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A B S T R A C T

The article proposes an experimental implementation with a performance comparison of 5G new radio (NR)
multiband waveforms utilizing analog radio over fiber (A-RoF) link equipped with performance enhancement
via digital predistortion (DPD) methods. An unprecedented convolutional neural network (CNN) is compared
with our earlier proposed robust methods such as deep neural network (DNN), magnitude-selective affine
(MSA) and generalized memory polynomial (GMP) methods. In circumstances when deep learning is not
practicable due to high complexity, we have presented an integrative lightweight convolutional neural network
(ILWCNN) approach which is stable over time without the need for DPD coefficient updates. The experimental
bench consists of a multiband 5G NR standard at a carrier frequency of 20 GHz with a bandwidth of 50 MHz
and a flexible-waveform signal at 3 GHz with a bandwidth of 20 MHz. A 10 km of single-mode fiber is used
to transport the signals modulated by a dual-drive Mach Zehnder Modulator. The paper discusses the selection
of reduced complexity and robust performance of the ILWCNN-based DPD that eventually outperforms the
conventional methods. The proposed ILWCNN reduces the error vector magnitude (EVM) to 1.65% as compared
to 4.1%, 3.1%, 1.9% and 7.4% of EVM for GMP, MSA, DNN and non-compensated cases respectively. Similarly,
the adjacent channel leakage ratio (ACLR) of −28 dBc uncompensated link is reduced with GMP, MSA and
ILWCNN to −40 dBc, −45 dBc and −47 dBc respectively. The suggested ILWCNN approach outperforms the
compared methods in terms of ACLR and EVM attaining the 3GPP Release 17 requirements.
. Introduction

The fifth-generation (5G) communication networks are designed
o enhance the energy efficiency, end-to-end latency, and network
apacity. With the remarkable increase in the number of base stations
BS), the radio access network has become increasingly centralized [1].
centralized radio access network (C-RAN) lowers capital expenditures

y increasing scalability and reducing network maintenance. To enable
C-RAN, a fronthaul (FH) connects baseband units (BBU) and distant

adio heads. Radio over fiber (RoF) based Optical fronthaul (OFH) is
hown in Fig. 1. This transport strategy is an important choice for
obust transmission for conveying analog, digital or mixed signals in
ront haul, owing to its cost-effectiveness and simplicity of design,
hich extends the transmission network range [2,3].

RoF links undergo nonlinear severities caused by the link compo-
ents, which can be alleviated using linearization procedures [4–7].
everal types of RoF implementations include analog RoF (A-RoF)
1–5], digital RoF (D-RoF) [8–10], and sigma-delta RoF (𝛿RoF) links
11,12].

Signal degradation affects A-RoF for tens of kilometres. The net-
ork’s reach for D-RoF is cost-effective for longer links [12], however,

∗ Corresponding author.
E-mail addresses: m.hadi@ulster.ac.uk, usmanhadi@ieee.org.

the system’s cost rises owing to the superior bandwidth resolution of the
analog digital converter (ADC) and the need for extra signal processing.
In fronthaul networks, low efficiency and elevated data traffic demand
are also problematic [11,12]. 𝛿RoF avoids the common public radio
interface (CPRI) bottleneck with 1-bit ADC. A 1-bit operation causes
substantial quantization noise, necessitating the inclusion of a passband
filter (BPF) on the receiver side, leading to increased complications of
the techniques. Consequently, the A-RoF is a better alternative than
digital and sigma-delta RoF [9,11,12] since it is simple, reasonably
economical and already has a widespread structure.

The applications of A-RoF are limited due to the constraints imposed
by the microwave and optical components. To mitigate these imper-
fections, several linearization methods were proposed to address these
concerns [13–18], but these methods’ utilization has been limited due
to inadequate bandwidth, high technical complexity and the necessity
of feedback link which is a lengthy process [19,20].

