α

2
Q−1
BL((M1 +M2) + α(M1(QBL − αM1)

−1M1

+M2(QBL − αM2)
−1M2))

⎞

⎠
Q−1
BL
Ð→s .

(6.2)

Moreover, relying on the assumption that ∣TBL∣ ≫ ∣TX ∣ + ∣P1∣ and ∣TBL∣ ≫ ∣TX ∣ + ∣P2∣,

we can ignore the terms αM1 and αM2 in (QBL −αM1)
−1 and (QBL −αM2)

−1 in the

above equation and rewrite the rest as

Ð→r ≃ (1 − α)
⎛

⎝
I +

α

2
Q−1
BL((2TX + P1 + P2) + α(2TXQ

−1
BLTX

+ (P1 + P2)Q
−1
BLTX + TXQ

−1
BL(P1 + P2)

+ P1Q
−1
BLP1 + P2Q

−1
BLP2))

⎞

⎠
Q−1
BL
Ð→s .

(6.3)

Furthermore, again relying on the assumption that ∣TBL∣ ≫ ∣TX ∣ ≫ ∣P1∣, ∣P2∣, the term

P1Q−1
BLP1+P2Q−1

BLP2 will be negligible next to (P1+P2)Q−1
BLTX +TXQ

−1
BL(P1+P2) and

thus can be ignored and Ð→r can be approximately computed as
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Ð→r ≃ (1 − α)
⎛

⎝
I +

α

2
Q−1
BL((2TX + (P1 + P2)) + α(2TXQ

−1
BLTX+

(P1 + P2)Q
−1
BLTX + TXQ

−1
BL(P1 + P2)))

⎞

⎠
Q−1
BL
Ð→s .

(6.4)

Summary and Key Advantages: This formulation for UPPR has several advan-

tages. First of all, assuming that the blocks are sufficiently small and Q−1
BL can be

efficiently computed, once Q−1
BL is at hand, solving for Ð→r using the above equation

involves very sparse matrix multiplications (involving TX and P1 + P2) and thus can

be processed very efficiently (see Section 6.5). A second advantage of the above

formulation is that it can be easily extended to any number of possible worlds.

6.4.2 General Case: > 2 Possible Worlds

When we have n possible worlds (i.e., Ð→r = 1
n(
Ð→r1 + ... +

Ð→rn)), the UPPR equation

(Equation 6.4) can be generalized as

≃(1 − α)
⎛

⎝
I +

α

n
Q−1
BL((nTX + (P1 + ... + Pn)) + α(nTXQ

−1
BLTX

+ (P1 + ... + Pn)Q
−1
BLTX + TXQ

−1
BL(P1 + ... + Pn)))

⎞

⎠
Q−1
BL
Ð→s .

(6.5)

As we see in Section 6.5, this formulation leads to very efficient execution plans,

especially because the term 1
n(P1 + ...+Pn) in Equation 6.5 can be obtained (without

having to enumerate all possible worlds) directly by computing the ratio of the number

of possible worlds in which a given edge exists:

Under mutual exclusion semantics: As we have seen in Section 6.2.1, the possible

worlds covered by an uncertain edge consist of all combinations of its target nodes.

Under mutual exclusion semantics, only one of the edges implied by the uncertain

edge can be valid in the real world. Let vi be a node which has c outgoing certain edges

and u outgoing uncertain edges. If, in a given possible world, some of the u outgoing
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uncertain edges map to ε, then in that possible world, the transition probabilities for

the remaining certain and uncertain edges will be higher. We can use this observation

to compute Pavg =
1
n(P1 + ... + Pn) as follows:

Let vj be a target node of an uncertain edge, e−, with ∥target(e−)∥ = k. The value

of Pavg(j, i) can be computed as

1

k
×(

u−1

∑
h=0

(
1

c + u − h
)p(ratio of worlds s.t. h of other uncertain edges from vi are ε)).

Here, p() denotes the probability that h number of ε among all other uncertain edges

from vi are chosen given an event.

Note that, if e− has ε as a target, then the corresponding transition probability, L =

1
k × p(ε on all uncertain edges are selected as targets) has to be redistributed among

the outgoing certain edges of the node and outgoing uncertain edges without ε. When

vi has c outgoing certain edges and u0 outgoing uncertain edges, L
c+u0

is distributed

to each edge and for uncertain edges, 1
∥target(e)∥ ×

L
c+u0

is added in the cells of Pavg. If

none exists, then it needs to be redistributed among all nodes in the graph. When

∥V ∥ is the number of nodes in the graph, the value L
∥V ∥

is added into all rows in the

ith column of Pavg. This helps random walks to jump randomly to all nodes instead

of staying in the node when vi is a dangling node with no outgoing edge.

Let e+ be an outgoing certain edge from vi and let us denote its target as vj. The

transition probability, for e+, taking into account ε transition for the uncertain edges,

can be computed as

u

∑
h=0

(
1

c + u − h
)p(ratio of worlds s.t. h of uncertain edges from vi are ε).

However, since e+ is a certain edge, it belongs to either intra-partition or cross-

partition certain edges. Therefore, when we compute the Pavg(j, i), we need to com-

pensate for the portion of the transition probability already accounted in TBL or TX .
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Figure 6.4: An Example of Multiple Uncertain/Certain Edges with Same Target
Nodes

Let C(j, i) denote TBL(j, i)+TX(j, i); then, the cell [j, i] in Pavg has the compensated

value

(
u

∑
h=0

(
1

c + u − h
)p(ratio of worlds s.t. h of uncertain edges are ε)) −C(j, i).

Note that, if vj is a target for multiple outgoing edges from vi, all transition

probabilities to vj need to be aggregated. Before the aggregation, we consider vj as

different targets in different edges and compute the cell of Pavg(j, i) on each certain

or uncertain edge. After individual computations, if there are multiple edges whose

targets are same as vj, cell values of Pavg(j, i) on different edges are aggregated by

summing all values, ∑vf ∈{target(e∈E)=vj}Pavg(j, f). Note that the aggregated node was

duplicated by the summation of possible worlds that both nodes, vj are considered

together. Let vk be a target of an edge e that has vj as a target. Let utj be the

number of uncertain edges that have vj as targets and nsi be the number of uncertain

edges whose sources are vi and have ε as targets excluding e−. For the aggregation,

the following value should be added into the cell Pavg(k, i):

2utj−1

∑ (
nsi

∑
h=0

(
1

(w − h)(w − h + 1)
p(ratio of worlds s.t. h of uncertain edges are ε)))

where w = ctj + utj when ctj is the number of certain edges which have vj as targets.
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For the compensation of Pavg(j, i), it needs to subtract the summation of added values

of Pavg(k, i) for all nodes.

For example, in Figure 6.4(a), the transition probability Pavg(a, i) can be com-

puted assuming Figure 6.1 and then, we can aggregate them into Pavg(a, i) by sum-

mation. In this case, there are three possible worlds that both va exist with vd, ve, and

vf . For vd, ve, and vf ,
1

2×3 ×
1
12 is added into Pavg(d, i), Pavg(e, i), and Pavg(f, i) and

3× 1
2×3 ×

1
12 should be subtracted from Pavg(a, i). In Figure 6.4(b), for the same target

on uncertain edges, after aggregation of Pavg(b, i),
1

2×3 ×
1
12 is added into Pavg(a, i) and

subtracted from Pavg(b, i).

In both cases, to compute, Pavg, we need to compute the probability that for h

out of a given number of uncertain edges, ε will be selected as the target. Let us

be given m = (m0 +m1) uncertain edges, such that m0 many do not contain ε in

the target set and m1 many do. Let the maximum target size for this latter set of

nodes be max target. Then, we can group the m1 uncertain edges to max target

many groups where, each group, gl, consists of uncertain edges with target size l; i.e.,

∥g1∥+∥g2∥+ . . .+∥gmax target∥ =m1. Note that, by definition, any uncertain edge which

contains ε as a target must also have at least one other node in its target set, ∥g1∥ = 0.

