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Abstract

Computed tomography (CT) imaging and quantitative CT (QCT) analysis for the study of lung

health and disease have been rapidly advanced during the past decades, along with the employment

of CT-based computational fluid dynamics (CFD) and machine learning approaches. The work

presented in this thesis was devoted to extending the QCT analysis framework from three different

perspectives.

First, to extend the advanced QCT analysis to more data with undesirably protocolized CT

scans, we developed a new deep learning-based automated segmentation of pulmonary lobes, in-

corporating z-axis information into the conventional UNet segmentation. The proposed deep learn-

ing segmentation, named ZUNet, was successfully applied for QCT analysis of silicosis patients

with thick (5 or 10 mm) slices, which used to be excluded in QCT analysis since three-dimensional

(3D) volumetric segmentation of the lungs and lobes were hardly successful or not automated.

ZUNet outperformed UNet in lobe segmentation of human lungs.

In addition, we extended the application of the QCT framework, combining CFD simulations

for the entire subjects of the QCT analysis. One-dimensional (1D) CFD simulations of tidal breath-

ing have been added to the inspiratory-expiratory CT image matching analysis of 66 asthma pa-

tients (M:F=23:43, age=64.4±10.7) for pre- and post-bronchodilator comparison. We aimed to

characterize comprehensive airway and lung structure and function relationship in the entire group

response and patient-specific response to the bronchodilator. Along with the evidence of large air-

way dilatation in the entire asthmatics, the CFD analysis revealed that improvements in regional

flow rate fraction, particularly in the right lower lobe (RLL), airway pressure drop, airway resis-

tance, and workload of breathing were significantly associated with the degree of large airway

dilatation.

Finally, we extended the approach using machine learning analysis to integrate numerous QCT
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variables with clinical features and additional information such as environmental exposure. In

pursuit of investigating the effects of particulate matter (PM) exposure on human lung struc-

ture and function alteration, principal component analysis (PCA) and k-means clustering iden-

tified low, mid, and high exposure groups from directly measured air pollution exposure data

of 270 healthy (age=68±10, M:F=15:51), asthma (age=60±12, M:F=39:56), chronic obstructive

pulmonary disease (COPD) (age=69±7, M:F=66:10), and idiopathic pulmonary fibrosis (IPF)

(age=72±7, M:F=43:10) subjects. Based on the exposure clusters, the RLL segmental airway

narrowing was observed in the high exposure group. Various associations were found between

the exposure data and about 200 multiscale lung features, from quantitative inspiratory and ex-

piratory CT image matching and 1D CFD tidal breathing simulations. To highlight, small PM

increases small airway disease in asthma. PM at all sizes decreases inspiratory low attenuation

area in COPD and diseases luminal diameter of the RLL segmental airways in IPF.
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Chapter 1

Introduction

1.1 Motivation

Advancements of medical imaging have enabled to analyze the structure of human physiology

and provide a novel perspective on the pathophysiology of different diseases. Medical imaging

plays an essential role in diagnosing diseases, monitoring disease progression, and planning for

surgery. Among many medical imaging modalities, computed tomography (CT) is one of the

most commonly used techniques for investigating pulmonary structure. Although CT imaging can

noninvasively capture the detailed status of lung anatomy, CT itself does not provide functional in-

formation. Radiologists and pulmonologists qualitatively perform structural and functional assess-

ments. This qualitative assessment is subject to intra- or inter-observer variability and insensitive

to longitudinal changes (Ostridge & Wilkinson, 2016). In the past decade, quantitative CT (QCT)

analysis has become a promising technique to link the structure and function relationship of the

lung.

Unlike other clinical variables, such as pulmonary function tests (PFT) results, QCT can pro-

vide regional features of the lungs. In diseased lungs, its severity can be regionally quantified,

and its progression can be monitored (Zagers et al., 1996; Dowson et al., 2001; Dirksen et al.,

1997, 1999). As many QCT features are associated with clinical markers and predictors of clin-

ical outcomes (Tanabe et al., 2012; Hoesein et al., 2012), QCT analysis can also contribute to

disease diagnosis by providing objective information in a clinical setting. In addition, QCT-based

structural and functional assessment in healthy and diseased lungs has improved understanding

of preclinical pathophysiology and clinical outcomes (Hoffman et al., 2014; Podolanczuk et al.,
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2016). Therefore, QCT analysis makes CT scans more meaningful and abundant by fully utilizing

its information in both clinical and research environments.

One crucial step for QCT analysis is the segmentation of anatomical parts. Different segmen-

tation masks identify different regions of the lung from the gray scale CT image data prior to mea-

suring and computing QCT features. For example, a lung mask can be used for extracting tissue

fraction of the lung, while airway branch angles can be computed from an airway mask. There-

fore, the accuracy of QCT features heavily depends on the quality of the lung segmentation masks.

While these masks can be acquired from manual annotation, it is incredibly time-consuming be-

cause human lung CT consists of three-dimensional (3D) image data with several hundred slices.

An alternative method is to use algorithm-based semi-automatic software with consequent manual

editing. Although this kind of pipeline has been successful and dominant for over decades, there

are three main issues with this semi-automatic pipeline. First, it is still time consuming. As CT

technology advances, the demand for CT scans has grown exponentially (Sentinel-Event-Alert,

2011). There are more CT scans to be analyzed. The second disadvantage of the semi-automatic

pipeline is intra- or inter-observer variability. Manual editing can be done by multiple people with

different backgrounds, and there is no clear guideline for manual editing. Qualities of segmenta-

tion can vary, and it will affect QCT analysis. Third, CT imaging quality affects the performance

of semi-automatic segmentation software. Segmentation results can be inaccurate if a patient is

severely diseased, or the method may completely fail if imaging protocols do not comply with

software. For example, chest CT scans with slice thickness greater than 2 mm may not be suit-

able in the current quantitative CT imaging cohort studies (Sieren et al., 2016). In this case, QCT

analysis of CT scans cannot be completed.

Recently, QCT analysis has advanced functional understanding of the lung regions related to

structural alteration. One of the primary functional roles of the lung is ventilation through ap-

proximately 60,000 conducting airway branches linked with 30,000 acini in the lung parenchyma.

In the past decades, CT-based computational fluid dynamics (CFD) analysis has been advanced

to resolve physiologically consistent regional ventilation distribution under various breathing con-
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ditions (Lin et al., 2007; Choi et al., 2009; Yin et al., 2010; Choi et al., 2010; Yin et al., 2013;

Choi et al., 2019b). Tawhai et al. (2000, 2004) introduced a fractal-based volume filling technique

to model CT-unresolved conducting airways from the distal end of CT-resolved airways to the

terminal bronchioles. With the volume-filling technique, an entire conducting airway model was

established, which links functional features of acinar scale parenchymal units and the CT-resolved

airways (Yin et al., 2010; Choi, 2011; Lin et al., 2013). However, a full 3D CFD simulation is

computationally expensive and time consuming. Since human airway geometry is complex and

different from person to person, generating computational mesh requires lots of manual effort.

Instead, a one-dimensional (1D) CFD simulation takes significantly reduced computational effort

and can be automated. Therefore, it can be applied to a more extensive dataset instead of demon-

strating the breathing simulations only in representative subjects.

Despite the advances in QCT and CFD analysis in lung health and diseases, previous studies

have been limited in integration with other clinical variables. However, interest in lung health

and disease associated with environmental risk factors such as ambient air pollution is growing.

While the need for utilizing the newly developed QCT analysis to investigate the effects of the

non-clinical variables on the alteration of regional lung structure and function grows, it is chal-

lenging to integrate additional sets of data into the combination of QCT outcomes and clinical

outcomes. Recent advances in machine learning applications elucidate the possibility of clustering

and classification in resolving the challenges with various data sets for QCT applications.

1.2 Objectives

The goal of this work is to extend the state-of-the-art QCT lung structure and function analysis

in technological and application aspects. To achieve this goal, the following specific aims were

established.

1. Extend the QCT application by improving segmentation using a deep learning approach.

2. Extend the application of QCT and CFD analysis to the assessment of treatment response.

3



3. Extend QCT analysis by integrating QCT features with various clinical and environmental

variables using machine learning analysis.

The established QCT framework enables a more comprehensive analysis of multiscale lung

structural and functional characteristics, seeking better physiological and pathophysiological rela-

tionships.

1.3 Thesis Overview

To achieve this goal, the QCT framework is elaborated in Chapter 2. Basics of lung anatomy

and function are introduced, and QCT features are explained with image registration. Finally,

machine learning and statistics that extend the QCT analysis are introduced as post analyses.

The framework is applied to three datasets. In Chapter 3, the deep learning-based segmentation

approach is used to acquire pulmonary lobe masks for silicosis patients. Features of silicosis are

quantified through the QCT framework and compared with features of healthy lungs and IPF pa-

tients. The QCT framework is used for asthmatic patients in Chapter 4. Inspiratory and expiratory

CT scans before and after beta-2 agonist bronchodilator are acquired. QCT analysis, including 1D

CFD, is performed to investigate the effects of bronchodilators in asthma. A comprehensive set of

QCT features before and after the bronchodilator inhalation is analyzed statistically. Chapter 5 in-

troduces machine learning methods to integrate air pollution exposure data, particularly particulate

matter (PM), with QCT analysis. PM exposure-based clusters are determined, and the effects of

PM exposure are compared using QCT features. Finally, Chapter 6 presents a summary and future

works of this extensive study.
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Chapter 2

Quantitative Compute Tomography Analysis

2.1 Lung Anatomy and Function

The structure of human respiratory system is highly complicated. It comprises multiple struc-

tural components, such as lungs, lobes, airways, and vessels. In this section, anatomy of the

respiratory system, focusing on lobes and airway, is briefly reviewed.

Human lungs have five compartments called pulmonary lobes. The left lung has upper and

lower lobes (LUL and LLL), and the right lung has upper, middle, and lower lobes (RUL, RML,

and RLL). Within the lung, lobes are separated by fissures. The left lung is divided by an oblique

fissure (between LUL and LLL), and the right lung is divided by horizontal (between RUL and

RML) and oblique (between RML and RLL) fissures. Branches of airways and vessels occupy

different regions of lobes. Because the fissures physically divide lungs, spread of diseases can

be prevented by fissures (Sofranik et al., 1992). Although the lung is one continuous compart-

ment, disease features and severity vary between lobes (Jeffery, 1998; Leung, 1999; Morgan, 1979;

American Thoracic Society & European Respiratory Society, 2002). Therefore, the pulmonary

lobe segmentation is a crucial part for quantification of regional lung characterization.

Another key structure of the lung for quantitative analysis is the airway. The airway can be

divided into the upper airway and the lower airway. The upper airway includes the nasal cavity,

oral cavity, pharynx, and larynx. In this thesis, the structure of the lower airway will be focused on

since the scope of this work is quantification from chest CT that does not include the upper airway.

The lower airway starts from the trachea and has a tree-like structure. The trachea is first divided

into the right and the left main bronchi, respectively. The main bronchi further branch into lobar
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bronchi, which are subdivided into segmental bronchi and subsegmental bronchi. The structure of

airways up to subsegmental branches is illustrated in Figure 2.1. In the RUL, there are RB1, RB2,

and RB3. RB4 and RB5 are located in the RML, and RB6, RB7, RB8, RB9, and RB10 are found

in the RLL. Unlike the left lung, the right lung has an intermediate bronchus that connects the

right middle bronchus with the middle lobar bronchus. In the left lung, there are only two lobes.

LB1, LB2, LB3, LB4, and LB5 exist in the LUL. LB6, LB7, LB8, LB9, and LB10 are found in

the LLL. However, LB7 is rarely found airway variant (Smith et al., 2018). Excluding LB7, there

are 19 segmental airway branches. The segmental bronchi continue to separate into bronchioles

and terminal bronchioles. Not only these branches become shorter and narrower, but also the

proportion of cartilage decreases as the airways progress distally. Airways from the trachea to the

terminal bronchioles make up the conducting airways. No gas exchange occurs in the conducting

zone. Terminal bronchioles are divided into respiratory bronchioles, which are subdivided into

alveolar ducts. Gas exchange occurs in the respiratory bronchioles and alveolar sacs. This region

is called a respiratory zone.

Accurate airway masks play important roles not only in providing structural metrics, such as

luminal area and branching angle, but also in preparing functional connections from large airways

to small airways in lobar and sublobar regions. Both are crucial prerequisites of geometry and

boundary condition preparation for lung CFD simulation.

2.2 Quantitative Computed Tomography Features

Since CT scans can be taken at different inspiratory levels, different QCT features can be

acquired from CT scans at different lung volumes. When there are more than one CT scan for

a patient, CT images can be matched either cross volumes or cross time points, and this process

is called image registration. More functional QCT features, which are not visible from a single

static image, can be acquired through image registration. In this section, QCT variables computed

from a single inspiratory or expiratory CT will be reviewed, and QCT variables through image

registration will be introduced consequently.
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2.2.1 QCT from a single CT scan

Segmentation masks, which are requirements for extracting QCT variables, allow capturing

different components of the lung in CT images. One of the basic QCT variables is lung volumes.