DPD solutions have become increasingly complicated in the current
years as the implementation needs of cellular network communications
have increased. Furthermore, complicated PA designs, like MIMO and
beamforming, are being used to increase total system performance at
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Fig. 1. Backhaul to the baseband unit (BBU) coupled to the optical front haul (OFH), and subsequently transmission from the transceiver station is shown in Fig. 1. Application
scenarios such as picocells and stadiums among others are shown as an example.
these frequencies. These distortion and memory effects in RoFs require
compensation [17–19]. Several nonlinear dynamic structures that can
achieve DPD for RoF have been developed. The goal of DPD is to create
a compact model that provides inverse behavior to that of the RoF link.
When the DPD block is cascaded with the RoF link, the DPD results
in a highly linear RoF output signal with the fewest coefficients pos-
sible. When training DPD coefficients, overfitting and ill-conditioning
are a problem [20]. Regarding the decrease of DPD dimensionality,
overfitting and extraction have been important study areas.

Many behavioral models for RoF have been presented in the litera-
ture, including memory polynomial (MP), generalized MP (GMP) [19]
and dynamic deviation reduction (DDR), which are frequently uti-
lized in the DPD process. Recent high-efficiency PA topologies, on the
other hand, display increasingly sophisticated nonlinear properties and
memory effects as bandwidth increases. When dealing with such com-
plicated nonlinear systems, the current trimmed Volterra models may
have significant challenges [19,20]. New modeling approaches with
more flexible structures are sought in this area to increase linearization
performance.

An iterative optimization technique like the LS is commonly used
to estimate DPD coefficients. The structural multicollinearity between
predictors in polynomial-based DPD allows researchers to intelligently
prune DPD coefficients that do not add to the DPD linearization’s
efficacy [3,4]. The authors of [5] use Principal Component Analysis to
facilitate function mitigation and a change of foundation (PCA).

The drive for further linearization to get superior results has shifted
focus to machine learning (ML). In [17,21], analog RoF was utilized
for fiber wireless successful integration trials, however, no lineariza-
tion was used and the system was limited to the utilization of 64
quadrature amplitude modulation (QAM). In [22], 25 Gbauds were ob-
tained with 64 QAM and there was no possibility of using linearization
methods to improve the performance. In [23], Suppression of sec-
ond and third-order nonlinearities was obtained using dual-wavelength
linearization, however, it is wavelength dependent. Similarly, Digital
Post Distortion has been a concept that has been proposed that com-
presses all order nonlinear distortion components significantly [24].
However, this method requires a digitizer with a high speed. Re-
cently, ML methods were proposed to improve nonlinearities due to

fiber nonlinearity [25,26], modulation impairments [27], laser chirp

2

[28–32], laser nonlinearities [33–36] and black-box approach to im-
proving overall systems performance using digital predistortion using
neural network [37–41]. Similarly, the complete RoF system was lin-
earized using analog DPD to suppress intermodulation distortion (IMD)
of order three for phase maintenance. However, the disadvantage is
that it suppresses second-order IMDs [42,43]. Similarly, Direct DPD has
been proposed that linearizes the nonlinearities owing to the combined
effect of fiber chromatic dispersion and laser chirp for tens of km of
fiber length [44,45]. Conventional DPD methods have been proposed
that alleviate impairments due to laser [19–21,44] and complete RoF
link nonlinearities [46–50] while DPD for VCSELs-based RoF link is
shown for a closed-loop complete uplink and downlink [6,19,45]. Sim-
ilarly, supervised machine learning has been employed, however, a lot
of training data, high data capacity with DSP kits and high complexity
was required [50–52].

The sole purpose of this experimental bench is to evaluate the
conventional Volterra methods and deep neural network (DNN) method
that we have proposed and utilized in the past [13,17–21] and compare
them to a recently improved MSA method that showed the best per-
formance. We aim to compare these methods with a novel Integrative
Light Weight Convolutional Neural Network (ILWCNN) methodology.
We validate the selection of the parameters of the convolutional neural
network in terms of Error Vector Magnitude and Adjacent Channel
Leakage Ratio. The complexity of the methodologies is compared to
make the scientific community understand the pros and cons of the
methods and what trade-offs will be encountered if conventional meth-
ods are used as compared to machine learning methods. The important
contributions of the paper are listed below:

1. To demonstrate multiband propagation with a 10 km single-
mode fiber (SMF) link length, an experimental assessment of
multiband 5G NR transmissions is done utilizing analog FH
composed of 5G New Radio transceivers at 3 & 20 GHz per the
C-RAN design.

2. An ILWCNN in a supercell situation is used to develop and
compare performance with Volterra methods such as GMP and
canonical piecewise linearization (CPWL) based on MSA meth-
ods proposed earlier by authors in [6]. The performance com-
parisons are made in terms of methods complexity, EVM and

ACLR.
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Fig. 2. Schematic of the article. This schematic has been added to help the readers to understand different sections of the article.
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3. The article comprises DPD methodology based on ILWCNN with
all of its mathematical frameworks, and the selection of param-
eters to reduce the complexity and enhance the performance.

4. The complexity analysis is reported in terms of the number of
coefficients, time, memory and data consumption.

The reported work is distributed in the subsequent sections. Sec-
ion 2 represents the proposed ILWCNN -based DPD network and its
ramework while Section 3 represents the comparative architectures
ith GMP and MSA methods for comparing the results with the pro-
osed ILWCNN method. Section 4 explains the experimental bench
hile Section 5 explains the results while Section 6 discusses the

omplexity comparison of the modes while Section 7 presents the
eal-time implementation. Section 8 concludes the article. In order to
isualize and summarize the framework of the article for the readers,
he schematic of the article is shown in Fig. 2.

. Convolutional neural network-based DPD

The ILWCNN model first imitates the A-RoF connection. In this case,
he �̂� (𝑛) represents input and 𝑦(𝑛)

𝐺 signifies the output. We utilize 𝐼 to
repare 𝐼−1. The ILWCNN can now determine an estimated transfer
unction 𝐼 . Once the RoF ILWCNN model is created, the model weights
re set, and then connected to the ILWCNN DPD system. We now utilize
he original input, 𝑥 (𝑛), and output as training data to establish the
rror and then use a loss function.

This becomes

̂ (𝑛) = 𝐼−1 (𝑥 (𝑛)) (1)

hile

(𝑛) = 𝐺𝑥 (𝑛) = 𝐼 (�̂� (𝑛)) (2)

s G symbolizes the gain. The ILWCNN specifies the 𝐼−1 for the DPD
henomena. Since direct training for creating the ILWCNN for DPD is
ot possible as the ideal �̂� (𝑛) is unknown as shown in Fig. 3.

Algorithm 1 provides the ILWCNN DPD model training pseudocode.
e first train an emulated RoF ILWCNN model using RoF input and
3

utput waveforms, and then we cascade the ILWCNN with a real RoF
ink to this (post distorter) DPD block and begin the pre-distortion
ethod when this training is done (see Algorithm 1). As shown in

ig. 3, the CNN is created on 𝐼 (�̂� (𝑛)) with updates on 𝐼 conducted
n the pre-distortion block utilized by 𝐼−1 (𝑥 (𝑛)), as illustrated in the
seudocode.

The training of the DPD network requires extra care and effort since
the DPD parameters are unknown. Owing to this, ordinary supervised
learning solutions are not applicable. In this case, the network based
on the DPD network and RoF link are cascaded and integrated to get
unknown solutions. The proposed method is depicted in Fig. 3. To
begin, the training data are adequately standardized to ensure rapid
and accurate neural network learning. The RoF system is ‘‘taught’’ to
emulate the RoF link with the pre-processed input and output datasets
during the RoF modeling step. The RoF link is transmitted to the
integrated network once the RoF modeling is completed. Secondly, the
integrated system was trained during the DPD training stage so that its
output, 𝑦(𝑡), is proportional to the normalized input, 𝑢(𝑡).

2.1. Network structure

The network structure has two main parts, the first one is DPD
network training and the other one is RoF link. Fig. 4 shows the archi-
tecture of the proposed method. The approach assures that it achieves
fast and accurate learning of the neural network and that the training
data are normalized appropriately. During the RoF modeling stage,
the network is trained to model the RoF link with the preprocessed
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Fig. 3. Proposed integrated CNN architecture with memory length 𝐿 = 2.
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nput and output data set. Once the RoF modeling is completed, the
oF network is transferred to the integrated network. During the DPD

raining stage, the integrated network is trained such that the output
f the network, 𝑦(𝑛) is equivalent to the normalized input 𝑥(𝑛).

.1.1. DPD network training
The relationships between the initial waveform labeled as DPD

nput, RoF input which is labeled as DPD output, and RoF output, when
emory impacts are taken into account, are specified as

̂ (𝑛) =
∏

𝐷𝑃𝐷

𝐿
∑

𝑛=0
𝑥 (𝑛) (3)

here ∏

𝐷𝑃𝐷 (.) represents the DPD function while 𝑥(𝑛) represents
aseband input and output is then denoted by �̂� (𝑛). The output y(𝑛)
s expressed in the following Eq. (4)

(𝑛) =
∏

𝑅𝑜𝐹

𝐿
∑

𝑛=0
�̂� (𝑛) (4)

here ∏

𝑅𝑜𝐹 (.) represents the RoF function and y(𝑛) represents the
utput while L represents the memory length. The number of neural
etwork input and output nodes is indicated by the number of inputs
nd outputs of the problem to be solved. If the integrated network’s
wo sub-networks are not connected, they can be designed with (L +
) input nodes and one output node, as per Eq. (3). The integrated
etwork, on the other hand, should include 2*(L + 1) DPD input nodes,
*(L + 1) output nodes and one RoF output node.

The L is two as suggested in the integrated network topology shown
n Fig. 3. Complex numbers consist of R and I that constitute the input
nd output signals. The size of the input layer is (2L + 1) while the RoF
utput layer size is 2. Furthermore, the input layer will be extended
o |𝑥(𝑡)|𝑝, where 𝑝 represents the nonlinearity order of the RoF model
eing used.

It is worth noting that, despite the aforementioned layout, the
unctionality of the DPD network seems it has (𝐿 + 1) input and one
utput node. To get the output of the DPD at a time (t + 1), the
rimary issue will arise if the DPD network is designed to employ an
LWCNN without taking these limits into account. First, rather than
L + 1) samples, (2L + 1) input waveforms were linked to a single
PD output. Instead of a single DPD mechanism, there’ll be (L + 1)

eparate DPD functions, each of which creates (L + 1) DPD output
amples. We set up the DPD network to employ an ILWCNN since it has
 e

4

weight-contributing characteristic. This characteristic indicates that
he filter coefficients remain constant regardless of the inputs, allowing
he suggested approach to implementing a single DPD function.

There are 𝑀 hidden layers with a size of (𝐿 + 1) ∗ 𝐾 with each
lement expressed as:
𝑛−𝑙
𝑚,𝑘 =

∏

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

(

𝑓𝑚,𝑘∗�̂�𝑛−𝑙𝑚−1 + 𝑏𝑚,𝑘
)

(5)

here ∏

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (.) represents the activation function and (*) represents
he component-wise multiplication operation of two matrices preceded
y all-element addition. 𝑓𝑚,𝑘 represents 𝑘th filter, and 𝑏𝑚,𝑘 shows bias
n the 𝑚th hidden layer. Furthermore, �̂�𝑛−𝑙𝑚−1 and ℎ𝑛−𝑙𝑚,𝑘 signify the input
nd 𝑘th output, respectively, for the DPD output at instance (𝑛− 𝑙). The
apping of input concerning hidden layers 𝑚 is shown here:

̂𝑛−𝑙𝑚 =

{

1 𝑥 𝐾, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(𝐿 + 1) 𝑥 2, 𝑚 = 0

(6)

The sizes of the filter and bias are the same as the size of the input
atrix. This calculation is repeated for the number of filters 𝐾, where
ifferent filters and biases are used to produce 𝐾 hidden-layer outputs.
he last hidden layer’s 𝐾 outputs are multiplied by two filters of size,
ielding a complex DPD output, �̂� (𝑛). The filter and bias both have the
ame dimensions. This process is performed for filters, with different
ilters & biases being utilized to generate 𝐾 hidden-layer outputs. By
liding the filters down in order in Eq. (4), another DPD output �̂� (𝑛 − 𝑙)
ay be generated. In the concealed layers, only layers of the same
eight are associated with each other. That is, the DPD network’s top
ayers are only related to the DPD output �̂� (𝑛), whereas the lower levels
re only connected to the DPD output �̂� (𝑛 − 𝑙). This assures that a single
PD function may provide the (L + 1) DPD waveforms. The process
xplained can be stated in the expression below:

R 𝑥 (𝑛 − 𝑙)
I 𝑥 (𝑛 − 𝑙)

)

=
∏

𝑜𝑢𝑡

{

∏

𝑀

[

…
∏

1
𝑥𝑛−𝑙

]}

(7)

here ∏

𝑀 (.) denotes the functionalities in the 𝑀 th hidden layer,
ooling, filter, drop out (regularization to overcome overfitting) and
ias.

[

…
∏

1 𝑥
𝑛−𝑙] represents the argument of ∏

𝑀 (.), which contains
he 1st hidden layer, and is dependent on the input matrix x(n), the
ots symbolically represent the nested processes from hidden layers 1 to
M−1); and ∏

𝑜𝑢𝑡 (.) produces real and imaginary DPD outputs from the
th hidden layer. The DPD is created by importing the training param-
ters into the newly constructed network. The weight-sharing aspect of
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the CNN allows the new network to perform the same DPD function,
even though the number of input and output nodes varies. There should
be (L + 1) input and output nodes in the RoF network. Like any other
machine learning network, our proposed model is also prone to overfit-
ting and underfitting. It is important to note that in order to prevent our
network from undergoing overfitting or underfitting, we retain more
important information and dismiss irrelevant information via dropout
regularization method. In this way, the training and validation errors
in training do not diverge. The pooling layer follows the convolution
layer. It is used to decrease the size of the convolutional output matrix.
This further reduces the amount of computation required and the
number of weights in the ILWCNN model. It also minimizes the risk
of overfitting during the training phase of the network. The average
pooling process is applied along both the width and height dimensions
to downsample and reduce the convolutional layer’s output size. This
means that the presence of pooling layers reduces the dimensionality of
the feature maps which will also help to improve regularization, leading
to a better DPD performance [53].

2.1.2. RoF network
The RoF network should have 2× (1 + L) input nodes and two

output nodes. When this condition is satisfied, the RoF network can be
configured. The trained set is then emulated to the RoF link. Indeed, the
back-propagation can be applied to train a neural network, particularly
the DPD network. The DPD coefficients are estimated in the training
period calculating the DPD model coefficients, as illustrated in Fig. 4.
𝑧 (𝑛) is the predistorter’s input, which comes through the RoF 𝑦 (𝑛) here,
(𝑛) = 𝑦(𝑛)

𝐺 , and G is the gain link.

. Comparative architectures (generalized memory polynomial
GMP) and magnitude selective affine (MSA))

For Power Amplifiers linearization, GMP has been successfully used.
he RoF link linearization utilizing the Digital predistortion approach
as been evidenced in [5,13,19–21]. If we look at the expression
elow, unlike MP, the GMP remembers both diagonal and crossing
omponents, which is why it beats MP. In the next sections, out of all
he comparisons, we will analyze comparisons with GMP only from the
olterra series as it provides enhanced performance than MP [1,23–34]:

𝑦 (𝑛) =
𝑘𝑎−1
∑

𝑘=0

𝑄𝑎−1
∑

𝑞=0
𝑥 (𝑛 − 𝑞) 𝑐𝑘𝑞 |𝑥 (𝑛 − 𝑞)|𝑘

+
𝑘𝑏
∑

𝑘=1

𝑄𝑏−1
∑

𝑞=0

𝑅𝑏
∑

𝑟=1
𝑥 (𝑛 − 𝑞) 𝑑𝑘𝑞𝑟 |𝑥 (𝑛 − 𝑞 − 𝑟)|𝑘

+
𝑘𝑐
∑

𝑘=1

𝑄𝑐−1
∑

𝑞=0

𝑅𝑐
∑

𝑟=1
|𝑥 (𝑛 − 𝑞 + 𝑟)|𝑘 𝑒𝑘𝑞𝑟𝑥 (𝑛 − 𝑞)

(8)

where 𝑥(𝑛) and 𝑦(𝑛) are the DPD input and output respectively.
5

The 𝑐𝑘𝑞 , 𝑑𝑘𝑞𝑟 and 𝑒𝑘𝑞𝑟 signify the signal-envelope; signal-lagging
envelope and signal-leading envelope complex coefficients, correspond-
ingly. 𝐾𝑎, 𝐾𝑏, 𝐾𝑐 represent maximum nonlinearity coefficients, 𝑄𝑎, 𝑄𝑏,
𝑄𝑐 shows memory depths. 𝑞, 𝑟 and 𝑘 are the symbols of the memory and
nonlinearity index while 𝑅𝑐 demonstrates the leading delay tap lengths
and 𝑅𝑏 presents the lagging delay tap lengths [20,45,47–49].

Similarly, the goal is to further minimize the intricacy of the CPWL
approach by presenting a magnitude selective affine (MSA) model.
This approach has the benefit of just requiring one linear process for
the specified zone, resulting in a reduced complexity structure. The
coefficients in the domain with comparable magnitudes can be linked
together to optimize operations [6]. The amplitude of input samples
and the threshold function may be compared to determine which affine
functions can be used. The CPWL difficult procedure will be reduced as
a result of this simplification. As a result, we may amend the first term
of the CPWL component which can be expressed as:

=
𝑀
∑

𝑚=0

𝐾
∑

𝑘=0

𝐿
∑

𝑙=1
𝑐(1)𝑚,𝑘,𝑙||𝑥 (𝑛 − 𝑘) |2 − 𝛽𝑙|𝑥 (𝑛 − 𝑚 − 𝑘)

=
𝑀
∑

𝑚=0

𝐾
∑

𝑘=0
𝑥 (𝑛 − 𝑚 − 𝑘)

( 𝐿
∑

𝑙=1
𝑐(1)𝑚,𝑘,𝑙||𝑥 (𝑛 − 𝑘) |2 − 𝛽𝑙|

)

=
𝑀
∑

𝑚=0

𝐾
∑

𝑘=0
𝑥 (𝑛 − 𝑚 − 𝑘) 𝑢(1)𝑚,𝑘 (𝑛 − 𝑘)

(9)

(1)
𝑚,𝑘 (𝑛 − 𝑘) =

𝐿
∑

𝑙=1
𝑐(1)𝑚,𝑘,𝑙||𝑥 (𝑛 − 𝑘) |2 − 𝛽𝑙|

=

⎧

⎪

⎨

⎪

⎩

𝐴(1)
𝑚,𝑘,1 |𝑥 (𝑛 − 𝑘)|2 + 𝐵(1)

𝑚,𝑘,1, 0 ≤ |𝑥 (𝑛 − 𝑘)|2 < 𝛽1
⋮

𝐴(1)
𝑚,𝑘,𝐿 |𝑥 (𝑛 − 𝑘)|2 + 𝐵(1)

𝑚,𝑘,𝐿, 𝛽𝐿−1 ≤ |𝑥 (𝑛 − 𝑘)|2 < 𝛽𝐿

(10)

In this Eq. (10), 𝐴(1)
𝑚,𝑘,𝑙 and 𝐵(1)

𝑚,𝑘,𝑙 expresses the respective zone model
oefficients of 𝑢(1)𝑚,𝑘 (.). The hardware formulation is expressed in Fig. 5.
he simplification leads to the understanding that the ceilings for the
ffset and linear gain selection for the MSA function are compared to
nput power components with no magnitude. As a result, the square
oot computation process is no longer used. In terms of the MSA
unction, the entire model may be stated as follows:

𝑦 (𝑛) =
𝑀
∑

𝑚=0

𝐾
∑

𝑘=0
𝑢(1)𝑚,𝑘 (𝑛 − 𝑘) 𝑥 (𝑛 − 𝑚 − 𝑘)

+
𝑀
∑

𝑚=1

𝐾
∑

𝑘=0
𝑥2 (𝑛 − 𝑘) 𝑥∗ (𝑛 − 𝑚 − 𝑘) 𝑢(2)𝑚,𝑘 (𝑛 − 𝑘)

+
𝑀
∑

𝑚=1

𝐾
∑

𝑘=0
|𝑥 (𝑛 − 𝑚 − 𝑘)|2 𝑥 (𝑛 − 𝑘) 𝑢(3)𝑚,𝑘 (𝑛 − 𝑘)

+
𝑀
∑

𝐾
∑

𝑥2 (𝑛 − 𝑚 − 𝑘) 𝑥∗ (𝑛 − 𝑘) 𝑢(4)𝑚,𝑘 (𝑛 − 𝑘)

(11)
𝑚=1 𝑘=0
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Fig. 5. MSA based hardware application.
𝑢(𝑖)𝑚,𝑘 (𝑛 − 𝑘) =
𝐿
∑

𝑙=1
𝑐(𝑖)𝑚,𝑘,𝑙||𝑥 (𝑛 − 𝑘) |2 − 𝛽𝑙|

=

⎧

⎪

⎨

⎪

⎩

𝐴(𝑖)
𝑚,𝑘,1 |𝑥 (𝑛 − 𝑘)|2 + 𝐵(𝑖)

𝑚,𝑘,1, 0 ≤ |𝑥 (𝑛 − 𝑘)|2 < 𝛽1
⋮

𝐴(𝑖)
𝑚,𝑘,𝐿 |𝑥 (𝑛 − 𝑘)|2 + 𝐵(𝑖)

𝑚,𝑘,𝐿, 𝛽𝐿−1 ≤ |𝑥 (𝑛 − 𝑘)|2 < 𝛽𝐿

(12)

4. Experimental setup

A 5G NR with 3 GHz (20 MHz) and 20 GHz (50 MHz) respectively
are employed to evaluate the RoF-based link with the novel ILWCNN
DPD approach and compare it to our previous validated DPD methods
such as MSA and GMP [13,53]. The link consists of a dual-drive Mach
Zehnder modulator (MZM) with two different RF-driven signals and
a 1310 nm DFB laser is used in the setup shown in Fig. 6. The 5G
transceiver delivers RF2, a 3 GHz flexible waveform signal, whereas the
Vector Signal Generator VSG1, sends a 20 GHz RF1 5G NR waveform.
There are three steps to the DPD technique.

First, the 𝑓𝑐 of 3 & 20 GHz is transmitted via a 10 km SMF link and
is photo-detected by a photodetector converting an optical signal to an
electrical domain. An amplification phase is used since the multiband
must be split independently. The 3 GHz and 20 GHz frequencies are
separated by a diplexer (DPX). After that, the signals are processed
through vector signal analyzers (VSA). The functioning of VSA’s output
is assessed in the post-processing block. This step is completed without
the use of DPD, implying that the result is not evaluated using DPD.
The DPD approach shown in Fig. 6 is used in phase two, referred to as
the DPD training phase, and training is performed until the error goes
below the reference error. To establish time-domain synchronization
between received waveforms, the positioning reference signal (PRS) is
employed. The received and input reference signals are correlated, and
the power delay profile (PDP) is assessed to determine the first path of
arrival [54]. The bandwidth of PRS is 20 MHz/106 resource blocks.