Given this, we can compute the probability that h out of m uncertain edges will

be ε as

p(h2 + h3 + . . .+ = hmax target = h s.t. ∀2≤l≤max target hl in ∥gl∥ edges select ε).

The probability p(hl in ∥gl∥ edges select ε) is binomially distributed with B(∥gl∥,1/l)

– i.e., there are ∥gl∥ uncertain edges, each serving as an independent trial with 1/l

success rate for the selection of ε among the available targets. Consequently, the prob-

ability that h out of m uncertain edges select ε as their targets is distributed as a sum-

mation of the binomial distributions B(∥g2∥,1/2)+. . .+B(∥gmax target∥,1/max target).

135



Algorithms to efficiently compute summation of binomial distributions are presented

in [18]. They showed how to compute the exact distribution of the summation of bino-

mial distributions. After calculating the distribution of each binomial random variable

Xg, it compute S = P (X1 + ...Xg = z) for all z with less computation by the recur-

rence relation of the binomial distribution. They claimed that the complexity of this

approach is O((maxz)2) where maxz is the maximum value of S that P (S = maxz)

is non-trivial. To reduce the computation, they tried some approximated approaches

such as Kolmogorov-type and Pearson curve approximation. Specially Kolmogorov

approximation showed fast efficient with less computation time and very least errors.

Kolmogorov approximation uses the idea that the moment of the true distribution

can be found at least up to some order z and with small z, it can be found easily

with less computation of moments. In our computation, the summation of binomial

distributions does not usually require high complexity because h is not a large number

in real applications, but we can compute the approximated computations by above

approaches.

Under multiple edge semantics: In this case, several of the edges implied by a

given uncertain edge can be simultaneously valid. Let vi be a node with c outgoing

certain edges and u outgoing uncertain edges. Let vj be a target node of an outgoing

edge, e, from vi. The value of Pavg(j, i) can be computed as

total out

∑
h=0

(
1

c + h
) × p(∑

e∈U

num selected target nodes(e) = h) ,

where total out = ∑e∈U ∥target(e)/{ε}∥ and num selected target nodes(e) is the num-

ber of nodes selected as outgoing targets for e in a given possible world (if ε is the

only target selected, then num selected target nodes(e) = 0). Again, all vi to vj

transitions need to be aggregated.

Note that, similarly with the case of mutual exclusion semantics, for certain edges,
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ϵ

va vi

vb
vc

viva

vb
vc

(a) Uncertain edge with ε (b) Uncertain edge without ε

Figure 6.5: An Example of an Uncertain Edge with and without ε

we need to compensate for transition probabilities already accounted in TBL or TX .

Also, if vi does not have neither any certain edges nor any uncertain edges without

ε as target, the transition probability for the case where all uncertain edges select ε

as target needs to be distributed among all nodes in the graph. As we saw in the

mutual exclusive case, Pavg(j, i) to ε target is divided by the number of nodes in the

graph, ∣V ∣ and added to all rows in the ith column of Pavg.

To compute Pavg using the above equation, we need to compute the probability

p (∑e∈U num selected target nodes(e) = h). Once again, this can be achieved by rep-

resenting the distribution as a sum of binomial-like distributions: intuitively, if e is

an uncertain edge with ε, then the probability that t many non-ε targets are selected

can be represented in the form of a binomial with 2(∥target(e)∥−1) many trials and 1/2

success rate. If, on the other hand, e is an uncertain edge without ε, the probability

that t many targets are selected can be represented in the form of a binomial with

2∥target(e)∥ many trials and 1
2 success rate. In the latter case, however, we need to

correct for the situation where t = 0. This is because, under multiple edge semantics,

for an uncertain edge without ε, the selected target nodes must include at least one

node in the graph; thus, t cannot take the value of 0. The problem leads to non-

binomial distribution because of non-existence of ε. To adjust this case, we, at first,
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can compute the summation of the binomial distributions on the case of an uncertain

edge which has ∥target∥ + 1 without ε when ∥target∥ is the number of targets on

the uncertain edge. After that, we multiply 2(∥target∥−1)

2∥target∥
to get the summation of the

binomial-like distribution for the case with ε. Figure 6.5 shows possible cases of an

uncertain edge with 3 actual targets with ε and without ε. For Figure 6.5(a), there

are 8 possible worlds (23) and we can compute with the binomial with B(8, 1
2). For

Figure 6.5(b), without ε, we cannot compute the binomial with B(7, 1
2). We can use

the binomial distribution on Figure 6.5(a) at first and multiply 23

23−1 To make the

binomial-like distribution on the case of Figure 6.5(b).

6.4.3 Accuracy of UPPR

The UPPR equation (Equation 6.5) captures the underlying uncertainty in a way

that leads to minimal approximation errors under the assumption ∣TBL∣ ≫ ∣TX ∣ ≫ ∣P∗∣.

In particular, the UPPR process has three specific sources for potential errors, each

of which is minimized under these, generally valid, assumptions:

� The first potential source of error is the decomposition of TX + P∗ into U∗S∗V∗

using an approximate algorithm, such as [16], that relies on the sparsity of the

edges that cross partitions and of the uncertain edges (see Equation 6.1).

� The second source of error is the assumption that the terms αM1 and αM2 are

negligible relative to the rest of the terms in Equation 6.2; this again relies on

the assumption that TX and P∗ that contribute to M∗ are both sparse matrices.

� The third source of error is the assumption that the term P1Q−1
BLP1 +P2Q−1

BLP2

in Equation 6.3 is negligible relative to (P1 + P2)Q−1
BLTX + TXQ−1

BL(P1 + P2).

Note that all three potential sources of error are minimized when ∣TBL∣ ≫ ∣TX ∣ ≫ ∣P∗∣.

While the fact that whether ∣TBL∣ ≫ ∣TX ∣ holds or not depends on the type of graph
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and the partitioning algorithm used, whether ∣TX ∣ ≫ ∣P∗∣ or not depends on the

amount of uncertain edges in the graph.

In Section 6.4.5, we discuss how to relax the assumption, ∣TX ∣ ≫ ∣P∗∣, in cases

where there are significant number of uncertain edges in the graph rendering ∣P∗∣

relatively dense, using a hybrid strategy.

6.4.4 Efficient Computation of UPPR Scores

Here we show that the UPPR equation (Equation 6.5) leads to very efficient execu-

tion plans. To see this, let us first partition the UPPR equation into 6 subcomponents:

Ð→r =
1

n
(
Ð→r1 + ... +

Ð→rn) ≃ (1 − α)Q−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1)

+α(1 − α)Q−1
BLTXQ

−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2)

+
α(1 − α)

n
Q−1
BL(P1 + ... + Pn)Q

−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3)

+ α2(1 − α)Q−1
BLTXQ

−1
BLTXQ

−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4)

+
α2(1 − α)

n
Q−1
BL(P1 + ... + Pn)Q

−1
BLTXQ

−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(5)

+
α2(1 − α)

n
Q−1
BLTXQ

−1
BL(P1 + ... + Pn)Q

−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6)

.

It is important to note that each of the six subcomponents above contains an ex-

tremely sparse re-seeding vector Ð→s . Moreover, Q−1
BL is a block diagonal matrix and

TX and P∗ are all sparse. Consequently, each of the terms can be computed, right to

left, through efficient vector-matrix multiplications.

