212 research outputs found

    Fiber link design considerations for cloud-Radio Access Networks

    Get PDF
    Analog radio over fiber (RoF) links may offer advantages for cloud-Radio Access Networks in terms of component cost, but the behavior of the distortion with large numbers of subcarriers needs to be understood. In this paper, this is presented in terms of the variation between subcarriers. Memory polynomial predistortion is also shown to compensate for RoF and wireless path distortion. Whether for digitized or analog links, it is shown that appropriate framing structure parameters must be used to assure performance, especially of time-division duplex systems

    Experimental demonstration of digital predistortion for orthogonal frequency-division multiplexing-radio over fibre links near laser resonance

    Get PDF
    Radio over fibre (RoF), an enabling technology for distribution of wireless broadband service signals through analogue optical links, suffers from non-linear distortion. Digital predistortion has been demonstrated as an effective approach to overcome the RoF non-linearity. However, questions remain as to how the approach performs close to laser resonance, a region of significant dynamic non-linearity, and how resilient the approach is to changes in input signal and link operating conditions. In this work, the performance of a digital predistortion approach is studied for directly modulated orthogonal frequency-division multiplexing RoF links operating from 2.47 to 3.7 GHz. It extends previous works to higher frequencies, and to higher quadrature amplitude modulation (QAM) levels. In addition, the resilience of the predistortion approach to changes in modulation level of QAM schemes, and average power levels are investigated, and a novel predistortion training approach is proposed and demonstrated. Both memoryless and memory polynomial predistorter models, and a simple off-line least-squares-based identification method, are used, with excellent performance improvements demonstrated up to 3.0 GHz

    Digital Signal Processing Techniques Applied to Radio over Fiber Systems

    Get PDF
    The dissertation aims to analyze different Radio over Fiber systems for the front-haul applications. Particularly, analog radio over fiber (A-RoF) are simplest and suffer from nonlinearities, therefore, mitigating such nonlinearities through digital predistortion are studied. In particular for the long haul A-RoF links, direct digital predistortion technique (DPDT) is proposed which can be applied to reduce the impairments of A-RoF systems due to the combined effects of frequency chirp of the laser source and chromatic dispersion of the optical channel. Then, indirect learning architecture (ILA) based structures namely memory polynomial (MP), generalized memory polynomial (GMP) and decomposed vector rotation (DVR) models are employed to perform adaptive digital predistortion with low complexities. Distributed feedback (DFB) laser and vertical capacity surface emitting lasers (VCSELs) in combination with single mode/multi-mode fibers have been linearized with different quadrature amplitude modulation (QAM) formats for single and multichannel cases. Finally, a feedback adaptive DPD compensation is proposed. Then, there is still a possibility to exploit the other realizations of RoF namely digital radio over fiber (D-RoF) system where signal is digitized and transmits the digitized bit streams via digital optical communication links. The proposed solution is robust and immune to nonlinearities up-to 70 km of link length. Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible to take only the advantages from both methods and implement a more recent form knows as Sigma Delta Radio over Fiber (S-DRoF) system. Second Order Sigma Delta Modulator and Multi-stAge-noise-SHaping (MASH) based Sigma Delta Modulator are proposed. The workbench has been evaluated for 20 MHz LTE signal with 256 QAM modulation. Finally, The 6x2 GSa/s sigma delta modulators are realized on FPGA to show a real time demonstration of S-DRoF system. The demonstration shows that S-DRoF is a competitive competitor for 5G sub-6GHz band applications

    Experimental Demonstration and Performance Enhancement of 5G NR Multiband Radio over Fiber System Using Optimized Digital Predistortion

