64 research outputs found

    Multifractal techniques for analysis and classification of emphysema images

    Get PDF
    This thesis proposes, develops and evaluates different multifractal methods for detection, segmentation and classification of medical images. This is achieved by studying the structures of the image and extracting the statistical self-similarity measures characterized by the Holder exponent, and using them to develop texture features for segmentation and classification. The theoretical framework for fulfilling these goals is based on the efficient computation of fractal dimension, which has been explored and extended in this work. This thesis investigates different ways of computing the fractal dimension of digital images and validates the accuracy of each method with fractal images with predefined fractal dimension. The box counting and the Higuchi methods are used for the estimation of fractal dimensions. A prototype system of the Higuchi fractal dimension of the computed tomography (CT) image is used to identify and detect some of the regions of the image with the presence of emphysema. The box counting method is also used for the development of the multifractal spectrum and applied to detect and identify the emphysema patterns. We propose a multifractal based approach for the classification of emphysema patterns by calculating the local singularity coefficients of an image using four multifractal intensity measures. One of the primary statistical measures of self-similarity used in the processing of tissue images is the Holder exponent (α-value) that represents the power law, which the intensity distribution satisfies in the local pixel neighbourhoods. The fractal dimension corresponding to each α-value gives a multifractal spectrum f(α) that was used as a feature descriptor for classification. A feature selection technique is introduced and implemented to extract some of the important features that could increase the discriminating capability of the descriptors and generate the maximum classification accuracy of the emphysema patterns. We propose to further improve the classification accuracy of emphysema CT patterns by combining the features extracted from the alpha-histograms and the multifractal descriptors to generate a new descriptor. The performances of the classifiers are measured by using the error matrix and the area under the receiver operating characteristic curve (AUC). The results at this stage demonstrated the proposed cascaded approach significantly improves the classification accuracy. Another multifractal based approach using a direct determination approach is investigated to demonstrate how multifractal characteristic parameters could be used for the identification of emphysema patterns in HRCT images. This further analysis reveals the multi-scale structures and characteristic properties of the emphysema images through the generalized dimensions. The results obtained confirm that this approach can also be effectively used for detecting and identifying emphysema patterns in CT images. Two new descriptors are proposed for accurate classification of emphysema patterns by hybrid concatenation of the local features extracted from the local binary patterns (LBP) and the global features obtained from the multifractal images. The proposed combined feature descriptors of the LBP and f(α) produced a very good performance with an overall classification accuracy of 98%. These performances outperform other state-of-the-art methods for emphysema pattern classification and demonstrate the discriminating power and robustness of the combined features for accurate classification of emphysema CT images. Overall, experimental results have shown that the multifractal could be effectively used for the classifications and detections of emphysema patterns in HRCT images

    Deep Learning with Limited Labels for Medical Imaging

    Get PDF
    Recent advancements in deep learning-based AI technologies provide an automatic tool to revolutionise medical image computing. Training a deep learning model requires a large amount of labelled data. Acquiring labels for medical images is extremely challenging due to the high cost in terms of both money and time, especially for the pixel-wise segmentation task of volumetric medical scans. However, obtaining unlabelled medical scans is relatively easier compared to acquiring labels for those images. This work addresses the pervasive issue of limited labels in training deep learning models for medical imaging. It begins by exploring different strategies of entropy regularisation in the joint training of labelled and unlabelled data to reduce the time and cost associated with manual labelling for medical image segmentation. Of particular interest are consistency regularisation