For example, the subcomponent (2) can be computed from right to left with the
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following sequence of efficient operations:

Q−1
BL

±
∣V ∣×∣V ∣

Ð→s
®

∣V ∣×1

→ TX
°
∣V ∣×∣V ∣

Q−1
BL
Ð→s

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
∣V ∣×1

→ Q−1
BL

±
∣V ∣×∣V ∣

TXQ
−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣V ∣×1

→ α(1 − α)Q−1
BLTXQ

−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣V ∣×1

.

Moreover, since the terms (P1 + ...+Pn), Q−1
BL
Ð→s , TXQ−1

BL
Ð→s , and Q−1

BLTXQ
−1
BL
Ð→s occur

in multiple subcomponents, they can be cached and reused – once these terms are

cached, the rest of the computations for the six subcomponents can be executed in

parallel. Note further that several of the terms above can be cached and reused for

the same uncertain graph with different seed vectors or even graphs with the same

certain, but different uncertain components (to carry out hypothetical, if-then type

of analyses).

6.4.5 Hybrid Computation in the Presence of Large Numbers of Uncertain Edges

As we have discussed in the previous section, the accuracy of the proposed UPPR

technique relies on the assumption that ∣TBL∣ ≫ ∣TX ∣ ≫ ∣P∗∣. In particular, whether

∣TX ∣ ≫ ∣P∗∣ or not depends on the amount of uncertain edges in the graph: UPPR is

likely to be highly effective and efficient if the number of uncertain edges in the graph

is relatively small. In contrast, as we have seen in Section 6.3.2, the collapsing (and

similarly flattening) based techniques may lead to large errors if the uncertain edges

are concentrated around nodes with large PPR scores.

Here we note that we can leverage these two observations to deal with graphs

with large numbers of uncertain edges. The idea is to eliminate uncertain edges in

the graph, relying on the highly efficient flattening technique, away from the seed

nodes of the graph (which are likely to have large PPR scores) and only maintain

uncertain edges in the neighborhoods of the seed nodes. Consequently, errors due
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to flattening are minimized as this technique is utilized only in regions with less

likelihood of producing high PPR scores; errors due to UPPR are also minimized,

especially in large graphs, as the numbers (∣P∗∣) of uncertain edges in possible worlds

that UPPR has to deal with have been reduced relative to the rest of the graph.

6.5 Experiments

In this section, we present the results of the experiments assessing the efficiency

and effectiveness of the algorithms presented in this chapter. We ran experiments

on a 16-core CPU Nehalem Node with 64 GB RAM. All codes were implemented in

Matlab and run using Matlab R2013b.

6.5.1 Datasets and Setup

Table 6.1 provides an overview of the four data sets [74], with different numbers

of nodes and edges, and graph-partitions, considered in the experiments. The graph

partitions are obtained using METIS [57].

Table 6.2 details the volumes of uncertainty we have experimented with for the

results reported in this section. Here, the “degree of uncertainty” refers to the num-

ber of target nodes on each uncertain edge it represents and the “edge semantics”

describes “mutual exclusion” and “multiple edge” semantics. These together define

the number of possible worlds corresponding to a given uncertain edge. To obtain

uncertain graphs with the specifications in the table, we select random edges in the

original graph and render them uncertain by augmenting destinations with random

nodes.

We further assume that the uncertain edges are located on the seeds (as discussed

in Sections 6.3.2 and 6.4.5, uncertain edges further away from the seeds can be flat-

tened into the certain parts of the transition matrix).
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# of # of # of

Data nodes edges partitions

ego-Facebook 4,039 88,234 3

Wiki-Vote 7,115 103,689 3

web-NotreDame 325,729 1,497,134 50

web-BerkStan 685,230 7,600,595 500

Table 6.1: Data Sets

6.5.2 Alternative Approaches

In this section, in addition to UPPR (presented in Section 6.4), we considered

all alternative approaches discussed in Section 6.3. As a further baseline, we also

consider a Monte Carlo-based solution (which starts from the seed nodes, and samples

random walks of a given length) and BEAR [97], a recent PPR computation algorithm,

which originally does not take uncertainty into account. For uncertainty, we use the

flattened transition matrix for the transition matrix and compute PPR values. In

the experiments, without loss of generality, we set the residual probability parameter,

α to 0.85. To compare different algorithms, we consider both efficiency (i.e., PPR

computation time) and accuracy (in terms of the correlations of PPR rankings for

the nodes that are ranked top-50 by the exhaustive technique, exhPPR).

6.6 Results and Discussions

We start the discussion of the results by considering efficiency and accuracy of the

various algorithms on the Facebook data set, for different degrees of uncertainty in

the graph.

Impact of the Degree of Uncertainty. Figures 6.6(a) and (b) show the execution

times of different algorithms, as the overall number of uncertain edges and degree of
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# of degree edge # of

uncertain of edge semantics possible

edges uncertainty worlds

different 2 16-64

# of 4 4 mut.excl. 256-4,096

uncertain 6 (multiple) 4,096-262,144

edges 8(7) 65,536-2,097,152

different 2 16-16

degree of 4 mut.excl. 256-4,096

edge 4 6(5) (multiple) 1,296-65,536

uncertainty 8(6) 4,096-1,048,576

10 10,000

Table 6.2: Uncertainty Scenarios

uncertainty in the graph are increased.

As we see in the figure 6.6, exhaustive and collapsing-based approaches (which

need to enumerate the possible worlds) quickly become infeasible as the number of

possible worlds increases. While flattening-based approaches are reasonably fast and

scale better than the exhaustive and collapsing-based approaches, they are 1 or 2 order

slower than UPPR. BEAR takes less time than UPPR for PPR computation but the

difference between them is negligible. Figures 6.6(c) and (d) confirm that execution

time savings on UPPR do not come with any drop in accuracy – UPPR provides

similar (or in some cases better) accuracy to the two collapsing- and flattening- based

approaches, collPPR and flatPPR, that rely on direct computation of PPR from

the transition matrix, even though it uses an approximate solution for PPR. As

expected, the accuracy of BEAR is very poor compared to UPPR and the accuracy

is not stable and affected by the amount of uncertainty. Other techniques such as

collApxPPR, collApx2PPR, and flatApxPPR that similarly solve PPR approximately,
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Figure 6.6: Results on the Facebook Data Set, for Different Amount of Uncertainty
with Different Edge Semantics

relying on a sparse approximation method, all have significantly degraded accuracies.

This indicates that, by carefully accounting for the sources of errors, UPPR is able to

achieve high accuracies (∼1.0) efficiently (∼0.01 seconds) and avoids accuracy pitfalls

that other schemes are not able to handle effectively.

UPPR vs. Monte Carlo Method. Additionally, we consider a Monte Carlo

(MC) based alternative to UPPR. [78] notes that (in regular graphs) for estimating

PPR values close to a desired threshold δ (where δ is the expected PPR score; i.e.,

1/∣V ∣, where ∣V ∣ is the number of nodes), a Monte Carlo based algorithm would need

O(1/(δ × ρ2)) = O(∣V ∣/ρ2), samples of length, geometric( 1
1−α), where ρ is the relative

error and 1−α is the teleportation rate. This means that, when we seek high accuracy,
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Figure 6.7: Results in Different Graphs of Different Sizes

Monte Carlo based solutions may be prohibitive [78]. Indeed, for the Facebook data

set, with ∼ 4000 nodes, to have 95% accuracy, we would need 4000/0.052 = 1,600,000

random walk samples (of length ≥ ⌈ 1
0.15⌉ = 7, since we set α to 0.85).

In Table 6.3, we report the accuracy comparison for a more modest target error

rate of 0.15, which leads to ∼ 150K, random walks – note that, even in this modest

case, taking 150K random walk samples is more expensive (65 seconds in Matlab)

to compute than UPPR (∼0.01 seconds). In the table, we see that for top-100 to

top-500 results, Monte Carlo, is able to match the target accuracy in the presence if

mutual exclusion semantics; but fails to do so when all nodes are considered. In the

presence of multiple edge semantics, MC is able to match the target error rate only

when top-500 results are considered and the results are very poor for top-100 nodes,

even with larger number of samples, with longer lengths. Note that UPPR is able to

achieve significantly higher accuracy (for top-100, top-500, as well as for all nodes),
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Edge # of Length of Top Top All

type random walks random walks 100 acc. 500 acc. nodes acc.