    Get PDF
    This paper presents an experimental realization of multiband 5G new radio (NR) optical front haul (OFH) based radio over fiber (RoF) system using digital predistortion (DPD). A novel magnitude-selective affine (MSA) based DPD method is proposed for the complexity reduction and performance enhancement of RoF link followed by its comparison with the canonical piece wise linearization (CPWL), decomposed vector rotation method (DVR) and generalized memory polynomial (GMP) methods. Similarly, a detailed study is shown followed by the implementation proposal of novel neural network (NN) for DPD followed by its comparison with MSA, CPWL, DVR and GMP methods. In the experimental testbed, 5G NR standard at 20 GHz with 50 MHz bandwidth and flexible-waveform signal at 3 GHz with 20 MHz bandwidth is used to cover enhanced mobile broad band and small cells scenarios. A dual drive Mach Zehnder Modulator having two distinct radio frequency signals modulates a 1310 nm optical carrier using distributed feedback laser for 22 km of standard single mode fiber. The experimental results are presented in terms of adjacent channel power ratio (ACPR), error vector magnitude (EVM), number of estimated coefficients and multiplications. The study aims to identify those novel methods such as MSA DPD are a good candidate to deploy in real time scenarios for DPD in comparison to NN based DPD which have a slightly better performance as compared to the proposed MSA method but has a higher complexity levels. Both, proposed methods, MSA and NN are meeting the 3GPP Release 17 requirements

    Linearity improvement of VCSELs based radio over fiber systems utilizing digital predistortion

    Get PDF
    The article proposes a Digital Predistortion (DPD) methodology that substantially meliorates the linearity of limited range Mobile Front Haul links for the extant Long-Term Evolution (LTE) and future (5G) networks. Specifically, the DPD is employed to Radio over Fiber links that contrive of Vertical Cavity Surface Emitting Lasers (VCSELs) working at 850 nm. Both, Memory and Generalized Memory Polynomial models are implied to Single Mode (SM) and Multi-Mode (MM) VCSELs respectively. The effectiveness of the proposed DPD methodology is analyzed in terms of Normalized Mean Square Error, Normalized Magnitude, Normalized phase and Adjacent Channel Power Ratio. The demonstration has been carried out with a complete (Long Term Evolution) LTE frame of 10 ms having 5 MHz bandwidth with 64-QAM modulation configuration. Additionally, the effectuality of the proposed DPD technique is evaluated for varying levels of input power and link lengths. The experimental outcomes signify the novel capability of the implied DPD methodology for different link lengths to achieve higher system linearization

    Digital Predistortion Based Experimental Evaluation of Optimized Recurrent Neural Network for 5G Analog Radio Over Fiber Links

    Get PDF
    In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating non-linearities in Radio over Fiber (RoF) systems for enhancing communication capabilities in remote regions. The seamless integration of RoF and 5G technologies requires robust linearization techniques to ensure high-quality signal transmission. In this paper, we propose and exhibit the effectiveness of a machine learning (ML)-based DPD method for linearizing next-generation Analog Radio over Fiber (A-RoF) links within the 5G landscape. The study investigates the use of an optimized recurrent neural network (ORNN) based DPD experimentally on a multiband 5G new radio (NR) A-RoF system while maintaining low complexity. The ORNN model is evaluated using flexible-waveform signals at 2.14 GHz and 5G NR signals at 10 GHz transmitted over a 10 km fiber length. The proposed ORNN-based machine learning approach is optimized and is compared with conventional generalized memory polynomial (GMP) model and canonical piecewise linearization (CPWL) methods in terms of Adjacent Channel Power Ratio (ACPR), Error Vector Magnitude (EVM), and in terms of computation complexity including, storage, time and memory consumption. The findings demonstrate that the proposed ORNN model reduces EVM to below 2% as compared to 12% for non-compensated cases while ACPR is reduced by 18 dBc, meeting 3GPP limits

    Neural Network DPD for Aggrandizing SM-VCSEL-SSMF-Based Radio over Fiber Link Performance

    Get PDF
    This paper demonstrates an unprecedented novel neural network (NN)-based digital predistortion (DPD) solution to overcome the signal impairments and nonlinearities in Analog Optical fronthauls using radio over fiber (RoF) systems. DPD is realized with Volterra-based procedures that utilize indirect learning architecture (ILA) and direct learning architecture (DLA) that becomes quite complex. The proposed method using NNs evades issues associated with ILA and utilizes an NN to first model the RoF link and then trains an NN-based predistorter by backpropagating through the RoF NN model. Furthermore, the experimental evaluation is carried out for Long Term Evolution 20 MHz 256 quadraturre amplitude modulation (QAM) modulation signal using an 850 nm Single Mode VCSEL and Standard Single Mode Fiber to establish a comparison between the NN-based RoF link and Volterra-based Memory Polynomial and Generalized Memory Polynomial using ILA. The efficacy of the DPD is examined by reporting the Adjacent Channel Power Ratio and Error Vector Magnitude. The experimental findings imply that NN-DPD convincingly learns the RoF nonlinearities which may not suit a Volterra-based model, and hence may offer a favorable trade-off in terms of computational overhead and DPD performance

    A combined digital linearization and channel estimation approach for IM/DD fast-OFDM systems

    Get PDF
    A combined digital linearization and channel estimation scheme is proposed and experimentally demonstrated for short-reach intensity-modulation and direct-detection (IM/DD) optical Fast-OFDM systems. Known 2PAM-Fast-OFDM sequences are used for training a memoryless polynomial based adaptive post-distorter and for FFT-based channel estimation in IM/DD 4PAM-Fast-OFDM systems. The 2PAM signals are transmitted only over the odd SCs of the training sequences. With the combined compensation scheme, significant BER improvements are achieved for 10- and 22-km length 12.5 Gbit/s SMF links. Compared with a conventional IM/DD Fast-OFDM, the receiver sensitivity of the proposed IM/DD Fast-OFDM system is improved by about 3 dB at a bit error ratio (BER) of 10–3, after 22-km SMF transmission. In addition, the experimental results for different bias voltages and under strong filtering effects show that the proposed compensation approach can deal with some degree of MZM bias drift and can be applied for realistic wideband optical Fast-OFDM systems

    Digital electronic predistortion for optical communications

    Get PDF
    The distortion of optical signals has long been an issue limiting the performance of communication systems. With the increase of transmission speeds the effects of distortion are becoming more prominent. Because of this, the use of methods known from digital signal processing (DSP) are being introduced to compensate for them. Applying DSP to improve optical signals has been limited by a discrepancy in digital signal processing speeds and optical transmission speeds. However high speed Field Programmable Gate Arrays (FPGA) which are sufficiently fast have now become available making DSP experiments without costly ASIC implementation possible for optical transmission experiments. This thesis focuses on Look Up Table (LUT) based digital Electronic Predistortion (EPD) for optical transmission. Because it is only one out of many possible implementations of EPD, it has to be placed in context with other EPD techniques and other distortion combating techniques in general, especially since it is possible to combine the different techniques. Building an actual transmitter means that compromises and decisions have to be made in the design and implementation of an EPD based system. These are based on balancing the desire to achieve optimal performance with technological and economic limitations. This is partly done using optical simulations to asses the performance. This thesis describes a novel experimental transmitter that has been built as part of this research applying LUT based EPD to an optical signal. The experimental transmitter consists of a digital design (using a hardware description language) for a pair of FPGAs and an analogue optical/electronic setup including two standard DAC integrated circuits. The DSP in the transmitter compensated for both chromatic dispersion and self phase modulation. We achieved transmission of 10.7 Gb/s non-return-to-zero (NRZ) signals with a +4 dBm launch power over 450 km keeping the required optical-signal-to-noise-ratio (OSNR) for a bit-error-rate of 2x10^{-3} below 11 dB. In doing so we showed experimentally, for the first time, that nonlinear effects can be compensated with this approach and that the combination of FPGA-DAC is a viable approach for an experimental setup
    • 

    corecore