and pseudo labelling. Specifically, this work proposes a well-calibrated semi-supervised segmentation framework that utilises consistency regularisation on different morphological feature perturbations, representing a significant step towards safer AI in medical imaging. Furthermore, it reformulates pseudo labelling in semi-supervised learning as an Expectation-Maximisation framework. Building upon this new formulation, the work explains the empirical successes of pseudo labelling and introduces a generalisation of the technique, accompanied by variational inference to learn its true posterior distribution. The applications of pseudo labelling in segmentation tasks are also presented. Lastly, this work explores unsupervised deep learning for parameter estimation of diffusion MRI signals, employing a hierarchical variational clustering framework and representation learning

    Investigation of Neonatal Pulmonary Structure and Function via Proton and Hyperpolarized Gas Magnetic Resonance Imaging

    Get PDF
    Magnetic resonance imaging (MRI) is a modality that utilizes the phenomenon of nuclear magnetic resonance (NMR) to yield tomographic images of the body. Proton (1H) MRI has historically been successful in soft tissues but has suffered in the lung due to a variety of technical challenges, such as the low proton-density, rapid T2* relaxation time of the lung parenchymal tissue, and inherent physiological motion in the chest. Recent developments in radial ultrashort echo time (UTE) MRI have in part overcome these issues. In addition, there has been much progress in techniques for hyperpolarization of noble gases (3He and 129Xe) out of thermal equilibrium via spin exchange optical pumping, which can greatly enhance the gas NMR signal such that it is detectable within the airspaces of the lung on MRI. The lung is a unique organ due to its complex structural and functional dynamics, and its early development through the neonatal (newborn) period is not yet well understood in normal or abnormal conditions. Pulmonary morbidities are relatively common in infants and are present in a majority of patients admitted to the neonatal intensive care unit, often stemming from preterm birth and/or congenital defects. Current clinical lung imaging in these patients is typically limited to chest x-ray radiography, which does not provide tomographic information and so has lowered sensitivity. More rarely, x-ray computed tomography (CT) is used but exposes infants to ionizing radiation and typically requires sedation, both of which pose increased risks to pediatric patients. Thus the opportunity is ripe for application of novel pulmonary MRI techniques to the infant population. However, MR imaging of very small pulmonary structure and microstructure requires fundamental changes in the imaging theory of both 1H UTE MRI and hyperpolarized gas diffusion MRI. Furthermore, such young patients are often non-compliant, yielding a need for new and innovative techniques for monitoring respiratory and bulk motion. This dissertation describes methodology development and provides experimental results in both 1H UTE MRI and hyperpolarized 3He and 129Xe gas diffusion MRI, with investigation into the structure and function of infant lungs at both the macrostructural and microstructural level. In particular, anisotropically restricted gas diffusion within infant alveolar microstructure is investigated as a measurement of airspace size and geometry. Additionally, the phenomenon of respiratory and bulk motion-tracking via modulation of the k-space center\u27s magnitude and phase is explored and applied via UTE MRI in various neonatal pulmonary conditions to extract imaging-based metrics of diagnostic value. Further, the proton-density regime of pulmonary UTE MRI is validated in translational applications. These techniques are applied in infants with various pulmonary conditions, including patients diagnosed with bronchopulmonary dysplasia, congenital diaphragmatic hernia, esophageal atresia/tracheoesophageal fistula, tracheomalacia, and no suspected lung disease. In addition, explanted lung specimens from both infants with and without lung disease are examined. Development and implementation of these techniques involves a strong understanding of the physics-based theory of NMR, hyperpolarization, and MR imaging, in addition to foundations in hardware, software, and image analysis techniques. This thesis first outlines the theory and background of NMR, MRI, and pulmonary physiology and development (Part I), then proceeds into the theory, equipment, and imaging experiments for hyperpolarized gas diffusion MRI in infant lung airspaces (Part II), and finally details the theory, data processing methods, and applications of pulmonary UTE MRI in infant patients (Part III). The potential for clinical translation of the neonatal pulmonary MRI methods presented in this dissertation is very high, with the foundations of these techniques firmly rooted in the laws of physics