UPPR 0.987 0.966 0.994

8 0.797 0.947 0.579

Mutual 150K 10 0.824 0.945 0.576

exclusion Monte 20 0.846 0.942 0.574

semantics Carlo 30 0.843 0.943 0.573

(#ue=4, 8 0.798 0.928 0.572

#udeg=10) 300K 10 0.823 0.928 0.567

Monte 20 0.843 0.927 0.562

Carlo 30 0.846 0.924 0.563

UPPR 0.994 0.995 0.999

8 0.198 0.921 0.673

Multiple edge 150K 10 0.198 0.919 0.670

semantics Monte 20 0.203 0.918 0.666

(#ue=5, Carlo 30 0.203 0.916 0.667

#udeg=4) 8 0.148 0.905 0.660

300K 10 0.138 0.900 0.655

Monte 20 0.145 0.900 0.648

Carlo 30 0.145 0.898 0.647

Table 6.3: UPPR Vs. MC Method on the Facebook Graph

very cheaply (∼ 0.01 seconds for this data set as shown in Figure 6.6).

Different Data Sets and the Impact of the Graph Size. In the experiments

reported in Figure 6.7, we compare the efficiency and effectiveness of the various

algorithms we presented in the chapter for graphs of different sizes. The figure re-

ports results for two sample uncertainty complexities: Figures 6.7(a) and (c) report

execution time and rank correlation for a scenario with mutual exclusion semantics,

whereas Figures 6.7(b) and (d) consider a scenario with multiple edge semantics. As

we see in this figure, the proposed UPPR method is scalable, not only in terms of
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the possible worlds of the graph, but also the graph size. While the closest algo-

rithms to UPPR in terms of efficiency and scalability, flatApxPPR and BEAR, suffer

significantly from accuracy degradations, UPPR provides very high (mostly close to

perfect) accuracy in all cases considered in this section.

Here, we do not present the accuracy results for the largest Berk-Stan data set

as the cost of performing the exhaustive enumeration needed to obtain the accuracy

ground-truth is prohibitive on this data set. However, the results show that UPPR

provides very good accuracy, while its execution time is minimally effected by graph

size. In fact, on the largest data set, UPPR is even faster than the BEAR baseline,

while providing significantly better accuracy.
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Chapter 7

PERSONALIZED PAGERANK IN UNCERTAIN GRAPHS WITH UNCERTAIN

EDGE WEIGHTS

7.1 Introduction

The node proximity between two nodes in a graph-structured application shows

how much they are nearby or related to each other. The popular measure for node

proximity includes Random-walk based definitions such as hitting time [24, 82] and

personalized PageRank (PPR) score [11, 19, 20, 54, 64, 97, 106]. Instead of the

number of hops or distances between two nodes, these consider the density of edges

in a graph. This takes into account how tightly connected two nodes are and argues

that nodes which have many paths between them can be considered more related.

Despite the effectiveness of PPR on measuring node proximities, there are certain

situations when the performance of PPR measure is not guaranteed. Possible uncer-

tainties in the input graph make it difficult to compute PPR, since PPR method is

designed with the assumption that all information of edges in a graph is certain with

known scalar values. The problem is that, in many real applications, uncertainty

happens due to various reasons, such as lack of information, noise in data collection,

or privacy issues[2, 3, 13, 61]. There are various uncertain types on edges in a graph.

One uncertain type is the uncertainty of edge existence in a graph as discussed in

Chapter 6. In this situation, the edges in the graph exists probabilistically and, in

many existing works prior to our own, the existence probabilities of individual edges

are assumed to be independent from each other [13, 33, 60, 61, 93, 118]. Most of works

compute the node proximity[33] or find k-nearest neighbors[93, 118] with probabilistic
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Figure 7.1: Interval Edge Weights When a User Have Different Degree of Interests

computations.

In this chapter, I note that another common uncertain edge type is when the

uncertainty exists on the edge weights in the graph. For instance, edge weights may

need to be represented by a list of scalar numbers, by a probability distribution,

or intervals with min/max value. For example, let us consider a user who has two

interests, such as sports and computers, as shown in Figure 7.1. In certain graphs, the

relative strength between these two interests would be represented as scalar valued

weights as in Figure 7.1.(a). In reality, however, data collected over time and from

different sources and contexts, may provide interest values that are not scalars, but

interval of values representing different evidences. Computer and road networks are

examples: load (or other factors, such as noise or cost) on networks may be variable

and analysis of such networks may need to reflect such variability.

In this chapter, I consider edge weights with interval values. When edge weights

are interval valued, it is hard to use the basic PPR equation since that equation

requires scalar valued inputs, based on the assumption that the edge weight is certain.

A possible solution would be to take multiple samples from each interval edge weight,

compute PPR scores for all possible worlds using the combinations of sampled values,

and return an average of PPR score capturing all considered alternative scores. This,
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however, requires an exponential work to compute scores. To tackle this challenge, in

this chapter, I consider two alternative approaches: Interval Personalized PageRank

with Mean (IPPR-M) and Interval Personalized PageRank with Integration (IPPR-

I) to compute PPR values when edge weights are uncertain with interval values.

IPPR-I provides optimal solutions, yet is faster than the sampling approach. IPPR-

M, provides approximated solutions and is faster than both sampling and IPPR-I.

Nevertheless, as I will show in this chapter, when the networks are ”well mixed”,

IPPR-M is also as effective as IPPR-I.

In the following section, I first formally define the problem of PPR computation

for an interval valued uncertain graph. In Section 7.4, I present the optimal solu-

tion, IPPR-I, and then present the approximate solution, IPPR-M. In Section 7.6,

I evaluate IPPR-M and IPPR-I under different data sets and different scenarios to

understand under which scenarios the cheaper IPPR-M can be used instead of the

relatively more expensive IPPR-I.

7.2 Problem Formulation

7.2.1 Interval Edges and Interval Graphs

Let G(V,E,W ) be a graph, where V is a set of nodes, E is a set of edges, and W

is a set of weights on edges E. There are two kind of values of a weight wij ∈W on

an edges eij ∈ E whose a source node is vi ∈ V and vj ∈ V .

Definition 15 (Interval Valued Edge Weight) An interval weight wij on eij be-

tween vi ∈ V and vj ∈ V is written as [wij
∗
,w∗

ij] where wij
∗

is the minimum value and

w∗
ij is the maximum value of the interval value.

Definition 16 (Scalar Valued Edge Weight) Scalar valued edge weight is a spe-

cial case of interval weights, with wij
∗
= w∗

ij that the minimum value and the maximum
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value are the same.

Given this, an interval edge eij is defined as follows:

Definition 17 (Interval Edge) An interval edge eij ∈ E is an interval valued edge,

with a non-scalar interval weight wij. 1.

Definition 18 (Interval Graph) An interval graph GI is a graph which has at least

one interval edge.

Figure 7.2(a) shows an example of a graph with interval edges. From a node vi,

there are four outgoing edges with different edge weights: wia = 3,wib = 5,wic = [4,8],

and wid = [1,5]. For edges from vi to va and vb, edge weights are scalar valued. For

edges from vi to vc and vd, edge weights are interval valued.

7.2.2 Naive Approach: PPR Computation with Sampling

One approach to approximately compute PPR values in an interval graph is to

generate a subset of the ”possible worlds”, by sampling edge weights within the

intervals associated to the edges. In this approach, we consider the edge weights as

sampled values by selecting d values randomly in each interval weight.

