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RÉSUMÉ 

Le tiers de la population aux États-Unis est affecté par des cardiomyopathies. Lorsque le muscle 

du cœur, le myocarde, est altéré par la maladie, la santé du patient est détériorée et peut même 

entrainer la mort. Les maladies ischémiques sont le résultat d’artères coronariennes bloquées 

(sténose), limitant l’apport sanguin vers le myocarde. Les cardiomyopathies non-ischémiques sont 

les maladies dues à d’autres causes que des sténoses. Les fibres de collagène (fibrose) s’infiltrent 

dans le muscle cardiaque dans le but de maintenir la forme et les fonctions cardiaques lorsque la 

structure du myocarde est affectée par des cardiomyopathies. Ce principe, nécessaire au 

fonctionnement du cœur en présence de maladies, devient mal adapté et mène à des altérations du 

myocarde aux conséquences négatives, par exemple l’augmentation de la rigidité du myocarde. 

Une partie du diagnostic clinique lors de cardiomyopathies consiste à évaluer la fibrose dans le 

cœur avec différentes modalités d’imagerie. Les fibres de collagène s’infiltrent et s’accumulent 

dans la zone extracellulaire du myocarde ou peuvent remplacer progressivement les 

cardiomyocytes compromises. L’infiltration de fibrose dans le myocarde peut possiblement être 

réversible, ce qui rend sa détection particulièrement importante pour le clinicien.  

Différents tests diagnostiques existent pour aider le clinicien à établir l’état du patient en présence 

de cardiomyopathies. L’imagerie par résonance magnétique (IRM) est une modalité d’imagerie qui 

offre une haute résolution pour la visualisation du myocarde. Parmi les séquences disponibles avec 

cette modalité, l’imagerie par rehaussement tardif (RT) augmente le contraste du signal existant 

entre les tissus sains et les tissues malades du myocarde. Il s’agit d’images en pondération T1 avec 

administration d’agent de contraste qui se propage dans la matrice extracellulaire et résulte en un 

rehaussement du signal à cet endroit. Les images IRM RT permettent d’évaluer la présence et 

l’étendue des dommages au myocarde. Le clinicien peut évaluer la sévérité des cardiomyopathies 

et poser un pronostique à l’aide de ces images. La détection de fibrose diffuse dans ces images peut 

informer le clinicien sur l’état du patient et est un important marqueur de cardiomyopathies.  

Il est important d’établir l’occurrence de l’infarctus en présence de maladies ischémiques. En effet, 

l’approche interventionnelle varie selon que le clinicien fait face à une ischémie aigue ou 

chronique. Lors du diagnostic, Il serait donc bénéfique de différencier les infarctus du myocarde 

aigu de ceux chronique. Ceci s’est avéré difficile à l’aide des images IRM RT où l’intensité du 

signal ou la taille des régions sont similaires dans les deux types d’ischémie. 



vi 

 

Le but de la présente thèse est donc d’appliquer les méthodes d’analyse de texture à des images 

IRM RT afin de détecter la présence de fibrose diffuse dans le myocarde et de plus de déterminer 

l’âge de l’infarctus du myocarde. La première étude portait sur la détection de fibrose diffuse dans 

le myocarde à l’aide de l’analyse de texture appliquée à des images IRM RT afin d’établir si un 

lien existe entre la variation du signal d’intensité et la structure sous-jacente du myocarde. La 

présence de collagène dans le myocarde augmente avec l’âge et nous avons utilisé un modèle 

animal de rats jeunes et âgés. Nous avons fait une étude ex-vivo afin d’obtenir des images IRM RT 

de haute résolution avec absence de mouvement et ainsi permettre une comparaison des images 

avec des coupes histologiques des cœurs imagés. Des images IRM RT ont été acquises sur vingt-

quatre animaux. Les coupes histologiques ont été traitées avec la méthode utilisant un marqueur 

‘picrosirius red’ qui donne une teinte rouge au collagène. La quantification de la fibrose obtenue 

avec les images IRM RT a été comparée à la quantification obtenue sur les coupes histologiques. 

Ces quantifications ont de plus été comparées à l’analyse de texture appliquée aux images IRM 

RT. La méthode de texture a été appliquée en créant des cartes de texture basées sur la valeur de 

Contraste, cette mesure étant obtenue par des calculs statistiques sur la matrice de cooccurrence. 

Les régions montrant une plus grande complexité de signal d’intensité sur les images IRM RT ont 

été rehaussées avec les cartes de textures. Un calcul de régression linéaire a permis d’étudier le lien 

entre les différentes méthodes de quantification. Nous avons trouvés que la quantification de 

fibrose dans le myocarde à l’aide de l’analyse de texture appliquée sur des images IRM RT 

concordait avec le niveau de collagène identifié avec les images IRM et avec les coupes 

histologiques. De plus, nous avons trouvés que l’analyse de texture rehausse la présence de fibrose 

diffuse dans le myocarde.  

La seconde étude a pour but de discriminer les infarctus aigus du myocarde de ceux qui sont 

chroniques sur des images IRM RT de patients souffrant de cardiomyopathies ischémiques. Vingt-

deux patients ont subi l’imagerie IRM (12 avec infarctus aigu du myocarde et 12 avec infarctus 

chronique). Une segmentation des images a permis d’isoler les différentes zones du myocarde, soit 

la zone d’infarctus, la zone grise au rebord de l’infarctus et la zone du myocarde sain, dans les deux 

groupes de patients. L’analyse de texture s’est faite dans ces régions en comparant les valeurs 

obtenues dans les deux groupes. Nous avons obtenu plus de valeurs de texture discriminantes dans 

la zone grise, en comparaison avec la région du myocarde sain, où aucune valeur de texture n’était 

significativement différente, et à la zone d’infarctus, où seule la valeur de texture statistique 
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Moyenne était différentes dans les deux groupes. La zone grise a déjà fait l’objet d’études ayant 

établis cette région comme composée de cardiomyocytes sains entremêlés avec des fibres de 

collagène. Notre étude montre que cette région peut exhiber des différences structurelles entre les 

infarctus aigus du myocarde et ceux qui sont chroniques et que l’analyse de texture a réussi à les 

détecter.  

L’étude de la présence de collagène dans le myocarde est importante pour le clinicien afin qu’il 

puisse faire un diagnostic adéquat du patient et pour qu’il puisse faire un choix de traitement 

approprié. Nous avons montrés que l’analyse de texture sur des images IRM RT de patients peut 

différencier et même permettre la classification des ischémies aigues des ischémies chroniques, ce 

qui n’était pas possible avec uniquement ce type d’images. Nous avons de plus démontrés que 

l’analyse de texture d’images IRM RT permettait d’évaluer le contenu de fibrose diffuse dans un 

modèle animal de haute résolution avec validation histologique. Une telle relation entre les résultats 

d’analyse de texture d’images IRM RT et la structure sous-jacente du myocarde n’avait pas été 

étudiée dans la littérature. 

Notre méthode pourra être améliorée en effectuant d’autres calculs statistiques sur la matrice de 

cooccurrence, en testant d’autres méthodes d’analyse de texture et en appliquant notre méthode à 

de nouvelles séquences d’acquisition IRM, tel les images en pondération T1. D’autres 

améliorations possibles pourraient porter sur une évaluation de matrice de cooccurrence avec 

voisinage circulaire suivant la forme du myocarde sur les tranches d’images IRM RT. Plusieurs 

matrice de cooccurrence pourraient aussi être évaluées en fonction de la position dans l’espace du 

voisinage afin d’intégrer une composante directionnelle dans les calculs de texture. D’autres études 

sont nécessaires afin d’établir si une analyse de texture des images IRM RT pourrait différencier 

le stade de la fibrose pour un même patient lors d’une étude de suivi. De même, d’autres études 

sont nécessaires afin de valider l’utilisation de texture sur des scanners IRM différents. Établir l’âge 

de l’infarctus du myocarde permettra de planifier les interventions thérapeutiques et d’évaluer le 

pronostique pour le patient. 
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ABSTRACT 

A third of the United States population is affected by cardiomyopathies. Impairment of the heart 

muscle, the myocardium, puts the patient’s health at risk and could ultimately lead to death. 

Ischemic cardiomyopathies result from lack of blood (ischemia) reaching the myocardium from 

blocked coronary arteries. Non-ischemic cardiomyopathies are diseases from other etiology than 

ischemia. Often collagen fibers infiltrate the heart (fibrosis), as a means to maintain its shape and 

function in the presence of disease that affects the myocardial cellular structure. This necessary 

phenomenon ultimately becomes maladaptive and results in the heart’s impairment.  

Part of the heart’s involvement in disease can be assessed through the analysis of myocardial 

fibrosis. Cardiomyopathy diagnosis involves the investigation of the presence of myocardial 

fibrosis, either infiltrative, defined as the increased presence of collagen protein in the extracellular 

space, or replacement fibrosis, when collagen fibers progressively replace diseased 

cardiomyocytes. The infiltrative fibrosis is believed to be reversible in some instances and 

consequently, myocardial fibrosis analysis has decisional impact on the interventional procedure 

that would benefit the health of the patient. The heart contracts and relaxes as it pumps blood to 

the rest of the body, an action directly impaired by myocardial damage. Any myocardial 

involvement should be assessed by the clinician to identify the severity of the myocardial damage, 

establish a prognosis and plan therapeutic intervention.  

Different diagnostic tests are required to image the myocardium and help the clinician in the 

diagnostic process. Cardiac magnetic resonance (CMR) imaging has emerged as a high resolution 

imaging modality that offers precise structural analysis of the heart. Among the different imaging 

sequences available with CMR, late gadolinium enhancement (LGE) shows the myocardium and 

enhances any impairments that may exist with the use of a contrast agent. It is a T1-weighted image 

with extracellular contrast agent (CA) administration. Increased signal intensity in the infarct scar 

is created from the CA dynamics. LGE CMR imaging offers information on the scar size and its 

location. The clinician can estimate the severity of the disease and establish prognosis with LGE 

CMR images.  

In ischemic cardiomyopathy, it is important to establish the occurrence of the infarction and know 

the age of the infarct to plan surgical intervention. Differentiation of acute from chronic MI is 

therefore important in the diagnostic process. In LGE CMR the level of signal intensity or the size 
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of infarction are both similar in acute or in chronic MI. It has therefore been challenging to 

distinguish acute MI from chronic MI scars with LGE CMR images alone. 

The aim of this thesis was to investigate texture analysis of LGE CMR images to determine if acute 

MI could be distinguished from chronic MI and to detect increased presence of diffuse myocardial 

fibrosis in the myocardium. The first study was performed to investigate if texture analysis of LGE 

CMR images could detect variations in the presence of diffuse myocardial fibrosis and if the 

underlying myocardial structure could be related to the texture measures. Collagen content 

increased with aging and we used an animal model of young versus old rat. An ex-vivo animal 

model was necessary to allow for higher image resolution in LGE CMR images and to perform 

validation of our texture measures with histology images. Twenty four animals were scanned for 

LGE CMR images and texture analysis was applied to the heart images. Histology slices were 

stained with picrosirius red and collagen fibers were isolated based on their color content. LGE 

CMR quantification was compared to histological slices of the heart stained with the picrosirius 

red method. Texture analysis of LGE CMR images was also compared to the original LGE CMR 

image quantification and to histology. Texture analysis was done by creating contrast texture maps 

extracted from Haralick’s gray level co-occurrence matrix (GLCM). Regions of complex signal 

intensity combination were enhanced in LGE CMR images and in contrast texture maps. 

Regression analysis was performed to assess the level of agreement between the different analysis 

methods. We found that LGE CMR images could assess the different levels of collagen content in 

the different aged animal model, and that moreover texture analysis enhanced those differences. 

The location of enhancement from texture analysis images corresponded to location of increased 

collagen content in the old compared to the young rat hearts. Histological validation was shown 

for texture analysis applied to LGE CMR images to assess myocardial fibrosis. 

Our second study aimed at discriminating acute versus chronic MI from LGE CMR patient images 

alone through the use of texture analysis. Twenty two patients who had LGE CMR images were 

included in our study (12 acute and 12 chronic MI). Regional segmentation was performed and 

texture features were compared in those regions between both groups of patient. Texture analysis 

resulted in significantly different values between the two groups. More specifically the peri-infarct 

zone had the most number of discriminative features compared to the remote myocardium which 

had none and to the infarct core where only the mean features was significantly different. The 

border zone has been shown to be composed of healthy cardiomyocytes intermingled with the 
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scar’s collagen fibers. Our study indicates this region might exhibit structural differences in the 

myocardium in acute from chronic MI patients that texture analysis of LGE CMR images can 

detect.  

Characterization of myocardial collagen content is important while clinicians analyze the state of 

the patient since it influences the course of action required to treat cardiomyopathies. LGE CMR 

images have been thoroughly used and validated to characterize focal myocardial scar, however it 

was limited in characterizing the age of infarction or quantifying diffuse collagen content. We have 

shown texture analysis of LGE CMR images alone can differentiate and even classify, acute from 

chronic MI patients, which was not previously possible. Characterization of myocardial infarction 

according to age will prove important in planning therapeutic interventions in clinical practice. 

Moreover, we have established texture analysis as a means to characterize the myocardium and 

detect variation in fibrosis content from high resolution LGE CMR images with histology 

validation. To our knowledge, such a relation between texture analysis of LGE CMR images and 

the underlying myocardial structure had not been done previously.  

Improvements could be done to our method, as we can increase the number of texture features that 

were analyzed from the GLCM, include other texture analysis methods such as the run-length 

matrix, and apply our method to other CMR imaging sequences such as T1 mapping. Adapting the 

GLCM to the heart could also be investigated, such as considering circular GLCM computation to 

consider the round shape of the myocardium in the short axis LGE CMR image slices. Directional 

GLCM could also be computed individually and analyzed for any myocardial or collagen fiber 

orientation indication. Further analysis is also required to establish if texture analysis could 

differentiate the age of MI in the same individual through a follow-up study. The measures of 

texture analysis from LGE CMR images obtained through different CMR scanners remains to be 

investigated as well. Knowing the age of infarct and evaluating the presence of diffuse myocardial 

fibrosis will help the clinician plan therapeutic interventions and establish a prognosis for the 

patient. 
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CHAPTER 1     INTRODUCTION 

Cardiovascular diseases affect more than 1 in 3 adults in the United States [1]. The heart is the 

main supplier of blood to the rest of the body and any impairment might have life-threatening 

consequences. Cardiovascular diseases claim more lives than any other diseases in the United 

States [1] and affect the heart by modifying the cellular structure or global shape of the myocardium 

(the muscle of the heart). The heart’s function is negatively affected as the myocardium is 

progressively impaired. Ischemic cardiomyopathies are characterized by lack of blood reaching the 

myocardium (ischemia) and are caused by an obstruction in the coronary arteries. Other myocardial 

diseases originate from various etiologies other than ischemia, such as amyloidosis, hypertrophic 

or dilated cardiomyopathies. A diagnosis is needed to identify the different diseases by analyzing 

the state of the patient and of the heart in order to perform the appropriate therapeutic intervention.  

A combination of investigative tests and image analysis will inform the clinician on a patients’ 

state. The clinician uses diagnostic tests, such as the electrocardiogram or biomarkers such as 

Troponin for example, to identify specific symptoms associated to types of cardiomyopathies. 

However, it is with ultrasound or cardiac magnetic resonance (CMR) that the myocardium can be 

visualized. Ultrasound is less expensive and a rapid imaging modality however CMR offers a 

higher resolution. Magnetic resonance is therefore used to obtain information on the pathological 

transformation of the myocardium whenever the precise state of the myocardium has to be 

established. Late gadolinium enhanced (LGE) CMR is a high resolution imaging method with 

which the clinician can identify and characterize any damage due to cardiomyopathies. LGE CMR 

imaging has been thoroughly validated and is used to measure the size and evaluate the severity of 

myocardial scar in ischemic cardiomyopathy [2]. Such an analysis has prognostic impact for the 

patient and helps the clinician plan therapeutic interventions. Although LGE CMR offers a high 

resolution visualization of the myocardium, there are limitations.  

LGE CMR images show the location and pattern of enhancement in the presence of non-ischemic 

cardiomyopathy [3-6]. However, diffuse myocardial fibrosis cannot be quantified with this 

modality. The enhancements that are seen in LGE CMR are concentrated in a limited but definite 

location in the myocardium and can easily be isolated from the rest of the myocardium. Diffuse 

myocardial fibrosis has been identified as a structural alteration to the myocardium in the presence 

of non-ischemic cardiomyopathies [5] and is widespread in the heart muscle. Although it is crucial 
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in maintaining the heart’s shape and function in disease, collagen is also responsible for stiffening 

of the heart and ultimately impairing myocardial function. Quantifying diffuse fibrosis would be 

beneficial since it was suggested that the early stages of fibrosis can possibly be reversible [7]. 

LGE CMR images are however limited in diffuse fibrosis characterization in non-ischemic 

cardiomyopathies, due to the diffusive nature of the myocardial alteration. The standard signal 

intensity based methods, applying a threshold of a number of standard deviation above the mean 

signal intensity of the myocardium, are non-applicable since there is no remote myocardium that 

can be identified, and consequently no threshold value that can be determined [8-11]. It would be 

beneficial if LGE CMR images alone could allow quantifying diffuse myocardial fibrosis in non-

ischemic cardiomyopathy. Research has shown that T1 mapping and extracellular volume (ECV) 

CMR imaging methods could show diffuse fibrosis [8-16]. However, it would be beneficial to use 

an imaging method already used in clinical practice and that has been thoroughly validated such as 

LGE CMR images. The signal intensity pattern in non-ischemic cardiomyopathies from this 

modality has frequently been identified with descriptive terms, for example “patchy” or “foci, 

heterogeneous, multifocal, and non-specific” [17]. These descriptions indicate a complex signal 

intensity pattern present in LGE CMR images in the presence of diffuse fibrosis, well suited for 

texture analysis. Consequently, our first contribution consists in applying texture analysis methods 

to LGE CMR images to characterize diffuse myocardial fibrosis at a high image resolution and to 

perform a comparison with the ground truth from histology. To our knowledge there has not been 

any association of texture analysis from LGE CMR images to the presence of diffuse fibrosis in 

the heart, as assessed with histology images stained with a collagen specific dye.  

In ischemic cardiomyopathies, it is not possible to differentiate acute from chronic MI with LGE 

CMR images alone [18-21]. As more effective interventions are performed following acute 

myocardial infarction (MI), there is an increased number of patients with chronic MI. Part of the 

population can live with unrecognized MI, notably for patients with diabetes [22]. Since the age of 

infarct will have an impact on the decision of the therapeutic intervention to use, it is important for 

the clinician to distinguish acute from chronic MI scars. The signal intensity based methods that 

are currently used to segment the infarct scar in LGE CMR images have been unable to characterize 

the infarct age. Other imaging sequences or modalities have been used for its assessment, exploiting 

the physiological aspects of the myocardium in pathology, for example by detecting the presence 

of edema that occurs only in acute MI [18]. However, there is a definite advantage to using a well-
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established modality such as LGE CMR images alone during diagnosis and avoiding extra imaging 

acquisition time. The peri-infarct zone has been described with respect to its heterogeneity, a 

reference to its appearance in LGE CMR images and an indication of a complex pattern of signal 

intensity in that region [23-27]. Patterns of signal intensity in medical images have been quantified 

with texture analysis. Our second contribution consists in characterizing the myocardial infarct age 

from texture analysis of LGE CMR images for patient with acute or chronic MI. Automatic 

classification of patients with acute versus chronic myocardial infarction is also desirable. The LGE 

CMR images are currently useful in characterizing the state of the myocardium, can differentiate 

ischemic from non-ischemic cardiomyopathies and can be an indication of the type of non-ischemic 

cardiomyopathy [4]. Classification of LGE CMR images of patients according to the age of the 

myocardial infarction would be beneficial. Using LGE CMR images to assess the infarct age or 

quantify diffuse myocardial fibrosis would be beneficial during the diagnosis process to estimate 

the prognosis for the patient and help the clinician plan therapeutic interventions according to the 

characterization of fibrosis in the heart.  