    Texture Analysis of Late Gadolinium Enhanced Cardiac Magnetic Resonance Images for Characterizing Myocardial Fibrosis and Infarction

    Get PDF
    Le tiers de la population aux États-Unis est affectĂ© par des cardiomyopathies. Lorsque le muscle du coeur, le myocarde, est altĂ©rĂ© par la maladie, la santĂ© du patient est dĂ©tĂ©riorĂ©e et peut mĂȘme entrainer la mort. Les maladies ischĂ©miques sont le rĂ©sultat d’artĂšres coronariennes bloquĂ©es (stĂ©nose), limitant l’apport sanguin vers le myocarde. Les cardiomyopathies non-ischĂ©miques sont les maladies dues Ă  d’autres causes que des stĂ©noses. Les fibres de collagĂšne (fibrose) s’infiltrent dans le muscle cardiaque dans le but de maintenir la forme et les fonctions cardiaques lorsque la structure du myocarde est affectĂ©e par des cardiomyopathies. Ce principe, nĂ©cessaire au fonctionnement du coeur en prĂ©sence de maladies, devient mal adaptĂ© et mĂšne Ă  des altĂ©rations du myocarde aux consĂ©quences nĂ©gatives, par exemple l’augmentation de la rigiditĂ© du myocarde. Une partie du diagnostic clinique lors de cardiomyopathies consiste Ă  Ă©valuer la fibrose dans le coeur avec diffĂ©rentes modalitĂ©s d’imagerie. Les fibres de collagĂšne s’infiltrent et s’accumulent dans la zone extracellulaire du myocarde ou peuvent remplacer progressivement les cardiomyocytes compromises. L’infiltration de fibrose dans le myocarde peut possiblement ĂȘtre rĂ©versible, ce qui rend sa dĂ©tection particuliĂšrement importante pour le clinicien. DiffĂ©rents tests diagnostiques existent pour aider le clinicien Ă  Ă©tablir l’état du patient en prĂ©sence de cardiomyopathies. L’imagerie par rĂ©sonance magnĂ©tique (IRM) est une modalitĂ© d’imagerie qui offre une haute rĂ©solution pour la visualisation du myocarde. Parmi les sĂ©quences disponibles avec cette modalitĂ©, l’imagerie par rehaussement tardif (RT) augmente le contraste du signal existant entre les tissus sains et les tissues malades du myocarde. Il s’agit d’images en pondĂ©ration T1 avec administration d’agent de contraste qui se propage dans la matrice extracellulaire et rĂ©sulte en un rehaussement du signal Ă  cet endroit. Les images IRM RT permettent d’évaluer la prĂ©sence et l’étendue des dommages au myocarde. Le clinicien peut Ă©valuer la sĂ©vĂ©ritĂ© des cardiomyopathies et poser un pronostique Ă  l’aide de ces images. La dĂ©tection de fibrose diffuse dans ces images peut informer le clinicien sur l’état du patient et est un important marqueur de cardiomyopathies. Il est important d’établir l’occurrence de l’infarctus en prĂ©sence de maladies ischĂ©miques. En effet, l’approche interventionnelle varie selon que le clinicien fait face Ă  une ischĂ©mie aigue ou chronique. Lors du diagnostic, Il serait donc bĂ©nĂ©fique de diffĂ©rencier les infarctus du myocarde aigu de ceux chronique. Ceci s’est avĂ©rĂ© difficile Ă  l’aide des images IRM RT oĂč l’intensitĂ© du signal ou la taille des rĂ©gions sont similaires dans les deux types d’ischĂ©mie. Le but de la prĂ©sente thĂšse est donc d’appliquer les mĂ©thodes d’analyse de texture Ă  des images IRM RT afin de dĂ©tecter la prĂ©sence de fibrose diffuse dans le myocarde et de plus de dĂ©terminer l’ñge de l’infarctus du myocarde. La premiĂšre Ă©tude portait sur la dĂ©tection de fibrose diffuse dans le myocarde Ă  l’aide de l’analyse de texture appliquĂ©e Ă  des images IRM RT afin d’établir si un lien existe entre la variation du signal d’intensitĂ© et la structure sous-jacente du myocarde. La prĂ©sence de collagĂšne dans le myocarde augmente avec l’ñge et nous avons utilisĂ© un modĂšle animal de rats jeunes et ĂągĂ©s. Nous avons fait une Ă©tude ex-vivo afin d’obtenir des images IRM RT de haute rĂ©solution avec absence de mouvement et ainsi permettre une comparaison des images avec des coupes histologiques des coeurs imagĂ©s. Des images IRM RT ont Ă©tĂ© acquises sur vingt-quatre animaux. Les coupes histologiques ont Ă©tĂ© traitĂ©es avec la mĂ©thode utilisant un marqueur ‘picrosirius red’ qui donne une teinte rouge au collagĂšne. La quantification de la fibrose obtenue avec les images IRM RT a Ă©tĂ© comparĂ©e Ă  la quantification obtenue sur les coupes histologiques. Ces quantifications ont de plus Ă©tĂ© comparĂ©es Ă  l’analyse de texture appliquĂ©e aux images IRM RT. La mĂ©thode de texture a Ă©tĂ© appliquĂ©e en crĂ©ant des cartes de texture basĂ©es sur la valeur de Contraste, cette mesure Ă©tant obtenue par des calculs statistiques sur la matrice de cooccurrence. Les rĂ©gions montrant une plus grande complexitĂ© de signal d’intensitĂ© sur les images IRM RT ont Ă©tĂ© rehaussĂ©es avec les cartes de textures. Un calcul de rĂ©gression linĂ©aire a permis d’étudier le lien entre les diffĂ©rentes mĂ©thodes de quantification. Nous avons trouvĂ©s que la quantification de fibrose dans le myocarde Ă  l’aide de l’analyse de texture appliquĂ©e sur des images IRM RT concordait avec le niveau de collagĂšne identifiĂ© avec les images IRM et avec les coupes histologiques. De plus, nous avons trouvĂ©s que l’analyse de texture rehausse la prĂ©sence de fibrose diffuse dans le myocarde. La seconde Ă©tude a pour but de discriminer les infarctus aigus du myocarde de ceux qui sont chroniques sur des images IRM RT de patients souffrant de cardiomyopathies ischĂ©miques. Vingt-deux patients ont subi l’imagerie IRM (12 avec infarctus aigu du myocarde et 12 avec infarctus chronique). Une segmentation des images a permis d’isoler les diffĂ©rentes zones du myocarde, soit la zone d’infarctus, la zone grise au rebord de l’infarctus et la zone du myocarde sain, dans les deux groupes de patients. L’analyse de texture s’est faite dans ces rĂ©gions en comparant les valeurs obtenues dans les deux groupes. Nous avons obtenu plus de valeurs de texture discriminantes dans la zone grise, en comparaison avec la rĂ©gion du myocarde sain, oĂč aucune valeur de texture n’était significativement diffĂ©rente, et Ă  la zone d’infarctus, oĂč seule la valeur de texture statistique Moyenne Ă©tait diffĂ©rentes dans les deux groupes. La zone grise a dĂ©jĂ  fait l’objet d’études ayant Ă©tablis cette rĂ©gion comme composĂ©e de cardiomyocytes sains entremĂȘlĂ©s avec des fibres de collagĂšne. Notre Ă©tude montre que cette rĂ©gion peut exhiber des diffĂ©rences structurelles entre les infarctus aigus du myocarde et ceux qui sont chroniques et que l’analyse de texture a rĂ©ussi Ă  les dĂ©tecter. L’étude de la prĂ©sence de collagĂšne dans le myocarde est importante pour le clinicien afin qu’il puisse faire un diagnostic adĂ©quat du patient et pour qu’il puisse faire un choix de traitement appropriĂ©. Nous avons montrĂ©s que l’analyse de texture sur des images IRM RT de patients peut diffĂ©rencier et mĂȘme permettre la classification des ischĂ©mies aigues des ischĂ©mies chroniques, ce qui n’était pas possible avec uniquement ce type d’images. Nous avons de plus dĂ©montrĂ©s que l’analyse de texture d’images IRM RT permettait d’évaluer le contenu de fibrose diffuse dans un modĂšle animal de haute rĂ©solution avec validation histologique. Une telle relation entre les rĂ©sultats d’analyse de texture d’images IRM RT et la structure sous-jacente du myocarde n’avait pas Ă©tĂ© Ă©tudiĂ©e dans la littĂ©rature. Notre mĂ©thode pourra ĂȘtre amĂ©liorĂ©e en effectuant d’autres calculs statistiques sur la matrice de cooccurrence, en testant d’autres mĂ©thodes d’analyse de texture et en appliquant notre mĂ©thode Ă  de nouvelles sĂ©quences d’acquisition IRM, tel les images en pondĂ©ration T1. D’autres amĂ©liorations possibles pourraient porter sur une Ă©valuation de matrice de cooccurrence avec voisinage circulaire suivant la forme du myocarde sur les tranches d’images IRM RT. Plusieurs matrice de cooccurrence pourraient aussi ĂȘtre Ă©valuĂ©es en fonction de la position dans l’espace du voisinage afin d’intĂ©grer une composante directionnelle dans les calculs de texture. D’autres Ă©tudes sont nĂ©cessaires afin d’établir si une analyse de texture des images IRM RT pourrait diffĂ©rencier le stade de la fibrose pour un mĂȘme patient lors d’une Ă©tude de suivi. De mĂȘme, d’autres Ă©tudes sont nĂ©cessaires afin de valider l’utilisation de texture sur des scanners IRM diffĂ©rents. Établir l’ñge de l’infarctus du myocarde permettra de planifier les interventions thĂ©rapeutiques et d’évaluer le pronostique pour le patient.----------ABSTRACT A third of the United States population is affected by cardiomyopathies. Impairment of the heart muscle, the myocardium, puts the patient’s health at risk and could ultimately lead to death. Ischemic cardiomyopathies result from lack of blood (ischemia) reaching the myocardium from blocked coronary arteries. Non-ischemic cardiomyopathies are diseases from other etiology than ischemia. Often collagen fibers infiltrate the heart (fibrosis), as a means to maintain its shape and function in the presence of disease that affects the myocardial cellular structure. This necessary phenomenon ultimately becomes maladaptive and results in the heart’s impairment. Part of the heart’s involvement in disease can be assessed through the analysis of myocardial fibrosis. Cardiomyopathy diagnosis involves the investigation of the presence of myocardial fibrosis, either infiltrative, defined as the increased presence of collagen protein in the extracellular space, or replacement fibrosis, when collagen fibers progressively replace diseased cardiomyocytes. The infiltrative fibrosis is believed to