Definition 19 (d-Sample Graph) Let G = (V,E,W ) be an interval graph which

has a set of nodes, V , and a set of edges, E, with interval valued edge weights,

W : given an edge from vi to vj, the corresponding weight wij has an interval value,

[wij
∗
,w∗

ij]. A d-sample graph, G′ = (V,E,W ′) is a graph which has same V and E

as G but has weights, W ′, where each w′
ij ∈ W

′ is a set of d scalar values, w′
ij =

{w′
ij(1)

, . . . ,w′
ij(d)

} such that wij∗ ≤ w′
ij(k)

≤ w∗
ij.

1When the interval contains 0, this represents the special case of non-existence of the edge. We

do not consider this case in this chapter since it is already discussed in Chapter 6
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Figure 7.2: Examples of Interval-valued/Sampled/Scalar-valued Graphs

Figure 7.2(b) shows an example of 3-sample graph sampled from Figure 7.2(a).

On the uncertain edge eic, 3 values have been randomly selected from the interval

[4,8]; similarly on edge eid, 3 values have been are randomly selected.

When an edge eij ∈ E has d scalar values as the edge weight w′
ij, there are d

possible worlds pw(eij) for the edge. When we consider a graph with sampled edges,

all possible worlds covered by this graph are defined as ∏e∈E pw(e) which is the

product of the possible worlds of edges. Therefore, if there are ∥EI∥ interval edges in

the graph and the sampling rate is d, there would be d∥EI∥ scenarios to be evaluated

to compute the expected value of the PPR scores. It is easy to see that this approach

quickly becomes unfeasible as it requires one to compute PPR scores for exponentially

many possible worlds.

7.2.3 Personalized PageRank in an Interval Graph

Given the above definitions, I now define personalized PageRank in an interval

graph. Given the above definitions, we now define personalized PageRank in an

interval graph.

Definition 20 ( Personalized PageRank in an Interval Graph) Let GI(V,E,W )
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be an interval graph. Given a seed set, S, of nodes we can define the personalized

PageRank vector r⃗ as

r⃗ = αTI r⃗ + (1 − α)e⃗,

where TI denotes a normalized transition matrix generated from GI with interval

values, α is a residual probability, and e⃗ is a seed vector if vi ∈ S, then s⃗[i] = 1
∥S∥ and

s⃗[i] = 0, otherwise.

7.3 Interval Personalized PageRank with Integration (IPPR-I)

In this section, I first introduce transition matrices for interval graphs and propose

an Interval Personalized PageRank with Integration (IPPR-I) method to compute

optimal PPR scores in graphs with interval valued edge weights.

7.3.1 Interval Transition Matrix for Interval Graphs

Let GI = (V,E,W ) be an interval graph, with ∥V ∥ nodes and ∥E∥ edges. Each

edge, eij ∈ E, between two nodes, vi ∈ V and vj ∈ V , has a weight, wij, which can be

a scalar or an interval, [wij
∗
,w∗

ij]. To compute PPR scores of this interval graph, we

need to build a transition matrix TI corresponding to the interval weighted graph GI .

Case I: A Node with the Number of Outgoing Interval Edges = 1

Let vi be a node which has a single outgoing interval edge to vk with an edge weight,

[wik∗ ,w
∗
ik]. The transition matrix, TI , needs to include normalized probabilities for

outgoing edges, summing to 1. We compute transition probabilities for the outgoing

edges of vi as follows:

� No other outgoing edges: If the only outgoing edge from vi is the interval

valued edge from vi to vk, then the random walk has to go over this edge in-

dependent of the specific interval weights. Therefore, the transition probability
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T [k, i] is set as 1. In other words, since there is only one outgoing edge, the

transition probability value is 1 and the interval value, [wik∗ ,w
∗
ik] does not affect

the transition (again assuming that wik∗ > 0).

� With other (scalar valued) outgoing edges: Let wij be a scalar edge weight

on an edge, eij, from vi to vj and swi be sum of all outgoing scalar valued edge

weights from vi. In this case, the integrated weight, I[j, i] can be computed as

∫

w∗ik

wik∗

wij
swi + x

dx = wij × ln(swi + x)∣
w∗ik

wik∗

= wij × (ln(swi +w
∗
ik) − ln(swi +wik∗))

= wij × ln(
swi +w∗

ik

swi +wik∗
),

where x is a variable corresponding to the possible scalar values the interval

edge can take. Intuitively, the integral considers all possible values that the

interval valued edge can take and normalizes the transition probability along

the edge from vi to vj accordingly. Similarly, the integrated weight, I[k, i] can

be computed with

∫

w∗ik

wik∗

x

swi + x
dx = (x − swi × ln(swi + x))∣

w∗ik

wik∗

= (w∗
ik − swi × ln(swi +w

∗
ik)) − (wik∗ − swi × ln(swi +wik∗))

= w∗
ik −wik∗ + swi × ln(

swi +wik∗
swi +w∗

ik

).

Given these integrated weights, we can obtain the transition probabilities by nor-

malizing the corresponding column in the transition matrix such that the sum of

entries is equal to 1.0:

T [j, i] =
I[j, i]

I[j, i] + I[k, i]
and T [k, i] =

I[k, i]

I[j, i] + I[k, i]
.

For example, in Figure 7.3, integrated weights on the two outgoing edges can be

computed as follows:

I[a, i] = ∫
5

1

3

3 + x
dx = 3 × (ln(3 + 5) − ln(3 + 1)) ≈ 2.079,
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I[d, i] = ∫
5

1

x

3 + x
dx = (5 − 3 × ln(3 + 5)) − (1 − 3 × ln(3 + 1)) ≈ 1.921.

After the normalization process, we get the transition probabilities, T [a, i] = 0.5199

and T [d, i] = 0.4801. Note that, though the mean of the interval [1,5] on wdi is same

as the scalar value wai, T [d, i] is less than T [a, i]. This means that replacing the

interval edge weights simply with the means of the intervals (as I will consider in

Section 7.5) may not give the optimal solution.

Case II: A Node with the Outgoing Number of Interval Edges = 2

When the node has more than one outgoing interval edges, we need multiple integrals

each corresponding to one of the interval edges. For instance, let us consider a node

vi with two outgoing interval valued edges, (one to vk with [wik∗ ,w
∗
ik] interval weight

and vl with [wil∗ ,w
∗
il] interval weight). Let us assume that the sum of all scalar valued

outgoing weights for vi is equal to swi. In this case, the integrated weight, I[j, i] from

node vi to node vj with scalar valued weight, wij, can be computed as

∫

w∗il

y=wil∗

∫

w∗ik

x=wik∗

wij
swi + x + y

dxdy = wij × ((−y + (w∗
ik + x + y) ln(w∗

ik + x + y))∣
w∗ik

wik∗

)∣
w∗il

wil∗
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Similarly, the integrated weight, I[k, i], corresponding to the interval valued edge vi

to vk is computed as

∫

w∗il

y=wil∗

∫

w∗ik

x=wik∗

x

swi + x + y
dxdy

=
1

4
× (y × (2w∗

ik + 2x + y) − 2 × (w∗
ik

2
− x2 + 2w∗

iky + y
2) × ln(w∗

ik + x + y))∣
w∗ik

wik∗

∣
w∗il

wil∗

.

To obtain the actual transition probabilities, we need to normalize the corresponding

integrated weights in each column of the transition matrix.

For example, if we consider the example graph fragment in Figure 7.2(a) which shows

a node with two outgoing interval weighted edges, we can compute the integrated

weights as follows:

I[b, a] = ∫
8

y=4
∫

5

x=1

3

8 + x + y
dxdy = 2.8502

I[c, a] = ∫
8

y=4
∫

5

x=1

5

8 + x + y
dxdy = 4.7503

I[d, a] = ∫
5

x=1
∫

8

y=4

y

8 + x + y
dy dx = 5.6249.

I[e, a] = ∫
8

y=4
∫

5

x=1

x

8 + x + y
dxdy = 2.7747.

After the normalization, we can get the transition probabilities as T [b, a] = 0.1781,

T [c, a] = 0.2969, T [d, a] = 0.3516, and T [e, a] = 0.1734.

General Case

When the number of interval weighted edges from a node vi is more than 2, it requires

same number of multiple integrals as the number of interval edges.

Given an interval graph GI(V,E,W ), let vi ∈ V be a node that have different type

of outgoing edges: Let R = {R1, . . . ,Rm} denote the set of scalar valued outgoing

edges and N = {N1, . . . ,Nn} denote the set of interval valued outgoing edges.
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Given this, the integrated weight for a scalar valued edge from node vi to node vj

is defined as

I[j, i] = ∫
w∗in

win∗

. . .∫
w∗i1

wi1∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

weight(Rj)

∑
m
u=0weight(Ru) + (x1 + ⋅ ⋅ ⋅ + xn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

dx1 . . . dxn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

whereas the integrated weight for an interval weighted edge from node vi to node vh

is defined as

I[k, i] = ∫
w∗in

win∗

. . .∫
w∗i1

wi1∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

xk

∑
m
u=0weight(Ru) + (x1 + ⋅ ⋅ ⋅ + xn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

dx1 . . . dxn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

,

Once again, these integrated weights need to be normalized to 1.0 to obtain the

transition probabilities for the outgoing edges from vi.

Note that for any graph with a maximum outgoing degree, dmax, we need to pre-

compute the 2× dmax closed-form formulas that can be used to obtain the integrated

weights and outgoing transition probabilities for any node in the graph.

7.3.2 Interval Personalized PageRank with Integration (IPPR-I)

Given the interval normalized transition matrix TI, it is straight-forward to com-

pute interval personalized PageRank (IPPR-I) scores in the form of a vector

r⃗ = αTIr⃗ + (1 − α)e⃗,

where α is a residual probability, TI is an interval weighted normalized transition

matrix, and e⃗ is a re-seeding vector, such that given a set of seeds S, if vi ∈ S, then

e⃗[i] = 1
∥S∥ and e⃗[i] = 0, otherwise when S is a set of seeds.

7.4 Interval Personalized PageRank with Mean (IPPR-M)

One approach to obtain approximate PPR scores in an interval graph is to use

the mean of interval weights. Instead of integrating interval values [wij
∗
,w∗

ij] as
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described in the previous section, we could flatten the interval values into scalars

w
′

ij, by averaging the minimum value and the maximum value
wij∗+w

∗

ij

2 and compute

conventional PPR scores with these flattened scalar values. Figure 7.2(c) shows an

example of mean of weights from Figure 7.2(a). In this approach, wia and wid are

the same and treated with same transition probabilities As we see in Section 7.6, this

approach provides approximate PPR scores very efficiently. The key question, then

is under what conditions such an approximation can be effective. In Section 7.6, we

experimentally study the conditions in which this approach works well.

7.5 Mixing Factor and Localized Graph

As I described in previous sections, IPPR-I is an optimal solution to compute

PPR scores accurately and IPPR-M is an approximate solution for relatively fast

computation in an interval graph. In this section, I will describe how to make a

choice between IPPR-I and IPPR-M for the better performance. t first, I define

low-mixing factor as follows:

Definition 21 (Low-Mixing Factor) We call a graph low-mixing factor if

� the structure is tree like,

� interval edges have similar values, and

� number of outgoing interval edges are similar.

A tree-structured graph such as Binary tree [85] and taxonomic/hierarchical tree [25]

is an example of low-mixing factor. From seed nodes, the connections are spread into

the network with less number of commons nodes between neighbors. A small-world

network [109] is another example of low-mixing factor graphs. In Figure 7.4(a), it

shows a binary tree-structured graph spreading from a leftmost node to other nodes
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Figure 7.4: An Example of Rankings of IPPR-R and IPPR-M

with less number of common nodes. If a graph is randomly generated, there is a high

chance that the mixing factor of the graph is high. The local clustering coefficient

that quantifies how much its neighbors are connected can be a mixing factor. If it is

low, the mixing factor is low and otherwise, the mixing factor is high.

When a graph is with low-mixing factor, the accuracy of IPPR-M is lower than

IPPR-I and for high-mixing factor, the accuracy of IPPR-M is close to that of IPPR-

I. When there are mixture of incoming scalar valued edges and incoming interval

valued edges to a node, the scalar valued edges cancel the impact of incoming interval

valued edges out because they have higher probability than interval valued edges.

The combinations of these edges make the interval values close to the average of the

intervals. Therefore, when the mixing factor is high, the transition matrix and PPR

scores of IPPR-M and IPPR-I are similar, so it is better to use IPPR-M for same

accuracy with fast execution time.

For example, in Figure 7.4, the mixing factor is low since the graph is a binary-tree

structure with very less number of common nodes among neighbors. In the circle of

nodes, it shows the PPR ranking scores of nodes for IPPR-I and IPPR-M when the
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leftmost node is a seed node (with Green color). The thick lines are interval valued

edges with [1 − 9] and the thin lines are scalar valued edges with 5. As discussed in

Section 7.3.1, since the probabilities of interval valued edges are less than those of

scalar valued edges, the rankings of nodes which have only incoming interval edges

are lower than the nodes which have only incoming scalar edges. The impact of

interval valued edges becomes less when a node has both incoming interval valued

edges and scalar valued edges. On the right most layer, The node (with blue color)

whose ranking is 9 in (Figure 7.4)(a) has both an incoming interval valued edge and

an incoming scalar valued edge. The combination of these edges lifts its ranking score

and makes the ranking close to the ranking in IPPR-M (Figure 7.4)(b). Therefore,

If a graph has a high-mixing factor, it would be better to use IPPR-M instead of

IPPR-I with almost same accuracy and faster execution. In Section 7.6, we evaluate

the impact of different mixing factors and show when IPPR-I or IPPR-M is suitable

for better accuracy.

When the graph has a high-mixing factor, it is better to use IPPR-M instead of

IPPR-I, but instead of it, we can identify parts of a graph with low-mixing factor and

limit IPPR-I computation only to those parts as we described in Chapter 3. Given

an interval graph, we can compute the localities of the seed nodes and check whether

each individual locality has high or low mixing factor, and use IPPR-I or IPPR-M

appropriately for each locality.

7.6 Experimental Evaluation

In this section, I will present results of experiments assessing the efficiency and

effectiveness of IPPR-M and IPPR-I algorithms.
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parameter values

# of nodes 50, 100, 500, 1000, 5000, 10000

scalar & interval weights 3&[1,5], 50&[1,99], random&random([1,99])

number of out-degree for a node 4, 6, 8, random

% of interval edges for a node 50%, random

mixing factor 0, 0.5, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5

Table 7.1: Data and Parameters

7.6.1 Datasets and setup

Table 7.1 shows the overview of data and parameters. For all experiments, we start

a graph which is a Tree-like random graph. The basic setting of the experiments is

when the number of outgoing degree of nodes is 6 and half of edges is a set of scalar

edges with 50 and the rest is a set of interval edges with [1,99]. I will change the

numbers and show how the performance of PPR-M and PPR-I is changed. Here is

how to generate a tree-like random graph. At first, given the number of nodes and

the degree of a node, from a seed node, I made connections to nodes with the degree

with setting half of edges are scalar value weights and the rest are interval value

weights. Using Breath-first search, I continuously add more nodes until the number

of nodes in the graph is larger than the given number of nodes. Since the graph is

tree-structured, the number of edges is the number of nodes - 1. Given the graph, I

added more edges with mixing factors and increased the number of edges randomly.