Since the size of a voxel is stored in the Digital Imaging and Communications in Medicine (DI-

COM), lung volumes can be calculated by summing up every voxel of the lung masks. If the left

and right lungs are annotated in the lung masks, each lung volume can be computed. The pul-

monary lobes mask is finer and provides more regional information than the lung mask. Likewise,

lobar volume can be computed using the lobe mask. Since the lobe mask is compatible with the

lung mask yet provides richer information, the lobe mask is preferably used for extracting QCT

features by lobe. In the following discussion, QCT features extracted from the lobes mask will be

introduced.

Hounsfield units (HU) are a unit of CT. It measures the radio density of tissue during a CT

scan. High density regions, such as bone and tissue, attenuate more radiation and have high HU,

while low density regions, such as air, have low HU. High attenuation regions appear white or

bright when images are reconstructed, and vice versa. Assuming only air and tissue are present in

the lung, the tissue fraction (βtissue) of a voxel can be calculated from the voxel CT density because

CT densities of tissue and air are known to be 55 HU and -1000 HU, respectively (Yin et al., 2009).

βtissue =
CTdensity − (−1000)

55− (−1000)
(2.1)

Likewise, air fraction (βair) of the voxel can be computed:

βair =
55−CTdensity

55− (−1000)
(2.2)

The lobes mask can be used to calculate tissue fractions and air fractions of the lobes by taking the

average of the voxels.

Instead of separating a voxel into either tissue or air, a threshold-based method classifies an

entire voxel for its abnormality. Volumetric percentages of high attenuation areas (HAA%) and

7



low attenuation areas (LAA%) in the lung are two examples of the threshold-based QCT features.

HAA generally represents fibrotic regions in the lung and is more commonly used for interstitial

lung disease (ILD) patients. The threshold range varies from study to study. Tanizawa et al.

(2015) defined HAA% as CT densities greater than -200 HU and found this threshold of HAA%

correlated with the decrease in percent predicted forced vital capacity (FVC%pred) and carbon

monoxide diffusion capacity (DLCO) in ILD patients. On the other hand, in the Multi-Ethnic

Study of Atherosclerosis (MESA) study, HAA% is defined as the percentage of CT attenuation

between -600 HU and -250 HU (Podolanczuk et al., 2016). This range of HAA% was associated

with ILD hospitalization and ILD-specific death (Podolanczuk et al., 2017). Matsuoka et al. (2016)

has more extensively analyzed different threshold values in patients with pulmonary fibrosis and

found a significant correlation between HAA% ranging from -700 HU to 0 HU and the overall

extent of interstitial lung lesions.

While HAA% is significantly associated with interstitial lung diseases (ILD), LAA% is more

related to obstructive diseases. LAA% can be computed on either inspiratory or expiratory CT.

Inspiratory LAA% (LAAIN%), also known as percent emphysema (Emph%), is defined as the

percentage of lung voxels below -950 HU. This threshold was shown to have the strongest asso-

ciations with both microscopic and macroscopic emphysema (Gevenois et al., 1995, 1996). As

its name suggests, it quantifies emphysematous regions from CT. Emph% is widely adopted as a

primary outcome for chronic obstructive pulmonary disease (COPD) studies (Wang et al., 2019;

Pistenmaa et al., 2021; Paulin et al., 2018; Altınsoy et al., 2016; Smith et al., 2018). Expiratory

LAA% (LAAEX %), also known as percentages of air trapping (AirT%), in chest CT is defined as

the percentages of lung voxels less than -856 HU on expiratory CT. This threshold is commonly

used because the expected CT density of a normal lung at inspiratory CT is -856 HU (Chen et al.,

2020). In COPDGene study, the association between AirT% and spirometry measures (FEV1

and FEV1/FVC) is stronger than the association between Emph% and the spirometry measures

(Schroeder et al., 2013). Also, the association between AirT% and asthma related hospitalization

is significant in asthmatic patients (Busacker et al., 2009).
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The only requirement of the threshold-based QCT variables is the lobes or lungs masks. It can

be easily applied to various datasets, such as rat CT data. Also, since it is easily applicable and

has fewer limitations, threshold-based QCT analysis can be automated if masks of either lungs or

lobes can be automatically acquired. Thus, as one of the specific aims of this study, extracting

threshold-based QCT features has been automated and applied to thick section CT data (More in

chapter 3).

Other than using lungs or lobes masks, segmentation of the airway provides structural QCT

features of the airway. Airway related QCT structural variables can be acquired at both inspira-

tory and expiratory CTs. When both CTs and corresponding airways masks are present, airway

structural changes between inspiratory and expiratory CTs can be computed. One of the airway

structural QCT features is the hydraulic diameter (Dh).

Dh =
4×LA

Pe
(2.3)

where LA is a luminal area, and Pe is the perimeter of the luminal area. Dh is a significant parameter

that affects flow characteristics, especially flow resistance (Choi et al., 2017b). Since gender, age,

and height affect the size of the airway, normalized hydraulic diameter (D∗
h) was introduced for

population-based analysis (Choi et al., 2015).

Another important QCT variable is circularity (Cr). The circularity of an airway branch can be

calculated using the inner area and the inner perimeter of the branch (Choi et al., 2015).

Cr =
πDave

Pe
(2.4)

where Dave is an average luminal diameter and can be calculated as:

Dave =

√
4×LA

π
(2.5)

Maximum value of Cr is 1, meaning the shape is circular. As Cr decreases, the shape becomes
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more elliptical.

In addition, Tschirren et al. (2002) and Palágyi et al. (2006) introduced skeletonization of 3D

structures. The proposed method is applied to convert a 3D airway mask to a 1D skeleton of a

tracheobronchial tree. The bifurcation angle can be computed using the 1D skeleton airway.

Bi f urcation angle(θ) = cos−1 (
d1 ·d2
|d1||d2|

) (2.6)

where d1 and d2 are directional vectors of daughter branches, and · and || denote the inner product

and magnitude of the vector. These structural QCT variables have been associated with pulmonary

function tests in asthma and COPD patients (Choi et al., 2015, 2017b). Structural alterations of Dh

at lower lobes and branching angles of central airways are found in cement dust exposed subjects

(Kim et al., 2020). More recently, these structural alterations of the airway are observed in response

to bronchodilator (Lee et al., 2022), and 1D CFD airflow simulation is used to explain these effects

(More in Chapter 4).

2.2.2 QCT from Image Registration

Image registration is a method to match different images at different time points. In chest CT,

inspiratory and expiratory CT scans can be matched to extract more features. The objective of im-

age registration is to determine a spatial transformation from the expiratory scan to the inspiratory

scan. There are three main components in image registration. First, a transformative model is con-

structed. The model determines how a floating image can be transformed or deformed to match a

reference image. Because motions of the lung are nonrigid, a free-form deformation (FFD) method

based on cubic B-spline is used (Rueckert et al., 1999; Kybic & Unser, 2003). Second, a similarity

between two images is measured. The similarity can be measured by calculating the squared sum

difference (SSD) between two images. However, overall CT density increases as the lung inflates,

and this discrepancy may lead to inaccurate matching. Therefore, squared sum tissue volume dif-

ference (SSTVD), which is less susceptible to changes due to inflation, is used in inspiratory and
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expiratory image registration (Yin et al., 2009). Finally, the SSTVD between inspiratory and ex-

piratory scans is optimized. A limited-memory quasi-Newton minimization method with bounds

on the variables (L-BFGS-B) is used to optimize the high dimensional parameter space efficiently

(Byrd et al., 1995). To make this optimization faster, two images are rigidly matched first, and

nonrigid image registration is done subsequently. This overall process is done at six different res-

olutions. The original image is resampled, and the transformation model is determined at each

resolution. Finally, with the spatial transformation mapping, more functional QCT features can be

computed.

One example of a functional QCT feature after image registration is functional small airway

disease (fSAD). Galbán et al. (2012) proposed fSAD and found that it is particularly impor-

tant in monitoring COPD progression. Emph% is computed with inspiratory CT, while AirT%

is computed with expiratory CT. Their regions may be overlapped. fSAD is regions of non-

emphysematous air trapping, representing the air-trapped regions by small air obstruction but not

by tissue destruction. Regions with inspiratory voxel greater than the emphysema threshold but

image registered voxel value less than airtrapping threshold are considered as fSAD.

With image registration, the determinant of the Jacobian matrix of the voxel deformation, J,

can be calculated.

J = λ1λ2λ3 (2.7)

where λi is an eigenvalue of a stretch tensor from image registration. It represents inspiratory-

to-expiratory local lung volume expansion ratio (Amelon et al., 2011). Higher J means more

volumetric expansion.

We can also compute the local displacement field (s∗). s∗ is the local displacement between

inspiratory and expiratory images normalized by the lung volume change.

s∗ =
s

(V insp −V exp)
1
3

(2.8)

where s is a displacement magnitude from image registration. s∗ depicted the difference in lung
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motionography between supine and prone positions due to the change in gravitational force (Kang

et al., 2021).

After a mapping from expiratory image to inspiratory image is acquired, the air volume change

map between inspiratory and expiratory can be computed. Using the air volume map, regional

ventilation defect areas can be identified, and lobar-wise ventilation can be quantified. More re-

cently, Chae et al. (2020) proposed a relative regional air volume change (RRAVC), which is a

standardized regional lung ventilation capacity between the inspiratory and expiratory CT pair. It

can be calculated by:

RRAVC =
(vinsp

air − vexp
air )/vT LC

air

(V insp
air −V exp

air )/T LC
(2.9)

where vair and Vair are local and entire air volume, respectively. Superscripts insp and exp mean

inspiration and expiration CTs. Negative RRAVC represents regions that have more air volume

at expiration. RRAVC with greater than 1 are regions with above the average air volume change.

3D distributions of the regional ventilation and deformation are connected to the entire conducting

airway model. The air volume change map serves to determine flow boundary conditions for CFD

airflow simulations.

2.3 Machine Learning Analysis

Machine learning is a subfield of artificial intelligence (AI) that identifies patterns in data and

develops a model without being explicitly programmed. There are three main types of machine

learning: reinforcement learning, supervised learning, and unsupervised learning. Reinforcement

learning, in general, means science and framework of learning to make decisions from interactions.

A way of learning is based on the reward hypothesis. Supervised learning uses both labeled and

unlabeled data for training. An example of supervised learning is semantic segmentation. The

semantic segmentation model uses both images and masks to train. More details about semantic

segmentation will be introduced in chapter 3. Unsupervised learning only uses unlabeled data for

training. In this chapter, unsupervised machine learning methods that are applied to QCT analysis

12



will be introduced.

2.3.1 Principal Component Analysis

Principal component analysis (PCA) was first introduced by Karl Pearson in 1901 (Abdi &

Williams, 2010). It is the most common linear dimension reduction method. Since analyzing data

in high dimensional space requires a tremendous amount of computation, referred to as the curse

of dimensionality, reducing the dimension is often the first step in analyzing high dimensional data.

There are two ways to reduce dimensionality: feature selection and feature extraction. In feature

selection, a number of variables are discarded, and thus a subset of variables is chosen. In feature

extraction, a new set of variables are computed using the original variables. PCA is an example of

a feature selection method.

PCA selects a new set of variables by maximizing the variance of the data. New variables are

computed by a projection of variables on the weights, which are called the principal components.

The first principal component is the direction of maximum variance, and the second principal

component is the second largest and orthogonal to the first principal component. These principal

components are the eigenvectors of the covariance matrix of the original input. Each principal

component corresponds to each eigenvector, and they are in order of associated eigenvalues. In

other words, the first principal component is the eigenvector with the largest eigenvalue.

Since a number of covariance eigenvectors and the dimensionality of the input are the same,

n-dimensional data gives n principal components. In this way, the purpose of PCA, which is

to reduce dimensionality, can not be reached. There are several ways to select the number of

principal components. First, either 2 or 3 principal components can be selected for visualization.

Since humans are incapable of seeing higher than 3D, 2D or 3D plots can provide the overall

distribution of a high dimension dataset. The other way of determining the number of principal

components is to use a scree plot. It displays eigenvalues of corresponding principal components.

Since PCs are ordered by eigenvalues, there is a trend that eigenvalues decrease as the principal

component decreases. The point at which the eigenvalues seem to level off can be adopted for
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dimension reduction. The other similar approach is to use the proportion of variance explained.

As the role of PCA is to maximize the variance of the data, the proportion of variance explained

can be computed for each eigenvector. Instead of finding the "elbow" of the scree graph manually,

this method can be automated by selecting a threshold value. Either 90% or 95% of the variance

explained is commonly used. Finally, Horn’s parallel analysis can be used to determine the number

of principal components to keep (Horn, 1965). A random dataset with the same size as the original

data set is created from a Monte-Carlo simulation. A correlation matrix and eigenvalues of the

correlation matrix are computed from the randomly generated dataset. Eigenvalues of the randomly

generated dataset are compared with the eigenvalues from the PCA. When the eigenvalue from the

random data is greater than the eigenvalue from the PCA, the parallel analysis stops and suggests

the number of components.

As discussed in the previous sections, there are more than 100 QCT variables. Combining QCT

variables with PFT or other clinical data, there are more than 200 variables for one patient. Analyz-

ing such a high-dimensional dataset is complicated and time-consuming. One simple application

is to make subgroups based on the principal components.