be reversible in some instances and consequently, myocardial fibrosis analysis has decisional impact on the interventional procedure that would benefit the health of the patient. The heart contracts and relaxes as it pumps blood to the rest of the body, an action directly impaired by myocardial damage. Any myocardial involvement should be assessed by the clinician to identify the severity of the myocardial damage, establish a prognosis and plan therapeutic intervention. Different diagnostic tests are required to image the myocardium and help the clinician in the diagnostic process. Cardiac magnetic resonance (CMR) imaging has emerged as a high resolution imaging modality that offers precise structural analysis of the heart. Among the different imaging sequences available with CMR, late gadolinium enhancement (LGE) shows the myocardium and enhances any impairments that may exist with the use of a contrast agent. It is a T1-weighted image with extracellular contrast agent (CA) administration. Increased signal intensity in the infarct scar is created from the CA dynamics. LGE CMR imaging offers information on the scar size and its location. The clinician can estimate the severity of the disease and establish prognosis with LGE CMR images. In ischemic cardiomyopathy, it is important to establish the occurrence of the infarction and know the age of the infarct to plan surgical intervention. Differentiation of acute from chronic MI is therefore important in the diagnostic process. In LGE CMR the level of signal intensity or the size of infarction are both similar in acute or in chronic MI. It has therefore been challenging to distinguish acute MI from chronic MI scars with LGE CMR images alone. The aim of this thesis was to investigate texture analysis of LGE CMR images to determine if acute MI could be distinguished from chronic MI and to detect increased presence of diffuse myocardial fibrosis in the myocardium. The first study was performed to investigate if texture analysis of LGE CMR images could detect variations in the presence of diffuse myocardial fibrosis and if the underlying myocardial structure could be related to the texture measures. Collagen content increased with aging and we used an animal model of young versus old rat. An ex-vivo animal model was necessary to allow for higher image resolution in LGE CMR images and to perform validation of our texture measures with histology images. Twenty four animals were scanned for LGE CMR images and texture analysis was applied to the heart images. Histology slices were stained with picrosirius red and collagen fibers were isolated based on their color content. LGE CMR quantification was compared to histological slices of the heart stained with the picrosirius red method. Texture analysis of LGE CMR images was also compared to the original LGE CMR image quantification and to histology. Texture analysis was done by creating contrast texture maps extracted from Haralick’s gray level co-occurrence matrix (GLCM). Regions of complex signal intensity combination were enhanced in LGE CMR images and in contrast texture maps. Regression analysis was performed to assess the level of agreement between the different analysis methods. We found that LGE CMR images could assess the different levels of collagen content in the different aged animal model, and that moreover texture analysis enhanced those differences. The location of enhancement from texture analysis images corresponded to location of increased collagen content in the old compared to the young rat hearts. Histological validation was shown for texture analysis applied to LGE CMR images to assess myocardial fibrosis. Our second study aimed at discriminating acute versus chronic MI from LGE CMR patient images alone through the use of texture analysis. Twenty two patients who had LGE CMR images were included in our study (12 acute and 12 chronic MI). Regional segmentation was performed and texture features were compared in those regions between both groups of patient. Texture analysis resulted in significantly different values between the two groups. More specifically the peri-infarct zone had the most number of discriminative features compared to the remote myocardium which had none and to the infarct core where only the mean features was significantly different. The border zone has been shown to be composed of healthy cardiomyocytes intermingled with the scar’s collagen fibers. Our study indicates this region might exhibit structural differences in the myocardium in acute from chronic MI patients that texture analysis of LGE CMR images can detect. Characterization of myocardial collagen content is important while clinicians analyze the state of the patient since it influences the course of action required to treat cardiomyopathies. LGE CMR images have been thoroughly used and validated to characterize focal myocardial scar, however it was limited in characterizing the age of infarction or quantifying diffuse collagen content. We have shown texture analysis of LGE CMR images alone can differentiate and even classify, acute from chronic MI patients, which was not previously possible. Characterization of myocardial infarction according to age will prove important in planning therapeutic interventions in clinical practice. Moreover, we have established texture analysis as a means to characterize the myocardium and detect variation in fibrosis content from high resolution LGE CMR images with histology validation. To our knowledge, such a relation between texture analysis of LGE CMR images and the underlying myocardial structure had not been done previously. Improvements could be done to our method, as we can increase the number of texture features that were analyzed from the GLCM, include other texture analysis methods such as the run-length matrix, and apply our method to other CMR imaging sequences such as T1 mapping. Adapting the GLCM to the heart could also be investigated, such as considering circular GLCM computation to consider the round shape of the myocardium in the short axis LGE CMR image slices. Directional GLCM could also be computed individually and analyzed for any myocardial or collagen fiber orientation indication. Further analysis is also required to establish if texture analysis could differentiate the age of MI in the same individual through a follow-up study. The measures of texture analysis from LGE CMR images obtained through different CMR scanners remains to be investigated as well. Knowing the age of infarct and evaluating the presence of diffuse myocardial fibrosis will help the clinician plan therapeutic interventions and establish a prognosis for the patient

    3-D lung deformation and function from respiratory-gated 4-D x-ray CT images : application to radiation treatment planning.

    Get PDF
    Many lung diseases or injuries can cause biomechanical or material property changes that can alter lung function. While the mechanical changes associated with the change of the material properties originate at a regional level, they remain largely asymptomatic and are invisible to global measures of lung function until they have advanced significantly and have aggregated. In the realm of external beam radiation therapy of patients suffering from lung cancer, determination of patterns of pre- and post-treatment motion, and measures of regional and global lung elasticity and function are clinically relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary function which may be incorporated into the treatment planning process. Our contributions are as follows: (i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) has been designed and implemented which permits the possibility of enforcing physical constraints on the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. (ii) A large displacement landmark-base elastic registration method has been devised for thoracic CT volumetric image sets containing large deformations or changes, as encountered for example in registration of pre-treatment and post-treatment images or multi-modality registration. (iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of mechanical strain as an index of lung functionality has been formulated for measurement of regional pulmonary function. (iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of ventilation, Vjac, and principal strains, (V?1, V?2, V?3, has been performed through correlation of the derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT have shown that the maximum principal strain pulmonary function map derived from MOFIO, outperforms all previously established ventilation metrics from 40-CT. It is hypothesized that use of CT -derived ventilation images in the treatment planning process will help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that measures of regional and global lung elasticity and function obtained during the course of treatment may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment global and regional lung function and biomechanical properties, the radiation treatment dose can potentially be escalated to improve tumor response and local control