When mixing factor is 0.1, we add 10% more edges with random edge weight type

(scalar/interval) into the graph. The increase of mixing factors means the increase of

clustering coefficient. The residual probability, α is set with default value chosen as

0.85.
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Figure 7.5: Rank Correlation Results on Different Range of Intervals

7.6.2 Measure

In this experiment, I consider the accuracy and efficiency. For the accuracy, I

report the Spearman’ rank correlation

∑i(xi − x̄)(yi − ȳ)
√
∑i(xi − x̄)

2∑i(yi − ȳ)
2

between the rankings of IPPR-M and IPPR-I. For efficiency, I check the execution

time of IPPR-M and IPPR-I for different parameters.

7.6.3 Results and Discussions

Figure 7.5 shows the impact of range of interval edges. The results on large range

of intervals show that the degree of increase of the correlation is lower than results

of small range of intervals. Given small range of intervals, the mixing factor brings

more significant impact on rank correlation. In Figure 7.5(a), when the mixing factor

is 0.5, all correlation results became more than 0.95 and in Figure 7.5(b), after 0.3

mixing factor, correlation results are more than 0.95 which is much slower than small

range results. This result shows that it is better to use IPPR-I than IPPR-M if the

range of interval weights is large. Additionally, when the mixing factor is larger, the

impact of interval edges becomes same as scalar edges. For example, in Figure 7.5(a),

when the mixing factor becomes 0.2, the rank correlation is more than 0.95 which
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Figure 7.6: Rank Correlation Results on Different Outgoing Degrees of Nodes

means that rankings of PPR-M is almost same as rankings of PPR-I.

Figure 7.6 shows how the number of degree of nodes affect IPPR-M and IPPR-

I. When the outdegree is large and the graph structure is Tree-like, the correlation

became much lower than the case of small outdegree. The degree of increase of

correlation values as the mixing factor is increased is similar between small outdegree

and large outdegree but when the cluster coefficient is low, it rather uses IPPR-I than

IPPR-M for the better accuracy.

Figure 7.7 shows results of randomly selected cases. When the edge weights are

random, the correlation stays close to 1 on all of mixing factors. This means that

using PPR-M is a better selection when the variance of edge weights in a graph is

high. Figure 7.7(b) shows that the high variance of out-degrees also depolarize the

strength of interval edges. In both cases, PPR-I is a good choice in all mixing factors.

In opposite to (a) and (b), for the random % of interval edges in a graph, Figure 7.7(c)

shows that randomness on the number of interval edges is an exceptional case for the

correlation. This is for the general case of interval edges with random percentage

selection of outgoing edges on nodes. The shape of results are similar to Figure 7.5(a)

with fast increase of correlations as the mixing factor is larger. The results show that

the mixing factor has same impact in rank correlation as the small range of interval

weights.
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Figure 7.8: Results of Execution on IPPR-M and IPPR-I

Figure 7.8(a) and (b) are the results of execution times of IPPR-M and IPPR-I.

They show that the execution time of IPPR-M is much lower than that of IPPR-I. I

do not report execution times on other experiments because the execution times for

all different parameter settings stay consistent and are almost same as Figure 7.8.

The results show that we need to choose PPR-M or PPR-I based on the cluster

coefficient, the variance of weights, and the variance of outdegrees.
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Chapter 8

CONCLUSIONS

In this chapter, I briefly recap the contributions in this thesis. Node proximity mea-

sures are commonly used for quantifying how nearby or otherwise related to two or

more nodes on a graph are. Node significance measures are applied to find the im-

portance of nodes in a graph. PageRank is one of the most widely-used random-walk

based methods for measuring node importance and has been used in a variety of

application domains. Personalized PageRank is an alternative approach to find the

relativeness and closeness of nodes related to the seed set given by the user. Despite

its performance, there are some challenges such as 1) scalability issues in the large

graph and 2) accuracy issues without considering on the relationship between the sig-

nificance of the node and its degree. Additionally, it fails to compute ranking scores

given an 3) uncertain graph with the exponential combinations of possible worlds.

8.1 Locality-Sensitive, Re-use Promoting, Approximate Personalized PageRank

For the scalability challenge, in Chapter 3, I presented a Locality-sensitive, Re-use

promoting, approximate Personalized PageRank (LR-PPR) algorithm for efficiently

computing the PPR values relying on the localities of the seed nodes on the graph.

Instead of performing a monolithic computation for the given seed node set using

the entire graph, LR-PPR divides the work into localities of the seeds and caches

the intermediary results obtained during the computation. These cached results can

then be reused for future queries sharing seed nodes. Experiments showed that the

proposed LR-PPR approach provides significant gains in execution time relative to

existing approximate PPR computation techniques, where the PPR scores are com-

165



puted from scratch using the whole network. LR-PPR also outperforms L-PPR, where

the PPR scores are computed in a locality-sensitive manner, but without significant

re-use, with negligible impacts on accuracy.

8.2 Impact Neighborhood Indexing in Diffusion Graphs

For the locality selection approach, in Chapter 4, I proposed a propagation and

erasure based impact neighborhood indexing (INI) algorithm for efficiently identifying

the neighborhood of a given node with formally defined the concept of zero-erasure

and r-radius impact neighborhoods. I also proposed various optimization techniques

to reduce false positives and improving storage and execution time efficiency of the

algorithm.

8.3 Degree Decoupled PageRank

In Chapter 5, for the accuracy challenge, I noted that in many applications the

relationship between the significance of the node and its degree in the underlying

network may not be as strong (or as weak) as implied by PageRank-based measures.

As I have experimentally shown in the section, in some applications, the significance

of the node may even be negatively correlated with the node degree and in such

applications a naive application of PageRank or personalized PageRank may return

poor results. I proposed degree de-coupled PageRank (D2PR) technique to improve

the effectiveness of PageRank based knowledge discovery and recommendation tasks.

I first showed how to choose the penalty degree for penalizing or boosting the random-

walk probability using the correlation between PageRank ranking scores and expected

values on a given network and then showed how to calculate rankings using the

penalty degree. Evaluations on different data graphs and recommendation tasks have

confirmed that degree de-coupling would be an effective way to match application
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specific node significances and improve recommendation accuracies using PageRank

based approaches.

8.4 Uncertain Personalized PageRank

In Chapter 6, for the uncertainty of edge existence, I presented an uncertain edge

model with mutual exclusion and multiple edge selections in uncertain graphs. While

there are several ways to naively extend existing personalized PageRank computation

techniques to graphs with uncertain edges, these either lead to large degrees of errors

or are very expensive to compute in practice. I, therefore, proposed a novel Uncertain

Personalized PageRank (UPPR) algorithm to approximately compute personalized

PageRank values on such graphs. Experiments confirmed that the proposed technique

has very high accuracy and is multiple-orders faster than available algorithms that

can provide comparable accuracy.

8.5 Interval Personalized PageRank

For the challenge of uncertainty on edge weights as interval values, in Chapter 7,

I explained that how much it is difficult to compute the ranking scores with interval

weights on edges in a graph. It can be computed by interval matrix computation of

PPR equations with sampling on interval ranges of edge weights but it requires to

compute all possible worlds of combinations of edge weights. It leads to some prob-

lems on complexity, execution time, and low accuracies. To overcome the problem,

I proposed Interval Personalized PageRank with Integrals (IPPR-I) algorithm which

computes optimal PPR scores with integral calculations on interval edge weights.

IPPR− I returns accurate PPR scores without approximation but it requires execu-

tion time for integral computations. I also presented an efficient Interval Personalized

PageRank with Mean (IPPR-M) which is an approximate personalized PageRank al-
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gorithm that computes the scores quickly with mean of interval values in a graph.