The research question that is addressed in this thesis consists in the following: Is it possible, relying 

only on LGE CMR images, to characterize myocardial fibrosis and ischemic cardiomyopathies, 

notably differentiate between acute and chronic myocardial infarction? The aim of this study is to 

apply quantitative pattern analysis methods to understand how LGE CMR images can objectively 

assess the state of the myocardium and thus help in the diagnostic process. Texture analysis has 

never been fully investigated to study the various types of cardiomyopathies as seen in LGE CMR 

images. This method could help distinguish the underlying microstructure of the heart in the 

presence of ischemic and non-ischemic heart diseases. 

This thesis includes seven chapters and will focus on the exploration of texture analysis as an 

alternative method to the usual intensity-based methods applied to LGE CMR images. Chapter 2 

presents the literature review, briefly explaining the anatomy of the heart and how 

cardiomyopathies affect the myocardium, then explaining different magnetic resonance imaging 

methods used in medicine and more specifically in cardiology. It also presents a review of texture 

analysis and classification methods. In chapter 3, we present our research hypotheses and 

objectives as well as the general methodology by presenting texture analysis of LGE CMR images 

to characterize ischemic cardiomyopathies and assess diffuse myocardial fibrosis. Our first 

published paper is in chapter 4 and presents our investigate work on texture analysis of high 
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resolution LGE CMR images as a means of identification of diffuse myocardial fibrosis with 

ground truth validation from histology images. This lays the ground work to use texture analysis 

of LGE CMR images in cardiac diseases from other etiologies. Chapter 5 contains the second 

submitted paper that consists in applying texture analysis to LGE CMR images in order to grade 

myocardial fibrosis as acute or chronic myocardial infarction in a patient population. This part of 

the project assesses the performance of texture analysis of LGE CMR images in lower resolution 

images to characterize the underlying structure of the myocardium in a patient population. Initial 

results for classification of acute versus chronic MI from LGE CMR patient images will be 

described in chapter 6. The methods, along with the limitations, will be discussed in chapter six. 

Further considerations that could improve the method and its application are presented in 

conclusion in chapter 7. 
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CHAPTER 2     LITTERATURE REVIEW 

The background information necessary to understand the work done in this thesis is presented 

in this chapter. The pathophysiological responses of the myocardium when ischemic or non-

ischemic cardiomyopathies occur, along with the imaging methods that are used to view the 

myocardium, are in the first part of this chapter. Texture analysis methods used in medical imaging 

are presented in the second part of this chapter. Finally the last section of this chapter presents 

texture analysis in cardiology, more specifically in ischemic cardiomyopathy or in the presence of 

diffuse fibrosis in non-ischemic cardiomyopathies. 

1.1 Background 

1.1.1 Physiology of the healthy heart 

The heart is a muscle that is called the myocardium and which forms four chambers, two 

atria and two ventricles (Figure 0-1). Valves are located between the atria and ventricles to control 

blood flow. Blood originating from the lungs reaches the left atrium and is pushed to the left 

ventricle via the mitral valve. The left ventricle then contracts and ejects the oxygen-rich blood to 

the aorta which supplies it to the rest of the body. Once the blood flows through the organs it 

releases oxygen and returns to the right atria via the inferior and superior vena cava. Blood then 

travels to the right ventricle through the tricuspid valve. The right ventricle ejects the deoxygenated 

blood through the pulmonary artery. The myocardium is supplied oxygenated blood by the 

coronaries that depart from the aorta and surround and penetrate the heart tissue.   

A contraction signal propagates through the heart. A signal is sent from the sinoatrial node for the 

atria to contract. The signal then propagates to the atrioventricular node where a slight delay allows 

finishing the filling process of the ventricles with blood. The signal then follows the bundle of His 

that goes through the myocardium from the basal area to the apex of the heart. The Purkinje fibers 

lead the signal into the right and the left ventricle. The signal is then propagated from the apex of 

the ventricles to the basal area. 
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Figure 0-1 : The heart and its four chambers. The blood flows from one atria to its adjacent 

ventricle, which releases the blood to other anatomical parts of the body [28]. 

Collagen fibers are present in the healthy heart. These fibrous connective tissues act as scaffold by 

maintaining the macro- and micro- structure of the heart [29]. The different types of collagen in 

the heart are:  

- Epimysium: is the epicardium (outer layer of the heart). 

- Perimysium: creates groups of cardiomyocytes into bundles, and as well maintains 

connectivity between these bundles. The structural presence of the perimysium is believed 

to be related to the heart’s function [30].  

- Endomysium: is located around each cardiomyocytes and capillaries, maintaining the 

connectivity between these structures [31]. It is believed that it avoids cardiomyocytes to 

slip on each other, maintains their shape and maintains the vessels during muscle 

contraction [31]. 
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1.1.2 Pathophysiological Changes from Cardiomyopathies 

The increased infiltration of collagenous fibers in tissue alters the physiology and the function of 

organs that are affected, such as in the lung, the heart, the liver or the kidney. The increased 

presence of fibrosis in the heart is associated with adverse cardiac outcome, in the presence or 

absence of disease [29]. Myocardial fibrosis is characterized by the increased presence of collagen 

fibers in the heart [17]. In this section there will be reference to the two identified types of fibrosis: 

replacement and infiltrative. Replacement fibrosis consists of an increase of collagen fibers as a 

response to compromised cardiomyocytes during ischemia [17]. In this case, collagen fibers 

deposition acts as a scaffold to maintain the heart’s shape and function in the areas normally 

occupied by cardiomyocytes. The scars composed of collagen fibers can form relatively large 

regions that are distinguished from healthy myocardium with imaging modality. LGE CMR images 

are routinely used in clinical practice in the presence of ischemic cardiomyopathy to determine scar 

characteristics, such as the location and the extent of damage to the myocardium [2]. Infiltrative 

fibrosis is the presence of collagen fibers in the interstitial space. Collagen fibers are present in the 

myocardium in response to pathophysiological transformations that occur with disease from 

various etiology [32]. It consists in increased presence of collagen fibers in the interstitial space, 

expanding the extracellular matrix [33].  

1.1.2.1 Ischemic Cardiomyopathy 

In ischemic cardiomyopathy, myocardial remodeling happens in response to ischemia and injury. 

However, this mechanism is believed to become maladaptive and harmful to the heart, leading 

eventually to heart failure. Different stages of the disease lead to various levels of damage and 

remodeling. In the early onset of the disease, or acute myocardial infarction, the cardiomyocytes 

lower their energy consumption in reaction to ischemia and therefore diminish their contraction to 

survive upon diminished supply of blood to the region. Without intervention to res-establish blood 

flow, cell death occurs from necrosis but apoptosis (programmed cell death) may also contribute 

to eventual cell death. 
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Figure 0-2 : The response to myocardial injury is an increase of inflammatory cells that include 

neutrophil and macrophages, amongst others. In acute myocardial infarction there is degradation 

of collagen fibers that is followed by increase of collagen synthesis to eventually form fibrosis. 

 

When the myocardium is injured, the body responds by increasing the number of inflammatory 

cells (neutrophil, macrophage and others) in the region (see Figure 0-2) [34]. There is edema and 

swelling of the myocardium. Initially, increase of metalloproteinase cells, which originate from 

neutrophil cells, disintegrate collagen fibers. This results in higher risk of rupture of the heart wall. 

However, macrophages reduce the debris of necrosis and indirectly increase fibroblasts, one of the 

many mechanisms that results in synthesis of collagen in the heart [34]. Collagen is present in the 

healthy heart and acts as an element that maintains structure: it surrounds myocyte cells 

individually (endomysium) or in a bundle (perimysium). There is a slow turnover of collagen in 

the healthy myocardium that is disrupted in the presence of myocardial infarction. The long term 

result is excess collagen deposition (fibrosis). In chronic myocardial infarction there is thinning of 

the myocardium. The progress of damage to the myocardium typically starts in the subendocardial 

region (interior cavity of the left ventricle) and progressively spreads towards the epicardium (the 

outer surface of the heart).  
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1.1.2.2 Non-Ischemic Cardiomyopathy 

Non-ischemic cardiomyopathies originate from different causes than coronary obstruction. In 

amyloidosis, amyloid proteins infiltrate the extracellular space over all the myocardium 

accompanied with wall thickening [35]. There might as well be presence of focal or diffuse fibrosis. 

Myocarditis is the inflammation of the heart muscle, most often due to infection, and that can lead 

to dilated cardiomyopathy (DCM) [36]. In DCM, the heart muscle is enlarged, with the possible 

presence of fibrosis [37]. In hypertrophic cardiomyopathy (HCM) the myocardium is thickened 

from cellular disarray [38].  

 

1.1.3 LGE CMR Image Acquisition 

During diagnosis, image acquisition parameters are chosen to obtain different information on 

cardiomyopathies. LGE CMR characterizes myocardial tissue in ways that are useful for diagnosis 

of many diseases including ischemic and non-ischemic cardiomyopathies. Magnetic resonance is 

an imaging procedure which exploits the energy released by proton excitation [39]. Randomly 

oriented protons are aligned in an applied magnetic field B0. The net magnetization refers to the 

resulting magnetization of all protons. Following the application of selected radio frequency (RF) 

pulses, protons change orientation and there is a change of orientation of the magnetization. The 

return to equilibrium of the magnetization is what creates the signal that is imaged. In gradient echo 

(GRE) sequences, a gradient is applied after the RF pulse to generate a signal. LGE CMR images 

are T1-weighted and use an MR acquisition sequence called inversion recovery (IR) [40, 41]. T1 

times are defined as the time when 60% of the signal has been recovered. All tissues return to 

equilibrium at a different pace, which results in different signal intensity levels in different tissues. 

IR is done by flipping the protons 180o and letting magnetization recover. When magnetization is 

in the transverse plane, there is no signal intensity. Since all tissues will recover at their own pace, 

it is used to null the healthy myocardium while still seeing other diseased parts of the myocardium. 

An alternative method is now used that employs the phase sensitive inversion recovery (PSIR) 

technique and which allows more latitude in selecting the time to null the myocardium while 

maintaining contrast between healthy and diseased tissues. Shortening of the T1 time in the infarct 

zone results in brighter signal intensity in that area and is done through the use of a contrast agent 

(CA). 
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LGE CMR images are obtained after administrating an intravenous CA that spreads in the heart 

cavity and later spreads in the myocardium with altered kinetics and volume distribution in the area 

of damage. The contrast agents are gadolinium (Gd) based. This metal interacts with protons and 

shortens the T1 relaxation time of the myocardium or blood, enhancing the signal intensity of the 

region where the contrast is present [42-44]. However this metal is toxic and blocks calcium 

channels [43, 44]. It is therefore combined with a chelate to form a molecular structure that is stable 

in the body and is excreted by the kidney. Gadolinium combined with pentetic acid, Gd-DTPA, is 

one of five agents approved by the FDA for investigational use. The CA is extracellular. The result 

is relatively more enhancement of intensities where the myocardium is altered by the pathology. 

The signal intensity of the myocardium is nulled using an IR acquisition method [45] to provide 

high contrast ratio between the remote myocardium and the affected region. The cause of 

enhancement is different depending on the disease, ischemic or non-ischemic cardiomyopathies 

[46]. 

Alternative methods to LGE CMR images have emerged recently. T1 maps are created either with 

pre- or post-contrast T1-weighted images [7]. Magnetization recovery is changed with disease and 

can be analyzed with T1 recovery times, pre- or post- contrast administration [7]. Extracellular 

volume (ECV) is obtained by measuring the hematocrit in the blood, extracting concentration of 

Gd in the heart and extrapolating the myocardial fibrosis content from an estimate of the 

extracellular space [7]. 

  

1.1.4 LGE CMR Imaging of Cardiomyopathies 

1.1.4.1 Ischemic Cardiomyopathy 

Hyperenhancement occurs in the presence of either acute or chronic myocardial infarction (MI) 

[47, 48]. In the presence of acute infarction, cell membranes may have ruptured, allowing the 

extracellular contrast agent to reach what had previously been the intracellular space. In chronic 

infarction, the myocardium has been replaced by collagen scar and the extracellular space is 

increased [49]. 
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Figure 0-3 : Schematic representation of an LGE CMR image of a patient with acute MI (left). 

Example images to the right show an acute MI (top image) and a chronic MI (bottom image) LGE 

CMR patient image. The acute MI image shows macrovascular obstruction (MVO) as an island of 

dark signal intensity in the bright infarct region (red outline). The remote myocardium is nulled 

and outlined in green. The peri-infarct zone is seen as lighter shades of gray that surrounds the 

infarct region. 

 

The severity and transmurality of the ischemic area can be established with LGE CMR images. 

This modality has the highest resolution method for imaging myocardial infarction and assessing 

myocardial viability [2, 50]. Four regions may be identified on LGE CMR images in the presence 

of myocardial infarction (Figure 0-3):  

 The remote myocardium is a dark region in the myocardium. It is considered 

healthy, although there might be small regions of fibrosis present in the case of 

chronic infarctions.   

 The infarction is the brightest region due to the use of the contrast agent and 

identifies the diseased region. 
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 The border zone is in tones of gray intensities that range between those of the remote 

myocardium and the infarct region. It is located around the infarct and is also called 

the gray zone.  

 The microvascular obstructions (MVO) are the dark regions that can appear central 

to the infarcted area if the contrast agent cannot reach the center of the infarct. 

The border zone is highly influenced by partial volume effects. The image resolution in the current 

clinical setting does not permit the analysis of the underlying fibers. This region is believed to be 

one of two states: a clear delineation between infarct and healthy cardiomyocytes, or the result of 

intermingling of infarct and healthy cells [51]. 

It has been shown that gadolinium based contrast agent spreads in the myocardium and enhances 

infarct at a near cellular level [51]. Acute and chronic infarctions exhibit different enhancement 

patterns on high resolution LGE CMR images. In acute myocardial infarction, lesions show some 

dark patches of microvascular obstruction (MVO) that are seen inside the bright region of infarct. 

There are also regions with less severe enhancement around the edge of the infarct. Chronic 

infarction is characterized by fibrosis and the myocardial wall may have thinned. The infarct then 

appears to be more fibrous than the remote myocardium. The MRI appearance of chronic infarction 

tends to be more binary with a bright region for the infarct and a dark remote myocardium. 

Ischemic cardiomyopathies are amongst the most common cause of death in developed countries. 

However, as more acute ischemic cardiomyopathies are treated with success in the population (with 

interventions such as bypass surgery) more people now suffer from chronic myocardial infarction. 

In the clinical context, this requires doctors to distinguish an area of acute infarction in the 

myocardium from an underlying chronic infarction. MRI can also detect silent or unrecognized 

myocardial infarction in certain patients, notably those suffering from diabetes [22]. It is likely that 

recent unrecognized MI may be prognostically important. Since the age of myocardial infarction 

gives insight to the possible outcome following a cardiovascular intervention [19], it would be 

useful to distinguish acute from chronic myocardial infarction during diagnosis for example for a 

patient presenting acute symptoms with underlying chronic myocardial infarction [52]. During the 

diagnosis, since the standard analysis of images relies on the detection of bright regions, 

discrimination of the age of infarction is limited. Since the structure of the myocardium is altered 
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in different ways in the presence of acute or chronic myocardial infarction, exploiting these 

differences while analyzing LGE CMR images might help to distinguish them. 

1.1.4.2 Non-ischemic cardiomyopathy 

Non-ischemic cardiomyopathies result from damage to the myocardium that originates from causes 

other than ischemia. Enhancement of the diseased areas in LGE CMR images depends on the 

disease. It is believed that bright regions in LGE CMR images indicate damage to the myocardium 

and this modality is used as a diagnostic tool to detect non-ischemic cardiomyopathies [53]. In the 

presence of disease, fibrosis or other structural changes to the myocardium may lead to a signal 

enhancement in LGE CMR images.  

Unlike ischemic cardiomyopathies that originate in the endocardium (the interior cavity of the left 

ventricle) [54], enhanced signal intensities with non-ischemic cardiomyopathies can originate from 

any location in the myocardium (Figure 0-4). Some patterns of enhancement have been observed 

for various diseases. In amyloidosis, the extracellular space is expanded due to amyloid deposition 

along with the possible presence of diffuse or focal fibrosis. Cardiac involvement in amyloidosis 

has been studied with LGE CMR images, where enhancement is observed in all the myocardium 

and with possible focal locations of enhancement [55]. LGE CMR images can help determine to 

what extent the heart is involved for patients with amyloidosis. Hypertrophic cardiomyopathy 

(HCM) is the enlargement and disarray of the heart muscle cells which leads to abnormal thickness 

of the left ventricular walls [56, 57]. Studies found most of the patients with HCM exhibit 

enhancement in the anterior or the anteroseptal segments of the left ventricle [3, 57]; however a 

focal pattern was also present in some HCM patients. Jiji et al. [57] report a “focal or patchy 

enhancement in the mid-myocardium” region. One case study presented a clear difference between 

enhancements caused by MI and by HCM [58]. Various cardiomyopathies affect the heart in 

different ways and result in different structural changes. 
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Figure 0-4 : Schematic representation of typical enhancement in LGE CMR images. The 

subendocardial and transmural locations of enhancement are seen in ischemic cardiomyopathies. 

The midwall, subepicardial and patchy enhancements are seen in non-ischemic cardiomyopathies. 

Diffuse myocardial fibrosis 

The increased presence of collagen fibers that can naturally occur in the myocardial muscle (diffuse 

myocardial fibrosis) may be attributed to aging [8, 59-63]. In the aging heart, the presence of 

additional interstitial collagen fibers can alter the myocardial morphology and function, adversely 

impacting cardiac outcome. In contrast to ischemic cardiomyopathies which exhibit focal scars 

near the ischemic region, myocardial fibrosis due to aging is diffusely spread across the heart 

muscle. Diffuse myocardial fibrosis appears intermingled with healthy cardiomyocytes in 

histological images. Therefore in LGE CMR images, there is little remote myocardial region that 

can be nulled to obtain contrast between the fibrosis and the healthy regions of the myocardium [9, 

10]. Diffuse myocardial fibrosis is also present in other diseases where LGE CMR images’ 

limitation has prevented its identification. Clinicians are now increasingly relying on other 

methods, such as T1 or ECV mapping [9, 10, 12-14, 16, 64, 65]. 

Locations of diffuse myocardial fibrosis were identified with T1 mapping for patients with 

rheumatoid arthritis [66], dilated [67] and hypertrophic [68] cardiomyopathy. T1 mapping could 

identify diffuse myocardial fibrosis but could also estimate its progression in disease [69]. 
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Extracellular volume fraction identified regions of diffuse fibrosis in dilated cardiomyopathy, even 

in the absence of identified enhancement from LGE CMR images [70], and in muscular dystrophy 

[71]. Using native T1 values is a method which avoids administration of contrast agent to the patient 

and could offer diffuse fibrosis quantification [72]. However, native T1 values have also been 

investigated on a 3T scanner and were not found to identify diffuse myocardial fibrosis [73]. This 

quantification method therefore needs more validation.  

 

1.2 Texture Analysis in Medical Imaging 

In medicine, analysis of diseases based on their underlying physiological structure has been fruitful 

with texture analysis. Texture features have been successfully used in magnetic resonance images 

to distinguish benign from malignant lesions in prostate [74, 75], breast [76-78] and liver [79] 

cancer as well as to study brain tissues [80]. This method seems promising, since the various 

cardiomyopathies affect the heart differently and result in structural differences. Acute and chronic 

myocardial infarctions alter the heart structure in different ways. In acute infarctions, damage is 

recent and there might be swelling in response to injury and signal homogeneity due to 

microvascular obstruction. In the presence of chronic infarctions, the heart has walls that are thinner 

than normal, and there is presence of fibrosis in the myocardium. These structural alterations are 

possible candidates for differentiation of acute and chronic infarctions and may be suitable targets 

for texture analysis methods. Analysis of the various underlying structural patterns of the 

myocardium in non-ischemic cardiac diseases could help in the diagnosis process [3]. Quantitative 

analysis of signal intensity or locality patterns in the myocardium in LGE CMR images could 

characterize aspects of cardiac diseases [3]. 

Texture analysis relates to the exhibited appearance of a material. Merriam Webster [81] dictionary 

defines texture as “the disposition or manner of union of the particles of a body or substance” or 

“the visual or tactile surface characteristics and appearance of something.” Texture can be more 

easily understood when thinking about textiles. Silk is most commonly known as a textile 

composed of delicate fibers. It is soft and smooth to the touch, whereas tweed is a rougher textile 

made of interwoven strands of wool. Silk appears more delicate and intricate whereas tweed looks 

rougher and bulkier. Texture, as the perceived appearance of objects, can be transposed to other 

fields. In imaging, texture refers to the local variation of intensities that creates the visual 
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appearance of objects. Satellite imagery is one application where texture analysis has been 

successfully applied. In this field, coarse texture can characterize a surface that exhibits many 

changes for example in elevation, as opposed to a smooth surface whose elevation would be more 

constant. In medical imaging, texture analysis is applied to describe the displayed appearance of 

organs as seen on images from various modalities. It can be used to delineate organs and diseased 

regions which are physiologically altered or to grade diseases that progressively modify the 

appearance of an organ in the images.  

The detection and description of texture in images has been enhanced through computational 

processing. The limitation of the human eye to precisely distinguish different texture features in 

images is overcome with mathematical analysis and description of image composition. The visual 

perception of pattern was studied by Julesz, who described textons, or texture units [82]. Different 

methods have emerged that analyze characteristics of the image. Texture analysis methods have 

been classified into four main groups: “structural, model, statistical or transform” based [83, 84]. 

Methods were also described for three dimensional analysis of images [85].  

1.2.1 Structural Methods 

Structural methods rely on a textural entity described as the assembly of its structural parts. It 

involves the definition of primitives or individual components that once assembled create a texture 

pattern. Texels, for texture elements, were defined as primitive components [84, 86]. A lexicon of 

geometric patterns and the rules regarding their spatial arrangement was described by Carlucci [87] 

to define texture. In a similar way, Vilnrotter et al. [88] identified edge components as primitives 

and studied their spatial arrangement to form various textures. These methods seem to recall the 

receptive field in the human visual cortex that contains cells sensitive to specific edges and 

orientations. Structural texture analysis methods were found to be effective when the pattern 

analyzed was composed of an orderly pattern [89]. 

1.2.2 Model based Methods 

Model based methods describe textures as mathematical models. Fractal geometry has been shown 

to represent the structural composition of many objects in nature [90]. Fractal analysis of patterns 

has been used to evaluate texture features in images [91, 92] and in medical imaging [93, 94]. 

Another model based approach uses the markov random fields for texture analysis [95]. Kashyap 
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et al. [96] presented a model based approach that was rotation invariant. The application of fractals 

in cardiology was mostly to study the physical presentation of the heart anatomy. For example, 

fractals have been used to study structural components such as the coronary tree in coronary 

angiography [97] and intravascular ultrasound [98]. Captur et al. [99] presented fractals to analyze 

the left ventricle anatomy from CMR images. It was suggested that heart rate variability over time 

could be analyzed with fractals and could be a predictor of future cardiovascular events after acute 

myocardial infarction [100]. This method was also applied to analyze an aging population without 

the presence of cardiovascular diseases [101]. However, heart rate variability is in need of more 

clinical validation [102]. Fractals have also been suggested to study the electrocardiogram [103]. 

1.2.3 Statistical Methods 

Texture can be characterized by the occurrence of signal intensities found in an image or in a region 

of interest. Quantification of first order statistics is obtained through histogram analysis and the 

measures include the minimum, the maximum, the mean, the standard deviation and the kurtosis. 

These measures describe the range and characteristics of the signal intensity that composes the 

image. However, they do not provide information on the spatial distribution of the signal. A 

common example is given that compares a chess board pattern to a half white and half black image. 

Histogram analysis is incapable of differentiating the two patterns. Only methods that would 

consider the spatial distribution of the intensities can discern this type of difference. Spatial 

information is therefore important in texture analysis since repetitive patterns will contain high 

occurrences of signal intensities at given intervals in the image.   

The limitation of histogram analysis has been addressed in methods that include the spatial 

information of signal intensity. In these methods, signal intensity is analyzed in constrained 

neighborhoods. The position and orientation of neighbor pixels with regards to a central position 

is used in the grey level co-occurrence matrix (GLCM). This method was described by Haralick et 

al. in 1973 [104]. A matrix is built that records the number of occurrences of signal intensity pairs 

that are formed by considering a constrained neighborhood. The matrix size is as big as the signal 

intensity range. Each entry of the matrix at position (i, j) corresponds to the number of times the 

combination of intensities (i, j) occurs in the image. The neighborhood is determined with a 

distance d between position of intensity i and that of intensity j. The background should not 

interfere with the neighborhood calculation. Once the count of occurrences of pairs of intensities 
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is done, the matrix should be added to its transpose to make it symmetric and remove the directional 

dependence of the result. In the horizontal direction, moving east or west should not impact the 

result and as an example, the set (2,5) and (5,2) should both count in the matrix. In order to have a 

probability matrix, all the entries are divided by the sum of the entries of the GLCM. Features are 

mathematically extracted from this GLCM, resulting in a quantification of the pattern seen in the 

image. The three dimensional GLCM was also computed in image volumes for medical imaging 

[85]. Lam et al. [105] modified the GLCM to include gradient information of neighbor pixels. One 

disadvantage of the GLCM method was the computational time. This was improved with 

optimization algorithms, variation on the matrix calculation with linked lists [106], or hardware 

acceleration [107]. Multi-scale calculation of the GLCM was also considered [108, 109] or distance 

consideration were also used to modify the algorithm [110].  

Others texture analysis methods are based on the spatial distribution of signal intensity. Galloway 

et al. [111] described the run-length matrix (RLM), which is built by calculating the sequential 

occurrence of a grey level observed in the space that surrounds a specified pixel, and in various 

directions. Texture features are estimated from this matrix by mathematical computation similar to 

that of the GLCM features. Additional texture features from the RLM were proposed to increase 

the identification of texture in images [112]. Ojala et al. [113] compared different approaches to 

texture analysis and concluded the co-occurrence matrix was the most performant in discriminating 

texture patterns in images and simple to comprehend.  

Laws features are the result of windowed analysis of signal intensity distribution [114]. An energy 

component is evaluated following a convolution operation over regions of the image. 

The signal intensity distribution surrounding a local pixel was used to define texture by Wang and 

He [115]. They define texture units as a dictionary that defines the surrounding signal intensity 

values relative to a central position. Texture units are determined by the signal intensity of the 

neighbor pixels to the central position. Each neighbor is given one of three values to identify their 

relative signal intensity with regards to the signal intensity of the central pixel, depending if they 

are lower, equal or higher to the central pixel’s signal intensity. The statistical analysis of the 

modeled local pattern gives information on the broader observed texture. Wang and He define the 

texture spectrum as the occurrences of the texture units and use this modeling to discriminate 

texture [115]. They later defined descriptive features from the statistical evaluation of their texture 
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spectrum [116]. The texture spectrum defined by He and Wang was promising but required heavy 

computational load from the high number of possible neighbor combination when assessing the 

neighbor signal intensities in the texture units. Reduction of the computational load from the 

calculation of the texture spectrum was done by Ojala et al. [117]. They referenced their method 

as local binary patterns (LBP). LBP also evaluates the binary pattern present around a central pixel 

[113, 117]. To do so the central signal intensity is used as a threshold and binary values are assigned 

to neighbor pixels that have higher or lower intensities. A binary sequence is created that 

characterizes the textural pattern seen in the image. The binary sequence occurrences are recorded 

as histograms [118]. LBP have been a successful texture analysis method, for example in medical 

imaging [119], and have prompted the development of improved algorithms. Hafiane et al. [120, 

121] replaced the central pixel value that was used for thresholding by the median value of the 

designated area around the pixel. Kaya et al. [122] included the distance and the orientation 

information between the central pixel and its neighbors in the LBP calculations. Zhu et al. [123] 

improved the LBP’s robustness to noise by introducing intensity normalization in the LBP 

calculation and furthermore considering the joint probabilities of intensities in a local region of 

interest with the image intensity information. Another study attempting to reduce the noise 

influence on texture evaluation introduced fuzzy logic in LBP evaluation [124]. 

1.2.4 Transform Methods  

The transform methods are the analysis of texture in another domain. It was initially used to analyze 

texture with structural methods, such as to analyze the occurrence of primitives in the frequency 

domain with a Fourier transform [125]. Images are transformed into the Fourier domain where 

repetitive patterns in the image are described in the frequency domain.  

Analysis of texture in a multi-scale approach is performed with the Wavelet or Gabor methods 

[126]. Wavelets were used to incorporate spatial information into texture analysis [127]. Chang et 

al. [126] used a tree structure in wavelet analysis to improve the identification of texture by 

analyzing the frequency domain only in the area of highest information content, and not only in the 

low frequencies as was previously done. The frequency response of images was also analyzed with 

a Gabor filter to locate “dominant spatial frequencies” associated to different texture pattern and 

allowing textural discrimination [128].  
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1.3 Texture Analysis in Cardiology 

Late gadolinium enhanced cardiac magnetic resonance imaging is routinely used in clinical practice 

upon onset of cardiomyopathy diseases. In ischemic cardiomyopathies, an intensity-based 

approach allows identification of the location and of the extent of damage to the myocardium with 

LGE CMR images. However this method is limited when fibrosis is present across the 

myocardium, from the absence of reference signal intensity in remote and unaffected myocardium.  

1.3.1 Ischemic cardiomyopathy Imaging 

In ischemic cardiomyopathy, the location or transmurality and as well the extent of myocardium 

affected can be assessed with LGE CMR images [2]. The variation of brightness in the myocardium 

on LGE CMR images is obtained from the combination of different wash-in and wash-out rate by 

the diseased or affected cardiomyocytes and as well by a higher accumulation of the agent in the 

increased extracellular space. Increased intensity is associated to the presence of disease in the 

heart. The importance of LGE CMR images in the diagnosis of ischemic cardiomyopathies has 

been established and thoroughly validated and reproduced [129]. However, the enhancement in 

LGE CMR is similar for acute and for chronic myocardial infarction.  This prevents the clinicians 

to assess the age of infarct. Other methods were developed to grade MI. 

1.3.1.1 Signal Intensity Methods 

Many image analysis methods are employed to delineate infarct in LGE images, all relying purely 

on signal intensity (SI) based schemes since it is generally accepted that bright areas indicate 

regions of myocardial infarction (Figure 0-5). One method uses a multiple standard deviations (SD) 

brighter than the signal intensity found in the remote myocardium as a threshold value to delineate 

infarct region in LGE images [130]. The threshold can range from 2 to 6SD, but is usually set to 

2SD. This thresholding method is currently used in clinical practice and as well in research [19, 

20, 23, 131-133]. However, it is prone to overestimation of infarct size [134, 135]. 
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Figure 0-5 : Schematic signal intensity distribution in the myocardium from an LGE CMR image. 

The leftmost and highest signal distribution in the histogram corresponds to the background of 

the segmented image. The central distribution represents signal intensities in the myocardium and 

the trail of signal intensity distribution to the right would correspond to signal intensity in the 

myocardial infarcted region. 

The full width at half maximum (FWHM) method [136, 137] evaluates the size of infarct by 

assigning a pixel to the infarct region if its intensity is more than 50% that of the maximal intensity 

found in the myocardium. However, manual delineation of the infarct region in patients with 

chronic MI has given better results than the FWHM method [138]. FWHM overestimated canine 

and human MI [137, 138].  

Signal intensity based analysis of the peri-infarct zone has also been of interest since it was found 

to be a predictor of adverse cardiac events [24]. Signal intensity ranging from 2 to 3SD above the 

mean signal found in the myocardium was defined as PI zone and this size was normalized by the 

total myocardial infarct area [24]. These signal intensity based methods, for MI or peri-infarct zone 

characterization, cannot discriminate acute from chronic myocardial infarction. 

1.3.1.2 Percent Infarct Mapping 

In the percent infarct mapping (PIM) method a percentage (based on the proportion of infarct that 

a pixel might contain) is assigned to each pixel in the MR image [139]. This method was based on 

R1 (the inverse of T1) and required a new gadolinium derived contrast agent since the peak 

enhancement of the currently used contrast agent, Gd-DTPA, was too early following intravenous 

administration to estimate R1. A subsequent method was developed to use PIM in a clinical context, 
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overcoming the need for a new contrast agent [140]. Another method developed to overcome 

partial volume effects weighted the amount of infarcted tissue that a pixel might contain [141]. 

This method requires the user to select a threshold to differentiate normal from abnormal tissues. 

That threshold problem becomes equivalent to the SI threshold. 

1.3.1.3 Image Processing Method 

The feature analysis and combined thresholding algorithm (FACT) [142, 143] is composed of a 

series of image processing steps. The SD thresholding method is first applied to the image, 

followed by feature analysis to remove sparse artifact areas detected by the SD thresholding step. 

The region is further processed by the FWHM method to have the area of infarct determined by a 

final feature analysis. The FACT method includes volumetric considerations, automatic threshold 

determinations, and steps that account for both partial volume errors and the random isolated bright 

pixels that are expected to exceed a simple 2 standard deviation threshold. The FACT method was 

validated in animals where it was compared to histology and with human subjects, yielding better 

results than manual planimetry, the SD method, or the FWHM method. Again, this method does 

not discriminate the age of infarct. 

1.3.1.4 Infarct Age Discrimination 

Classification of MI according to age is important however difficult to accomplish automatically 

with methods based on average signal intensity since pixel enhancement is said to be similar for 

acute and chronic infarcts [18-21]. The myocardium remodels during the recovery period after 

myocardial infarction [144]. Cellular structures appear disorganized in acute MI and microvascular 

obstruction (MVO) can be present. MVO appear as hypo-enhanced regions inside the bright area 

that is infarct in MRI images. This is explained by the lack of blood that reaches this region due to 

obstruction of microvascular vessels. This low signal intensity is therefore an exception to the 

general rule that associates bright regions in MRI to dead tissue. In chronic MI, there is thinning 

of the myocardial wall [145] and cells appear more elongated and the cardiomyocytes are replaced 

by a fibrous scar. This variation in structure is seen in histology [19] and since gadolinium 

enhancement closely corresponds to fibrosis at a near cellular level [51], the complex structure of 

the acutely and chronically infarcted myocardium could be distinguishable in LGE images. The 

physiological changes that arise from acute to chronic could be characterized with pattern analysis 

methods and thus may provide insight into the age of the infarct. 
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1.3.1.5 Acquisition Based Methods 

Other methods rely on MRI sequence acquisition to delineate areas of infarction, such as T1 

mapping. The T1 mapping technique is promising to assess diseased myocardium without the need 

for contrast agent [146-148]. Extracellular volume fraction is a more precise measure of the 

expansion of extracellular space in disease, but does need contrast agent and hematocrit measures 

[15, 147, 149]. Those methods are promising, however they were unable to assess the age of infarct 

[150]. 

1.3.2 Fibrosis Imaging in Non-Ischemic Cardiomyopathy 

1.3.2.1 Limitation of Myocardial Fibrosis Analysis 

The presence of myocardial fibrosis has been associated with increased stiffening of the heart, 

altering the heart’s function and ultimately leading to sudden death. CMR imaging has proven a 

reliable indicator of the presence of fibrosis in non-ischemic cardiomyopathies which have been 

associated with adverse cardiac outcome [151-158]. While the myocardial scar characteristics from 

LGE CMR images have been thoroughly validated clinically, the detection of diffuse myocardial 

fibrosis has proven challenging with conventional signal intensity based methods applied to LGE 

CMR images. In the thresholding method, a value above the mean signal intensity of the remote 

myocardium is chosen. The remote myocardium is identified as the area where signal intensity 

isn’t enhanced by the contrast agent. Collagen fibers are present across the myocardium and there 

are therefore no areas clear of fibrosis in LGE CMR images that can serve as a reference signal 

intensity from which enhancement could be determined. This limits the precise identification of 

the location of fibrosis in non-ischemic cardiomyopathies. First order statistics from LGE CMR 

images are therefore limited in the presence of non-typical pattern of enhancement in the 

myocardium.  

1.3.2.2 Non-Ischemic Cardiomyopathy Imaging 

Assessment of non-ischemic cardiomyopathies was previously done visually. Patterns of signal 

enhancement were noticed in the myocardium in the presence of various diseases and the terms 

“patchy foci, heterogeneous, multifocal, and non-specific” [17] were used. The visual pattern of 

enhancement in LGE CMR images is a descriptive method that was used to establish if it could be 
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related to the outcome for patients with non-ischemic cardiomyopathies [159]. Methods to quantify 

myocardial fibrosis were developed.  

Since diffuse myocardial fibrosis is spread out across the myocardium, the area occupied by the 

signal enhancement might be similar in ischemic and non-ischemic myocardial fibrosis. However, 

whereas ischemic myocardial fibrosis is concentrated in a relatively well-defined area, diffuse 

fibrosis is spread out across the myocardium, often creating islands of enhanced signal in LGE 

CMR images. One way of identifying hyper-enhanced area in this case was to consider the visual 

structure of the scar in LGE CMR images. O’Donnell et al. [160] identified non-focal myocardial 

scar by including three physiological components of scar tissue: the border length normalized by 

the area of scar, the information on transmurality and the percent non-viable scar area.  
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1.4 Texture Analysis of Fibrosis from other Imaging Modalities 

Texture analysis has been exploited to characterize the different patterns of enhancement that are 

created in the presence of collagen fibers in targeted organ from CT or from MR images. For 

example, medical imaging methods exist for fibrosis detection in the lung. Pulmonary fibrosis 

impairs breathing ability and its progression compromises the life of a patient. Automatic detection 

and grading of pulmonary fibrosis was performed with texture analysis applied to chest radiographs 

[161-167]. Texture analysis was a successful tool to classify pulmonary diseases on CT images of 

the chest [168-170] and as well with 3D CT images [171]. The progressive increase of infiltrative 

collagen fibers also occurs in liver fibrosis and can lead to liver stiffening, with the end stage being 

liver failure [172]. The different stages of liver fibrosis result in various image characteristics on 

CT or MR images and have been assessed with texture analysis. House et al. [173] found that 

texture analysis was not appropriate for the intermediate stages of liver fibrosis, but performed well 

in discriminating normal cases from those with liver fibrosis. Zhang et al. [174] used Haralick’s 

grey level texture analysis method to successful grade liver fibrosis from MR images. Yokoo et al. 

[175] found texture analysis of enhanced MR images, obtained with both SPIO and Gd-DTPA 

contrast agent, could characterize the level of liver fibrosis when compared to liver biopsy. The 

degree of liver fibrosis was also assessed with different texture analysis methods applied to other 

modalities, such as double contrast enhanced MR images [176], in diffusion weighed images [177], 

in proton density MR images [178], and in a comparative study of T1- and T2-weighed to contrast 

enhanced MR images [179]. Texture analysis of ultrasound images was used to automatically 

classify liver fibrosis [180-182]. The texture analysis methods GLCM, RLM, Law’s features and 

the gray level gradient matrix resulted in liver fibrosis identification from contrast enhanced CT 

images [183]. The detection and level of presence of collagen fibers by means of texture analysis 

of medical images has therefore potential in cardiac application. Texture has been extensively used 

in cardiology in ultrasound images. It was used to evaluate mitral valve regurgitation [184]. 

Infarcted area was identified by evaluating various texture analysis methods applied to 

echocardiograms [185]. Texture analysis, namely the run-length matrix, was applied to LGE CMR 

images in the presence of hypertrophic cardiomyopathies [186].  
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1.5 Medical Image Classification 

1.5.1 General Classification Methodology 

In general, texture-based classification is composed of five steps (Figure 0-6). The first step 

consists of pre-processing the images. This is required in order to extract the region to analyze and 

to standardize the intensity between images as a common basis for comparison. A choice of features 

has to be made and we have processed Haralick’s texture features from the GLCM. The feature 

reduction step is performed when the number of features is too big and there is a need to reduce 

the computation time. Feature selection also reduces the number of features that are given to the 

classifier by selecting the most significant ones for the problem. We acknowledge that we have a 

small number of features that were evaluated from the GLCM. Nevertheless a feature reduction 

algorithm might enhance the classification results if certain significant features influence the 

classification more than others.  

 

 

Figure 0-6: Diagram of the different computations involved in texture analysis and classification 

[187]. A pre-processing step prepares the images to extract the texture features that will be selected 

to perform classification. Validation of the results is sometimes done simultaneously as the 

classification step with the cross-validation or leave-one-out methods. 
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Feature selection can be done by selecting the most discriminant features by comparing 

classification rates for each individual features or feature reduction techniques can be used. 

Principal component analysis (PCA) changes the reference axis in the feature space by choosing 

the orientation of widest distribution of the features. Since the directions with the widest spread of 

values are used, other dimensions where there is smaller spread can be disregarded. The directions 

are chosen based on the eigenvectors and the highest associated eigenvectors indicate which 

components to keep. Linear discriminant analysis (LDA) is another method of feature selection. 

This process projects features onto a linear component. This linear component is chosen to 

maximize the distance between the projections of the mean of the different groups of features. 

Feature reduction is done by projection of the features onto the new feature space and selecting 

components. Once a feature set has been chosen, a choice of classification method has to be made 

and relies on many factors. For example, the features could be continuous or discrete, the number 

of classes (groups) may be known or not, or there might be a need for a parametric or non-

parametric method, amongst other considerations [188]. Different classifiers exist that are chosen 

based on the problem at hand. Validation is the last step in texture analysis and classification to 

assess the performance of classification. Optimally, a training set of features is determined to give 

examples to the classifiers and a testing set is provided to estimate the classification performance 

given as a percentage of correctly classified cases. Cross-validation or the leave-one-out methods 

are ways in which the classifiers’ performance can be established, by taking specific cases out of 

the training set while training on the rest of the cases and alternating on the cases being removed 

from the training set. 

1.5.2 Classifiers 

There are many types of classifiers that solve the general problem of deciding to which class a 

feature vector belongs, based on the problem at hand. Unsupervised learning is performed when 

classes are unknown and the classifier determines which feature vector belong to a class. Another 

type of classifier can assume probabilistic hypothesis on the distribution of the data to help solve 

classification problems. This section will do a brief overview of methods that have been used in 

previous studies to address classification as a means of grading diseases.  

Unsupervised classifiers are used when specific classes are unknown. This is the case for example 

of the k-means classifier [188]. The available feature vectors are iteratively grouped into clusters 
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based on the distances between the feature vectors from the mean of a cluster. The mean is 

calculated as the centroid of the feature vectors that compose the class. Clusters are iteratively re-

calculated so as to have minimal distances between the feature vectors of one cluster while 

maximizing the distance between clusters. As feature vectors are fed to the classifiers, their distance 

to the mean of each class is evaluated and the closest mean determines the class it belongs to. In 

supervised classifiers, classes are known. With the k-NN classifier for example, a feature vector is 

associated to a class when the majority of its k-nearest-neighbors in the feature space belongs to 

that class [188].  

The Bayesian classifier is a statistical method which relies on probabilities. Given a set of feature 

values, the goal is to find the probability that an instance belongs to a specific class 𝑤𝑖. The Bayes 

Theorem gives the probability of the feature vector belonging to one class [188]. Let 𝑝(𝑤𝑖) be the 

prior probability of belonging to class 𝑤𝑖, or the likelihood of belonging to a specific class. The 

class conditional probability density function is 𝑝(𝑥|𝑤𝑖) and is the probability of having feature 𝑥 

if we are in class 𝑤𝑖. The Bayes theorem gives the posterior probability as: 𝑝(𝑤𝑖|𝑥) =
𝑝(𝑥|𝑤𝑖)𝑝(𝑤𝑖)

𝑝(𝑥)
. 

The naïve Bayes classifier [188] assumes that the features are independent, and the decision of 

which class to assign a feature vector is based on the maximal probability obtained amongst the 

probability computation for each class:  

𝑎𝑟𝑔𝑚𝑎𝑥𝑗=0..𝑑 (∏𝑝(𝑥𝑖|𝑤𝑗)

𝑛

𝑖=1

). 

In ischemic cardiomyopathies imaged with LGE CMR, texture analysis has been used with 

classification methods to differentiate the healthy myocardium from the scar tissue by Kotu et al. 

[189]. In that study, texture features were evaluated in the remote myocardium and in the infarcted 

tissues. A combination with the signal intensity feature formed the feature vector. Classification 

was performed with the maximum likelihood estimator which uses the Bayesian theorem. In 

another study by Kotu et al. [190], infarcted myocardial tissue was assigned a percentage related 

to the degree of its fibrosis content. That study used the Bayesian theorem to estimate the 

probability of assigning a pixel to the scar tissue class. 
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The support vector machines (SVM) classifier performs a dimensionality augmentation to provide 

a discriminant boundary, in the form of a hyperplane [188]. Features are converted to the higher 

dimensionality feature space via a mapping function. The support vectors are the vectors that define 

the margins around the hyper-plane and the decision boundary is defined. The choice of kernel 

depends on the problem, linear or not for example. The boundary is chosen so as to maximize the 

distance of margins to the features provided in the training step (Figure 0-7). The choice of kernel 

depends on the features separability, for example if they are linearly separable or not. The radial 

basis function (RBF) kernel can be chosen when there is nonlinear separability of features.  A 

comparison of different classification methods showed that the SVM with the RBF as kernel 

obtained the best classification result for identification of obstructive lung disease when using 

texture analysis of CT images [191]. Another comparative study of SVM versus Bayesian 

classification indicated better diffuse lung disease classification with the SVM method, using the 

RBF as a kernel, even when the classification was performed on texture features extracted from 

images obtained through different scanners [192].  

 

 

Figure 0-7 : Support vector machine conceptual representation. The support vectors are identified 

with the black dots. The dashed lines are positioned at a maximal distance between the boundary 

and the support vectors. Image inspired from Duda, Hart, Stork [188]. 



30 

 

Decision trees [188] are non-parametric supervised classifiers. In basic decision trees a sequence 

of division at the different nodes into the branches is based on the feature vector characteristics and 

lead to categories associated to a leaf, or class. At each node, there can be a dichotomization or a 

higher number of splits (branches that emanate from a node). Extra-tree was described as a method 

which uses randomized decision trees. It was used in a comparative study of automatic versus semi-

automatic classification  of lung diseases from CT images [193]. That study used volumetric areas 

for feature calculation and favored the classifier that would adapt to the input from the user, 

meaning that classification was influenced by the clinician’s decision on grading diseases in the 

training process. The random forest classifier is a method where many decision trees are used. 

Classification is done by feeding the feature vector to all the trees. A decision is made by choosing 

the most popular class amongst the classification result of all the decision trees. Random forest was 

successfully used to classify interstitial lung disease by identifying patterns found in CT images, 

and surpassed classification results of k-NN and artificial neural networks classifiers [194]. 

Neural networks [188] are non-linear supervised classifiers that learn from the feature vectors that 

are initially provided. Neural networks are composed of a combination of nodes that have a 

weighted input and a bias term. The nodes in the network are distributed in layers, the first one 

called the input layer which receives the components of the feature vector. The last layer is called 

the output layer which outputs the components that determine the class to which belongs the input 

vector. There may be several hidden layers that separate the input and the output layers.  The 

weights of the nodes and the bias term are adjusted by a backpropagation method based on the 

classification result of the feature vectors in the learning step. Artificial neural networks (ANN) 

were used to grade lung diseases in CT images [195]. Fukushima et al. [195] found that ANN 

results were strongly dependent on the amount of examples provided. They stated that the number 

of cases available for rare diseases could limit their identification with the ANN classifier. 

Variations of the neural network have been developed. Deep convolutional neural networks, for 

example, have successfully been used in the classification of interstitial lung disease from CT 

images [196, 197]. Those neural networks require a large number of feature vectors in the training 

set. Because of this limitation, some studies rely on previously trained networks.    
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CHAPTER 3     HYPOTHESES AND OBJECTIVES 

LGE CMR images are routinely used to assess myocardial infarctions for patients with ischemic 

cardiomyopathies. This imaging modality has been extensively studied and used in clinical 

practice. It offers information on the location and extent of damage in the myocardium following 

ischemia [2] and has been found useful in other clinical cardiovascular applications [198]. 

However, quantification of diffuse myocardial fibrosis and discrimination based on the age of 

infarction remains challenging with conventional signal intensity based methods. The widespread 

appearance of diffuse fibrosis limits the identification of remote myocardium and the signal 

intensity threshold method is therefore inapplicable. LGE CMR imaging has been thoroughly 

validated and it remains a reference in cardiovascular imaging. It would be beneficial to use this 

imaging method to characterize disease or assess diffuse myocardial fibrosis. Categorizing 

cardiomyopathies has proven challenging since they exhibit common degrees of enhancement in 

LGE images. The specific aim of this Ph.D. thesis was to assess the biological characteristics of 

the myocardium through quantitative texture analysis methods of LGE CMR images. Our hope is 

that these image analysis methods will offer complementary information to the currently available 

signal intensity methods. We hypothesize that texture analysis will distinguish different patterns of 

fibrosis associated with cardiomyopathies.  

Texture analysis should be investigated in a high resolution setting to establish its relation to the 

underlying myocardial tissue structure. The precision of high resolution LGE CMR images in 

ischemic cardiomyopathy has been proven to approach a cellular level [51]. Validation of texture 

analysis to measure the myocardial fibrosis content should therefore be applied to microscopy LGE 

CMR images and compared to a ground truth such as histology. Once the relation between the 

measured texture features and the underlying myocardium has been established, clinical evaluation 

can be performed to investigate if quantitative texture analysis could be beneficial for patient 

diagnosis. The innovative approach of this thesis lies in the application of texture analysis in the 

diagnostic process, to differentiate between diseases that might be present in the myocardium. 
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1.6 Hypotheses and Objectives 

Quantitative image analysis methods will be investigated to define specific textural features that 

can be used in the assessment of the myocardium in a more effective way than conventional signal 

intensity average based methods. These methods should identify the presence of fibrosis when 

typical or atypical patterns of enhancement are identified in LGE CMR images.  

 

H1: Since high resolution LGE CMR images have been shown to follow myocardial 

infarction to a cellular level [51], texture analysis of microscopy LGE CMR images may 

assess the presence of increased myocardial fibrosis in the heart.  

 

H2: Since myocardial infarction includes a myocardial injury that exhibits a heterogeneous 

pattern previously studied in LGE CMR images of patients [51], texture analysis may be able 

to characterize myocardial fibrosis in a clinical setting for patients with acute compared to 

chronic MI.  

 

1.7 Objectives 

The following objectives have been identified to verify the hypotheses: 

 

O1:  Determine which animal model offers an increase of myocardial fibrosis to model 

diffuse fibrosis. 

 

O2: Apply quantitative texture analysis to high resolution ex-vivo LGE CMR images as 

a method to define the underlying microscopic structural distribution of fibrosis in the 

animal model of myocardial fibrosis.  
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O3:  Compare texture analysis quantification measures of myocardial fibrosis and high 

resolution LGE CMR images acquired in O2 to the histology images of the animal model 

of myocardial fibrosis. 

 

O4:  Apply the texture features from O2 to LGE CMR images acquired in a clinical 

setting, to measure the structural discrepancies that are present in different aged ischemic 

cardiomyopathies.  

 

O5:  Classify ischemic cardiomyopathies according to age from the texture features 

evaluated in O2 applied to LGE CMR patient images. 

 

1.8 General methodology 

Computational texture analysis methods have to be validated in a microscopic setting before 

clinical investigation. The relationship between the biological myocardial structure and the 

quantitative texture analysis measures from high resolution LGE CMR images has to be 

established. We investigated the microscopic structural changes that occur in the myocardium 

during the aging process by quantifying the presence of myocardial fibrosis and comparing those 

results with texture analysis of microscopy LGE CMR images. It has been shown that older hearts 

have increased myocardial fibrosis compared to younger ones, both in animal models and in 

humans [199].  

We evaluated how well texture features calculated from high resolution LGE CMR images of ex-

vivo rat hearts can assess the changes in the myocardium microstructure that happens with the 

increase of myocardial fibrosis due to aging. Ex-vivo animal heart LGE CMR images were used 

to allow for a higher image resolution than in possible for in-vivo imaging. The choice of our 

animal model was validated by assessing the performance of high LGE CMR images to quantify 

myocardial fibrosis and more specifically to detect a change in the quantity of collagen fibers 

present in the heart of young and old rats. Validation of measures was done with histology image 

quantification stained with a collagen-specific agent to follow myocardial fibrosis. Three 
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dimensional texture analysis was then applied to LGE CMR images. We used the contrast texture 

feature extracted from the GLCM built from signal intensity of the LGE CMR images to create 

contrast texture maps [200]. We compared texture analysis quantification with the quantification 

obtained from LGE CMR images in the young versus the old rat hearts.  

The successful texture analysis method used to assess the increased presence of fibrosis in high 

resolution LGE CMR images was then applied in a clinical setting to perform a translational study 

[201]. LGE CMR images of patient with ischemic cardiomyopathy were divided into two groups 

according to the age of their MI. Regions of interest were segmented automatically [142] and 

adjusted by an experienced cardiologist to isolate the myocardial infarct, the peri-infarct zone and 

the remote myocardium. Regions were analyzed with the GLCM matrix and eight of Haralick’s 

defined texture features were computed [104]. Different aged MI seen in LGE CMR images 

exhibited different heterogeneity pattern unidentified with signal intensity based methods. 

However, texture analysis of LGE CMR images successfully differentiated acute from chronic MI 

patients. Structural changes observed during MI progression were assessed by texture features 

applied to LGE CMR images of patients with acute MI compared to chronic MI. 

We obtained preliminary results for the classification LGE CMR images of patients with ischemic 

cardiomyopathies. The texture features that we obtained in our second study, and presented in our 

submitted journal paper, were not linearly separable as assessed with the naïve Bayes classifier. 

Since previous studies indicate a better performance with the SVM classifier when analyzing a 

diffusive pattern in medical images, we chose this classifier with the radial basis function as kernel. 

Feature reduction was done with the principal component analysis. A leave-one-out classification 

validation was performed due to the small number of cases available. 
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1.9 Presentation 

This chapter consists of the journal article “Quantitative Assessment of Myocardial Fibrosis in an 

Age-Related Rat Model By Ex Vivo Late Gadolinium Enhancement Magnetic Resonance Imaging 

with Histopathological Validation” that has been published in the peer-reviewed journal 

Computers in Biology and Medicine on July 29, 2015. This publication was preceded with the 

conference paper “Textural Analysis of Diffuse Myocardial Fibrosis in Aging Rats: A Late 

Gadolinium Enhancement Magnetic Resonance Imaging Study”, that was published in the 

International Symposium on Biomedical Imaging: From Nano to Macro, in April 2013 [202]. In 

this paper we first show that high resolution LGE CMR imaging is capable of detecting age-related 

myocardial fibrosis on an ex-vivo animal model and secondly that texture analysis can enhance the 

location of signal intensity enhancement.  

1.10 Abstract 

Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging can detect the 

presence of myocardial infarction from ischemic cardiomyopathies (ICM). However, it is more 

challenging to detect diffuse myocardial fibrosis from non-ischemic cardiomyopathy (NICM) with 
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this technique due to more subtle and heterogeneous enhancement of the myocardium. This study 

investigates whether high-resolution LGE CMR can detect age-related myocardial fibrosis using 

quantitative texture analysis with histological validation. LGE CMR of twenty-four rat hearts 

(twelve 6-week-old and twelve 2-year-old) was performed using a 7 Tesla MRI scanner. Picrosirius 

red was used as the histopathology reference for collagen staining. Fibrosis in the myocardium was 

quantified with standard deviation (SD) threshold methods from the LGE CMR images and 3D 

contrast texture maps that were computed from grey level co-occurrence matrix of the CMR 

images. There was a significant increase of collagen fibers in the aged compared to the young rat 

histology slices (2.60±0.27 %LV vs. 1.24±0.29 %LV, p<0.01). Both LGE CMR and texture images 

showed a significant increase of myocardial fibrosis in the elderly compared to the young rats. 

Fibrosis in the LGE CMR images correlated strongly with histology with the 3 SD threshold 

(r=0.84, y=0.99x+0.00). Similarly, fibrosis in the contrast texture maps correlated with the 

histology using the 4 SD threshold (r=0.89, y=1.01x+0.00). High resolution ex-vivo LGE CMR 

can detect the presence of diffuse fibrosis that naturally developed in elderly rat hearts. Our results 

suggest that texture analysis may improve the assessment of myocardial fibrosis in LGE CMR 

images.  

1.11 Introduction 

The presence of myocardial fibrosis is associated with the development of cardiomyopathies [17] 

and has been shown to increase with age [59, 199, 203]. Myocardial fibrosis in non-ischemic 

cardiomyopathy (NICM) may alter the morphology and function of the myocardium and lead to 

adverse cardiac outcomes [5, 68, 204]. Non-invasive imaging methods are therefore desirable for 

the detection and quantification of fibrosis in the myocardium and to stratify the risk of sudden 

cardiac events. 

Currently, myocardial infarction or scar from ischemic cardiomyopathies (ICM) is identified by 

late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging [2]. The 

combination of the contrast agent kinetics and the jeopardized cellular structure of the myocardium 

result in signal enhancement in the diseased area. Ex-vivo imaging of myocardial infarction can be 

performed at a near-cellular level and closely match with histologic myocardial fibrosis [51]. 

Myocardial infarctions are focal, and are seen as concentrated patches of enhancement in LGE 

CMR images. However in the presence of diffuse fibrosis, there is an intermingling of healthy and 
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diseased myocardial cells accompanied by an increased extracellular space, which results in subtle 

non-uniform regions of enhancement across the myocardium in LGE CMR images. It has therefore 

been challenging to quantify the level of fibrosis in the myocardium from NICM using 

conventional approaches. For example, clinicians relied on the visual appearance of enhanced 

regions in LGE CMR images to characterize diffuse myocardial fibrosis, using qualitative 

descriptions such as: “patchy foci, heterogeneous, multifocal, and non-specific” [17]. Standard 

quantification methods, such as signal enhancement thresholding, used to detect focal myocardial 

scars in ICM, may not work for diffuse fibrosis in LGE CMR images [8-11]. Other quantification 

methods of diffuse fibrosis relied on the non-focal aspect of diffuse fibrosis [160]. More recently, 

descriptors based on acquisition parameters such as the pre- or post-contrast T1 and extracellular 

volume fraction (ECV) imaging techniques have emerged to measure diffuse myocardial fibrosis 

from various etiologies [8-14, 16, 64, 205]. There are an increasing number of studies assessing 

the reliability of these methods to detect diffuse myocardial fibrosis. The advantage of these 

methods is the absolute scale to measure these myocardial tissue properties. CMR diffusion tensor 

imaging (DTI) has been explored in patients with heart failure to characterize the myocardial 

microstructure in the presence of diffuse fibrosis [65]. Alternatively, T2 measurements have been 

successful in detecting diffuse myocardial fibrosis [206]. However, in former studies when the 

acquisition methods are not available, an image based analysis method to identify diffuse 

myocardial fibrosis could be beneficial. 

Quantitative texture measures from CMR image have previously been applied to characterize the 

structural complexity of the myocardium that changes in the presence of disease. Eftestol et al. 

[207] found texture analysis in the infarct area combined with LV ejection fraction measurement 

could discriminate patients at higher risks of developing arrhythmia. Kotu et al. [190] studied how 

texture analysis could segment myocardium infarct region from remote myocardium and as well 

distinguish higher risk patients with implantable cardioverter defibrillator for the treatment of 

ischemic cardiomyopathies. More recently, Thornhill et al. [186] applied texture analysis to LGE 

CMR of patients with hypertrophic cardiomyopathy and found distinct texture features could 

discriminate those patients from healthy volunteers, even without the presence of significant hyper-

enhancement in the myocardium. However, all these studies lacked histological validation.  

The specific aim of this study was to determine whether quantitative texture analysis of LGE CMR 

images can detect subtle myocardial fibrosis.We hypothesize that computational texture analysis 



38 

 

of the LGE CMR images may improve the assessment of more subtle and heterogeneous 

myocardial fibrosis and may discriminate elderly from young hearts. 

1.12 Methods 

1.12.1 Animal Model 

The animal study was approved by the National Institute of Health Animal Care and Use 

Committee. Twelve 2-year-old F344 Brown Norway male rat (National Institute of Aging, 

Bethesda, MD) and twelve 6-week-old Sprague Dawley male rats Charles Rivers Laboratories Inc., 

Wilmington, MA) were used. 

Once the rats were anesthetized with 1-5% isoflurane mixed with oxygen, Gadolinium 

diethylenetriamine pentaacetic acid (Gd-DTPA, Magnevist, Schering Berlin, Germany) contrast 

agent at a concentration of 0.6 mL/kg was administered intravenously. The rats were given 

potassium chloride 10 minutes after administration of the contrast agent to freeze the in-vivo 

myocardial distribution of gadolinium for subsequent ex-vivo imaging. Immediately, excised 

hearts were immersed in fomblin perfluoro-polyether (Solvay Solexis, West Deptford, NJ) for 

CMR imaging. Hearts were then fixed in a 10% Formalin solution for histology processing after 

the image acquisition.  

1.12.2 Image Acquisition 

A 7T Vertical Bruker BioSpin small animal scanner (Billerica, MA) was used to obtain the images. 

A 3D gradient echo image acquisition sequence was performed with a repetition time of 20 ms, an 

echo time of 3.5 ms, and a flip angle of 30o. The field of view was 1.9-2.0x1.9x1.9cm3, the matrix 

size was 256-320x256x256 with a pixel bandwidth of 325Hz. The resulting voxel size was 

~75x75x75 µm3. For each heart, five to seven 3D images were acquired consecutively over a 3-

hour period. Each image acquisition lasted 20 minutes without averaging. Three volumes were 

manually selected, based on their similarity with each other, and averaged to improve the signal to 

noise ratio for each individual heart. 
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1.12.3 Histology 

Upon completion of the scanning process, all the fixed hearts were embedded in paraffin and cut 

in 5 µm sections in the short-axis (SA) plane from the apex to the base. Picrosirius red stain, which 

binds specifically to collagen fibrils (type I, II and III) [208], was used to evaluate fibrosis content 

in the myocardium. Slices were then digitized with a Leica MZFLIII microscope (Wetzlar, 

Germany) with a 10x objective lens. 

1.12.4 Image Analysis 

1.12.4.1 Histology Images 

Histological image processing was done with a custom software developed with the Interactive 

Data Language (IDL, Exelis Visual Information Solutions, Boulder, CO). The slice with the most 

collagen, assessed visually, was chosen for myocardial fibrosis quantification. Quantification of 

collagen content from the histology images was performed with a multi-channel thresholding 

method based on the color and illumination contents similar to Yabusaki et al. [209]. The histology 

image slices were first converted from red-green-blue (RGB) to hue-saturation-value (HSV) 

channels [210]. In the HSV color space, the H channel is defined by a color wheel with primary 

colors associated to specific angles around the center: 0o = red, 120o = green, 240o = blue Figure 

0-1. The S channel describes the amount of white in a color given by the H. As S increases, the 

distance to the center of the wheel increases and less amount of white gets mixed with the given 

color. The V channel specifies the shading of a color in H, with a completely black color associated 

to 0. 

 

Figure 0-1 : Schematic representation of the color transformation from the RGB to the HSV 

space. 
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The conversion of the color space from RGB to HSV is described in Foley et al. [210]. The 

RGB values are normalized between 0 and 1, and the values of H are cycling from 0o to 360o. The 

Foley et al. equations are:  

𝑉 = 𝑚𝑎𝑥(𝑅, 𝐺, 𝐵)  

𝐷𝑒𝑙𝑡𝑎 = 𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) −𝑚𝑖𝑛(𝑅, 𝐺, 𝐵) 

𝑆 = 𝐷𝑒𝑙𝑡𝑎 𝑉⁄  

𝐻 =

{
 
 

 
 

  

60 ∗ (
(𝐺 − 𝐵)

𝐷𝑒𝑙𝑡𝑎
⁄ )        , 𝑖𝑓 𝑅 = 𝑉

60 ∗ (2 +
(𝐵 − 𝑅)

𝐷𝑒𝑙𝑡𝑎
⁄ ) , 𝑖𝑓 𝐺 = 𝑉

60 ∗ (4 +
(𝑅 − 𝐺)

𝐷𝑒𝑙𝑡𝑎
⁄ ) , 𝑖𝑓 𝐵 = 𝑉

    (1) 

The V channel contains the illumination component of an image and depicts the lighting variation 

across such an image. Therefore, the information contained in this channel is discarded from our 

segmentation process. The myocardium region of interest (ROI) segmentation was performed by 

removal of the white shades in the background. Since the S channel contains the amount of white 

in a color, a threshold of 0.2 was applied to this channel to eliminate the background pixels. To 

further isolate red stained collagen fibers in the myocardial ROI, two thresholds, one close to 0o 

and another close to 360 o, were used to pick up the color red in the H channel, and a threshold 

close to 1 was used for the S channel. The results of fibrosis quantification were expressed as the 

percent area of the left-ventricle (%LV) myocardium. 

1.12.4.2 LGE CMR Images 

Analysis of the LGE CMR images was performed with custom computer software developed in 

IDL with a graphical user interface for volume re-slicing and segmentation tasks. LGE CMR 

images were resliced in the SA direction from each 3D data volume to match the histological 

sections. The quantification of fibrosis content was performed by first manually tracing the LV 

endocardial and epicardial contour ROI on the re-sliced LGE CMR images, excluding epicardial 

fat and ventricular cavity blood pool. To determine the best thresholds for quantifying the amount 

of fibrosis within the myocardial ROI, a remote region was manually selected to estimate the mean 
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and standard deviation (SD) of the normal myocardial signal intensity (SI). Semi-automated 2 to 6 

SD thresholds above the mean SI were then applied to measure the distribution of bright pixel 

enhancement in the myocardial ROI and evaluate the amount of diffuse fibrosis in the LGE CMR 

and texture images quantitatively. The results were compared to the myocardial collagen content 

measured from the reference histology images to determine the best threshold for CMR and texture 

image quantification. 

1.12.4.3 Texture Analysis 

Three dimensional texture analysis was performed in the LGE CMR image volume using the grey 

level co-occurrence matrix (GLCM) from which texture features were derived following Haralick’s 

method [104]. Contrast texture maps of the myocardium were created by computing the GLCM 

for each pixel Figure 0-2. Quantization of the signal intensity was performed to standardize the 

comparison of intensity distribution and to improve the computational time. Signal intensity 

histogram was computed from the myocardial ROI, in which the most prominent distribution was 

detected as the remote myocardium since it has the largest region in the image. Quantization was 

then performed by alignment of the peak of the remote myocardial distribution among all rat hearts. 
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Figure 0-2 : 3D pixel-wise texture map is obtained by computing the GLCM for every pixel in 

the myocardial region. To derive the GLCM with a spatial distance of one, neighboring pixel 

pairs in thirteen directions (red arrow) are compared per pixel. The probability of occurrence of 

signal intensity pairs in a 3x3x3 neighbor region surrounding a position was computed to 

construct the GLCM for each direction. The final texture value for each pixel is obtained by 

averaging the contrast feature computed from the thirteen GLCMs. 

 

Next, the 3D GLCM were computed in the image volume based on the extension of the 2D GLCM 

as defined by Haralick [104] to evaluate the probability of signal intensity occurrence among 

neighboring pixel pairs. For an image 𝐼 with signal intensity range [0, 𝑁], a set of GLCM of 

size 𝑁 × 𝑁 are derived for every pixel in the myocardial ROI to account for all possible signal 

intensity relationship among the adjacent neighbors. The GLCM initially contains the number of 

occurrence of pixel pairs with intensity values (𝑖, 𝑗) within a given distance and orientation, defined 

by a displacement vector (∆𝑥, ∆𝑦, ∆𝑧), from each other. The L1-norm is used to avoid signal 

intensity interpolation and a distance of 1 is used in all directions. The GLCM is, in this state, 

similar to a histogram of occurrence of intensity pairs (𝑖, 𝑗) for all neighboring pixels within the 

myocardial ROI, with neighbors defined by the displacement vector. The final GLCM is obtained 
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after normalization of the matrix to obtain the probability of occurrences 𝑃𝑖,𝑗 for a given pixel I at 

location (x,y):  

𝑃𝑖,𝑗 = 𝑃(𝑖, 𝑗|𝐼(𝑥, 𝑦, 𝑧) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + ∆𝑥 , 𝑦 + ∆𝑦, 𝑧 + ∆𝑧) = 𝑗) (2) 

Since the intensity values in paired neighboring pixels are interchangeable, i.e. (𝑖, 𝑗) is considered 

the same as the intensity pair  (𝑗, 𝑖), only half of the twenty-six connected pixel neighbors need to 

be considered and the GLCM is made symmetrical. Therefore, a total of thirteen directions are 

computed, defined by four in-plane displacement (∆𝑥, ∆𝑦, ∆𝑧) = [ (1,0,0), (1,1,0), (0,1,0), (-1,1,0) 

] and that correspond to the orientations 0o, 45o,90o and 135o from the considered position, and as 

well by the out-of-plane displacements (∆𝑥, ∆𝑦, ∆𝑧) =  [ (0,0,1), (1,0,1), (1,1,1), (0,1,1), (-1,1,1), 

(-1,0,1),(-1,-1,1), (0,-1,1), (1,-1,1) ]. After obtaining the thirteen GLCM, the standard contrast 

texture feature [104], was computed in each direction and then averaged for all pixels in the 

myocardial ROI:  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)
2𝑁

𝑖,𝑗=0     (3) 

As in the LGE CMR image, myocardial fibrosis content in the contrast texture enhanced images 

was quantified with 2 to 6 SD thresholds in the same myocardial ROIs and compared to the 

histology reference. 

1.12.5 Statistical Analysis 

Results are presented as mean ± SD of the %LV in the myocardial ROI for group comparisons. 

The correspondence of collagen content estimation between histology slices versus LGE CMR and 

contrast texture images were performed with linear regression and Bland-Altman analysis. A two-

tailed student t-test was used to determine if significant differences were present between different 

quantification techniques and the two age groups (p<0.05). 

1.13 Results 

The elderly rats weighed 570±56 grams and were significantly heavier than the young rats at 

291±76 grams (p<0.01). 
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1.13.1 Histology Analysis 

Histology images showed an increase of collagen fibers in the aged hearts compared to the younger 

ones Figure 0-3. The fibrous collagen distribution was not typical of ischemic cardiomyopathies 

[54]. Rather, the presence of interstitial fibrosis was evident in the aging hearts where an increase 

of collagen fibers was observed in sporadic locations, intermingled with healthy cardiomyocytes 

Figure 0-4. Perivascular fibrosis was also apparent in the myocardium where collagen fibers 

surrounded the intra-myocardial blood vessels Figure 0-4. Quantification of the red-stained 

collagen fibers in histology images was possible with the HSV segmentation method Figure 0-5.  

Overall, the red-stained collagen structures occupied approximately 2.60±0.27% LV in the elderly 

rat hearts, compared to 1.24±0.29% LV in the young rats (p<0.01). These were in a similar range 

of myocardial collagen content as quantified in previous picrosirius studies [211-213]. 

1.13.2 LGE CMR and Texture Analysis 

There was a general agreement of signal enhancement in the matched SA slices of the LGE CMR 

images that visually corresponded well with location of red-stained collagen fibers in the histology 

slices for both the elderly and the young rat heats (Figure 0-6 and Figure 0-7, respectively). Figure 

0-8 shows an example of myocardial fibrosis quantification on the LGE CMR, and the contrast 

texture images for one of the elderly rats. Different SI thresholds are compared to the histology 

segmentation. There is a correspondence but not complete correspondence of pixel enhancement 

between the LGE CMR and the contrast texture images as quantified by different thresholds Figure 

0-8.  
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Figure 0-3 : Picrosirius red-stained histology images show an increase of collagen content 

(stained red) in the elderly rat (left) compared to the young rat (right). 
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Figure 0-4 : Magnification of a picrosirius red-stained histology slice from an elderly rat heart 

showing (a) interstitial and (b) perivascular fibrosis. Diffuse interstitial fibrosis appears as an 

intermingling of pink-salmon color healthy cardiomyocytes and red-stained collagen fibers. 

 

 

Figure 0-5 : Segmentation of the histology slices was done after transforming the RGB channels 

into HSV color space. The illuminance variation of the image can be clearly seen in the V 

channel of the decomposed HSV images. The magnified picrosirius red-stained histology image 

shows our segmentation can depict detailed red-color collagen content in the myocardium. 
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Figure 0-6 : The appearance of collagen fibers in an elderly rat histology slices (top) matches well 

with the signal enhanced regions in the LGE CMR images (middle) and the corresponding contrast 

texture images (bottom). Regions of interstitial diffuse myocardial fibrosis identified in histology 

(white arrows) are enhanced in the matched LGE CMR and contrast texture images. Perivascular 

myocardial fibrosis in histology (black arrows) was also enhanced in LGE CMR and in the contrast 

texture image. The corresponding contrast texture images show a further increased signal 

enhancement in locations of myocardial fibrosis. 
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Figure 0-7 : The appearance of collagen fibers in a young rat histology slices (top) also matches 

closely with the signal enhancement in the LGE CMR images (middle) and contrast texture 

images (bottom). However, there are fewer amounts of collagen fibers compared to the elderly rat 

in Figure 0-6, and they appeared primarily in the perivascular regions (black arrows). 
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Figure 0-8 : Example of myocardial fibrosis quantification in histology (left), segmented LGE 

CMR (middle), and segmented contrast texture (right) images. The bottom row shows there is a 

high, but not complete, correspondence of signal enhanced pixels between CMR and the contrast 

texture images as quantified by different SD thresholds. There was a slight over segmentation in 

the lumen area of the LGE CMR and the contrast texture images when compared to histology 

due to residual contrast in the lumen. 

 

For the LGE CMR images, our comparison showed the 3 SD threshold produced the closest 

estimation of fibrosis content to that obtained with histology quantification and was therefore 

retained for subsequent comparisons Figure 0-9. For the elderly group, collagen content was 

estimated at 2.56±0.52%LV in the LGE CMR images compared to 2.60±0.27% LV fibrosis from 

the histology (p=NS). In the young rat hearts, fibrosis was estimated at 1.11±0.47% LV compared 

to 1.24±0.29% LV obtained from the histology (p=NS). With the 3 SD method, linear regression 

analysis showed a good correlation between LGE CMR and histology quantification for the group 

overall (r=0.84, y=0.99+0.00, Figure 0-10).  
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Figure 0-9 : Myocardial collagen content in the elderly versus young rats as estimated by various 

standard deviation (SD) thresholds from LGE CMR (left) and contrast texture (right) images. 

Dashed lines show collagen estimation from the matched histology references. The optimal 

threshold values for LGE CMR were obtained with the 3 SD threshold and with the 4 SD for the 

contrast texture images. 



51 

 

 

Figure 0-10 : Collagen estimation with the 3 SD threshold for LGE CMR images (left) and the 4 

SD threshold for the contrast texture images (right) compared to the histology quantification. 

Linear regression and Bland-Altman analysis showed excellent correlation without significant 

bias for both LGE CMR and contrast texture images. Dashed lines indicate mean ± two standard 

deviation in the Bland-Altman analysis 

For the texture images, our data showed the 4 SD threshold applied to the contrast texture feature 

images resulted in fibrosis estimation that was closest to the histology quantification Figure 0-9. In 

the elderly rat hearts, collagen content was estimated at 2.60±0.54% LV in the contrast feature 
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images compared to 2.60±0.27% LV fibrosis from the histology (p=NS). For the young rat group, 

fibrosis estimation in the contrast texture feature images was 1.17±0.42% LV compared to 

1.24±0.29% LV from the histology (p=NS). For the group overall, linear regression analysis 

showed a good correlation of fibrosis quantification from the contrast texture feature images 

compared to the histology reference (r=0.89, y=1.01x+0.00, Figure 0-10).  

Table 0-1 summarizes the percent difference of fibrosis estimation between elderly and young rat 

hearts using different threshold levels. There is a larger difference and separation between the two 

groups using the contrast texture maps compared to the LGE CMR images with the 3 SD to 6 SD 

thresholds. Furthermore, there was a significant increase in SNR (21.9%, p<0.001) measured from 

the bright fibrotic pixels in the contrast texture maps compared to the LGE CMR images 

(SNR=10.76 and 8.83 respectively). 

 

Table 0-1 : The discrimination between the elderly and the young rat hearts is improved with the 

contrast texture maps quantification using 3SD to 6SD thresholds when compared to the LGE 

CMR images. The amount of myocardial fibrosis estimation is expressed in %LV. 

C
o
n
tr

as
t 

T
ex

tu
re

 (% LV) 2SD 3SD 4SD 5SD 6SD 

Elderly 8.81% 4.37% 2.60% 1.76% 1.30% 

Young 6.46% 2.45% 1.17% 0.67% 0.46% 

Difference 2.35% 1.92% 1.43% 1.10% 0.84% 

       

L
G

E
 C

M
R

 

(% LV) 2SD 3SD 4SD 5SD 6SD 

Elderly 7.43% 2.56% 1.16% 0.64% 0.39% 

Young 5.00% 1.11% 0.30% 0.13% 0.07% 

Difference 2.43% 1.45% 0.86% 0.51% 0.32% 
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1.14 Discussion 

This study demonstrated that high resolution ex-vivo LGE CMR can detect the presence of age-

related interstitial and perivascular myocardial fibrosis in hearts with differing level of collagen 

content. A significant increase of myocardial fibrosis was found in the elderly group compared to 

the young rats as shown in our CMR and histology data. Our results show that the signal enhanced 

regions identified on the LGE CMR images correspond to the fibrosis on the histology. Likewise, 

the texture analysis also correlated well with fibrosis by histology. 

Previous studies have shown that gadolinium contrast agent can delineate myocardial infarction 

and fibrosis at a near cellular level [51]. We extend this finding to less focal and more subtle, 

myocardial fibrosis present in the elderly rat hearts. Diffuse fibrosis present in the heart, from 

various etiologies, has been identified with CMR T1 mapping, ECV, and DTI methods [9, 11-14, 

16, 64, 65, 205]. Moreover the increase of collagen content in the aging heart has been studied in 

animal models [59-62, 214] and patients [8, 59, 63] using these emerging CMR imaging 

techniques. It was found that T1, ECV, and various diffusion parameters in the myocardium have 

a strong association with age. An elderly animal model was therefore chosen in our study to 

examine a more subtle increase of diffuse fibrosis in the myocardium. Using high resolution ex-

vivo LGE CMR imaging with histopathological correlation, our study indicates that there is a 

significant increase of patchy interstitial and perivascular fibrosis present in the aged hearts. The 

increase of diffuse myocardial fibrosis in the older rat hearts compared to the young could be 

influenced by different factors such as increased sedentary periods, lower metabolism or obesity, 

which can potentially be attributed to the process of aging. It was important to this study that the 

increase of fibrosis in our animal model developed naturally without direct intervention. This is 

consistent with previous studies that link higher amount of fibrosis with aging in animal models. 

The elderly animal model allowed us to study texture analysis in the presence of more dispersed 

fibrosis, which is currently challenging to assess with LGE CMR images. 

The location of infiltrative collagen fibers as stained by the picrosirius red in the histology 

references corresponded well with the location of enhanced SI in the myocardium on the LGE 

CMR images qualitatively. We further showed that the estimation of collagen content in the 

histology images, as measured by the HSV method, correlated well with the detection and location 

of myocardial fibrosis on the LGE CMR images. This correlation reflects the accumulation of 
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gadolinium contrast agent in the extracellular matrix, which in turn indicates an increased presence 

of collagen fibers. As Schelbert et al. mentioned in the previous study [51], Gd-DTPA accumulates 

in regions of slight collagen accumulation, a feature critical when imaging particular non-ischemic 

cardiomyopathies where there is absence of focal alteration to the cellular structure of the 

myocardium. Our study further confirms that subtle and dispersed accumulation of collagen fibers 

in the myocardium can be detected with high resolution LGE CMR imaging. 

Depending on different clinical and imaging applications, quantification of myocardial fibrosis in 

LGE CMR images has been performed with SI thresholding that differs among studies [135, 215-

217]. We presented a comparative assessment for the amount of fibrosis using various levels of 

threshold and showed all thresholds achieved a high accuracy separating the two groups. However, 

there was an increased separation of the two age groups in the contrast texture image quantification 

compared to the LGE CMR images for all threshold comparison (Figure 0-9). With a lower 

threshold setting such as the 2 SD method, the LGE CMR and contrast texture images had a 

tendency to overestimate fibrosis content as compared to the histology (Figure 0-9). Our results 

showed the 3 SD threshold applied to the LGE CMR images gave the closest estimation of collagen 

content to what was estimated in the histology images. These results were consistent with previous 

findings by Mikami et al. [218] and as well by Moravsky et al. [215] that compared various levels 

of threshold applied to LGE CMR images with the presence of diffuse fibrosis in hypertrophic 

cardiomyopathy patients. Moravsky et al. stated that LGE CMR at higher SDs represents the denser 

fibrosis that probably consists of replacement fibrosis but also the denser interstitial fibrosis. 

For the contrast texture feature images, our results show that the 4 SD method resulted in the best 

correlation with histology. We infer this increase of threshold value is due to the effectiveness of 

the GLCM computation to improve differential SI enhancement patterns among neighboring 

pixels. The contrast texture feature measures textural complexity in a given region by weighing 

the difference of signal intensity amongst neighbor pixels. Such texture extraction and pattern 

enhancement process can encapsulate more diffuse pixels with bright and dark neighbors next to 

each other than just the amount of bright pixels in the image. It not only enhances pixel locations 

where confluent gadolinium enhancement is present, but also the immediate neighboring regions 

where pixels are more subtly enhanced. Qualitative analysis of the LGE CMR and the contrast 

texture images Figure 0-6 shows a strong association of enhanced pixels with the location of red-

stained collagen fibers in the histology slices. The signal and contrast level of these bright pixel 
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enhancement regions are markedly enhanced in the contrast texture image which have a 

significantly higher SNR compared to the LGE images. Texture measures can thus be exploited as 

indicators for the presence of a more complex collagen fibers distribution as depicted by both 

diffuse and confluent gadolinium enhancement patterns in the myocardium. Furthermore, since 

texture analysis computes local pixel-to-pixel signal variation, it is less prone to the influence of 

image artifacts caused by radiofrequency field inhomogeneity. 

There are advantages to using LGE CMR images to detect myocardial fibrosis. The significance 

of signal enhancement found in the myocardium from this modality has been extensively validated 

and reproduced in many studies including multi-center studies. Acquisition protocols have been 

extensively tested and precise guidelines have been developed [129]. LGE CMR images are 

clinically used to diagnose ischemic cardiomyopathies and have been shown to exhibit identifiable 

enhancement patterns in non-ischemic cardiomyopathies [219]. We have demonstrated that both 

LGE CMR and contrast texture images could successfully discriminate the elderly from the young 

rat hearts. The subtle but visible increase of red-stained collagen fibers was assessed visually as 

well as quantitatively in histology images. This increase of fibrosis content was also quantified in 

LGE CMR images and texture images. Quantification of diffuse fibrosis in LGE CMR images can 

be challenging in a clinical setting due to an inherent lower spatial resolution. Texture analysis may 

thus improve the detection of more complex signal enhancement patterns and signal intensity 

differences of neighboring pixels in the presence of diffuse fibrosis. Although we present texture 

analysis as a means to quantify myocardial fibrosis on LGE CMR images, this analysis method 

may also be applied to other types of CMR images, such as T1 or ECV maps, for tissue 

characterization and classification.  

There are limitations to the current study. Picrosirius red staining allowed the delineation of 

collagen fibers more closely than would be possible with LGE CMR imaging technique. The lumen 

was not red stained in the histological images and thus discounted from the HSV segmentation. 

However the vessel lumen was enhanced by the contrast agent and accounted for false positive 

fibrosis content in LGE CMR images. Since the amount of diffuse fibrosis in the myocardium is 

much smaller than focal scars as in myocardium infarctions, these intrinsic differences are not to 

be overlooked when comparing diffuse fibrosis between different imaging modalities. This might 

account for part of the overestimation of the collagen content in LGE CMR and texture images 
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compared to the histological reference. However, this overestimation is consistent throughout all 

cases in this study and does not impair the enhancement of diffuse fibrosis with texture analysis. 

Partial voluming is a well-documented effect that is unavoidable and affects all quantitative 

analysis of diffuse fibrosis in LGE CMR images due to relatively subtle regional voxel 

enhancement [51, 143]. The morphological changes of myocardial tissue during histological 

processing may account for some of the anatomical discrepancy and misalignment between LGE 

CMR images and the histological slices. In spite of these discrepancies there was visual agreement 

in the general myocardial structure in LGE CMR images and in the stained histology slices. 

Finally, the presence of collagen fibers was assessed with picrosirius red stain under bright light in 

our study. Polarized light could potentially provide more details about the structures and 

compositions of the diffuse myocardial fibrosis by exploiting the birefringence property of the 

stained collagen [220, 221].  

The analysis of texture features in this study was performed with the contrast texture feature, which 

was extracted from the GLCM as computed from the LGE CMR images. This feature alone offered 

the best visual and quantitative assessment of diffuse myocardial fibrosis, compared to other 

GLCM features. Other texture features and classification methods may be explored in future studies 

to improve the detection of complex intensity patterns associated with diffuse myocardial fibrosis 

in LGE CMR images under different image resolution. 

1.15 Conclusion 

We demonstrated that high resolution LGE CMR images can detect the presence of subtle age-

related myocardial fibrosis in ex-vivo rat hearts of different aged groups. Texture feature analysis 

of those images may add additional value to the assessment of fibrosis in the myocardium. A 

significant increase of myocardial fibrosis was found in the elderly group compared to the young 

rats in this study. Our results show both signal intensity and contrast texture analysis of the LGE 

CMR images can separate the two age groups of rats with great accuracy, although the SNR was 

increased for the contrast texture maps. The quantification of fibrosis on both LGE CMR and 

histology data correlates well. This is the first CMR imaging study that confirms diffuse myocardial 

fibrosis that occurs due to aging can result in a complex signal intensity pattern in high resolution 

LGE images and that texture analysis can be successful in identifying fibrotic myocardial regions. 
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These techniques may be useful for analyzing LGE CMR images in patients with various 

cardiomyopathies but this will require further studies. 
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1.17 Presentation 

With the validation of texture features applied to LGE CMR images to assess diffuse myocardial 

fibrosis, translational research can occur to investigate the performance of texture analysis for 

patient images. LGE CMR images have been limited to distinguish acute from chronic MI in 

patients because the analysis relies on signal intensity based methods. The second journal article 

presented in this chapter has been submitted to the peer-reviewed Journal of Cardiovascular 

Magnetic Resonance on October 14, 2016. 

1.18  Abstract 

Background: Texture analysis of late gadolinium enhancement (LGE) cardiovascular magnetic 

resonance (CMR) imaging has been shown to highlight myocardial fibrosis at a cellular level. 

Differentiating acute from chronic myocardial infarction (MI) could have clinical impact. We 
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investigated whether texture analysis of LGE CMR images could discriminate patients with acute 

versus chronic MI. 

Methods: LGE CMR images of twenty-two patients were analyzed, including twelve who had 

acute MI and ten who had chronic MI. The myocardium was classified into remote, MI, and peri-

infarct zone (PI) with the full width at half maximum and the two standard deviations intensity 

threshold methods. Texture features were then computed from a gray level co-occurrence matrix 

derived from the MI, PI, and the remote regions to compare the two patient groups. The Mann-

Whitney-Wilcoxon test was used to determine the difference between the two groups. The area 

under the curve (AUC) was computed for all texture features following receiver operating 

characteristics analysis. 

Results: Neither the size measured from the MI or from the PI regions differentiated the acute vs. 

the chronic groups (p=NS). The mean texture feature was the only significantly different feature in 

the MI region between the acute and the chronic groups. However, five of the eight texture features 

in the PI zone were significantly different. Among those, the four most significant features were 

homogeneity, dissimilarity, contrast, and correlation. Those features all had AUC values greater 

than 0.80 (p≤0.01). None of the texture features in the remote myocardium differentiated the two 

groups (p=NS). 

Conclusion: Texture analysis of LGE CMR images can discriminate between acute and chronic 

MI patients, most prominently from the PI regions. It suggests the PI zone might hold important 

quantitative textural information in LGE CMR images not detectable with standard signal intensity 

comparisons. 

1.19 Background 

The size and transmurality of myocardial infarction (MI) can be reliably estimated from late 

gadolinium enhanced (LGE) cardiovascular magnetic resonance (CMR) images [2, 50]. However, 

traditional LGE CMR image analysis methods are unable to estimate the age of myocardial 

infarction since the level of signal enhancement in both acute and chronic MI have a similar 

histogram distribution [18]. The thresholding methods used to delineate the myocardial damage in 

LGE CMR images are insufficient to establish the acuity of an MI [18-21]. It would be clinically 
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useful if LGE CMR images could distinguish acute from chronic MI independent of other imaging 

sequences.  

Myocardial thinning seen on LGE CMR images and that occurs with remodeling have been found 

to be a limited discriminant of acute and chronic MI and should be used with other imaging markers 

[18, 21, 222]. Animal studies using contrast agents that enhanced acute MI but not aged infarctions 

in combination with standard contrast agent for LGE CMR images have allowed discrimination 

based on the age of infarction [19, 20, 223, 224]. In spite of those results, the different contrast 

agents tested in animal studies have not been approved for general use in a patient population. 

Other manganese based contrast agents have also been investigated to assess the presence of MI in 

animal models and have been shown to differentiate acute from chronic MI [11, 12]. Methods 

based on CMR T2 images have been developed that investigate the presence of edema in acute MI 

that is absent in chronic MI [3, 8, 13].  

LGE CMR is a reference method for myocardial infarct size [129]. LGE CMR corresponds to 

regions of myocardial fibrosis almost to the cellular level in an animal model imaged ex vivo [200]. 

The myocardium’s cellular structure is altered following MI and this influences the visual pattern 

of the signal enhancement present in the infarcted region from LGE CMR images. There have been 

several studies describing the heterogeneity of the infarct scar. A larger peri-infarct (PI) zone was 

associated with increased risk of mortality or major adverse events [23-26]. Estner et al. [27] found 

that scar heterogeneity on LGE CMR images corresponded to ablation sites. The myocardium in a 

chronic MI animal model exhibited a heterogeneous appearance in the border zone while it had 

denser collagen deposition in the infarct core [225].  

Texture features can be used as descriptors of image characteristics and exploited to look for 

information beyond the simple signal intensity. Texture analysis considers the spatial relationship 

of the signal intensity and characterizes the relative variation of signal that forms the image. 

Texture analysis therefore characterizes the signal intensity pattern found in the image to offer a 

clear interpretation for the clinicians who will analyze the relationship between the metric and their 

observations of LGE CMR enhancement patterns. Age related myocardial fibrosis has been 

assessed on explanted animal hearts by texture analysis in high resolution LGE CMR images [200]. 

Patient imaging offers a much lower image resolution compared to ex-vivo CMR microscopy that 
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was used in this previous study. The performance of texture analysis remains to be established in 

a patient population with lower image resolution. 

We hypothesized that the texture pattern evaluated in regions of interest from LGE CMR images 

would vary in the different stages of MI, reflecting the underlying heterogeneity of the tissue 

characteristics within the myocardial infarction. We also hypothesized that the tissue 

characteristics of the PI zone would be heterogeneous in ways that might differentiate acute from 

chronic MI. 

 

1.20 Methods 

This retrospective clinical study was approved by the Institutional Review Board of the National 

Institutes of Health (protocol 09H031). The patient cohort consisted of individuals with acute MI 

(n=12, age 60.9 ± 11.9) and chronic MI (n=10, age 62.7 ± 20.7). MI was defined based on clinical 

symptoms consistent with myocardial ischemia, ECG consistent with either ST elevation MI or 

non-ST elevation MI, and typical rise of troponin I in accordance with guidelines [226]. CMR of 

acute MI was performed at 4 ± 2 days after presentation for the MI. CMR for chronic MI was done 

more than 12 months after documented MI. Exclusion criteria included standard contraindication 

to MRI and an estimated glomerular filtration rate < 30 ml/min/1.73 m2. 

1.20.1 MRI Acquisition 

MRI was performed on a Siemens Magnetom Espree (Erlangen, Germany) 1.5 Tesla scanner with 

12 surface-coil elements. The MRI acquisition included steady state free precession sequence for 

cine MRI and phase sensitive inversion recovery sequence for late gadolinium enhancement images 

[45]. Standard short-axis stacks of LGE images were acquired approximately 10 to 20 minutes after 

intravenous administration of 0.15 mmol/kg gadolinium diethylenetriamine pentaacetic acid (Gd-

DTPA) (Magnevist, Berlex) with the following typical parameters: bandwidth 140Hz/pixel, TE/TR 

4.2ms/8.7ms, flip angle 25o, FOV 360×270mm, matrix size 256 x 125, resolution 1.4×2.2×6mm. 
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1.20.2 Image Analysis 

All image analysis was performed with an in-house developed software using Interactive Data 

Language (IDL, Exelis Visual Information Solutions, Boulder, CO). Myocardial wall thickness 

was evaluated on the LGE images in six sectors per slice for all patients. The number of transmural 

pixels was multiplied by the voxel size to obtain an average wall thickness in millimeters for each 

sector. 

1.20.2.1 Region of Interest 

For each patient, the endocardial and epicardial borders were manually traced by an experienced 

cardiologist on all short-axis LGE slices to isolate the myocardium. The myocardial infarct region 

was classified by an automated sizing algorithm [142]. The myocardial infarction including the 

peri-infarct (PI) zone was determined with a threshold of 2 standard deviations (SD) above the 

mean signal intensity (SI) of the myocardium. The final myocardial infarction (MI) region, without 

the PI zone, was then identified using the full width at half maximum threshold method. Based on 

those two regions, the PI zone was derived by removing the MI region from the 2SD region (Figure 

0-1). The remote myocardium region was confined to the region inside the endocardium and 

epicardium after excluding the MI and the PI zones (Figure 0-1).   
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Figure 0-1: Schematic representation of the three myocardial regions of interest segmentations. 

The whole myocardial region was manually traced on epicardial and endocardial border of the 

LV (blue circles). The myocardial infarction (MI) including the peri-infarct (PI) zone, here drawn 

in gray (MI+PI), was determined with a 2SD threshold. The MI region, drawn in magenta, was 

determined with the full width at half maximum threshold using an automated sizing program. 

The PI zone, drawn in yellow, was obtained from the difference ( ) between the MI+PI and the 

MI zone. The remote myocardium, drawn in green, was obtained from the difference of the 

whole myocardial region minus the MI+PI zone. 

The amount of signal intensity enhancement in the MI and PI zones relative to the remote region 

were compared between the acute and the chronic groups. The size of each of the three regions was 

also measured as a percentage of the left ventricular myocardium (%LV) to investigate the 

existence of any bias between the two groups. As well the myocardial wall thickness (in mm and 

in number of pixels) was evaluated and compared between the two groups. 
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1.20.2.2 Texture Analysis 

Two dimensional texture analysis was performed over the three myocardial regions of interest for 

each patient: MI, PI, and on the remote myocardium. Standardization of the signal intensity was 

applied to the LGE CMR images to compare texture information between patients and to improve 

computational time. This procedure was performed by alignment of the peak signal intensity from 

the histogram of the complete myocardial region. Texture features were computed from the gray 

level co-occurrence matrix (GLCM). This matrix holds the probability of occurrence of two 

specific signal intensities from neighboring pixels in the image. One GLCM matrix was built for 

each region of interest and for each patient. For every region 𝑅 of an image with maximal signal 

intensity 𝑁, a 𝑁 × 𝑁 GLCM matrix was built. For a given pixel 𝐼 at position (𝑥, 𝑦) with signal 

intensity 𝑖 that lies within 𝑅, the signal intensity values of its neighbors at a distance ∆ for each 

direction [0o, 45o, 90o, 135o] were examined. A GLCM distance ∆= 1 was chosen in our analysis 

to consider thinner myocardial walls. The SI values of neighboring pixels were added into the 

corresponding 𝑗𝑡ℎ columns of the GLCM.  Pixels whose neighbors were located outside of the 

myocardial borders were ignored. Only half of the possible directions were considered since the 

GLCM was made symmetric. The final GLCM, as shown in Figure 0-2, contains the probability of 

occurrence of the signal intensity pairs after performing normalization over all the initial entries 

such as to obtain probabilities  𝑃𝑖,𝑗 of: 

𝑃𝑖,𝑗 = 𝑃(𝑖, 𝑗|𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗). 
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Figure 0-2 : Diagram of a gray level co-occurrence matrix (GLCM). This illustration shows the 

probability (𝑃𝑖,𝑗) of occurrence that a central pixel with signal intensity 𝑖 will be neighboring a 

pixel with signal intensity 𝑗. The diagonal of the GLCM matrix (shaded in gray in the diagram 

image) indicates if the same signal intensity is found around the central pixel analyzed and its 

neighbors. If all entries of the GLCM are found on the diagonal, this indicates a uniform region 

in the image. The further away an entry is off the diagonal (red dots in the GLCM) the higher the 

signal intensity difference will be between the two pixels. Positions closest to the diagonal 

indicate small intensity variation between a pixel and its neighbors (blue dots in the GLCM). 

 

Table 0-1 lists eight of Haralick’s [104] texture features that were derived from the GLCM: the 

contrast, the homogeneity, the dissimilarity, the energy, the entropy, the mean, the variance and 

the correlation. Those features were selected and used in our study as they are the most commonly 

used GLCM texture features. The contrast, the homogeneity and the dissimilarity are related 
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features since they quantify the relative differences that exist between neighbor signal intensities. 

High values of contrast and dissimilarity occur with high differences of neighbor signal 

intensities (𝑖 − 𝑗), which occurs when a heterogeneous region is present in the image. This will be 

related to low values for the homogeneity feature since the difference of signal intensity is found 

in the denominator of the feature computation. The predictability of the pattern, how repetitive is 

a pattern found in the region, is described with the energy feature, the opposite of the entropy 

features. 
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Table 0-1: Description of texture features. Description of the eight texture features from Haralick 

[104] computed from the GLCM. 

Texture 

Features 

 

Equation 

 

Details 

 

Contrast 
∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)

2

𝑁

𝑖,𝑗=0

 

Indicates the presence of high signal intensity 

differences among neighboring pixels. 

 

Dissimilarity 
∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁

𝑖,𝑗=0

 

Indicates the presence of different pixel signal 

intensities among neighboring pixels. 

 

Homogeneity 
∑

𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁

𝑖,𝑗=0

 

Indicates the smoothness of signal intensity 

transitions among neighboring pixels. 

 

Energy 
∑ √𝑃𝑖,𝑗

2

𝑁

𝑖,𝑗=0

 

Indicates the presence of repetitive structure among 

neighboring pixels (occurrence of signal intensity 

combinations). 

 

Entropy 
∑ 𝑃𝑖,𝑗 (− ln𝑃𝑖,𝑗)

𝑁

𝑖,𝑗=0

 

Indicates signal intensity disorder among 

neighboring pixels (opposite of the energy). 

 

Mean 
𝜇 = ∑ 𝑖 (𝑃𝑖,𝑗)

𝑁

𝑖,𝑗=0

 

Indicates the mean of signal intensity occurrence 

among neighboring pixels. 

 

Variance 
∑ 𝑃𝑖,𝑗(𝑖 − 𝜇)

2

𝑁

𝑖,𝑗=0

 

Indicates the variation around the mean of signal 

intensity occurrence among neighboring pixels. 

 

Correlation 
∑

𝑃𝑖,𝑗(𝑖𝑗) − 𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

𝑁

𝑖,𝑗=0

 

Indicates the independence of signal intensity 

among neighboring pixels. 

 

  



68 

 

1.20.2.3 Statistical Analysis 

The size of each region of interest in the myocardium is reported as mean ± standard deviation of 

the %LV. Wall thickness is reported as mean ± standard deviation in millimeters. The Mann-

Whitney-Wilcoxon U test was used to determine if significant differences were present from the 

signal intensity enhancement and as well from the eight texture feature values between the two 

patient groups (p<0.05). The discrimination performance of texture features was evaluated with 

the ROC analysis and the area under the curve (AUC) reported. 

1.21 Results 

An example of manual segmentation of the endocardium and the epicardium by an experienced 

cardiologist is presented alongside the different color coded regions of interest in Figure 0-3. The 

amount of signal enhancement in both MI and the PI regions were not significantly different 

between the two patient groups. In the MI region, the acute group had an average SI increase of 

315.8 ± 81.1 vs. 387.5 ± 80.7 for the chronic group (p=0.07). Likewise, an average SI increase of 

150.8 ± 31.2 was found in the PI region for the acute group vs. 162.7 ± 32.9 for the chronic group 

(p=0.47). 



69 

 

 

Figure 0-3 : Example LGE CMR images of an acute and a chronic MI patient. The original LGE 

CMR image is shown next to the myocardial segmentation. The magenta area identifies the 

myocardial infarction (MI) area, the yellow shows the peri-infarct (PI) zone and the green 

identifies the remote myocardium. It is difficult to visually assess the difference in SI between the 

acute and the chronic MI patients. However, there was a more uniform SI variation in the PI zone 

of the acute patient, as compared with a more complex signal intensity variation as measured 

with the texture features in the PI zone of the chronic patient. 

There was no significant difference in the size of MI between the acute and the chronic groups. 

The size of the MI averaged 18.4 ± 7.9 %LV for the acute group and 21.7 ± 6.6 %LV for the 

chronic group (p=0.17). The size of PI zone was not significantly different neither between the 

two groups with 12.5 ± 8.0 %LV for the acute group and 9.7 ± 2.6 %LV for the chronic group 

(p=0.43). The myocardial wall thickness measured from the LGE images was different between 

the two groups with 7.8 ± 2.2 mm for the acute group and 8.2 ± 2.1 mm for the chronic group 

(p≤0.01). The myocardial wall thickness, where there was presence of infarction, was 7.9mm on 

average and ranged from 3.5mm to 14.8mm for all patients.   
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Table 0-2 summarizes the p-values from the Mann-Whitney-Wilcoxon U test for texture feature 

comparisons between the acute and the chronic groups as stratified by measurements in the remote 

myocardium, the MI, and the PI zone. None of the texture feature values found in the remote 

myocardium distinguished between the two groups. Within the MI region, only the mean texture 

feature was significantly different between the two groups. For the PI region, five of the eight 

texture features were statistically significantly different between the acute and the chronic groups. 

The homogeneity, the dissimilarity, the contrast, and the correlation were the four most significant 

texture features (p≤0.01). 
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Table 0-2: P-value from the Mann-Whitney-Wilcoxon U test. P-value from the Mann-Whitney-

Wilcoxon U test were evaluated for the eight Haralick texture features computed from the peri-

infarct (PI), myocardial infarction (MI) and the remote myocardium region of interest comparing 

the acute versus the chronic MI patient groups. The p-value is also shown for comparing the size 

of all three regions (PI, MI and remote) in the two groups. Significantly different texture features 

are identified with asterisks (* p≤0.05; ** p≤0.01; *** p≤0.001). 

 

  PI MI Remote 

S
iz

e %LV 0.429 0.166 0.429 

T
ex

tu
re

 f
ea

tu
re

s 

Homogeneity 0.002 *** 0.429 0.291 

Dissimilarity 0.005 ** 0.553 0.323 

Contrast 0.007 ** 0.644 0.356 

Correlation 0.008 ** 0.553 0. 4680 

Variance 0.048 * 0.692 0.356 

Energy 0.056 0.210 0.644 

Entropy 0.065 0.210 0.391 

Mean 0.468 0.048 * 0.166 

 

The AUC results for all features distinguishing acute from chronic group in the different ROIs are 

presented in Table 0-3. The highest AUCs were found in the PI zone. The homogeneity, 

dissimilarity, contrast and correlation texture features had the highest and statistically significant 

AUC in the PI zone for discriminating the two groups. The homogeneity texture feature had a 
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sensitivity of 100.0%, a specificity of 80.0% with an AUC of 0.90. The dissimilarity and the 

contrast texture feature both had a sensitivity of 80.0%, a specificity of 91.7%, and an AUC of 

0.86 and 0.84 respectively. The correlation feature had an AUC 0.83, a sensitivity of 91.7% and a 

specificity of 80.0%. The mean texture feature measured in the MI region was the only significantly 

different texture feature. 

Table 0-3 : AUC from ROC Analysis. The area under the curve (AUC) for each of the computed 

texture features in the peri-infarct (PI), the myocardial infarction (MI) and the remote region for 

the acute versus the chronic MI patient groups. The homogeneity, the dissimilarity and the contrast 

and the correlation texture features have the highest AUC. Significantly different texture features 

are identified with asterisks (* p≤0.05; ** p≤0.01; *** p≤0.005). 

  PI MI Remote 

S
iz

e %LV 0.600 0.675 0.423 

T
ex

tu
re

 f
ea

tu
re

s 

Homogeneity 0.900 * 

*** 

0.600 0.633 

Dissimilarity 0.858*** 

*** 

0.575 0.625 

Contrast 0.842 ** 0.558 0.617 

Correlation 0.833 ** 0.575 0.592 

Variance 0.750 * 0.550 0.617 

Energy 0.742 0.658 0.558 

Entropy 0.733 0.658 0.608 

Mean 0.592 0.750 * 0.675 
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Figure 0-4 shows the normalized values of all texture features comparing different myocardial 

regions in the acute and the chronic groups. The PI zone had the largest separation of texture 

measurements between the two groups: whereas there was a significant increase of the contrast 

and the dissimilarity features, as well as a significant decrease of the homogeneity and the 

correlation features, in the chronic group compared to the acute group. The entropy and the 

variance texture features were increased whereas the energy texture feature was decreased in the 

chronic group compared to the acute group. The separation of texture features in the two groups 

was not as clear in the MI and remote regions compared to the PI zone. 
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Figure 0-4: Comparison of texture features in the three myocardial regions. The box plots shows 

the normalized values of different texture features in the peri-infarct (PI), the myocardial infarction 

(MI) and the remote region between the acute and the chronic MI patients. The features from the 

PI region show the most separation between the two groups of patients. Significantly different 

texture features are identified with asterisks (* p≤0.05; ** p≤0.01; *** p≤0.001). 
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1.22 Discussion 

Quantitative texture analysis of LGE CMR images showed a significant difference in patients with 

acute versus chronic MI while simple measurements of signal intensity enhancement or the size of 

the MI did not. Our study showed five of the eight texture features measured within the PI zone 

could discriminate acute from chronic MI in patients. Within the MI core, only the mean texture 

feature differentiated the two groups. This could indicate a subtle difference between acute and 

aged MI as evaluated with the textural pattern in that region. As expected, texture measurements 

in the remote myocardium did not show significant differences between the two patient groups. 

Thus, the peri-infarct zone of acute and chronic MI contains textural information that may be useful 

in differentiating the age of an MI. 

In LGE CMR images, the PI zone is characterized by intermediate levels of signal intensity related 

to the underlying tissue structure, which Hervas et al. described as a disorganized cellular structure 

of collagen fibers [227]. In non-transmural acute MI, there is a rim of edematous myocardium 

corresponding to salvaged myocardium in a large fraction of patients [228]. Moreover, the cellular 

organization of the border zone is progressively altered as MI evolves [227]. Therefore, the PI zone 

is a region where one might expect differences between the acute MI and the chronic MI LGE 

CMR patient images. The PI heterogeneity was related to patient outcome in ischemic 

cardiomyopathies in many studies [26, 229-231]. However, other results are not congruent with 

studies on patients suffering from ischemic cardiomyopathies [232]. Gouda et al. [232] attributed 

these discrepancies to the inconsistency in delineating the PI zone. Nevertheless, the PI 

heterogeneity was able to assess the variation in outcome following targeted therapies in a diabetic 

mouse model of myocardial infarction [233]. We found the PI zone in LGE images was a more 

discriminative region compared to the MI region based on texture analysis (Figure 0-4). There were 

significantly higher values of contrast and dissimilarity texture features in the PI region of the 

chronic MI patients. This indicates an increase of signal intensity complexity in the PI region for a 

chronic MI. As shown by the equations in Table 0-1, these two texture values will increase if there 

is greater difference between the signal intensity of neighboring pixels. A previous study also found 

that higher contrast texture feature values existed in an animal model of increased myocardial 
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fibrosis [200]. This could be attributed to the increased collagen deposition intermingled with 

healthy cardiomyocytes in the fibrotic region. Conversely, we found the homogeneity texture 

feature in the PI region was lower in the chronic than the acute MI patients. This indicates the 

appearance of a more uniform contrast agent distribution in the PI region of the acute patients can 

be characterized by a smoothness measurement such as the homogeneity texture feature. 

In our study, microvascular obstruction (MVO) was observed within the MI region of some of the 

acute patients. We expected a higher textural complexity for those infarctions. However, such a 

structured pattern of enhancement, a dark region inside the bright myocardial infarction, was not 

as discriminant as we initially thought. As a large, dense region of MVO may contain 

homogeneously dark pixels, it may thus reduce the complexity of the signal intensity distribution 

and texture contents. Moreover, the size of the MVO varies between patients and even between 

slices, possibly limiting its discrimination power for texture analysis to differentiate the acute from 

the chronic MI. The small number of patients in each group, coupled with the fact that not all acute 

MI have MVO might also explain our results. 

Texture analysis has been previously used in LGE CMR images. Automatic segmentation of the 

MI region was possible based on the difference in textural pattern found in the MI region and in 

the remote myocardium on LGE CMR patient images [189]. A probability map was generated from 

LGE CMR images to assess the degree of tissue scarring in 24 patients with MI [234]. Another 

study using LGE CMR images was performed on 44 patients with MI that identified the probability 

of a myocardium region being infarcted [190]. Texture analysis has also been used in the presence 

of non-ischemic cardiomyopathies to identify patients with hypertrophic cardiomyopathies in LGE 

CMR images [186]. Our study furthers the usage of texture analysis to discriminate between acute 

and chronic MI in patients which was previously limited with conventional signal intensity analysis 

methods applied to LGE CMR images alone. 

1.23 Limitations 

Our study had several limitations. First, the low number of patient cases included was a limitation 

of this study. An increased sample size would be preferable for statistical purposes and to solidify 

our findings. Second, the patients included in the two groups were different for this study. A 

longitudinal study of the same patients who underwent acute and chronic MI stages would allow 
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comparing the patient-specific progression of signal intensity patterns in the myocardium more 

unbiasedly. This would investigate texture analysis further as a means to grade myocardial 

infarction in LGE CMR images. Further studies are needed to investigate the effect of image 

resolution on texture features from LGE CMR images. The robustness of texture analysis between 

imaging scanners should also be investigated. 

1.24 Conclusion 

We found texture analysis of LGE CMR images could differentiate between acute and chronic MI 

patients. Such differences were more prominent in the peri-infarct zone than the infarct region or 

the remote myocardium. Texture analysis should be further investigated with more patient cases, 

and in a longitudinal study, to solidify this exploratory study. 
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CHAPTER 6     CLASSIFICATION OF ISCHEMIC CARDIOMYOPATHIES 

Texture analysis of LGE CMR images gave significantly different texture feature values in 

different aged MI. It remains to be validated if using those texture features from LGE CMR images 

could automatically classify patients with acute from those with chronic MI. Medical image 

classification can have different applications, ranging from identification of tissue types for organ 

segmentation to disease grading based on the different alterations that organs undergo in the 

presence of disease. We will concentrate on classification with the aim of grading diseases to 

differentiate between patients with acute versus chronic MI using texture features evaluated in the 

different regions of interest in LGE CMR images. Pattern classification is a complex process with 

many possible schemes to analyze the feature space [188]. The choice of classifier can be made by 

reviewing the literature and by conceptualizing the problem. This chapter presents the classification 

method that was chosen and the preliminary results that we have obtained to classify acute versus 

chronic MI patients with LGE CMR images only. 

1.25 Acute Versus Chronic MI Classification 

1.25.1 Classification Method 

The support vector machine (SVM) method was chosen based on previous studies [191, 192]. This 

method finds a hyper-plane in the feature space that separates the data into groups, in our case the 

acute and the chronic MI groups. We used the Gaussian radial basis function (RBF) as the SVM 

kernel with parameters C and gamma that define the cost function for margin selection and the 

Gaussian parameter in the RBF, respectively. Principal component analysis (PCA) was used to 

perform feature reduction prior to the automatic classification with SVM. Classification rates were 

evaluated for each combination of the 𝑥𝑡ℎ first principal component associated with the 𝑥𝑡ℎ highest 

eigenvalues. We performed classification with 2 to 7 PCA components (𝑥 = [2 . . 7]). Cross 

validation with n=2 was performed during the SVM training process. Classification rates are 

presented as a percentage of correctly classified cases.  
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1.25.2 Classification Results  

The eigenvalues and the associated percent variance from the PCA analysis are shown in Table-

0-1. Automatic classification results with the SVM classifier, PCA for feature reduction and using 

the texture features extracted from the GLCM (d=1) are presented in Table-0-2. We obtained our 

classification results after having selected the C and gamma parameters that resulted in the highest 

classification rate. The highest classification rate of 86.95% was obtained in the PI zone, when 

using 5 principal components with the RBF SVM. A classification rate of 82.60% was obtained in 

the PI area using 3 or 4 principal components. The same classification rate was obtained in the 

remote myocardium with all the original texture features (no feature reduction process) and as well 

when 6 principal components were used. When the GLCM distance was set to 2, the MI region had 

a highest classification rate of 82.60%, using 5 principal components (Table-0-3). When the GLCM 

distance was set to 3, the highest classification rate of 82.60% was obtained in the MI region 

without feature selection (Table 0-4). 

Table-0-1: Eigen values and percent variance per PCA components.  

Principal 

components 

Eigen 

values 

Percent 

Variance (%) 

1 6.753 84.41 

2 0.584 7.30 

3 0.334 4.17 

4 0.156 1.95 

5 0.118 1.48 

6 0.038 0.48 

7 0.015 0.19 

8 0.001 0.01 
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Table-0-2: Classification rate (%) with texture features obtained from the GLCM matrix built with 

d=1, with all features or with a specified number of PCA components. 

 Classification rate (%) 

 PI MI Remote 

no feature selection 73.91 69.95 82.60 

N
u

m
b
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 o

f 
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C
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 c
o
m

p
o

n
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ts
 

 

2 73.91 60.86 60.86 

3 82.60 69.56 69.56 

4 82.60 69.56 69.56 

5 86.95 73.91 65.21 

6 69.56 65.21 82.60 

7 69.56 65.21 78.26 
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Table-0-3: Classification rate (%) with texture features obtained from the GLCM matrix built 

with d=2, with all features or with a specified number of PCA components. 

 

 Classification rate (%) 

 PI MI Remote 

no feature selection 78.26 78.26 69.56 

N
u

m
b

er
 o

f 
P

C
A

 c
o
m

p
o

n
en

ts
 

 

2 69.56 69.56 56.52 

3 69.56 65.21 56.52 

4 69.56 65.21 56.52 

5 73.91 82.60 69.56 

6 73.91 69.56 78.26 

7 69.56 69.56 73.91 
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Table 0-4: Classification rate (%) with texture features obtained from the GLCM matrix built with 

d=3, with all features or with a specified number of PCA components. 

 Classification rate (%) 

 PI MI Remote 

no feature selection 69.56 82.60 60.86 

N
u

m
b

er
 o

f 
P

C
A

 c
o
m

p
o

n
en

ts
 

   
2 56.52 56.52 56.52 

3 60.86 65.21 65.21 

4 60.86 65.21 65.21 

5 65.21 69.56 60.86 

6 65.21 60.86 56.52 

7 56.52 65.21 52.17 

 

1.25.3 Discussion 

The highest classification rate of 86.95% was obtained when texture analysis was applied in the 

peri-infarct region (GLCM d=1). The fact that the classification rate was over 80% indicates the 

existence of a difference in the signal intensity pattern from LGE CMR images and that 

classification methods can detect if a patient has an acute or chronic MI scar. Interestingly, there 

was also a high classification rate of 82.60% in the remote myocardium when using a GLCM 

distance of d=1. There have been studies relating changes to the remote myocardium in the 

presence of ischemia [235] that could explain this result. Those studies point to an increase of 

extracellular space that could be related to an increase amount of diffuse fibrosis in this region. 

However, the association of those changes to the measured differences in texture features and 

classification results remains to be investigated.  



83 

 

A variation of GLCM distance influenced the classification results. The presence of microvascular 

obstruction (MVO) in the acute MI group made us expect a higher textural complexity in that 

region when compared to the chronic MI patients. However, such a structural pattern of 

enhancement, a dark region inside the bright myocardial infarct, did not allow the texture measures 

to discriminate the patients of the two groups as well as other regions, with a GLCM d=1, and a 

maximal classification rate of 73.91%. However, automatic classification using features obtained 

from GLCM distances of d=2 and d=3 could correctly differentiate a majority of acute from chronic 

cases in the MI region (Table-0-3 and Table 0-4). This can indicate texture analysis could measure 

patterns at different scales. The peri-infarct zone could require a small GLCM distance to detect 

the rapid variation of signal intensity as a result of the underlying structure of the myocardium 

which consists of an intermingling of healthy and diseased cells. At higher GLCM distances, 

texture analysis could be influenced by the presence of grosser patterns as a result of contrast agent 

dynamics in the myocardium, such as the presence of MVO. Care must be taken to consider the 

image resolution and thickness of the myocardial wall while selecting a distance to compute the 

GLCM. These limited results are interesting but it should be noted that not all acute patients have 

MVO. Moreover the size of the MVO varies as well between patients and even between slices, 

possibly limiting its discrimination power between the acute and the chronic MI groups. However, 

classification might be improved if the presence of MVO could be assessed as a feature in itself. A 

region of darker intensities inside the MI could be assessed for size and may influence the 

classification results. Moreover, the stability of the textural analysis might be influenced by other 

image factors than the underlying structural composition of the myocardium. As we vary the 

GLCM distances, there might be an influence from image resolution and the size of the structures 

we are measuring that needs to be further analyzed.  

Caution should be taken in interpreting these results since we have a small number of cases. We 

obtained higher classification rates when using the principal component analysis. However it is 

clear that the number of features that we have tested do not warrant a feature reduction process. As 

a matter of fact, we also observed a variation in the classification rate that doesn’t stabilize as we 

increase the number of PCA components used for automatic classification (Table-0-2, Table-0-3 

and Table 0-4). We can argue that a higher number of features would allow for such a stabilization 

of classification rate. 
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We have chosen the SVM classifier as our first test for the classifier. However other methods 

should be tested as well. Neural networks were successfully studied in the classification of liver 

fibrosis in a comparative study of the most performant feature selection process [236]. They 

analyzed texture features evaluated from regions of interest of healthy patients compared to those 

having liver disease. They subsequently classified the group of liver disease patients into those 

having a cyst or not. The individuals from the group which didn’t have cyst were divided as having 

hemangioma or as having liver cancer. Another option consists of using a combination of 

classifiers. This was suggested as a means of obtaining the most accurate classification result while 

limiting the sensitivity of a particular classifier to biased features [237]. Combining classifiers was 

done for liver fibrosis classification by weighing the response of each classifier [238]. They 

compared two of such combined classifiers, one with a five layer perceptron with each receiving 

different types of features as input, and another classifier composed of a multi-layer perceptron 

neural network, a probabilistic neural network, and three variations of the k-NN classifier.   
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CHAPTER 7     GENERAL DISCUSSION AND FUTURE DIRECTIONS 

In this thesis we aimed to exploit texture analysis method by which LGE CMR images could be 

used to improve the myocardium characterization. More specifically, we wanted to assess the 

presence of diffuse myocardial fibrosis and as well discriminate acute from chronic MI cases from 

LGE CMR images alone. This chapter discusses our findings with regards to our initial objectives. 

In the first part, we will make an overview of our findings from our first animal study regarding 

the use of texture analysis on high resolution LGE CMR images and with histological validation. 

In the second part of this chapter we will discuss our findings from the application of texture 

analysis to LGE CMR images of patients with ischemic cardiomyopathies and present how these 

computational methods were a discriminant measure of acute versus chronic MI. We will also 

briefly review our initial classification results. 

1.26 Texture Analysis of Diffuse Myocardial Fibrosis in LGE images 

The first study of this thesis aimed at detecting subtle increases in collagen content seen from LGE 

CMR microscopy of different aged rat hearts. Quantification of those changes was done with 

texture analysis methods and validated with histology images. Our first objective was to identify 

an animal model of diffuse myocardial fibrosis. We found that aged rat hearts contained an increase 

in collagen fibers in the myocardium compared to younger rat hearts. Histological analysis of the 

heart slices stained with picrosirius red showed there was an increase in both perivascular and 

diffusive myocardial fibrosis. Quantitative analysis of the histology images was performed by 

isolating collagen fibers in the myocardium with an HSV thresholding method. Our second 

objective was to detect an increase in diffuse myocardial fibrosis with texture analysis from high 

resolution LGE CMR images of the different aged rat hearts. Texture analysis method applied to 

the LGE CMR images enhanced the quantitative assessment of the slight increase in myocardial 

fibrosis from the aged myocardium compared to that of the younger rat hearts. Histological 

validation confirmed the underlying microstructure of the myocardium showed collagen fibers 

location, as assessed with picrosirius red staining of the hearts, corresponded to enhanced regions 

in LGE CMR and in the contrast texture images. We have therefore shown in our first article that 

high resolution LGE CMR images can depict locations of myocardial fibrosis and that texture 

analysis enhanced those locations. To our knowledge, this study is the first to confirm that texture 
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analysis of LGE CMR images can assess the underlying myocardial structure and more precisely 

detect even slight increases in collagen fibers in the heart.  

Ex-vivo imaging of rat hearts offered the possibility of acquiring high resolution LGE CMR images 

which showed structural details of the myocardium that was not available with in-vivo imaging. 

Diffuse myocardial fibrosis was previously challenging to detect with signal intensity based 

methods in LGE CMR images [7, 14]. When fibrosis is present in all the myocardium, the remote 

region cannot be defined. There is therefore no baseline to evaluate the enhancement of signal 

intensity and the SD method above the mean signal intensity of the remote region cannot be 

applied. Even if texture analysis methods enhance locations where collagen fibers are present, we 

still used the signal intensity method to isolate island of enhancement in the contrast texture maps 

that we obtained in our first study. This requires the identification of remote myocardium to isolate 

the enhanced signal. To resolve this issue, a comparative analysis of texture feature measures from 

many healthy hearts is needed to establish a baseline value of texture features. Establishing this 

baseline will allow a direct comparison of the texture feature values in health and disease. Texture 

analysis describes the signal intensity patterns in the image and the increased value of contrast in 

the feature maps of our first article indicates a higher complexity in the locations of increased 

collagen fiber. We performed a comparative study of low and high collagen fibers in the heart. It 

should be investigated if the native value of texture features could be used to characterize the 

myocardium in health and disease. 

As discussed in our first paper, Schelbert et al [51] found focal fibrosis could be identified with 

LGE CMR images and our study extended their findings to diffuse myocardial fibrosis. Slight 

alterations to the myocardium caused by collagen fiber infiltration were depicted in high resolution 

LGE CMR images. This finding was interesting since it was believed that LGE CMR images were 

limited in showing diffuse myocardial fibrosis and could only reliably enhance focal fibrosis, or 

more concentrated regions of collagen accumulation. 

Alternative acquisition methods, such as T1 maps and ECV, have been successfully presented to 

assess fibrosis in the heart. The use of texture analysis and those alternative images is not exclusive. 

In fact, we have found texture analysis of T1 maps have been investigated in images of the knee 

cartilage [239]. It was moreover recently found that fibrosis in the liver could be characterized by 
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texture analysis applied to T1 and T2 maps [240]. There is therefore potential in the application of 

texture analysis methods to T1, T2 maps and ECV. This should be considered in future studies.  

The prognostic importance of LGE CMR images was shown in NICM [241], for example in DCM 

[242, 243], in myocarditis [244], and particularly in HCM [245-247]. The presence and as well the 

absence of enhancement in LGE CMR images was shown to be related to prognosis. Since we now 

know that even the subtle presence of collagen fibers in the heart can be depicted by LGE CMR 

images and that texture analysis enhances those locations, we assume that texture analysis can help 

in the quantification of non-typical patterns of enhancement in NICM. If we concentrate on HCM 

for example, both the presence and the area occupied by enhancement in LGE CMR images, as 

assessed with the SD above the mean of the remote myocardium method, was related to patient 

outcome [248, 249]. Based on that knowledge,  Maron et al. [250] stressed the importance of 

finding better ways than the SD above the mean signal intensity of the remote myocardium to 

characterize diffuse fibrosis in LGE CMR images in the presence of HCM. Texture analysis could 

assess the enhancement of those non-typical, non-focal patterns of enhancement that are seen in 

LGE CMR images in HCM. In fact, during this thesis, Thornhill et al. [186] did find that 

enhancement distribution across the myocardium in the presence of HCM could be quantified with 

texture analysis and related to patient outcome. Our first study complements their findings and 

confirms that texture analysis does characterize diffuse fibrosis in LGE CMR images. Other 

interesting application of texture analysis would be on images of patients with an increase of 

extracellular space, for example with amyloidosis, where the infiltration of amyloid increases the 

extracellular space and creates areas of enhancement in LGE CMR images. We believe that texture 

analysis of LGE CMR images could, in a similar way, characterize other non-ischemic diseases 

that sparsely affect the entire myocardium.   

1.27 Texture Analysis of Myocardial Infarction in LGE images 

Our second submitted research paper showed texture analysis could successfully be applied to LGE 

CMR images of patients with ischemic cardiomyopathies. We found texture analysis allowed 

discrimination of patients with acute or with chronic MI. This second translational study indicates 

that texture analysis of LGE CMR images can be used in a clinical setting. This is important 

knowing that image resolution is much lower in patient imaging. The texture analysis method we 

used in the LGE CMR imaging of patients was computed on image slices. Therefore, the GLCM 
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was built with the neighborhood of a central pixel determined in a 2D region, as opposed to a 3D 

region around a position in the animal study of the first journal paper. There is the possibility to 

perform 3D texture analysis in patient images by interpolation of the existing data. The reliability 

of such new values remains to be validated but could be promising since three dimensional analysis 

of LGE CMR patient images with ischemic cardiomyopathies was shown to characterize scar 

following multi-planar reformatting [251]. Nevertheless we were able to extract interesting 

information from our planar analysis. Mainly, texture analysis could differentiate patients with 

different aged infarcts.  

To our knowledge, differentiating acute from chronic MI has not been done on LGE CMR images 

alone. Previous methods used infarct characteristics that occur according to infarct age, such as the 

presence of edema, detected in T2 images, in acute but not in chronic MI. Other methods used 

specific contrast agent with varying enhancement result in the two infarct aged groups, requiring 

more image acquisitions. Our study is the first to differentiate MI by its age using only LGE CMR 

images, by analyzing the textural information contained in one image. The importance of this 

discrimination comes as more patients survive acute MI and might be re-admitted when other 

cardiac events occur. Our method might be particularly useful in patient populations more at risk 

of having unrecognized MI, such as people with diabetes [22]. The presence of unrecognized scar 

has prognostic implications [252-254]. There have been limited means to identify patients with 

unrecognized MI [255]. CMR has emerged as a tool for such an assessment [254]. Patients with 

these types of MI could present with symptoms and acute MI but also have previous myocardial 

scars that our texture analysis method could characterize. The existing myocardial scars could be 

discerned from more recent myocardial damage. Since we found in our first study that areas 

containing an intermingling of healthy and diseased cells were associated to texture feature values, 

and knowing that such areas are related to arrhythmia events [256], we could present the clinician 

with a means to better characterize the myocardial scar as opposed to simply estimating its size and 

extent from LGE CMR images. This could potentially influence how patients are treated, with 

aggressive interventions aimed at more recent myocardial damage.  

Visual assessment of complex signal intensity patterns was previously done for LGE CMR images 

when describing heterogeneity of the infarct scar. The term heterogeneity was associated to the 

peri-infarct zone characteristics such as its size [257], or its evolution [258]. Our texture analysis 

computation is consistent with the visual assessment of clinicians and the histological analysis of 
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the PI zone [227]. A comparison of different intensity based analysis methods of the heterogeneity 

of the peri-infarct zone found there was a high variability of results between these studies to isolate 

that region [259]. We are presenting a consistent mean of analyzing the peri-infarct zone in 

ischemic cardiomyopathies. The peri-infarct zone, also referenced as the border zone in the 

literature, identifies a region with intermediate levels of grey values in LGE CMR images that 

correspond to a mixture of healthy and diseased cardiomyocytes along with collagen fibers. 

Schelbert et al. [51] discussed imaging of the peri-infarct zone with LGE CMR images. They 

showed the border zone, as seen in histology images of rat hearts, was composed of healthy 

cardiomyocytes intermingled with collagen fibers. They also showed, from histological slices 

stained with Masson Trichrome, that islands of enhancement in LGE CMR images were present in 

that region. Moreover, Hervas et al. [227] recognized that the physiological structure of that region 

was particularly different than the infarct core following histological analysis. Therefore, these 

areas are of particular interest because of the propagation of contraction signal in the heart that is 

perturbed in that region, leaving the patient at risk of arrhythmias [256]. This is of particular interest 

since it was shown that the existence of island of healthy cardiomyocytes surrounded by collagen 

fibers in that region was found to be an indicator of adverse cardiac events such as ventricular 

arrhythmias [229] or a predictor of mortality [24, 231] for patients with ischemic cardiomyopathies. 

However in these studies, the heterogeneity of the PI zone was assessed with the size of the area 

and not the intensity pattern of the region. The texture analysis of this region allowed discriminating 

MI by its age and this shows the PI region offers physiological differences in young versus old 

myocardial scars. Characterizing the myocardial infarct according to its age opens the door to 

grading of ischemic cardiomyopathies, and offers the potential to estimate the prognosis for 

patients based on the border zone’s textural content from the LGE CMR images. Future studies 

should investigate how texture analysis would grade intermediate aged MI, and follow progression 

of the disease. In patients with acute MI, different texture feature quantification might discriminate 

areas previously infarcted from others damaged by more recent events.  

We used the GLCM to analyze LGE CMR images because of its extensive use in medical imaging. 

Usage of the GLCM with MRI images has been successful in other diseases such as for cancer 

characterization [260-264], cartilage analysis [265] and brain imaging [266]. Engan et al. [267] 

moreover found that the GLCM matrix and its extracted features from LGE CMR images were 

characteristic of infarct scar in patients with ischemic cardiomyopathy. GLCM allows studying the 
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inter-relation of intensity in a given sub-region, as a characteristic for a broader textural pattern. 

Moreover the simplicity of the mathematically computed features from the grey level matrix and 

their descriptive names made it a relatable method for clinicians who were familiar with 

heterogeneities seen on LGE CMR images. Thornhill et al. [186] used the RLM [111] as texture 

method to extract features from LGE CMR images of patients with HCM. It was found that using 

a combination of texture analysis methods increased classification rate of multiple sclerosis lesions 

in brain images, compared to using the GLCM texture alone [268]. An investigation of different 

individual texture analysis methods and a combination of those methods from LGE CMR images 

in ischemic and non-ischemic cardiomyopathies should be done in the future. Such a combination 

of texture features could be of particular interest when performing the classification step. 

Much information can be obtained by analyzing the GLCM matrix itself [269] without extracting 

the typical texture features described by Haralick [104]. Nanni et al. [269] found the GLCM matrix 

itself held more information and was more discriminative than the initial texture features described 

by Haralick [104]. Such an analysis is interesting but comes with the computational load of the 

GLCM matrices. GPU acceleration [270, 271] of the GLCM texture analysis method were 

developed to counter this limitation and could be considered for further analysis.  

Another interesting approach to consider when using texture analysis is the directional component 

in the calculation of the GLCM. Different GLCM matrices can be computed according to a 

specified direction. Since we know that texture features are related to collagen fiber content, it 

would be interesting to investigate if directional measures of texture features could relate to fiber 

orientation in the heart. Since the myocardium in the short axis direction is circular, relative 

orientation could be measured from the insertion points of the RV as a reference orientation.  

Patient classification into different MI aged groups is a first step to grading of ischemic 

cardiomyopathies. Automatic classification of patients into different non-ischemic cardiomyopathy 

groups could also be of interest. Our initial classification results are promising and could lead to 

the characterization of different enhancement patterns that have been identified in LGE CMR 

images [241]. 

Patient specific retrospective study of texture features in chronic MI compared to the first onset of 

the disease in acute MI is planned for the near future. It will be interesting to verify the difference 

in myocardial structure that texture analysis will be able to enhance with different aged MI images 
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from the same patient. Progression of fibrosis infiltration could be followed and we hope texture 

analysis will quantify those myocardial structure changes through time.  

We have found relative measures of texture features could differentiate groups with different levels 

of fibrosis in the heart and it remains to be seen if quantifiable measures could also stand alone as 

an indication of disease. In the aged rat study, feature values were compared in the normal and in 

the aged rat hearts, and for the patients with ischemic cardiomyopathy it was the relative measure 

between the acute and the chronic MI groups that differentiated them. Future work is necessary to 

investigate if specific values of texture features from LGE CMR images could hold information on 

the structure of the myocardium. We have not evaluated the absolute values of the features for each 

groups and this requires further analysis.  

It is important to know that if a region is entirely occupied by collagen fibers, the contrast agent 

will spread uniformly in that region, which could result in low values of contrast in the contrast 

feature map for example. It is therefore possible that texture analysis might be limited in 

distinguishing regions of uniformly distributed contrast agent such as in ischemic scar.  A complex 

pattern of signal intensity variation is only obtained in the presence of intermingling of healthy 

cardiomyocytes and collagen infiltration. We can notice that in agreement with this statement, in 

our second study we have obtained discrimination from acute and chronic MI patients in the border 

zone of the infarct more so than in the MI scar region. In the presence of enhancement, a weighing 

factor indicating the level of signal intensity in a region could be considered. In its present state, 

the application of texture analysis in the infarct core could be of interest as an indicator of the 

structure of the underlying myocardium. It could indicate if there could be the existence of healthy 

cardiomyocytes in a scar region by indicating a location of higher signal intensity variation.  

It also should be investigated if absolute values would remain consistent across MR scanners. It 

would require an increased number of studies reporting consistent measures of texture features 

from different MR scanners to consider the possibility of associating a myocardial status to specific 

texture values. However, in the near future, since the precise values of the texture features are used 

only in comparison to basis measures, we foresee the need to acquire baseline images to extract 

texture features in control cases. This will allow for texture feature comparison when LGE CMR 

images are acquired in the presence of disease on the same scanner. 
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Since our preliminary classification results are interesting, a comparative study testing 

classification schemes with images originating from different imaging scanners would be 

interesting to test. A previous classification study found the SVM classifier, with a RBF kernel, 

could successfully grade lung diseases with images obtained across different scanners [192]. Their 

regional analysis was done on square regions identified from high resolution CT images of the 

lungs. They used a relatively low number of features, twenty two, originating from histogram 

analysis, gradient calculation, RLM, GLCM amongst others.  A multi-scanner approach would 

increase chances that our computer aided diagnostic method could be used in a clinical setting, if 

classification results are standardized across scanners.  
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CHAPTER 8     CONCLUSION 

The aim of this thesis was to enhance LGE CMR images through texture analysis methods to 

discern subtle changes in myocardial collagen content in the presence of cardiomyopathies. We 

have shown that pattern of enhancement through texture analysis of LGE CMR images could 

characterize myocardial fibrosis in both an animal model of diffuse myocardial fibrosis and for 

patients with ischemic cardiomyopathy. The histological validation of texture analysis from high 

resolution LGE CMR images and moreover its application in LGE CMR patient images, indicate 

texture is a reliable analysis method to characterize alteration of the myocardial structure in the 

presence of disease. Histological validation was lacking for texture analysis of LGE CMR images. 

High resolution LGE CMR images were necessary to investigate if texture analysis methods could 

follow myocardial fibrosis at a cellular level. The findings from our first study, comparing different 

aged rat hearts, showed that it is possible to quantify a subtle increase in myocardial fibrosis in 

high resolution LGE CMR images and with texture analysis. Histological validation with 

picrosirius red staining showed texture analysis quantification was indeed related to the underlying 

tissue structure and was correlated to collagen content in the myocardium. This study established 

the link between quantification by texture analysis measures of LGE CMR images and the presence 

of fibrosis in the myocardium. The second translational study was therefore necessary to investigate 

how this method would hold in clinical imaging, where typical images offer much lower resolution. 

Our second study presented texture analysis methods applied to LGE CMR images of patient with 

ischemic cardiomyopathy. Our findings showed that texture features were significantly different 

for patients with acute compared with chronic MI, allowing what was previously limited with 

signal intensity based methods applied to LGE CMR images. We have provided validation of 

texture analysis as a measure of fibrosis content variation in the myocardium in an animal model 

of diffuse fibrosis and to characterize acute and chronic MI scars. Our findings can serve as 

reference for studies using texture analysis in cardiology to confirm the measures are related to the 

underlying tissue structure.  

Other application of our texture analysis method include staging of myocardial fibrosis which is 

important in forensic science, where CMR is gaining in popularity because it allows myocardial 

analysis without autopsy [272]. Although contrast agent cannot be used in this context, if texture 

analysis is successful in contrast free in-vivo CMR images, which should also be investigated, there 

could be potential applications in forensic science. 
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The texture analysis we have presented is a consistent and reproducible image analysis method that 

is easily transferable between centers. Multi-center trials can therefore easily be planned to assess 

the performance of texture analysis methods with LGE CMR images from different scanners. In 

the near future we do foresee the need to acquire baseline images from different scanners that 

would give typical values of texture analysis from which enhanced texture analysis could be 

compared. 

Our hope is that texture analysis could become a consistent indicator of myocardial structure 

alteration in cardiomyopathies from different etiologies. Since texture analysis is a computational 

method it can easily be applied to patient images retrospectively and with disregard to the 

cardiomyopathy. This increases the number of images that can be analyzed in future studies and in 

comparing non-ischemic diseases. Texture analysis could be used as an additional marker to assess 

the state of the myocardium in the occurrence of cardiomyopathies from various etiologies either 

through a more developed classification scheme than our initial study, or through the direct use of 

relative texture values with regards to pre-established baseline values. In this way, specific patterns 

of enhancement would be quantified through texture analysis and could guide the diagnosis to 

specific cardiomyopathies. In clinical practice, knowing the severity of the myocardium’s structure 

alteration is important to establish a prognosis and to plan a personalized intervention. Complex 

pattern of enhancement is the result of the interwoven cardiomyocytes with collagen fibers. Such 

a structural arrangement in the myocardium is associated to higher risk of arrhythmia. Our texture 

analysis method could be a measure of the presence of such complex myocardial structure and 

guide the clinician to find such locations in the heart. Grading of myocardial infarction scar could 

be an indicator of the progression of disease in patients. It could monitor different cardiac 

involvement following heart transplant for example. Unrecognized MI could be detected more 

easily, specifically in the presence of recent scar where rapid intervention could lead to partial 

recovery whereas chronic MI would not benefit from therapeutic intervention.  
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