3,956 research outputs found

    Introducing the Concept of Activation and Blocking of Rules in the General Framework for Regulated Rewriting in Sequential Grammars

    Get PDF
    We introduce new possibilities to control the application of rules based on the preceding application of rules which can be de ned for a general model of sequential grammars and we show some similarities to other control mechanisms as graph-controlled grammars and matrix grammars with and without applicability checking as well as gram- mars with random context conditions and ordered grammars. Using both activation and blocking of rules, in the string and in the multiset case we can show computational com- pleteness of context-free grammars equipped with the control mechanism of activation and blocking of rules even when using only two nonterminal symbols

    A Solution to the Flowgraphs Case Study using Triple Graph Grammars and eMoflon

    Full text link
    After 20 years of Triple Graph Grammars (TGGs) and numerous actively maintained implementations, there is now a need for challenging examples and success stories to show that TGGs can be used for real-world bidirectional model transformations. Our primary goal in recent years has been to increase the expressiveness of TGGs by providing a set of pragmatic features that allow a controlled fallback to programmed graph transformations and Java. Based on the Flowgraphs case study of the Transformation Tool Contest (TTC 2013), we present (i) attribute constraints used to express complex bidirectional attribute manipulation, (ii) binding expressions for specifying arbitrary context relationships, and (iii) post-processing methods as a black box extension for TGG rules. In each case, we discuss the enabled trade-off between guaranteed formal properties and expressiveness. Our solution, implemented with our metamodelling and model transformation tool eMoflon (www.emoflon.org), is available as a virtual machine hosted on Share.Comment: In Proceedings TTC 2013, arXiv:1311.753

    Controlled Rewriting Using Productions and Reductions

    Get PDF
    We investigate context-free grammars the rules of which can be used in a productive and in a reductive fashion, while the application of these rules is controlled by a regular language. We distinguish several modes of derivation for this kind of grammar. The resulting language families (properly) extend the family of context-free languages. We establish some closure properties of these language families and some grammatical transformations which yield a few normal forms for this type of grammar. Finally, we consider some special cases (viz. the context-free grammar is linear or left-linear), and generalizations, in particular, the use of arbitrary rather than regular control languages

    Graph-Controlled Insertion-Deletion Systems

    Full text link
    In this article, we consider the operations of insertion and deletion working in a graph-controlled manner. We show that like in the case of context-free productions, the computational power is strictly increased when using a control graph: computational completeness can be obtained by systems with insertion or deletion rules involving at most two symbols in a contextual or in a context-free manner and with the control graph having only four nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Controlled Bidirectional Grammars

    Get PDF
    We investigate context-free grammars the rules of which can be used in a productive and in a reductive fashion, while the application of these rules is controlled by a regular language. We distinguish several modes of derivation for this kind of grammar. The resulting language families (properly) extend the family of context-free languages. We establish some closure properties of these language families and some grammatical transformations which yield a few normal forms for this type of grammar. Finally, we consider some special cases (viz. the context-free grammar is linear or left-linear), and generalizations, in particular, the use of arbitrary rather than regular control languages

    Graphical Reasoning in Compact Closed Categories for Quantum Computation

    Full text link
    Compact closed categories provide a foundational formalism for a variety of important domains, including quantum computation. These categories have a natural visualisation as a form of graphs. We present a formalism for equational reasoning about such graphs and develop this into a generic proof system with a fixed logical kernel for equational reasoning about compact closed categories. Automating this reasoning process is motivated by the slow and error prone nature of manual graph manipulation. A salient feature of our system is that it provides a formal and declarative account of derived results that can include `ellipses'-style notation. We illustrate the framework by instantiating it for a graphical language of quantum computation and show how this can be used to perform symbolic computation.Comment: 21 pages, 9 figures. This is the journal version of the paper published at AIS

    Petri net controlled grammars

    Get PDF
    Different types of regulated grammars have been introduced in order to supplement shortcomings of context-free grammars in applications preserving their elegant mathematical properties. However, the rapid developments in present day industry, biology, and other areas challenge to deal with various tasks which need suitable tools for their modelling and investigation. We propose Petri net controlled grammars as models for representing and analyzing of metabolic pathways in living cells where Petri nets are responsible for the structure and communication of the pathways, and grammars represent biochemical processes. On the other hand, the control by Petri nets has also theoretical interest: it extends possibilities to introduce and investigate concurrent control mechanisms in formal language theory. The thesis introduces various variants of Petri net controlled grammars using different types of Petri nets and investigates their mathematical properties such as computational power and closure properties.Los diferentes tipos de gramáticas con reescritura regulada han sido introducidas para complementar las deficiencias de las gramáticas libres del contexto en las aplicaciones, preservando sus propiedades matemáticas. Por otro lado, la rápida evolución la biología, y otras áreas actuales supone un reto para tratar de las tareas varias que necesitan las herramientas adecuadas para la elaboración de modelos e investigación. Proponemos gramáticas controladas por redes de Petri como modelos para representar y analizar los procesos bioquímicos en las células vivas donde redes de Petri son responsables de la estructura, y gramáticas representan los procesos generativos. Además, el control de redes de Petri también tiene interés teórico: amplía las posibilidades de investigar los mecanismos de control concurrente en la teoría de lenguajes formales. La tesis presenta distintas variantes de gramáticas controladas por redes de Petri e investiga sus propiedades matemáticas

    Children as Models for Computers: Natural Language Acquisition for Machine Learning

    No full text
    International audienceThis paper focuses on a subfield of machine learning, the so- called grammatical inference. Roughly speaking, grammatical inference deals with the problem of inferring a grammar that generates a given set of sample sentences in some manner that is supposed to be realized by some inference algorithm. We discuss how the analysis and formalization of the main features of the process of human natural language acquisition may improve results in the area of grammatical inference
    corecore