    Biomarker discovery and drug testing in Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a devastating and lethal disease, with a median survival of 2-3 years after diagnosis. It is chronic, progressive and occurs predominantly in middle-age and older adults. Multiple working hypotheses speak of possible triggers of IPF development, e.g. multiple microinjuries of the alveolar epithelium, aberrant fibroblast activation, and immune deregulation. Currently, there are two drugs approved for the treatment of mild-to-moderate IPF worldwide, neither Pirfenidone or Nintedanib provide a definitive cure for disease, but slow in disease progression. Thus, animal models of pulmonary fibrosis are a critical tool for disease understanding, drug development and pre-clinical intervention. In chapter 2.1, the first study included in this thesis (Fernandez et al., 2016a), we comprehensively analyzed IPF-relevant peripheral biomarkers, histological compromise along with physiological parameters, to determine disease onset, progression and resolution in preclinical models of fibrosis. We observed and validated that the bleomycin-induced pulmonary fibrosis model reached its peak of fibrosis 14 days after treatment and from there on, resolution started. Furthermore, we created a semi-automatized histologic scoring system to quantify the degree of fibrosis, and correlated histology score with lung function decline during the initiation, peak and resolution phase of the model. Interestingly, we observed that at day 28 and 56 although histological compromise was still present, lung function was close to normal. Furthermore, we determine that plasma levels of ICAM-1 strongly correlate with the extent of fibrosis. We complemented and extended our characterization of the model further. In a following study, we performed multi-compartmental deep proteomics in lung tissue and bronchoalveolar lavage (Schiller, Fernandez et al., 2015), with emphasis on characterizing the matrisome, from the initiation to the resolution of bleomycin-induced fibrosis, in where we could determine the initial signatures of injury, as well as the ones that drive lung repair. In chapter 2.2, we highlighted the second study of this thesis (Sun et al., 2015), that goes along with a complementary publication of our authorship. We use the ability of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to simultaneously record the distribution of hundreds of molecules, in a highly multiplexed and unbiased manner. After oral administration of pirfenidone, we could detect, visualize, and quantify the pharmacokinetics and in-situ distribution of pirfenidone in lung, liver and kidney from unchallenged mice. Furthermore, we performed analysis in fibrotic mice and IPF patients, untreated and under pirfenidone therapy (Sun*, Fernandez* et al. 2018). As expected, we detected mouse and human specific and shared responses; specific alterations of metabolite pathways in fibrosis, and most importantly, metabolic recalibration following pirfenidone treatment. Taking together, bleomycin-induced pulmonary fibrosis is an extremely valuable tool for preclinical drugs evaluation, as well as for target validation and modulation of Idiopathic Pulmonary Fibrosis.Die idiopathische pulmonale Fibrose ist eine schwerwiegende und tödlich verlaufende Erkrankung mit einer durchschnittlichen Lebenserwartung von zwei bis drei Jahren nach Diagnosestellung. Die chronisch progressive Erkrankung tritt vorwiegend im mittleren Lebensalter sowie bei Ă€lteren Erwachsenen auf. Zahlreiche Arbeitshypothesen zeigten mögliche Auslöser der IPF auf, wie beispielsweise Mikroverletzungen des Alveolarepithels, eine gestörte Fibroblastenaktivierung sowie eine Fehlregulation des Immunsystems. Derzeit sind weltweit zwei Medikamente zur Behandlung von leichter bis mittelschwerer IPF zugelassen, Pirfenidon und Nintedanib. Beide Medikamente verlangsamen den Verlauf der Erkrankung fĂŒhren jedoch zu keiner Heilung. Somit sind Tiermodelle der Lungenfibrose ein wichtiges Werkzeug fĂŒr das VerstĂ€ndnis von Krankheiten, die Arzneimittelentwicklung und prĂ€klinische Intervention. Kapitel 2.1 fasst die erste Publikation dieser Arbeit zusammen. In Fernandez et al. 2016 analysierten wir IPF-relevante periphere Biomarker und fĂŒhrten einen histologischen Vergleich mit physiologischen Parametern durch, um die Entstehung der Erkrankung, den Verlauf und die Resolution in prĂ€klinischen Modellen der Fibrose zu bestimmen. Unsere Ergebnisse zeigten, dass die Fibrose im bleomycininduzierten Modell der Fibrose ihren Höhepunkt an Tag 14 nach Belomycinbehandlung erreichte und danach die Phase der Resolution begann. Wir generierten ein semi-automatisiertes histologisches Bewertungssystem um den Grad der Fibrose zu quantifizieren und korrelierten diesen Wert mit der Abnahme der Lungenfunktion wĂ€hrend der Initiierungsphase, der maximalen Fibrose und der Resolutionsphase des Models. Interessanterweise beobachteten wir an Tag 28 und 56 eine nahezu normale Lungenfunktion, obwohl histologische AuffĂ€lligkeiten noch immer vorhanden waren. Wir entdeckten, dass die Plasmaspiegel von ICAM-1 stark mit dem Fibrosegrad korrelierten. Wir erweiterten die Charakterisierung des Fibrosemodells und schlossen eine weitere Studie an, in der