5,729 research outputs found

    On the posterior distribution of classes of random means

    Get PDF
    The study of properties of mean functionals of random probability measures is an important area of research in the theory of Bayesian nonparametric statistics. Many results are now known for random Dirichlet means, but little is known, especially in terms of posterior distributions, for classes of priors beyond the Dirichlet process. In this paper, we consider normalized random measures with independent increments (NRMI's) and mixtures of NRMI. In both cases, we are able to provide exact expressions for the posterior distribution of their means. These general results are then specialized, leading to distributional results for means of two important particular cases of NRMI's and also of the two-parameter Poisson--Dirichlet process.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ200 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Nonlinear Models Using Dirichlet Process Mixtures

    Full text link
    We introduce a new nonlinear model for classification, in which we model the joint distribution of response variable, y, and covariates, x, non-parametrically using Dirichlet process mixtures. We keep the relationship between y and x linear within each component of the mixture. The overall relationship becomes nonlinear if the mixture contains more than one component. We use simulated data to compare the performance of this new approach to a simple multinomial logit (MNL) model, an MNL model with quadratic terms, and a decision tree model. We also evaluate our approach on a protein fold classification problem, and find that our model provides substantial improvement over previous methods, which were based on Neural Networks (NN) and Support Vector Machines (SVM). Folding classes of protein have a hierarchical structure. We extend our method to classification problems where a class hierarchy is available. We find that using the prior information regarding the hierarchical structure of protein folds can result in higher predictive accuracy

    Bayesian Nonparametric Calibration and Combination of Predictive Distributions

    Get PDF
    We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan, R. and Gneiting, T. (2010) and Gneiting, T. and Ranjan, R. (2013), we use infinite beta mixtures for the calibration. The proposed Bayesian nonparametric approach takes advantage of the flexibility of Dirichlet process mixtures to achieve any continuous deformation of linearly combined predictive distributions. The inference procedure is based on Gibbs sampling and allows accounting for uncertainty in the number of mixture components, mixture weights, and calibration parameters. The weak posterior consistency of the Bayesian nonparametric calibration is provided under suitable conditions for unknown true density. We study the methodology in simulation examples with fat tails and multimodal densities and apply it to density forecasts of daily S&P returns and daily maximum wind speed at the Frankfurt airport.Comment: arXiv admin note: text overlap with arXiv:1305.2026 by other author

    Estimation in Dirichlet random effects models

    Full text link
    We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomial and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithms. We also investigate methods for the estimation of the precision parameter of the Dirichlet process, finding that maximum likelihood may not be desirable, but a posterior mode is a reasonable approach. Examples are given to show how these models perform on real data. Our results complement both the theoretical basis of the Dirichlet process nonparametric prior and the computational work that has been done to date.Comment: Published in at http://dx.doi.org/10.1214/09-AOS731 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore