43 research outputs found

    Expedited batch processing and analysis of transposon insertions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With advances in sequencing technology, greater and greater amounts of eukaryotic genome data are becoming available. Often, large portions of these genomes consist of transposable elements, frequently accounting for 50% or more in vertebrates. Each transposable element family may have thousands or tens of thousands of individual copies within a given genome, and therefore it can take an exorbitant amount of time and effort to process data in a meaningful fashion.</p> <p>Findings</p> <p>In order to combat this problem, we developed a set of bioinformatics techniques and programs to streamline the analysis. This includes a unique Perl script which automates the process of taking BLAST, Repeatmasker and similar data to extract and manipulate the hit sequences from the genome. This script, called Process_hits uses an object-oriented methodology to compile all hit locations from a given file for processing, organize this data into useable categories, and output it in multiple formats.</p> <p>Conclusions</p> <p>The program proved capable of handling large amounts of transposon data in an efficient fashion. It is equipped with a number of useful sub-functions, each of which is contained within its own sub-module to allow for greater expandability and as a foundation for future program design.</p

    A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

    Get PDF
    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. Here, we designed a de novo strategy for detecting patterns that represent nested motifs based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories: motifs within other motifs, motifs flanked by other motifs, and motifs of large size. Our methodology, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to find putative nested TEs by detecting these three types of patterns. The results were validated though BLAST alignments, which revealed the efficacy and usefulness of the new method, which we call Mamushka.Fil: Romero, José Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Cs. E Ingeniería de la Computacion; ArgentinaFil: Garbus, Ingrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Echenique, Carmen Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Cs. E Ingeniería de la Computacion; Argentin

    A machine learning based framework to identify and classify long terminal repeat retrotransposons

    Get PDF
    Transposable elements (TEs) are repetitive nucleotide sequences that make up a large portion of eukaryotic genomes. They can move and duplicate within a genome, increasing genome size and contributing to genetic diversity within and across species. Accurate identification and classification of TEs present in a genome is an important step towards understanding their effects on genes and their role in genome evolution. We introduce TE-LEARNER, a framework based on machine learning that automatically identifies TEs in a given genome and assigns a classification to them. We present an implementation of our framework towards LTR retrotransposons, a particular type of TEs characterized by having long terminal repeats (LTRs) at their boundaries. We evaluate the predictive performance of our framework on the well-annotated genomes of Drosophila melanogaster and Arabidopsis thaliana and we compare our results for three LTR retrotransposon superfamilies with the results of three widely used methods for TE identification or classification: REPEATMASKER, CENSOR and LTRDIGEST. In contrast to these methods, TE-LEARNER is the first to incorporate machine learning techniques, outperforming these methods in terms of predictive performance , while able to learn models and make predictions efficiently. Moreover, we show that our method was able to identify TEs that none of the above method could find, and we investigated TE-LEARNER'S predictions which did not correspond to an official annotation. It turns out that many of these predictions are in fact strongly homologous to a known TE

    Elements transposables, de l'excepció a la norma

    Get PDF
    Els elements transposables són seqüències amb la capacitat de canviar la seva posició en el genoma. Són uns components molt abundants, que en el cas del genoma humà representen fins al 50 % del genoma. Tot i la seva gran diversitat, es poden agrupar en dos grans tipus, segons el seu mecanisme de mobilització. Essencialment són considerats paràsits intracel·lulars, amb una gran habilitat per replicar-se i evitar ser eliminats per l'hoste. A més de mobilitzar-se dins del genoma i transmetre's verticalment a la descendència, molts elements transposables han estat capaços de saltar la barrera de les espècies i transferir-se horitzontalment entre els genomes. La genètica ha desenvolupat diferents mètodes per detectar els elements transposables dins de les seqüències genòmiques i estudiar-ne el comportament, tant dins com entre les espècies. En alguns casos el genoma ha domesticat un element transposable, que desenvolupa una funció cel·lular. Finalment, constitueixen una font de variabilitat, que és la matèria primera per a l'evolució de les espècies.Transposable elements are sequences with the ability to change their position in the genome. They are very abundant, representing up to 50% of the sequence in the case of the human genome. In spite of their high diversity they can be grouped into two big classes, according to their mechanism of mobilization. They are essentially considered to be intracellular parasites, with a great ability to replicate and to avoid elimination by the host. Besides mobilizing inside the genome and being vertically transmitted to descendants, several transposable elements have been able to cross the species borders, horizontally transmitting across genomes. Genetics has developed different methods to detect transposable elements in genome sequences, as well as to study their behavior within and between species. In some cases genomes have been able to domesticate some of them, those that are developing cellular functions. Finally, they are a source of variability, the raw material for the evolution of species

    MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences

    Get PDF
    Miniature inverted-repeat transposable elements (MITEs) are a special type of Class 2 non-autonomous transposable element (TE) that are abundant in the non-coding regions of the genes of many plant and animal species. The accurate identification of MITEs has been a challenge for existing programs because they lack coding sequences and, as such, evolve very rapidly. Because of their importance to gene and genome evolution, we developed MITE-Hunter, a program pipeline that can identify MITEs as well as other small Class 2 non-autonomous TEs from genomic DNA data sets. The output of MITE-Hunter is composed of consensus TE sequences grouped into families that can be used as a library file for homology-based TE detection programs such as RepeatMasker. MITE-Hunter was evaluated by searching the rice genomic database and comparing the output with known rice TEs. It discovered most of the previously reported rice MITEs (97.6%), and found sixteen new elements. MITE-Hunter was also compared with two other MITE discovery programs, FINDMITE and MUST. Unlike MITE-Hunter, neither of these programs can search large genomic data sets including whole genome sequences. More importantly, MITE-Hunter is significantly more accurate than either FINDMITE or MUST as the vast majority of their outputs are false-positives
    corecore