wir eine multi-kompartmentelle tiefgehende Proteomanalyse von Lungengewebe und bronchoalveolĂ€ren Lavagen durchfĂŒhrten. Der Fokus lag dabei auf der Charakterisierung des Matrisoms von der Initiierungs- bis zur Resolutionsphase der bleomycininduzierten Fibrose. Wir konnten die anfĂ€nglichen Signaturen der Verletzung bestimmen, sowie diejenigen, die die Lungenreparatur antreiben Kapitel 2.2 hebt die zweite Publikation der vorliegenden Arbeit hervor, Sun et al., 2015, der eine Koautorenschaft zugrunde liegt. Hierbei nutzten wir die Methode der Matrix–Assistierten Laser–Desorptions/Ionisierungs Massenspektrometrie Bildgebung (Imaging) (MALDI-MSI), welche es ermöglicht in einem multiplexen und ungezielten Ansatz simultan die Verteilung hunderter MolekĂŒle zu messen. Nach oraler Gabe von Pirfenidon, visualisierten und quantifizierten wir die gemessene Pharmakokinetik und in situ Verteilung von Pirfenidon in Lunge, Leber und Niere von gesunden MĂ€usen. ZusĂ€tzlich analysierten wir fibrotische MĂ€use und IPF-Patienten, unbehandelt als auch unter Pirfenidontherapie (Sun*, Fernandez* et al. 2018). Wie erwartet entdeckten wir sowohl maus- und menschspezifische als auch gemeinsame Reaktionen, bezĂŒglich spezifischer Änderungen metabolischer Prozesse in Fibrose und, von besonderer Bedeutung, der metabolischen Neukalibrierung nach Pirfenidonbehandlung. Zusammengefasst ist das Tiermodell der bleomycininduzierten pulmonalen Fibrose ein wichtiges Werkzeug fĂŒr die prĂ€klinische Arzneimittelbewertung, sowie fĂŒr die Validierung potentieller ZielmolekĂŒle und einer Modulation der idiopathischen pulmonalen Fibrose

    Extended Quantitative Computed Tomography Analysis of Lung Structure and Function

    Get PDF
    Computed tomography (CT) imaging and quantitative CT (QCT) analysis for the study of lung health and disease have been rapidly advanced during the past decades, along with the employment of CT-based computational fluid dynamics (CFD) and machine learning approaches. The work presented in this thesis was devoted to extending the QCT analysis framework from three different perspectives.First, to extend the advanced QCT analysis to more data with undesirably protocolized CT scans, we developed a new deep learning-based automated segmentation of pulmonary lobes, in- corporating z-axis information into the conventional UNet segmentation. The proposed deep learn- ing segmentation, named ZUNet, was successfully applied for QCT analysis of silicosis patients with thick (5 or 10 mm) slices, which used to be excluded in QCT analysis since three-dimensional (3D) volumetric segmentation of the lungs and lobes were hardly successful or not automated. ZUNet outperformed UNet in lobe segmentation of human lungs. In addition, we extended the application of the QCT framework, combining CFD simulations for the entire subjects of the QCT analysis. One-dimensional (1D) CFD simulations of tidal breath- ing have been added to the inspiratory-expiratory CT image matching analysis of 66 asthma pa- tients (M:F=23:43, age=64.4±10.7) for pre- and post-bronchodilator comparison. We aimed to characterize comprehensive airway and lung structure and function relationship in the entire group response and patient-specific response to the bronchodilator. Along with the evidence of large air- way dilatation in the entire asthmatics, the CFD analysis revealed that improvements in regional flow rate fraction, particularly in the right lower lobe (RLL), airway pressure drop, airway resis- tance, and workload of breathing were significantly associated with the degree of large airway dilatation. Finally, we extended the approach using machine learning analysis to integrate numerous QCT variables with clinical features and additional information such as environmental exposure. In pursuit of investigating the effects of particulate matter (PM) exposure on human lung struc- ture and function alteration, principal component analysis (PCA) and k-means clustering iden- tified low, mid, and high exposure groups from directly measured air pollution exposure data of 270 healthy (age=68±10, M:F=15:51), asthma (age=60±12, M:F=39:56), chronic obstructive pulmonary disease (COPD) (age=69±7, M:F=66:10), and idiopathic pulmonary fibrosis (IPF) (age=72±7, M:F=43:10) subjects. Based on the exposure clusters, the RLL segmental airway narrowing was observed in the high exposure group. Various associations were found between the exposure data and about 200 multiscale lung features, from quantitative inspiratory and ex- piratory CT image matching and 1D CFD tidal breathing simulations. To highlight, small PM increases small airway disease in asthma. PM at all sizes decreases inspiratory low attenuation area in COPD and diseases luminal diameter of the RLL segmental airways in IPF
    • 

    corecore