2.3.2 K-means Clustering

K-means clustering is an iterative method to group similar data points into k clusters (Lloyd,

1982). It is another unsupervised machine learning method, and no label is required. Initially, the

k-means algorithm randomly selects k centroids from the data. Distances between each data point

and each centroid are computed. Consequently, data points are classified into different clusters

based on the nearest centroids (the least squared Euclidean distance). Iteratively, k best centroids

are selected, and data points are clustered into k clusters. The algorithm stops when the cluster

assignments no longer change. Because the K-means clustering algorithm is not guaranteed to find

the global optimum (Hartigan & Wong, 1979), multiple implementations with different initializa-

tion are needed. Using the K-means clustering, different subgroups can be identified, and subgroup

analysis can be done.
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Although the k-means clustering algorithm is automatically optimized, it requires the number

of clusters as an input. The selection of k can be done by a visual inspection. For high dimensional

data, PCA is done to extract the first two principal components, and distribution is plotted to

determine an optimal k. To automate this process, the silhouette coefficient is adopted to determine

the optimal number of k. The silhouette of a sample can be calculated by:

s(x) =
b(x)−a(x)

max(a(x),b(x))
(2.10)

where a(x) and b(x) are average intra-cluster distance and nearest inter-cluster distances. It is

a combination of how data points are dense within a cluster and how data points are separated

between clusters. It ranges from -1 to 1, and a higher score means a better fit. The silhouette

coefficient can be computed by taking the average:

SC =
1
N

N

∑
i=1

s(x) (2.11)

where N is the number of data points. For a set of k clustering, the silhouette coefficients

for each k can be computed, and the k with the best silhouette coefficient can be selected for

automation. One disadvantage of K-means clustering is its computational inefficiency due to its

iterative process. Therefore, K-means clustering is often used with PCA because PCA can reduce

computational dimensions significantly. In Chapter 5, how a combination of PCA and k-means

clustering is used to identify particulate matter exposure-based subgroups.

2.4 Statistical Analysis

Statistical analysis is extensively used with the QCT pipeline. Different tests can be used to

compare different groups. Where there is only one group for longitudinal comparison, a paired

t-test is used. When there are two groups to compare, parametric Welch’s t-test or nonparametric

Wilcoxon test are used. For more than three groups, analysis of variance (ANOVA) is first per-

formed. If the significance is found from ANOVA, post hoc tests are performed to identify which
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group is significantly different from other groups. To find associations between variables, both

Pearson’s and Spearman’s correlations can be used, and the correlation coefficient is computed to

measure the strength of the relationship between two variables.

Figure 2.1: Airway branches from trachea to subsegmental branches. Each color tone of branch
represents different lobes, and segmental branches are colored and labeled. Right lung and left
lung are shown in left and right, respectively.
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Chapter 3

A Slice Thickness Independent Segmentation Approach

In this chapter, we have sought to develop a slice thickness independence approach for pul-

monary lobe segmentation. The model was trained on thin section CT images and tested on thick

section CT images without transfer learning. Our proposed approach achieved dice similarity co-

efficients of 0.982, 0.981, 0.949, 0.896, and 0.962 for left upper, left lower, right upper, right

middle, and right lower lobes, respectively. Then, we used the lobe masks to perform the whole

lung quantitative analysis of chest CT images with thin and thick slice thickness (1mm & 5mm)

and compared regional characteristics of silicosis, IPF, and healthy lung.

3.1 Deep Learning Segmentation

Advancements in computer hardware and enormously accumulated data have made a break-

through in machine learning, especially in deep learning. Deep learning models have been suc-

cessful in every subfield of computer vision, including classification, detection, and segmentation.

It has also influenced medical imaging by outperforming previous algorithm-based models (Chan

et al., 2020). There was no exception in the medical imaging segmentation task. Especially, UNet

based models have dominated this field (Ronneberger et al., 2015). In this section, each component

of a deep learning model, focusing on the UNet, is introduced first. Based on these components,

the structure of a deep learning segmentation model, training strategies, and the model deployment

are elaborated.
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3.1.1 Convolutional Neural Network

There are several branches of deep learning models. Artificial neural network (ANN) is the

most basic types of neural network. The building block of the ANN is a perceptron, which accepts

input and computes output. Multiple perceptrons can be connected with each other, forming a

hidden layer. The first layer of perceptrons is called input layer, and the last layer is called output

layer. Recurrent neural network (RNN) is a variant of ANN. While computations of ANN can only

move forward (to next layer), intermediate computations of RNN can return to its current layer.

This recurrent connection enables the RNN to capture sequential information, and thus the RNN

models have been successful in natural language processing (Hochreiter & Schmidhuber, 1997).

Convolutional neural network (CNN) is another variant of ANN that is specifically designed

for image recognition task (LeCun et al., 2015). Unlike other networks, it is used for processing

high dimensional data (2D or 3D). A convolution layer is composed of multiple kernels that learn

features of input. Kernels, which are matrices, are slid and multiplied across the input. Dimensions

of kernels are same with input dimension. Sizes of 2D inputs (images) are at least several hundreds

by several hundreds, and sizes of kernels are usually 3x3, 5x5, or 7x7. Although larger kernels can

capture more global features, computation cost increase exponentially. To overcome this, a pooling

layer is introduced. Instead of increasing the size of kernels, the pooling layer reduces size of the

inputs. There are two main types of pooling layers: maxpooling and average pooling. In max

pooling, only maximum values within the size of the pool are stored. In other words, the most

signaled regions are highlighted. On the other hand, average pooling takes the average within the

size of the pool. It allows gradients to backpropagate through every pixel during the training. The

pooling layer is added after the convolutional layer. A multiple combination of the convolutional

layer and the pooling layer converts local features into global features. In this way, the CNN can

recognize abstract images.

Another contributing factor of success of CNN is its non-linearity(Xu et al., 2015). Activation

function is used with the convolution layer to increase non-linearity. ’Deep’ in deep neural net-

work means that it has multiple layers. However, multiple layers become useless if the model is
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linear because all linear layers can be multiplied to one single layer. The most common activation

function is rectified linear unit (ReLU).

f (x) = max(0,x) (3.1)

The slope of ReLU for negative values is zero. Although it can make computations fast, when

a neuron encounters a negative value, its gradient will not be updated and possibly never recov-

ered. These untrained neurons become useless. To overcome this issue, leaky rectified linear unit

(leakyReLU) can be used. Instead of making gradients zero, leakyReLU allows small gradient

when values are negative.

f (x) =


x if x > 0

αx if x ≤ 0
(3.2)

, where α is a negative slope hyperparameter.

The value of α can be adjusted for a better performance. Decreasing α has a stronger rectifi-

cation effect on negative values, and it becomes ReLU when α is zero.

In machine learning and statistics, it is common to observe that input data is normalized as a

preprocessing step. Normalization makes sure the input falls in a reasonable range and increases

numerical stability. Deep convolutional neural network is composed of multiple convolution lay-

ers, and numerical stability is not guaranteed after a single convolution layer. The unstable dis-

tribution can be accumulated and increases variations. This phenomenon, known as an internal

covariate shift, can be minimized by batch normalization (Ioffe & Szegedy, 2015). Due to tremen-

dous amount of data that do not fit into memory, deep neural networks are trained with mini batch.

Batch normalization normalizes distribution of each layer over mini batch of each dimension.

x̂i =
xi −µB√

σB + ε
(3.3)

where xi represents one input instance. Mean (µB) and variance (σB) of mini batch can be calcu-
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lated, and xi is normalized to x̂i. ε is a noise to prevent denominator becomes zero. Each layer is

normalized by mean and variance of the mini batch. In other words, distribution can depend on

how data are grouped. Therefore, two learnable parameters, γ and β , are introduced.

yi = γ x̂i +β (3.4)

During training over the entire dataset, γ and β learn mean and bias of the layer.

3.2 Introduction

As introduced in the previous chapters, current applications of CT imaging and QCT analy-

sis enable structural and functional assessment of various lung diseases. Disease severity can be

regionally quantified, and its progression can be monitored with QCT. One of the most critical

components of QCT analysis is segmentation masks, such as airway, vessel, or lobes. Regions

of interest are extracted from the masks for QCT analysis. These masks can usually be acquired

semi-automatically using modern software with manual editing. However, the modern software

only works for CT images with well-controlled imaging protocols, such as thin slice thickness

(less than 2mm), for successful lung segmentation and measurement. This requirement limits the

use of advanced QCT analysis for more lung disease CT scans with thick slices (2mm or greater)

since lobe segmentation is an essential initial step for quantitative analyses. Chest CT images are

three-dimensional data with several hundreds of slices. Manual segmentation is time consuming

and cannot be done in a large-scale dataset.

Human lungs have five compartments called pulmonary lobes: LUL, LLL, RUL, RML, and

RLL. Within the lung, lobes are separated by fissures. The left lung is divided by one oblique

fissure, and the right lung is divided by one oblique and horizontal fissures. Although lobes can be

segmented using fissures, fissures can be either invisible radiographically or incomplete (Raasch

et al., 1982). This incomplete fissure is more common in diseased lungs. Also, because the lobes

are 3D structures with local textures, both global and local information is needed for lobe segmen-
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tation. To tackle these problems, there have been lots of deep learning-based works proposed.

However, most of previous pulmonary lobe segmentation works either rely on other pulmonary

segmentations, such as vessel, airway, and lung, or use multiple CNN models for different anatom-

ical regions. Bragman et al. (2017) proposed an unsupervised lobe segmentation algorithm based

on a probabilistic fissure segmentation, but it uses both airway and vessel masks as inputs. Ger-

ard & Reinhardt (2019) combined four different 3D CNNs (two for fissure and two for lobes) to

segment lobes, and the model requires masks of left and right lungs. Park et al. (2020) trained two

separate 3D UNet models (left lung and right lung) using CT images with slice thickness less than

1mm. While 2D CNN cannot capture global features, 3D CNN is computationally expensive to

capture local texture features. George et al. (2017) introduced a 2D CNNs model with 3 window

channels and applied a 3D random walker for refinement. This model achieved a high accuracy,

but this method requires a lung mask, which is acquired from another deep learning model. In

addition, most of the previous methods for pulmonary lobe segmentation use thin slice chest CT

data. Gu et al. (2021) first attempted deep learning lobe segmentation using thick section (5 mm)

CT images. They used a combination of a 3D CNN for extracting global information and a 2D

CNN for extracting local texture information. Their combined model was trained and tested on

CT images with 5 mm slice thickness. However, both the 3D models and the hybrid 2D-3D model

cannot be generalized for CT images with different slice thickness.

To overcome needs for prior masks and constant slice thickness of CT, we propose a method

to automatically segment pulmonary lobes. Our method only uses CT images as an input and

can segment lobes regardless of slice thickness. We call our method ZUNet, which is a UNet

based segmentation model (Ronneberger et al., 2015) with additional axial location of the CT

slice to capture a 3D structure. We trained ZUNet using thin section CTs of healthy subjects, IPF

patients, COPD patients, and asthmatic patients. The trained model was tested to segment lobes of

silicosis patients for QCT analysis. Silicosis is a fibrotic and occupational lung disease caused by

inhalation of crystalline silica (Rose et al., 2019). Consequently, lobe masks were used for QCT

analysis. QCT features of each group were statistically compared to characterize lobar features of
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silicosis. Based on our knowledge, this is the first successful work of deep learning-based lobe

segmentation using CT images with different slice thicknesses (1 - 10 mm) and the first work to

conduct the whole lung and lobar quantification of QCT features on silicosis patients.

3.3 Methods

We first present our dataset breakdown for deep learning training. We then introduce our

proposed method to segment lobes from CT images with different slice thicknesses. The method

includes model architecture, postprocessing, and training strategy. The segmentation model is

validated on thin section CT scans and tested on thick section CT scans with postprocessing. We

conducted regional QCT analysis on a lobar basis using the lobe masks from the model. Finally,

we performed statistical analysis to characterize and compared QCT features of silicosis with those

of IPF and healthy lungs.

3.3.1 Datasets

Two different datasets are used in this study: thin section chest CT scans with 1mm or less slice

thickness and thick section CT scans with 5mm or 10mm slice thickness. Thin section CT images

and corresponding lobe segmentation masks are retrospectively collected from a QCT analysis

study at Jeonbuk National University Hospital (n=351). For data diversity, four different disease

phenotypes are included: healthy lungs (n=67), COPD (n=99), and IPF (n=77), and asthma (n=98).

This dataset was split into a training dataset (n=293) and a validation dataset (n=48). Inspiratory

thick-section CT scans of silicosis patients were retrospectively collected from Ankara Hospital

for Occupational Diseases, Ankara, Turkey (n=30). The model was trained on thin section CT

images and tested on thick section silicosis CT images without transfer learning. A breakdown of

datasets is summarized in Table 3.1.
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3.3.2 ZUNet Architecture

The model architecture of multi-channel ZUNet is illustrated in fig 3.2. Similar to UNet (Ron-

neberger et al., 2015), ZUNet is composed of a contracting path, a bottleneck layer, and an ex-

pansive path. Each layer consists of a 2D convolutional layer (transpose convolutional layer in

the expansive path), leaky ReLU, and instance normalization. Zero padding is applied before each

convolutional layer. Inputs to the ZUNet are a 4-channel image and a normalized axial location

of the slice, called a z vector. CT images are preprocessed volumetrically first. Each voxel was

clipped at -1024 HU because some CT scans use -3024 HU as a background value. After 3D CT

images are normalized by minimum and maximum voxel values, one axial slice of the normalized

CT images is extracted, and locations (x, y, and z) of each voxel construct positional maps. These

positional maps are concatenated to the slice of CT and form a multi-channel CT image, which is

fed to the contracting path. Axial position of the slice is normalized by the number of slices and

one hot encoded to form the z vector. The one hot encoded z concatenated to the bottleneck layer

instead of being fed to the first layer with the image. Concatenated features are upsampled by 2D

transpose convolution. Finally, softmax function is used to get probability maps from the output of

the last expansive layer. Unlike other common segmentation models, which output discrete values

of segmentation masks, ZUNet outputs probability maps of each class. In lobe segmentation, there

are six classes: LUL, LLL, RUL, RML, RLL, and background. Therefore, each CT slice outputs

six probability maps, which is combined with probability maps of other CT slices. Postprocessing

is performed on the 3D probability maps to make the final lobe mask.

3.3.3 Postprocessing

Two postprocessing steps are done to acquire less noise and more axially consistent lobe masks.

Chest is segmented from CT slices using image processing algorithms. Then, 3D normalized

convolution is done on the probability maps from the ZUNet.

Normalized CT image is first binarized using Otsu’s method. Morphological opening, which is

an erosion followed by a dilation, is performed to remove noises outside the chest. A Contour line
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with maximum area from the opened binary image is acquired, and the contour line is converted to

a chest mask. The chest of each slice is segmented, and a 3D chest mask is formed by combining

each slice of the mask. The chest mask is used to remove noises outside chest, such as clothes and

CT scanners. Figure 3.3 illustrates how chest segmentation is done with intermediate results.

CT images are three dimensions, but output of the ZUNet is two dimensions. While the 2D deep

learning model can deal with more features and higher resolution thanks to less memory usage,

segmentation results of the 2D model are axially inconsistent, especially with thicker slices. To

overcome this challenge, mask probability map smoothing is used. After the chest mask is used to

remove noises outside the chest, probability maps of lobes are converted to lung mask by binarizing

each voxel into either lung or background. Because operating the Gaussian filter directly on the

lung masked probability maps can make boundary of the lung blur and thus peripheral regions

inaccurate, channel-wise 3D normalized convolution is applied (Knutsson & Westin, 1993). After

Gaussian filter is applied on the masked region, the effect of blurred mask is calculated and is

reversed. In this way, outside masks regions do not affect the masked region. After the normalized

convolution, the smooth lobe mask is acquired. Figure 3.4 shows effects of the mask probability

map smoothing.

3.3.4 Implementation Details

We train and test three models: UNet, single channel ZUNet, and multi-channel ZUNet. All

the models are trained by a NVIDIA Quadro RTX 8000 GPU. We use PyTorch for training the

models and “Weights and Biases” for monitoring the training. Input images are not resized, and

input resolution is 512×512. Other than normalization after clipping the background value to -

1024 HU, image augmentations are done weakly during the training. Because morphology of the

lobes is highly relevant to positions, only a rotation with a limit of 15 degrees and blurring are

done for data augmentation. Training and validation batch sizes are 16 and 32, respectively. Adam

optimizer with a learning rate of 0.0001 is used to minimize a combo of cross entropy loss and
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dice coefficient loss.

LCE(y, ŷ) =−
6

∑
c=1

y∗ log(ŷ) (3.5)

LDice(y, ŷ) = 1− 2yŷ+ ε

y+ ŷ+ ε
(3.6)

Lcombo(y, ŷ) = λLCE +(1−λ )LDice (3.7)

where y and ŷ are labels and predicted probability. ε , which was 10−7 in this case, is added to avoid

loss function becomes undefined. Weights of cross entropy loss and dice loss are adjusted with

lambda, which is 0.5. Models are trained for 50 epochs, and the ones with the lowest validation

loss are used for testing.

3.3.5 QCT Analysis

QCT analysis is done to evaluate features of silicosis. Within the lobe masks, mean lung CT

density, tissue fraction (TF), tissue volume (TV), total volume (V), HAA% between -700 HU and

0 HU, and LAA%, which is known as emphysema percentage in COPD, are computed. Mean

CT density are calculated by taking the average CT density of each lobe. HAA% and LAA% are

threshold-based measures. These measures are computed by counting number of voxels above

or below thresholds within each lobe. Tissue fraction is calculated using the equation 2.1. More

details about QCT calculations are in chapter 2.

QCT variables of the silicosis group (S) were compared with those from healthy 5-mm thick

slice images (H5) and IPF 5-mm thick slice images (I5) adapted from 1-mm CTs of healthy (H1)

and IPF (I1) subjects.

Paired t-test is done to compare QCT variables with ground truth masks and ZUNet masks.

For disease wise QCT comparisons, ANOVA test is performed. Post hoc Tukey test is used to find

which groups are significantly different when p-value from ANOVA is less than or equal to 0.05.
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3.4 Results

In this section, we aim to evaluate the performance of multi-channel ZUNet in lobe segmenta-

tion and present results of QCT analysis. Robustness of the model is tested in two different ways.

Segmentation accuracy is measured in thick slice thickness datasets, and QCTs extracted from

predicted lobe masks are compared with those from ground truth masks. Four different models

were investigated, UNet, ZUNet, multi-channel ZUNet, amd multi-channel ZUNet with postpro-

cessing. Each model is trained on thin slice dataset with healthy lung, IPF, COPD, and asthma.

We test models in the thick section silicosis dataset. Lobe segmentation masks are obtained for

30 thick section images. CT images with 5mm and 10mm slice thickness segmentation results are

visualized in Figure 3.5. There are lots of false positives outside the chest, these false positives

are completely removed with the chest mask. Quantitative results are shown in table 3.2. Because

the objective of this study is to quantitatively analyze chest CT features of silicosis patients, we

compared QCT variables resulting from ground truth and multi-channel ZUNet with postprocess-

ing. MeanHU, TF, TV, total volume, HAA%, and LAA% are computed and plotted in Figure 3.6.

Among all QCT variables, no significant difference is found between features from ground truth

masks and ZUNet masks. From the lobe masks of the silicosis images, mean lung CT density,

mean TF, TV, total volume, HAA%, and LAA% of lungs are -803±50 HU, 18.7±4.8%, 809±175

ml, and 16.2±13.3%, respectively. QCTs of healthy lung, IPF, and silicosis are compared. For

QCT analysis of the whole lung, differences between IPF and silicosis are not significant (p>0.05),

although there are significant differences between healthy and silicosis in meanHU, TF, and HAA

(p<0.05). There is a significant difference between TF of IPF and silicosis in RUL but not in the

other lobes. Also, HAA% of silicosis is significantly greater than that of IPF in RUL. No signif-

icant differences are found in the other lobes. A full comparison of QCT variables for each lobe

and lung are presented in Figure 3.7.
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3.5 Discussion

Advances in QCT-based structural and functional assessment in healthy and diseased lungs

has improved understanding of preclinical pathophysiology and clinical outcomes (Hoffman et al.,

2014; Podolanczuk et al., 2016). A great portion of lung diseases such as silicosis uses thick

section CTs, which has limited the use of advanced QCT analysis, while visual assessment of the

chest CT is one of the main tools to diagnose silicosis, reviewing CT patterns of impairment such as

confluence and coalescence (dos Santos Antao et al., 2005; de Castro et al., 2014). The main barrier

is requirement of well-controlled imaging protocols with thin section full volumetric images for 3D

whole lung segmentation. In this study, we proposed the slice thickness independent segmentation

approach and evaluated on CT images with various disease phenotypes (healthy lung, COPD, IPF,

asthma, and silicosis) and a range of slice thickness (1 mm to 10 mm). We also checked reliability

of the proposed method by comparing QCT features extracted from the ground truth and ZUNet

with postprocessing.

Most of previous lobe segmentation works rely on prior masks, such as lung, airway, and ves-

sel. It not only requires more computations and time but also cannot be used without successfully

segmented prior masks. Our proposed method only uses slices of CT images as inputs. Lung

masks are used to remove false positive regions outside the lungs. After having tested the lobe

segmentation model on silicosis dataset, we found that lung segmentation is unnecessary. All the

noises occurred outside of the chest regions. There are only two noise regions: around clothes

and CT scanner bed. Therefore, chest mask is enough to remove those noises. Also, the proposed

chest segmentation method is reliable, as it successfully segments every slice of all 30 silicosis CT

scans. The second postprocessing was 3D smoothing. 3D volumetric construction of 2D masks

can be done by concatenation of 2D slices, but in this way, the combined 3D mask is axially in-

consistent. As addressed in other literature, this global inconsistency is the main limitation of 2D

CNN models. Most of previous lobe segmentation works, thus, employ either 3D or 2D-3D hybrid

models to capture global context. However, one of disadvantages of 3D models is that it cannot be

generalized for different slice thickness CT scans, especially when the difference is large. Instead
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of using 3D CNN models, we stick to the 2D CNN model. We used two steps to make lobe masks

more globally consistent. First, we used positional location as an input to the 2D model: multi-

channel and z-vector. Second, we applied 3D normalized convolution for near slice smoothing.

Because values of mask are discrete, the gaussian filter cannot be directly applied to the mask. In-

stead, 3D gaussian blurring is applied on lung masked probability maps. Effects of postprocessing

are compared by measuring accuracy before and after the postprocessing. According to Table 3.2,

dice scores and sensitivity are improved remarkably in thick section CT images after the postpro-

cessing. One contributing factor is that the model is trained on different dataset. Not only slice

thickness, but also other image parameters and diseases phenotypes are different between train and

test datasets. As Hofmanninger (2020) investigated clinical applicability of deep learning segmen-

tation approaches, accuracy of lung segmentation models relies on diversity of the training data.

When the model is tested on the thick section silicosis CT images, the model encounters unseen

features and noises, especially outside chest. In this case, chest mask helps the model ignore the

noises. In addition, thick section CT images usually have greater slice-wise discrepancies. As slice

thickness increases, changes in lung anatomy become more remarkable. This discrepancy results

in more axially inconsistent segmentation masks. Although the z-vector of the ZUNet can alleviate

this effect globally, it can’t fix near the lobe boundaries where values of z-vector would be sim-

ilar. Therefore, 3D normalized convolution corrects those regions and increase the performance

significantly. Finally, our approach successfully segments pulmonary lobes in unseen dataset by

combining invariant positional information and robust postprocessing.

We have shown our deep-learning based approach provides robust lobe segmentation masks

allowing successful QCT analysis from 5-mm and 10-mm thick-section CTs of silicosis patients.

QCT features of silicosis are compared statistically with those of healthy lungs and IPF. Compared

to healthy lungs, silicosis and IPF had higher HAA% in all lungs. As HAA% corresponds to

fibrotic component of the lung and negatively correlates to physiological parameters such as force

vital capacity and carbon monoxide diffusion capacity (Tanizawa et al., 2015), the increase in

HAA% well represent the characteristics of fibrotic lung diseases. Although HAA% of silicosis
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was higher than that of IPF, difference was not significant in all lungs. However, their difference

was significant in right upper lobe. Although upper lobes dominant fibrosis is known as a pattern

of silicosis and qualitatively confirmed (Mlika et al., 2022; Ferri, 2021), it is first quantitatively

found and compared with other fibrotic disease. In addition, mean CT density and tissue fraction

showed the same pattern. Means of silicosis are significantly higher than IPF only in the right

upper lobe.

Although our proposed method showed robust results in segmenting lobes from thick section

CT images, there are some limitations that should be considered. Pulmonary lobe segmentation is

not clearly defined. Most of previous pulmonary lobe segmentation works and public datasets in-

clude vessels and airway. However, to what extent of vessel and airway can be included in the lobe

is not clearly mentioned in previous works. In works of Park et al. (2020); Bragman et al. (2017),

gold standards of lobe segmentation excluded portions of vessels and airways, even though they

are in the lung. Because airway and vessel boundaries can be unclear when included in the lobes,

airway and vessels should be excluded from lobe masks to have more accurate lobe segmentation.

Then, excluding vessel and airway can make lobe segmentation much harder task. Depending on

the purpose of lobe segmentation, these variances may affect analysis. Because our goal of using

lobe segmentation is to perform QCT analysis, vessels and segmental airways are already excluded

from the ground truth lobe masks. There are multiple holes, which indicate airways or vessels, in

the predicted lobe masks. Although these holes can be filled with morphological closing, this post-

processing may result in inaccurate QCT analysis. Evaluation of the effects of including airway

and vessels by segmentation metrics and QCT analysis remains for future studies.

3.6 Conclusion

Our deep learning-based pulmonary lobe segmentation approach enabled QCT analysis of thick

section HRCT lung images of silicosis patients. Increased mean lung CT density, tissue fraction,

and HAA% in the RUL quantified degrees of fibrotic changes of the lungs with silicosis. This

quantitative analysis may provide precise assessment of longitudinal lung structural and functional
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changes along with disease progression and treatment responses of the patients. The proposed

approach may expand the capability of QCT analysis applications to more clinically obtained thick

section CTs.

Table 3.1: Slice thickness and disease distributions of lobe segmentation datasets.
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Table 3.2: Metrics of different models when tested on the silicosis dataset. The highest metric for
each lobe is made bold.
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Figure 3.1: Architecture of UNet for medical imaging segmentation.
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Figure 3.2: ZUNet architecture with slices of images and position of the slice in the craniocaudal
(z) axis.
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Figure 3.3: Steps to segment a chest. Axial view of a chest CT slice is shown in (a). (b) is the
binarized image after Otsu’s method. (c) shows a contour line with noises is drawn on (a). (d)
shows a contour line after the morphological opening.
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Figure 3.4: Comparisons before, (a), (b), (c), and after, (d), (e), (f), the mask probability map
smoothing. (a) and (d): sagittal view, (b) and (e): coronal view, and (c) and (f): 3D shape.
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Figure 3.5: Qualitative lobe segmentation results of two representative silicosis subjects. First and
third rows show sagittal view. Second and the last row show 3D view. Each column represents
different segmentation model: (a) UNet, (b) ZUNet, (c) Multi-channel ZUNet, (d) Multi-channel
ZUNet with postprocessing, and (e) ground truth.
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Figure 3.6: QCT comparisons of lobe masks of ground truth and ZUNet with postprocessing. Each
data point represents one patient.
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Figure 3.7: Bar plot for each QCT variables with 5 lobes. *,**, and *** denote that p values are
less than 0.05, 0.01, and 0.001, repectively.
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Figure 3.8: Comparisons before (first row) and after (second row) the chest segmentation. (a) and
(b): clothes noises, (c) and (d): Noises between CT scanner and patient. Yellow bounding boxes
highlight noises around clothes. Green bounding boxes highlight noises around CT scanner bed.
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Chapter 4

Explain Bronchodilator-induced Regional Ventilation

Improvement in Asthma using QCT and CFD

Despite recent advancements in QCT and CFD analysis in lung health and diseases, the appli-

cation of QCT-CFD combined analysis has been rarely applied to assess lung response to treat-

ments. In general, comprehensive full three-dimensional CFD studies for lung use only a few

representative subjects, lacking the statistical evidence for the physiological and pathophysiologi-

cal interpretation of the findings. In this section, our QCT pipeline is applied to analyze the effects

of bronchodilator inhalation in 66 asthmatic patients. Structural changes in the airway induced by

bronchodilator are linked with 1D CFD airflow simulations. First, a brief introduction to asthma, a

bronchodilator, and a 1D CFD simulation are presented. Then, detailed methods of extensive QCT

analysis linking with 1D CFD simulation are introduced. Finally, the results of the QCT-CFD

analysis are presented.

4.1 Introduction

Asthma is a chronic condition that causes the airways narrow and inflamed, and this condition

causes airway obstruction. Despite there are more than three hundred million people worldwide

suffering from asthma, there is no cure for asthma (Masoli et al., 2004; Vos et al., 2020). How-

ever, it is manageable with medications. One of the most common types of asthma medication

is a bronchodilator. It helps make breathing easier by relaxing the muscles around the airways.

Despite its common use to improve lung functions, the underlying regional lung structure-function

relationship in response to the bronchodilator is not fully understood.
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Previous application of the QCT framework for analysis of bronchodilator response showed

a tendency to reduce regional discordance of ventilation distribution. Bronchodilator inhalation

induced patchy pairs of hyperinflated and hypoinflated regions compared to the pre-bronchodilator

lung and improved expiratory lung deflation (Choi et al., 2017a). Statistical analysis of QCT-based

airway metrics between pre- and post-bronchodilator showed a significant increase in diameter and

circularity of proximal airways, such as the trachea, LMB, RMB, and bronchus intermedius (BI),

and decreased end-tracheal branching angle (Lee et al., 2022). In this extended study, we used

1D CFD airflow simulations to further characterize bronchodilator (BD)-induced improvement in

regional air flow dynamics and to associate the flow features with other QCT features and clinical

data. Hereafter, the terms “bronchodilator” and “BD” are both used according to specific needs for

natural and concise expressions, respectively.

4.2 Methods

The current analysis used retrospectively collected data from 72 patients with asthma enrolled

in a bronchodilator response study conducted at Seoul National University Hospital, Seoul, Korea

in 2013. Among the 72 patients, 6 patients were excluded by the exclusion criteria in Figure 4.1,

and the other 66 patients (M:F=23:43, age=64.4 ± 10.7, severe:non-severe=37:29) were included

in the analysis. The overall pipeline is illustrated in Figure 4.2.

Full inspiratory CT at total lung capacity (TLC) and full expiratory CT at residual volume

(RV) acquired both before and after bronchodilator inhalation were collected. Segmentation and

structural measurement of airway, lungs, lobes, and vessels from each of four CT scans were

done using VIDA Apollo 2.0 (Coralville, IA) and in-house software. Airway structural metrics

include D∗
h, Cr, branching angle and more. Pulmonary lobe masks were used to acquire threshold

based QCT features, such as HAA% and LAA%. Symmetric mass-preserving nonrigid image

registration (Yin et al., 2009; Haghighi et al., 2018) between TLC and RV images were performed

for before and after bronchodilator inhalation. Functional QCT features, such as J, RRAVC and

s∗, were extracted after image registration.
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Based on CT-resolved airways and lobe masks, entire conducting airway models were made

using a fractal-based volume filling method (Fig 4.3) (Tawhai et al., 2000, 2004; Choi, 2011),

which links airways with approximately 30,000 parenchymal units at an acinar scale. For CFD

simulation, regional air volume change distribution at those parenchymal units provided the initial

flow rate distribution in the entire conducting airway model, which serves as boundary conditions

for CFD air flow simulations. Subject-specific tidal breathing flow rate patterns were generated

by sinusoidal waveform with an amplitude of tidal volume determined by individual subject’s

weight (kg) multiplied by 6 ml/kg. To analyze all 66 patients, we used 1D CFD simulation instead

of 3D CFD simulation. We used 1D CFD simulations that solved energy balance equation for

pressure drop due to unsteady effect, total effect, kinetic energy, and viscous dissipation and a

lung compliance model applied to pleural region that link acinar and pleural region. For viscous

pressure drop entry flow model (Pedley & TJ, 1977; Choi, 2011) was employed through the entire

conducting airway. Pre- and post-bronchodilator whole lung and lobar distributions of local air

flowrate (FR) and flowrate fraction (FF), airway pressure drop (P) at peak inspiratory (PI) and

peak expiratory (PE) flow rates were used for comparison between pre- and post-BD tidal breathing

characteristics and associations between variables. Furthermore, acinar pressure work (Wp) and

airway resistance (R) were computed for the whole lung and each lobe.

WP = (P)(FR) (4.1)

R =
P

FR
(4.2)

All QCT features were integrated with CFD features for analysis. Finally, the CFD variables

were associated with other QCT and clinical features.

4.3 Analysis

First, effects of bronchodilator inhalation were visually inspected. A demonstrative result of

CFD simulation of 56-year-old severe asthmatic patient with 15% increase in FEV1 is shown in
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Figure 4.4. In this demonstrative case, regional discordance in distributions of flowrate fraction

and airway pressure was substantially reduced. More large airways defined by the inner diameters

greater than 2 mm appeared after bronchodilator inhalation. Also, D∗
h and circularity at the trachea

as well as end-tracheal branching angle were improved after bronchodilator inhalation. Airway

resistance in the entire conducting airway decreased by 36%. It is shown that heterogeneity of

airwasy resistance was reduced.

The demonstrated BD-induced functional improvement was not clearly shown in all 66 pa-

tients. Thus, effects of bronchodilator were compared statistically in all 66 subjects. Signifi-

cant increase in large airway diameters were found in the entire 66 patients, in the trachea (6.7%,

p<0.001), LMB (5.6%, p<0.001), RMB (5.6%, p<0.001), BI (2.8%, p=0.0016), LLB (11.1%,

p<0.001), and average over the segmental airways in each of the five lobes (LUL, LLL, RUL,

RML, RLL: 8.6%, 16.3%, 11.0%, 10.7%, 9.5%, respectively; p<0.001, all). However, CFD-

derived functional outcomes were not significantly improved in all subjects. To find important

functional imaging biomarkers, associations between CFD, QCT, and clinical features were found.

We found the increase in large airway diameters were significantly associated (p<0.05) with CFD

features. Specifically, decreases in WP at PI and PE were associated with increase in D∗
h of the

trachea (r=0.46, 0.51), the BI (r=0.43, 0.47), and the LLB (r=0.30, 0.33). Also, FR increases in

the RLL at PI and PE were associated with increases in D∗
h of the trachea (r=0.41, 0.45), the RMB

(r=0.37, 0.36), and the BI (r=0.49, 0.48). It is worth noting that the trachea, the RMB, and the BI

are an airway path to the RLL. In this finding, it is implied that the degree of bronchial dilatation

indicative in the large airways improves regional breathing, by reducing regional pressure-driven

workload in the whole lung and particularly recovering air flow in the RLL.

Not only the diameters of the airways, but also the shape of the airway cross section affected

flow characteristics. In the LUL, WP at PI and PE was moderately associated with increase in

Cr (r=0.50, 0.45). In the LLL, decrease in Cr was associated with FF at PI (r=-0.297), and FF at

the LLL was associated with percent predicted value of FEV (FEV1%pred), FVC, and the FEV1

to FVC ratio (FEV1/FVC) (r=0.336, 0.293, 0.271). This finding is linked with our recent finding
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that pre-BD D∗
h at the LLB was mildly associated with FEV1%pred and FEV1/FVC and support

implication of the impact of the LLB constriction in bronchodilator inhalation in the distal airways

(Lee et al., 2022). Constriction of LLB was also found to differentiate severe asthmatics into two

distinct groups, one with airway constriction and air trapping but no airway wall thickening, and the

other with wall thickening without airway constriction or air trapping, multiscale imaging-based

cluster analysis of 248 asthmatic patients enrolled in Severe Asthma Research Program (SARP)

(Choi et al., 2017c) and have a significant impact on forming high speed air flow and particle

deposition hot spots that increases proximal airway particle deposition fraction (Choi et al., 2019a)

in the same cohort data. The LLB is the entrance to segmental and further distal airways of the

three basal regions in the LLL.

Not only airway structural variables but also other QCT features were associated with CFD

features. In the RML, FR decreases at PI and PE were associated with LAA%IN (r=-0.44, -0.42),

which increased by bronchodilator inhalation in all asthmatics (13.8%, p=0.024), and mean venti-

lation fraction decrease was associated with FEV1%pred increase (r=-0.49).

4.4 Conclusion

Our QCT-CFD framework was successfully applied for the characterization of multiscale struc-

ture and function relationship in bronchodilator response of 66 asthma patients. Integrated QCT-

CFD lung analysis in bronchodilator response in asthma-associated changes in regional air flow

features with improvement in proximal airway features and clinical data. Results elucidated how

bronchodilation by β 2-agonists reduced CFD simulated workload of breathing with the interplay

between various regional features of airway and lung structure and function. An increase in airway

diameter by bronchodilator was associated with a decrease in CFD-simulated workload.

The QCT and CFD-derived features could identify regional differences in bronchodilator re-

sponse and provide specific structure-function association. Such subject-specific characterization

of structure-function response to treatment may be necessary if one was trying to modify the air-

ways, such as by bronchial thermoplasty and inhaled biologic.
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Figure 4.1: An enrollment flowchart of asthma bronchodilator response analysis. Among 72 pa-
tients, CTs of 66 participants were analyzed.
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Figure 4.2: A workflow of inspiratory and expiratory CT image matching and 1D CFD airflow
simulation for lung structure-function assessment (adapted from Chae et al. (2020))
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Figure 4.3: A visualization of the modeled skeletonized 1D airway tree overlayed with shaded
CT-resolved 3D geometry surfaces of airway and lobes. Green, light purple, blue, red, and orange
indicate the five lobes (LUL, LLL, RUL, RML, and RLL), respectively.
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Figure 4.4: Pre- (left) and post-BD (right) comparison of (1st row) flowrate fraction (FF) distri-
bution, (2nd row) air pressure (P) distribution, and (3rd row) airway resistance at peak inspiratory
flowrate, and (4th row) large airway branches with inner diameter > 2 mm.
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Figure 4.5: Airway branches with anatomical labels.
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Figure 4.6: Statistical associations between 1D CFD features at peak inspiratory flow rate (PIFR)
and QCT features. The red dotted line is a correlation trend line.
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Chapter 5

QCT Analysis of Ambient Particulate Matter

Exposure-associated Multiscale Structure And Function

Alteration

Various QCT features have been well associated with clinical outcomes through statistics. Re-

cently, machine learning has been identified as useful for linking imaging features with clinical

characteristics (Choi et al., 2017a; Haghighi et al., 2018; Zou et al., 2021; Trivedi et al., 2022).

For example, imaging-based subgroup analysis was used to predict clinical characteristics longi-

tudinally. However, an integrated association of additional information, such as environmental

exposure, has not been investigated through machine learning. In this chapter, our aim is to ex-

tend QCT-CFD analysis integrating with the third dataset that plays a vital role in the analysis in

addition to clinical variables, using unsupervised machine learning approaches. In this study, the

specific target information in the third dataset is air pollution exposure.

5.1 Introduction

Exposure to air pollution has been identified as a risk factor that affects human health severely.

There are two main types of air pollutants: gaseous pollutants and atmospheric particulate matter

(PM). Gaseous pollutants are accumulated in urban regions mainly due to the combustion from

vehicles. Examples of gaseous pollutants are nitrogen dioxide (NO2), ozone (O3), and carbon

monoxide (CO). On the other hand, PM is a mixture of liquid and solid particles suspended in the

atmosphere. Due to the high heterogeneity of PM components, there are several ways to classify
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them. One of the most common ways of classification is based on size because the physical size of

PM affects how deeply PM can be deposited in the human body. PM can be classified into: PM10,

PM4, PM2.5, PM1, and total suspended particles (TSP). PM10, PM4, PM2.5, and PM1 are particles

with an aerodynamic diameter smaller than 10 µm, 4 µm, 2.5 µm, and 1 µm, respectively. The

two major classes are PM10 and PM2.5, which are referred to as fine dust with a diameter of 10

µm or smaller and ultrafine dust with a diameter of 2.5 µm or smaller. PM enters the human body

through either nose or mouth and spreads through the respiratory system. Despite the fact that a

large amount of PM is trapped by mucus and expelled, some PM remains or even moves around the

body through the blood, damaging different parts of the body (Manojkumar & Srimuruganandam,

2021). Recently, there have been a growing amount of reports that investigated the effects of PM

on the cardiovascular system (Cao et al., 2011; Gondalia et al., 2020), nervous system (Younan

et al., 2020; Costa et al., 2020), and immune system (Gao et al., 2019). However, its effects on the

primary site of PM invasion, i.e., the respiratory systems, may remain as an important topic.

Adamkiewicz et al. (2020) investigated clinical aspects of ambient air pollution and identified

outdoor air pollution as a risk factor for exacerbation of respiratory diseases. However, its long-

term exposure and many associated confounding factors make the pathophysiological effects of

PM exposure unclear. Therefore, there have been several studies utilizing QCT analysis to assess

its effects because QCT analysis can evaluate regional disease severity. Tung et al. (2021) found

associations between PM2.5 and emphysema severity in 86 COPD patients. Wang et al. (2019)

investigated 7,071 participants without clinical cardiovascular disease longitudinally and found

ambient concentrations of PM2.5 and NOx were significantly associated with an increase in percent

emphysema. Kwon et al. (2020) included more QCT features for analysis and found associations

of PM10 and NO2 with emphysema and airway wall area percentage.

Most QCT and air pollution studies have been limited to looking for associations between

specific exposure and specific QCT variables. Also, disease specific study of the association be-

tween QCT features and air pollution exposure has been only found in the COPD population.

In this study, we extended the application of our established QCT framework for QCT-exposure
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combined multi-modal dataset to investigate the effects of ambient air pollution in healthy lungs,

asthma, COPD, and IPF patients, not only seeking associations between exposure and QCT data

but also establishing exposure-based PCA and clustering as machine learning applications.

5.2 Methods

Inspiratory and expiratory CTs, direct measurements of PM1, PM2.5, PM4, PM10, TSP, and

NO2, and PFT results were prospectively collected (under IRB approval and with subject consent,

using a common dose-reduced QCT protocol (Sieren et al., 2016)) from 270 participants enrolled

in five tertiary medical centers collected in Seoul National University Hospital in South Korea.

The population includes adults with healthy lungs (age=68±10, M:F=15:51), asthma (age=60±12,

M:F=39:56), COPD (age=69±7, M:F=66:10), and IPF (age=72±7, M:F=43:10). 113 QCT and 72

CFD features of multiscale structure and function were derived from VIDA Vision (Coralville, IA)

and in-house QCT-CFD pipeline (from Chapter 2).

Dimension of air pollution exposure data was reduced using PCA. Four principal components

were determined by Horn’s parallel analysis. Consequently, K-means clustering was used to gen-

erate exposure based subgroups using the principal components. The number of clusters for the

K-means clustering was determined by the best Silhouette coefficient. Both exposure clusters

and disease types were considered in the analysis. We first performed ANOVA test to find any

difference among groups, and post-hoc Tukey-Kramer test was used to identify significantly dif-

ference between groups. Then, associations between exposure variables and QCT-CFD features

were found using Pearson’s correlation. P-values less than 0.05 were considered significant.

5.3 Results and Discussion

We derived three exposure-based clusters and found significant differences in QCT and PFTs

between high (cluster 3) and low (cluster 1) exposure clusters (Fig 5.1). Also, many associations

between QCT features and exposure variables within diseases and within exposure clusters were
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found.

First, subjects with all disease states were statistically compared. Associations between air

pollution exposure and two major pathological processes of airflow limitations were confirmed:

airway narrowing and small airway disease (Wang et al., 2020). Narrowing of D∗
h(sRLL) was

significantly associated with PM1 and PM2.5 (r=-0.144, -0.141), across all disease types. Also,

D∗
h(sRLL) was significantly smaller in cluster 3 (0.34±0.05) than in cluster 1 (0.31±0.07) (Fig

5.2). fSAD% was increased with high exposure of PM1, PM2.5, PM4, and NO2 (r=0.189, 0.178,

0.132, 0.178) (Fig 5.3) but not with large particles (PM10, TSP). Bhatt et al. (2016) found that both

fSAD% and LAA%IN were associated with FEV1 decline in COPD patients but only fSAD% was

associated with FEV1 decline for subjects without airflow obstruction, meaning functional small

airway disease may precede emphysema development (Galbán et al., 2012). Exposure to small

particles (PM1, PM2.5, and PM4) and NO2 plays a significant role in developing obstructive lung

diseases. Findings in the D∗
h and fSAD analyses may suggest PM induces in airway constriction

in both proximal and distal regions. It is speculated that the greatest decrease in D∗
h(sRLL) is

attributable to hypoinflation of lungs with IPF as the characteristic of a restrictive lung disease.

Analysis in each disease was also conducted. In COPD, PM1, PM2.5, PM4 and PM10 were

negatively correlated with LAA%IN (r=-0.265, -0.257, -0.227, -0.258). This result is consistent

with previous findings (Tung et al., 2021; Kwon et al., 2020). We also found that J was associated

with PM1, PM2.5, and PM4 (r=-0.257, -0.283, -0.266). Figure. 5.4 shows LAA%IN and J vs PM2.5

in COPD patients. Interestingly, LAA%IN is negatively correlated with the exposure, which may

indicate that PM2.5 is associated with hypoinflation, presumably due to inflammation of the local

lung response as a response to the toxic particle deposition. This is a first QCT-based suggestion

on hypoinflaion associated with local lung inflammation. There have been only few studies in-

vestigating effects of air pollution exposure using QCT in diseases other than COPD. In asthma,

associations of LAA%IN with PM10 and TSP (r=0.307, 0.316) but not with small particles were

found. Also, NO2 was found to be significant in asthma, as it was associated with fSAD%, AirT%,

and Cr of the tracheal lumen cross section (r=0.310, 0.318, -412) (Fig 5.5).
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1D CFD analysis showed overall higher associations between the CFD-derived functional fea-

tures and the exposure. Across all disease types, directly measured PM1, PM2.5, and PM4 expo-

sures correlated with CFD-derived airway resistance of the whole lung (r=0.416, 0.485, 0.436)

(hereafter: at the peak inspiratory flow rate; p<0.05). D∗
h(sRLL) was significantly smaller (-8.2%,

p=0.017) in the high PM exposure group than the low exposure group, and D∗
h(sRLL) moderately

associated with acinar pressure work Wp computed by ∆P×FR (∆P is pressure drop through the

entire conducting airway, and FR is flow rate) in the three lobes of the right lung (RUL, RML,

and RLL; r=0.409,0.402, 0.439) and the whole lung. In asthma, residential exposures to PM2.5,

PM10, and ozone associated with ∆P in the whole lung (r=0.425, 0.441, 0.419) and greater in the

lower lobes (r=0.590, 0.613, 0.589 in LLL). Directly measured PM1, PM2.5, and PM4 associated

with transpulmonary pressure (Ptp) in COPD (r=-448, -0.492, -0.478) and IPF (r=-0.500, -0.536,

-0.526), with R (r=-534, -0.628, -0.587), and with ∆P (r=0.500, 0.536, 0.526) in COPD. In COPD,

work address-based CO exposure highly associated with ∆P (r=0.689, whole lung; 0.793, RLL)

and Wp (r=0.632), and moderately with R (r=0.554). PM2.5 at work associated with Ptp (r=0.587)

and R (r=0.604). Residential exposure to PM2.5 and PM10 associated with Ptp in COPD (r=0.587)

and ∆P in IPF (r=0.462, whole lung; 0.672, RLL). The results were submitted to the 2022 Radi-

ological Society of North America (RSNA) Annual Meeting, Chicago, IL, USA, and has been

accepted for oral presentation.

5.4 Conclusion

Machine learning algorithms, such as PCA and K-means clustering, were used to derive three

exposure-based cluster membership out of 21 directly measured exposure variables. The result-

ing cluster memberships were successfully used for QCT analysis of air pollution’s impact on

lung health and disease. Inspiratory and expiratory QCT image matching-based multiscale airway

and lung structure-function analysis suggested regional structural and functional impairments as-

sociated with directly measured PM and NO2 exposure in health and diseases (asthma, COPD,

and IPF). PCA and K-means clustering were used to derive three exposure-based clusters. QCT
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features were compared within diseases and within clusters. In the low exposure cluster, QCT val-

ues were highly variable between patients due to various disease states. However, correlations are

more noticeable at higher exposure levels. Furthermore, different air pollutants, depending on their

phase and physical size, alter structure-function relationships differently in different disease states.

In all disease states, small particles and NO2 were associated with obstructive lung diseases. Small

PM increases small airway disease in asthma, PM at all sizes decreases inspiratory low attenuation

area in COPD and diseases luminal diameter of RLL segmental airways in IPF.
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Figure 5.1: Air pollution exposure-based PCA and K-means clustering where blue, green, and red
represent low exposure, moderate exposure, and high exposure respectively
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Figure 5.2: D∗
h in the right lower lobe (RLL) segmental airways in exposure clusters: significantly

smaller in culster 3 (high exposure) than in cluster 1 (low exposure).
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Figure 5.3: Correlations between PM1, PM2.5, NO2 and fSAD% (left, middle, and right, respec-
tively) across all disease types. The gray region represents confidence interval of 95%.
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Figure 5.4: Correlations between PM2.5 and LAA%IN (left) and between PM2.5 and J (right) in
COPD. The gray region represents confidence interval of 95%.
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Figure 5.5: Correlations between TSP and LAA%IN (left), NO2 and AirT% (middle), and NO2
and Crtrachea (right) in asthma. The gray region represents confidence interval of 95%.
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Chapter 6

Conclusion

In this thesis, an extended QCT analysis framework was introduced and applied to a wide range

of data with postprocessing. Each Chapter is summarized, and the conclusion of this work is made

in this Chapter.

In Chapter 2, the basics of lung anatomy, focusing on the lobes and airway, were reviewed.

It was emphasized that segmentation mask is a crucial part of QCT analysis and that, as well as

the types of masks, the segmentation quality is important for the accuracy of QCT features. Seg-

mentation was then connected to threshold-based QCT features. HAA, which represents overall

interstitial lung lesions, can be computed with a threshold between -700 HU and 0 HU. Its lobal-

wise percentages can be calculated by dividing the number of HAA voxels by the number of total

voxels in each lobe. While HAA% has been widely used to analyze patients with pulmonary fibro-

sis and other restrictive lung diseases, LAA% values on inspiratory and expiratory CTs are more

commonly used for obstructive diseases such as COPD and asthma, respectively. Airway masks

are used to extract airway structural metrics such as airway circularity, diameter, and branching an-

gle. By image registration between inspiratory and expiratory lung CTs, functional QCT variables

are computed, which include regional deformation and ventilation. Airway mask and ventilation

distribution are used to prepare anatomically correct airway geometry and physiologically con-

sistent boundary conditions for CFD airflow simulations. In addition, machine learning methods

were introduced as a postprocessing step of QCT analysis. PCA, an unsupervised dimensionality

reduction algorithm, is used to reduce the high dimensional data space of QCT variables. Another

unsupervised machine learning method, K-means clustering, was introduced to create clinical sub-

groups for analysis.
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In Chapter 3, a new slice thickness-independent deep learning model for pulmonary lobe seg-

mentation was developed and named “ZUNet,” reflecting its core addition of z-axis information

to the well-known UNet segmentation model. The new deep learning model was trained with

thin slice thickness CTs and accurately segmented lobes from thick slice thickness CT of silico-

sis patients. From the resulting lobe masks, QCT features of silicosis patients were successfully

extracted and compared with those of IPF patients and healthy controls. It was highlighted that

HAA% of the RUL was significantly higher in silicosis than in IPF patients, reflecting the re-

gional difference between the two severe diseases. To our knowledge, this is the first quantitative

confirmation of regional lung characteristics of silicosis.

In Chapter 4, another application of the QCT framework linking with 1D CFD air flow simula-

tion for assessment of treatment response was introduced. The established QCT-CFD framework

was used to investigate the effects of bronchodilator inhalation in asthmatic patients. Inspira-

tory and expiratory CT scans before and after the bronchodilator inhalation were collected. Each

inspiratory and expiratory set is image registered. Consequently, 1D CFD simulations of subject-

specific tidal breathing were conducted for both pre- and post-bronchodilator conditions. On the

one hand, 1D CFD simulation demonstrated functional improvement with a reduction in regional

discordance. However, not all 66 asthmatic patients responded the same based on statistical com-

parison before and after bronchodilator, while all showed significant large airway dilatation by

bronchodilator. Significant regional lung functional improvement, such as ventilation improve-

ment in the right lower lobe along with the reduced whole lung pressure workload, was found.

1D CFD simulations successfully showed the population-based statistical analysis of regional lung

functional changes after the treatment, which cannot be done with 3D CFD simulations due to high

computational cost and time.

Finally, the QCT framework is applied to analyze more diverse data. In Chapter 5, PM exposure

data were integrated with QCT analysis for the impact on lung structural and functional changes.

PCA was first utilized to reduce the dimension of PM exposure variables, and k-means cluster-

ing was used to make three PM exposure-based subgroups (low, moderate, and high exposure).
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Associations between QCT variables and exposure features were found. Also, an exposure-based

cluster analysis was done. Regional airway narrowing, particularly in the RLL segmental airways,

was found in the high PM exposure cluster (cluster 3) across all disease types (healthy, asthma,

COPD, and IPF) and most remarkably in IPF. 1D CFD analysis suggested an association of this

airway narrowing in the RLL segmental airways with a functional decline of the RLL and also the

whole lung.

In summary, extended QCT analysis has been investigated in three aspects. Deep learning seg-

mentation enabled quantitative analysis of regional lung damage in silicosis patients from thick

slice CTs. QCT-CFD analysis has resolved the structure-function relationship in response to drug

treatment, particularly the bronchodilator response in asthma. Moreover, machine learning ap-

proaches (PCA and K-means clustering) enlarged the QCT analysis based on the air pollution

exposure dataset that was additionally collected with the CT and other clinical data.
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Altınsoy, B., Öz, İ. İ., Erboy, F., Tor, M., & Atalay, F. (2016). Emphysema and airflow obstruction

in non-smoking coal miners with pneumoconiosis. Medical Science Monitor: International

Medical Journal of Experimental and Clinical Research, 22, 4887.

Amelon, R., Cao, K., Ding, K., Christensen, G. E., Reinhardt, J. M., & Raghavan, M. L. (2011).

Three-dimensional characterization of regional lung deformation. Journal of biomechanics,

44(13), 2489–2495.

American Thoracic Society & European Respiratory Society (2002). American thoracic Soci-

ety/European respiratory society international multidisciplinary consensus classification of the

idiopathic interstitial pneumonias. this joint statement of the american thoracic society (ATS),

and the european respiratory society (ERS) was adopted by the ATS board of directors, june

2001 and by the ERS executive committee, june 2001. Am. J. Respir. Crit. Care Med., 165(2),

277–304.

Bhatt, S. P., Soler, X., Wang, X., Murray, S., Anzueto, A. R., Beaty, T. H., Boriek, A. M., Casaburi,

R., Criner, G. J., Diaz, A. A., et al. (2016). Association between functional small airway disease

and fev1 decline in chronic obstructive pulmonary disease. American journal of respiratory and

critical care medicine, 194(2), 178–184.

65



Bragman, F. J., McClelland, J. R., Jacob, J., Hurst, J. R., & Hawkes, D. J. (2017). Pulmonary lobe

segmentation with probabilistic segmentation of the fissures and a groupwise fissure prior. IEEE

transactions on medical imaging, 36(8), 1650–1663.

Busacker, A., Newell Jr, J. D., Keefe, T., Hoffman, E. A., Granroth, J. C., Castro, M., Fain,

S., & Wenzel, S. (2009). A multivariate analysis of risk factors for the air-trapping asthmatic

phenotype as measured by quantitative ct analysis. Chest, 135(1), 48–56.

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound

constrained optimization. SIAM Journal on scientific computing, 16(5), 1190–1208.

Cao, J., Yang, C., Li, J., Chen, R., Chen, B., Gu, D., & Kan, H. (2011). Association between

long-term exposure to outdoor air pollution and mortality in china: a cohort study. Journal of

hazardous materials, 186(2-3), 1594–1600.

Chae, K. J., Choi, J., Jin, G. Y., Hoffman, E. A., Laroia, A. T., Park, M., & Lee, C. H. (2020).

Relative regional air volume change maps at the acinar scale reflect variable ventilation in low

lung attenuation of copd patients. Academic Radiology, 27(11), 1540–1548.

Chan, H.-P., Samala, R. K., Hadjiiski, L. M., & Zhou, C. (2020). Deep learning in medical image

analysis. Deep Learning in Medical Image Analysis, (pp. 3–21).

Chen, A., Karwoski, R. A., Gierada, D. S., Bartholmai, B. J., & Koo, C. W. (2020). Quantitative

ct analysis of diffuse lung disease. Radiographics, 40(1), 28–43.

Choi, J. (2011). Multiscale numerical analysis of airflow in CT-based subject specific breathing

human lungs. PhD thesis, University of Iowa.

Choi, J., LeBlanc, L. J., Choi, S., Haghighi, B., Hoffman, E. A., O’Shaughnessy, P., Wenzel,

S. E., Castro, M., Fain, S., Jarjour, N., et al. (2019a). Differences in particle deposition between

members of imaging-based asthma clusters. Journal of aerosol medicine and pulmonary drug

delivery, 32(4), 213–223.

66



Choi, J., Lim, H.-j., Park, M., Kang, H.-R., Lin, C.-L., Hoffman, E. A., & Lee, C. H. (2017a).

Cross-volume and cross-time ct image matching assessment provides multiscale characteriza-

tion of individual asthmatic lung responses to bronchodilator. In A98. SEEING IS BELIEVING:

USING NOVEL IMAGING TECHNIQUES TO UNDERSTAND THE LUNG IN HEALTH AND

DISEASE (pp. A2666–A2666). American Thoracic Society.

Choi, J., Tawhai, M. H., Hoffman, E. A., & Lin, C.-L. (2009). On intra-and intersubject variabilities

of airflow in the human lungs. Physics of Fluids, 21(10), 101901.

Choi, J., Xia, G., Tawhai, M. H., Hoffman, E. A., & Lin, C.-L. (2010). Numerical study of high-

frequency oscillatory air flow and convective mixing in a ct-based human airway model. Annals

of biomedical engineering, 38(12), 3550–3571.

Choi, S., Haghighi, B., Choi, J., Hoffman, E. A., Comellas, A. P., Newell, J. D., Wenzel, S. E.,

Castro, M., Fain, S. B., Jarjour, N. N., et al. (2017b). Differentiation of quantitative ct imaging

phenotypes in asthma versus copd. BMJ open respiratory research, 4(1), e000252.

Choi, S., Hoffman, E. A., Wenzel, S. E., Castro, M., Fain, S., Jarjour, N., Schiebler, M. L., Chen,

K., Lin, C.-L., Heart, N., et al. (2017c). Quantitative computed tomographic imaging–based

clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. Journal of

Allergy and Clinical Immunology, 140(3), 690–700.

Choi, S., Hoffman, E. A., Wenzel, S. E., Castro, M., Fain, S. B., Jarjour, N. N., Schiebler, M. L.,

Chen, K., & Lin, C.-L. (2015). Quantitative assessment of multiscale structural and functional

alterations in asthmatic populations. Journal of applied physiology, 118(10), 1286–1298.

Choi, S., Yoon, S., Jeon, J., Zou, C., Choi, J., Tawhai, M. H., Hoffman, E. A., Delvadia, R.,

Babiskin, A., Walenga, R., et al. (2019b). 1d network simulations for evaluating regional flow

and pressure distributions in healthy and asthmatic human lungs. Journal of Applied Physiology,

127(1), 122–133.

67



Costa, L. G., Cole, T. B., Dao, K., Chang, Y.-C., Coburn, J., & Garrick, J. M. (2020). Effects of air

pollution on the nervous system and its possible role in neurodevelopmental and neurodegener-

ative disorders. Pharmacology & therapeutics, 210, 107523.

de Castro, M. C. S., Ferreira, A. S., Irion, K. L., Hochhegger, B., Lopes, A. J., Velarde, G. C.,

Zanetti, G., & Marchiori, E. (2014). Ct quantification of large opacities and emphysema in

silicosis: correlations among clinical, functional, and radiological parameters. Lung, 192(4),

543–551.

Dirksen, A., Dijkman, J. H., Madsen, F., Stoel, B., Hutchison, D. C., Ulrik, C. S., Skovgaard, L. T.,

Kok-Jensen, A., Rudolphus, A., Seersholm, N., et al. (1999). A randomized clinical trial of α1-

antitrypsin augmentation therapy. American journal of respiratory and critical care medicine,

160(5), 1468–1472.

Dirksen, A., Friis, M., Olesen, K., Skovgaard, L. T., & Sørensen, K. (1997). Progress of emphy-

sema in severe α1-antitrypsin deficiency as assessed by annual ct. Acta Radiologica, 38(5),

826–832.

dos Santos Antao, V. C., Pinheiro, G. A., Terra-Filho, M., Kavakama, J., & Müller, N. L. (2005).

High-resolution ct in silicosis: correlation with radiographic findings and functional impairment.

Journal of computer assisted tomography, 29(3), 350–356.

Dowson, L. J., GUEST, P. J., & STOCKLEY, R. A. (2001). Longitudinal changes in physiological,

radiological, and health status measurements in α1-antitrypsin deficiency and factors associated

with decline. American journal of respiratory and critical care medicine, 164(10), 1805–1809.

Ferri, F. F. (2021). Ferri’s Clinical Advisor 2022, E-Book. Elsevier Health Sciences.

Galbán, C. J., Han, M. K., Boes, J. L., Chughtai, K. A., Meyer, C. R., Johnson, T. D., Galbán, S.,

Rehemtulla, A., Kazerooni, E. A., Martinez, F. J., et al. (2012). Computed tomography–based

biomarker provides unique signature for diagnosis of copd phenotypes and disease progression.

Nature medicine, 18(11), 1711–1715.

68



Gao, X., Colicino, E., Shen, J., Kioumourtzoglou, M.-A., Just, A. C., Nwanaji-Enwerem, J. C.,

Coull, B., Lin, X., Vokonas, P., Zheng, Y., et al. (2019). Impacts of air pollution, tempera-

ture, and relative humidity on leukocyte distribution: an epigenetic perspective. Environment

international, 126, 395–405.

George, K., Harrison, A. P., Jin, D., Xu, Z., & Mollura, D. J. (2017). Pathological pulmonary

lobe segmentation from ct images using progressive holistically nested neural networks and

random walker. In Deep learning in medical image analysis and multimodal learning for clinical

decision support (pp. 195–203). Springer.

Gerard, S. E. & Reinhardt, J. M. (2019). Pulmonary lobe segmentation using a sequence of con-

volutional neural networks for marginal learning. In 2019 IEEE 16th International Symposium

on Biomedical Imaging (ISBI 2019) (pp. 1207–1211).: IEEE.

Gevenois, P. A., De Maertelaer, V., De Vuyst, P., Zanen, J., & Yernault, J.-C. (1995). Compari-

son of computed density and macroscopic morphometry in pulmonary emphysema. American

journal of respiratory and critical care medicine, 152(2), 653–657.

Gevenois, P. A., De Vuyst, P. d., De Maertelaer, V., Zanen, J., Jacobovitz, D., Cosio, M. G.,

& Yernault, J.-C. (1996). Comparison of computed density and microscopic morphometry in

pulmonary emphysema. American journal of respiratory and critical care medicine, 154(1),

187–192.

Gondalia, R., Holliday, K. M., Baldassari, A., Justice, A. E., Stewart, J. D., Liao, D., Yanosky,

J. D., Engel, S. M., Jordahl, K. M., Bhatti, P., et al. (2020). Leukocyte traits and exposure to

ambient particulate matter air pollution in the women’s health initiative and atherosclerosis risk

in communities study. Environmental health perspectives, 128(1), 017004.

Gu, H., Gan, W., Zhang, C., Feng, A., Wang, H., Huang, Y., Chen, H., Shao, Y., Duan, Y., & Xu,

Z. (2021). A 2d–3d hybrid convolutional neural network for lung lobe auto-segmentation on

69



standard slice thickness computed tomography of patients receiving radiotherapy. BioMedical

Engineering OnLine, 20(1), 1–13.

Haghighi, B., D Ellingwood, N., Yin, Y., Hoffman, E. A., & Lin, C.-L. (2018). A gpu-based sym-

metric non-rigid image registration method in human lung. Medical & biological engineering

& computing, 56(3), 355–371.

Hartigan, J. A. & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal

of the royal statistical society. series c (applied statistics), 28(1), 100–108.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735–1780.

Hoesein, F. A. M., van Rikxoort, E., van Ginneken, B., de Jong, P. A., Prokop, M., Lammers,

J.-W. J., & Zanen, P. (2012). Computed tomography-quantified emphysema distribution is asso-

ciated with lung function decline. European Respiratory Journal, 40(4), 844–850.

Hoffman, E. A., Ahmed, F. S., Baumhauer, H., Budoff, M., Carr, J. J., Kronmal, R., Reddy, S., &

Barr, R. G. (2014). Variation in the percent of emphysema-like lung in a healthy, nonsmoking

multiethnic sample. the mesa lung study. Annals of the American Thoracic Society, 11(6), 898–

907.

Hofmanninger, J. (2020). Prayer f pan j röhrich s prosch h langs g automatic lung segmentation in

routine imaging is primarily a data diversity problem, not a methodology problem. Eur. Radiol.

Exp, 4(1), 1.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,

30(2), 179–185.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International conference on machine learning (pp. 448–

456).: PMLR.

70



Jeffery, P. K. (1998). Structural and inflammatory changes in copd: a comparison with asthma.

Thorax, 53(2), 129.

Kang, J. H., Choi, J., Chae, K. J., Shin, K. M., Lee, C.-H., Guo, J., Lin, C.-L., Hoffman, E. A.,

& Lee, C. (2021). Ct-derived 3d-diaphragm motion in emphysema and ipf compared to normal

subjects. Scientific reports, 11(1), 1–12.