The experimental results shows when the cheaper and approximate IPPR −M can

be used instead of relatively expensive but accurate IPPR −M .
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Chapter 9

FUTURE WORKS

In this chapter, I discuss my future research directions.

9.1 SVD Decomposition of an Interval Valued Matrix

In linear algebra, matrix decomposition is a factorization of a matrix into a product

of matrices. In the real world, it is not feasible to calculate the matrix computations

when the size of data matrices are very large, so decomposing matrices into some

low-order canonical forms helps to compute and analyze the data with the inherent

characteristic and structure of matrices. The problem is that, when a matrix has

interval values, it is difficult to decompose matrices holding low error rates.

LetM be an interval matrix. If we split an interval valuedM into two scalar valued

matrices Ml and Mh, consisting of minimum and maximum values respectively, we

can then seek decompositions

Ml = USlV and Mh = UShV.

The problem is that, in general, it may not be possible to find left-singular vectors

and right-singular vectors with the same vector of Ml and Mh. Therefore, we can

instead seek

Ml = UlSlVl and Mh = UhShVh

such that Ul ∼ Uh and Vl ∼ Vh with

Ml ∼ (
Ul +Uh

2
)Sl(

Vl + Vh
2

) and Mh ∼ (
Ul +Uh

2
)Sh(

Vl + Vh
2

).
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Algorithm 1 Interval Matrix Decomposition
1: Let M be an interval matrix which is partitioned into two matrices Ml and Mh, con-

sisting of minimum and maximum values respectively.

2: Let {⟨Ul,1, Sl,1, Vl,1⟩, . . . , ⟨Ul,n, Sl,n, Vl,n⟩} be the n left-singular vectors, rectangular di-

agonal matrix, and right singular vectors pairs for Ml.

3: Let {⟨Uh,1, Sh,1, Vh,1⟩, . . . , ⟨Uh,m, Sh,m, Vh,m⟩} be the m left-singular vectors, rectangular

diagonal matrix, and right singular vectors pairs for Mh.

4: Let k =min(n,m).

5: Find a mapping µi = ⟨µl,i, µh,i⟩ such that ∑1≤i≤k ∥Ul,µl,i −Uh,µh,i∥ is minimum.

6: Given this mapping, for the first k pairs of M are

U ′
i = avg (Ul,µl,i , Uh,µh,i) , V ′

i = avg (Vl,µl,i , Vh,µh,i) , and

S′i = [min(Sl,µl,i , Sh,µh,i),max(Sl,µl,i , Sh,µh,i)]

7: If k = n then, the next m − n pairs are

U ′
i = Uh,i , V ′

i = Vh,i, and S′i = [min(0, Sh,i),max(0, Sh,i)]

where Uh,i, Vh,i, and Sh,i are the unmatched vectors and eigenvalues of Mh.

8: If k =m, then, the next n −m pairs are

U ′
i = Ul,i , V ′

i = Vl,i, and S′i = [min(0, Sl,i),max(0, Sl,i)]

where Ul,i, Vl,i, and Sl,i are the unmatched vectors and eigenvalues of Ml.

Given these, we have

S′ = [min(Sl, Sh),max(Sl, Sh)] , U ′ =
Ul +Uh

2
, and V ′ =

Vl + Vh
2

which U ′, S′, and V ′ are the decomposed matrices from an interval matrix M.

Based on the above approach, Algorithm 1 shows steps how to decompose an

interval matrix. At step 1, given an interval matrix M , it is separated into two
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matrices which have scalar valued matrices Ml and Mh for minimum and maximum

values of M . At step 2 and 3, we compute the matrix decomposition on each matrix

with basic SVD matrix decomposition. After finding the minimum low ranks of two

matrices (step 4), in step 5, we use a matching algorithm to minimize the difference

between left-singular vectors, Ul and Uh. In step 6, we get the decomposed matrices

U ′, S′, and V ′ with averaging matched Ul,µl,i and Uh,µh,i , averaging matched Vl,µl,i and

Vh,µh,i , and finding the minimum eigenvalue and the maximum eigenvalue between

Sl,µl,i and Sh,µh,i . This approach keeps the interval values only in S′ and U ′ and V ′

have only scalar values in the matrices.

9.2 Matrix Inverse on an Interval Valued Matrix

I, first, explain interval matrix arithmetics and propose an efficient algorithm how

to compute an inverse matrix of an interval-valued Matrix.

9.2.1 Interval Matrix Arithmetic

Let M be an interval matrix whose values are defined by interval. M(i, j) is an

interval value and can be defined as [a∗, a∗] where a∗ is the minimum value and a∗

is the maximum value. span([a∗, a∗]) is an integer that is the range of interval value

and computed by (a∗ − a∗).

For given Ma(i, j) = [a∗, a∗] and Mb(i, j) = [b∗, b∗] of two interval matrix Ma and

Mb,

� the addition of interval values in two interval matrices:

[a∗, a
∗] + [b∗, b

∗] = [a∗ + b∗, a
∗ + b∗]

� the subtraction of interval values:

[a∗, a
∗] − [b∗, b

∗] = [a∗ − b∗, a
∗ − b∗]
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� the multiplication of interval values:

[a∗, a
∗] × [b∗, b

∗] = [min(a∗ × b∗, a∗ × b
∗, a∗ × b∗, a

∗ × b∗),

max(a∗ × b∗, a∗ × b
∗, a∗ × b∗, a

∗ × b∗)]

When the value is scalar such as Ma(i, j) = a = a∗ = a∗, the multiplication is defined

as

[a, a] × [b∗, b
∗] = [min(a × b∗, a × b

∗),max(a × b∗, a × b
∗)].

9.2.2 Matrix Inverse in a Diagonal Interval Valued Matrix

Let S be a k × k diagonal interval matrix, where the entries in the diagonal may

have interval values and the rest of the entries are 0. Let assume that the entries in

the diagonal are non-negative numbers.

We seek a k × k diagonal matrix, S−1, such that

S S−1 = Ĩ ,

where Ĩ is a k ×k interval valued matrix, approximately equal to the identity matrix.

More specifically, for all 1 ≤ i ≤ k, we have Ĩ(i, i) = [1− εi,1+ εi], where 0 ≤ εi ≤ 1. We

solve for S−1 as follows: Let S(i, i) = [si∗, s∗i ] and S−1(i, i) = [σi∗, σ∗i ]. We seek σi∗

and σ∗i values that minimize the value of εi subject to the constraints:

si∗ × σi∗ = 1 − εi , s∗i × σ
∗
i = 1 + εi , 0 ≤ εi ≤ 1, and σi∗ ≤ σ

∗
i .

We can apply si∗ × σi∗ = 1 − εi and s∗i × σ
∗
i = 1 + εi to σi∗ ≤ σ∗i .

1 − εi
si∗

≤
1 + εi
s∗i

This equation can be rewritten as

(
1

si∗
+

1

s∗i
)εi ≥

1

si∗
−

1

s∗i
.
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Using this equation, we get the following equation,

0 ≤
s∗i − si∗
si∗ + s∗i

≤ εi ≤ 1.

This equation shows that εi is minimum when it is equal to
s∗i −si∗
si∗+s

∗

i
, and this case

works when σi∗ = σ∗i . Therefore, after inverting the interval matrix S whose elements

contain interval values, elements in interval inverse matrix S−1 has only scalar values

where σi∗ = σ∗i . Additionally, when σi∗ = σ∗i = σi, the equations,

si∗ × σi = 1 − εi and s∗i × σi = 1 + εi,

are used to get σi as follows,

σi =
2

si∗ + s∗i
= inv(

si∗ + s∗i
2

).

Using this equation, we can easily get the inverse matrix and the elements become

scalar values.
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