Kim, T., Cho, H. B., Kim, W. J., Lee, C. H., Chae, K. J., Choi, S.-H., Lee, K. E., Bak, S. H., Kwon,

S. O., Jin, G. Y., et al. (2020). Quantitative ct-based structural alterations of segmental airways

in cement dust-exposed subjects. Respiratory research, 21(1), 1–11.

Knutsson, H. & Westin, C.-F. (1993). Normalized and differential convolution. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition (pp. 515–523).: IEEE.

Kwon, S. O., Hong, S. H., Han, Y.-J., Bak, S. H., Kim, J., Lee, M. K., London, S. J., Kim, W. J.,

& Kim, S.-Y. (2020). Long-term exposure to pm10 and no2 in relation to lung function and

imaging phenotypes in a copd cohort. Respiratory Research, 21(1), 1–11.

Kybic, J. & Unser, M. (2003). Fast parametric elastic image registration. IEEE transactions on

image processing, 12(11), 1427–1442.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.

Lee, C. H., Choi, J., Lee, I. K., & Kang, H.-R. (2022). Quantitative ct image matching analysis

of multiscale airway and lung structure-function responses to bronchodilator in asthma. In 28th

Annual Scientific Meeting of European Society of Thoracic Imaging (pp. 234–241).: ESTI.

Leung, A. N. (1999). Pulmonary tuberculosis: the essentials. Radiology, 210(2), 307–322.

Lin, C.-L., Tawhai, M. H., & Hoffman, E. A. (2013). Multiscale image-based modeling and sim-

ulation of gas flow and particle transport in the human lungs. Wiley Interdisciplinary Reviews:

Systems Biology and Medicine, 5(5), 643–655.

71



Lin, C.-L., Tawhai, M. H., McLennan, G., & Hoffman, E. A. (2007). Characteristics of the tur-

bulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respiratory

physiology & neurobiology, 157(2-3), 295–309.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory,

28(2), 129–137.

Manojkumar, N. & Srimuruganandam, B. (2021). Health effects of particulate matter in major

indian cities. International journal of environmental health research, 31(3), 258–270.

Masoli, M., Fabian, D., Holt, S., Beasley, R., & for Asthma (GINA) Program, G. I. (2004). The

global burden of asthma: executive summary of the gina dissemination committee report. Al-

lergy, 59(5), 469–478.

Matsuoka, S., Yamashiro, T., Matsushita, S., Fujikawa, A., Yagihashi, K., & Nakajima, Y. (2016).

Objective quantitative ct evaluation using different attenuation ranges in patients with pulmonary

fibrosis: correlations with visual scores. Int J Respir Pulm Med, 3(3), 3–7.

Mlika, M., Adigun, R., & Bhutta, B. S. (2022). Silicosis. In StatPearls [Internet]. StatPearls

Publishing.

Morgan, E. J. (1979). Silicosis and tuberculosis. Chest, 75(2), 202–203.

Ostridge, K. & Wilkinson, T. M. (2016). Present and future utility of computed tomography

scanning in the assessment and management of copd. European Respiratory Journal, 48(1),

216–228.

Palágyi, K., Tschirren, J., Hoffman, E. A., & Sonka, M. (2006). Quantitative analysis of pulmonary

airway tree structures. Computers in biology and medicine, 36(9), 974–996.

Park, J., Yun, J., Kim, N., Park, B., Cho, Y., Park, H. J., Song, M., Lee, M., & Seo, J. B. (2020).

Fully automated lung lobe segmentation in volumetric chest ct with 3d u-net: validation with

intra-and extra-datasets. Journal of digital imaging, 33(1), 221–230.

72



Paulin, L. M., Smith, B. M., Koch, A., Han, M., Hoffman, E. A., Martinez, C., Ejike, C., Blanc,

P. D., Rous, J., Barr, R. G., et al. (2018). Occupational exposures and computed tomographic

imaging characteristics in the spiromics cohort. Annals of the American Thoracic Society,

15(12), 1411–1419.

Pedley, T. & TJ, P. (1977). Pulmonary fluid dynamics.

Pistenmaa, C. L., Nardelli, P., Ash, S., Come, C., Diaz, A., Rahaghi, F., Barr, R., Young, K.,

Kinney, G., Simmons, J., et al. (2021). Pulmonary arterial pruning and longitudinal change in

percent emphysema and lung function: the genetic epidemiology of copd study. Chest, 160(2),

470–480.

Podolanczuk, A. J., Oelsner, E. C., Barr, R. G., Bernstein, E. J., Hoffman, E. A., Easthausen, I. J.,

Stukovsky, K. H., RoyChoudhury, A., Michos, E. D., Raghu, G., et al. (2017). High-attenuation

areas on chest computed tomography and clinical respiratory outcomes in community-dwelling

adults. American journal of respiratory and critical care medicine, 196(11), 1434–1442.

Podolanczuk, A. J., Oelsner, E. C., Barr, R. G., Hoffman, E. A., Armstrong, H. F., Austin, J. H.,

Basner, R. C., Bartels, M. N., Christie, J. D., Enright, P. L., et al. (2016). High attenuation

areas on chest computed tomography in community-dwelling adults: the mesa study. European

Respiratory Journal, 48(5), 1442–1452.

Raasch, B., Carsky, E., Lane, E., O’callaghan, J., & Heitzman, E. (1982). Radiographic anatomy of

the interlobar fissures: a study of 100 specimens. American Journal of Roentgenology, 138(6),

1043–1049.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical

image segmentation. In International Conference on Medical image computing and computer-

assisted intervention (pp. 234–241).: Springer.

Rose, C., Heinzerling, A., Patel, K., Sack, C., Wolff, J., Zell-Baran, L., Weissman, D., Hall, E.,

Sooriash, R., McCarthy, R. B., et al. (2019). Severe silicosis in engineered stone fabrication

73



workers—california, colorado, texas, and washington, 2017–2019. Morbidity and Mortality

Weekly Report, 68(38), 813.

Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid

registration using free-form deformations: application to breast mr images. IEEE transactions

on medical imaging, 18(8), 712–721.

Schroeder, J. D., McKenzie, A. S., Zach, J. A., Wilson, C. G., Curran-Everett, D., Stinson, D. S.,

Newell Jr, J. D., & Lynch, D. A. (2013). Relationships between airflow obstruction and quan-

titative ct measurements of emphysema, air trapping, and airways in subjects with and without

chronic obstructive pulmonary disease. AJR. American journal of roentgenology, 201(3), W460.

Sentinel-Event-Alert (2011). Radiation risks of diagnostic imaging and fluoroscopy. The Joint

Commission on the Accreditation of Health Organizations, 47.

Sieren, J. P., Newell Jr, J. D., Barr, R. G., Bleecker, E. R., Burnette, N., Carretta, E. E., Couper, D.,

Goldin, J., Guo, J., Han, M. K., et al. (2016). Spiromics protocol for multicenter quantitative

computed tomography to phenotype the lungs. American journal of respiratory and critical care

medicine, 194(7), 794–806.

Smith, B. M., Jensen, D., Brosseau, M., Benedetti, A., Coxson, H. O., & Bourbeau, J. (2018).

Impact of pulmonary emphysema on exercise capacity and its physiological determinants in

chronic obstructive pulmonary disease. Scientific reports, 8(1), 1–10.

Sofranik, R., Gross, B., & Spizarny, D. (1992). Radiology of the pleural fissures. Clinical imaging,

16(4), 221–229.

Tanabe, N., Muro, S., Sato, S., Tanaka, S., Oguma, T., Kiyokawa, H., Takahashi, T., Kinose, D.,

Hoshino, Y., Kubo, T., et al. (2012). Longitudinal study of spatially heterogeneous emphysema

progression in current smokers with chronic obstructive pulmonary disease.

74



Tanizawa, K., Handa, T., Nagai, S., Hirai, T., Kubo, T., Oguma, T., Ito, I., Ito, Y., Watanabe,

K., Aihara, K., et al. (2015). Clinical impact of high-attenuation and cystic areas on computed

tomography in fibrotic idiopathic interstitial pneumonias. BMC Pulmonary Medicine, 15(1),

1–10.

Tawhai, M. H., Hunter, P., Tschirren, J., Reinhardt, J., McLennan, G., & Hoffman, E. A. (2004).

Ct-based geometry analysis and finite element models of the human and ovine bronchial tree.

Journal of applied physiology, 97(6), 2310–2321.

Tawhai, M. H., Pullan, A., & Hunter, P. (2000). Generation of an anatomically based three-

dimensional model of the conducting airways. Annals of biomedical engineering, 28(7), 793–

802.

Trivedi, A. P., Hall, C., Goss, C. W., Lew, D., Krings, J. G., McGregor, M. C., Samant, M.,

Sieren, J. P., Li, H., Schechtman, K. B., et al. (2022). Quantitative ct characteristics of cluster

phenotypes in the severe asthma research program cohorts. Radiology.

Tschirren, J., Palágyi, K., Reinhardt, J. M., Hoffman, E. A., & Sonka, M. (2002). Segmenta-

tion, skeletonization, and branchpoint matching—a fully automated quantitative evaluation of

human intrathoracic airway trees. In International Conference on Medical Image Computing

and Computer-Assisted Intervention (pp. 12–19).: Springer.

Tung, N. T., Ho, S.-C., Lu, Y.-H., Chen, T.-T., Lee, K.-Y., Chen, K.-Y., Wu, C.-D., Chung, K. F.,

Kuo, H.-P., Thao, H. N. X., et al. (2021). Association between air pollution and lung lobar

emphysema in copd. Frontiers in medicine, 8.

Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M., Abbasi-Kangevari,

M., Abbastabar, H., Abd-Allah, F., Abdelalim, A., et al. (2020). Global burden of 369 diseases

and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global

burden of disease study 2019. The Lancet, 396(10258), 1204–1222.

75



Wang, J., Li, Y., Zhao, P., Tian, Y., Liu, X., He, H., Jia, R., Oliver, B. G., & Li, J. (2020). Ex-

posure to air pollution exacerbates inflammation in rats with preexisting copd. Mediators of

inflammation, 2020.

Wang, M., Aaron, C. P., Madrigano, J., Hoffman, E. A., Angelini, E., Yang, J., Laine, A., Vetterli,

T. M., Kinney, P. L., Sampson, P. D., et al. (2019). Association between long-term exposure

to ambient air pollution and change in quantitatively assessed emphysema and lung function.

Jama, 322(6), 546–556.

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in

convolutional network. arXiv preprint arXiv:1505.00853.

Yin, Y., Choi, J., Hoffman, E. A., Tawhai, M. H., & Lin, C.-L. (2010). Simulation of pulmonary air

flow with a subject-specific boundary condition. Journal of biomechanics, 43(11), 2159–2163.

Yin, Y., Choi, J., Hoffman, E. A., Tawhai, M. H., & Lin, C.-L. (2013). A multiscale mdct image-

based breathing lung model with time-varying regional ventilation. Journal of computational

physics, 244, 168–192.

Yin, Y., Hoffman, E. A., & Lin, C.-L. (2009). Mass preserving nonrigid registration of ct lung

images using cubic b-spline. Medical physics, 36(9Part1), 4213–4222.

Younan, D., Petkus, A. J., Widaman, K. F., Wang, X., Casanova, R., Espeland, M. A., Gatz, M.,

Henderson, V. W., Manson, J. E., Rapp, S. R., et al. (2020). Particulate matter and episodic

memory decline mediated by early neuroanatomic biomarkers of alzheimer’s disease. Brain,

143(1), 289–302.

Zagers, H., Vrooman, H. A., Aarts, N. J., Stolk, J., KOOL, L. S. J., Dijkman, J. H., van Voorthuisen,

E., & REIBER, J. H. (1996). Assessment of the progression of emphysema by quantitative

analysis of spirometrically gated computed tomography images. Investigative radiology, 31(12),

761–767.

76



Zou, C., Li, F., Choi, J., Haghighi, B., Choi, S., Rajaraman, P. K., Comellas, A. P., Newell, J. D.,

Lee, C. H., Barr, R. G., et al. (2021). Longitudinal imaging-based clusters in former smokers

of the copd cohort associate with clinical characteristics: the subpopulations and intermediate

outcome measures in copd study (spiromics). International journal of chronic obstructive pul-

monary disease, 16, 1477.

77


	Introduction
	Motivation
	Objectives
	Thesis Overview

	Quantitative Compute Tomography Analysis
	Lung Anatomy and Function
	Quantitative Computed Tomography Features
	QCT from a single CT scan
	QCT from Image Registration

	Machine Learning Analysis
	Principal Component Analysis
	K-means Clustering

	Statistical Analysis

	A Slice Thickness Independent Segmentation Approach
	Deep Learning Segmentation
	Convolutional Neural Network

	Introduction
	Methods
	Datasets
	ZUNet Architecture
	Postprocessing
	Implementation Details
	QCT Analysis

	Results
	Discussion
	Conclusion

	Explain Bronchodilator-induced Regional Ventilation Improvement in Asthma using QCT and CFD
	Introduction
	Methods
	Analysis
	Conclusion

	QCT Analysis of Ambient Particulate Matter Exposure-associated Multiscale Structure And Function Alteration
	Introduction
	Methods
	Results and Discussion
	Conclusion

	Conclusion