Finally, the pre-distorted baseband waveforms are routed into the
DPD block, where they are upconverted to their 𝑓𝑐 by VSGs before
being transmitted onto the optical connection. The photodiode received
signal is transmitted via a diplexer DPX that distinct multiband before
being transferred to the DPD block for the training phase. For the DPD
validation stage, the switches are flipped in the other direction. The
following are the main parts of this experimental bench:

A. Signal propagation unit
B. Digital pre-distortion block
C. Post-processing and performance computation

The Mach–Zehnder modulator (MZM) modulates the wavelength

at 1310 nm to drive a distributed feedback laser at 1310 nm. The

6

RF1 waveform is employed in one of the MZM’s arms by the first
vector signal generator (VSG1). At 20 GHz, RF1 is a 5G NR signal.
The 3 GHz flexible waveform signals (OFDM, GFDM, F-OFDM) from
the 5G transceiver are RF2 compliant. VBIAS1 and VBIAS2 are the bias
voltages selected so that the observed spectrum does not have high
peak power ratios and high-frequency spikes in the measured frequency
range.

DPD has been extensively studied for distributed feedback (DFB)
and vertical-cavity surface-emitting laser (VCSEL) based RoF connec-
tions [6,19,45]. For impairments reduction, DPD is a beneficial tech-
nique. In the past, many methodologies based on adaptive learning and
the Volterra series have been developed for DPD [3–7,16–21]. Recently,
machine learning technologies were proposed. To further improve the
performance as compared to benchmarked solutions such as MP and
GMP, ILWCNN -based DPD is designed and employed in this novel
study for multiband carrier frequencies 𝑓𝑐1 and 𝑓𝑐2. ILWCNN is used
to develop and train the RoF ILWCNN model like the original RoF
connection. We can train RoF ILWCNN and modify the parameters
after building the appropriate ILWCNN DPD model. The convolution
layer is the first layer of the ILWCNN. Using kernel, it aggregates the
characteristics of the data input and generates a feature map (collated
data).

Due to thermal effects and component ageing, the RoF link’s non-
linearities slowly fluctuate, therefore, real-time processing in the adap-
tation phase is not required. Table 1 summarizes the values of different
components that were employed in this study, which were mentioned
in [13,17,53].

Table 2 enlists the considerations that make up the design of the
intended convolutional neural network. The settings are chosen using
a trial-and-error method [17]. To calculate the NN’s complexity, the
table expresses the NN’s coefficients. The training samples are 500,000
in the training set. The validation and test sets each have 200,000
samples. To prevent overfitting, the validation set is only utilized using
the suggested approach. The greatest absolute value of the original
signal is used to normalize all data sets.

5. Results

The results of the experimental bench are discussed. The mean
square error (MSE) is one approach to assessing the accuracy of the co-
efficients for various designs. Without DPD utilization, MSE is reported
to be 27 dB, but ILWCNN decreases this value to 20 dB. The proposed
approach is evaluated, and the magnitude of the mistakes is displayed
as an error vector magnitude. We compare our previous work [17] to
GMP approaches as a baseline architecture.
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m

Fig. 6. Experimental block schematic for the linearization study. The functionality of the switches is explained in the figure.
Table 1
Testbed link component parameters.

Parameters Values

Signal 𝑓𝑐1 = 3 x 109 Hz
𝑓𝑐2 = 20 x 109 Hz
F/ G/ O — FDM signal
Modulation Data Rate = 256 QAM

Laser type Wavelength 𝜆 = 1310 nm
DD-MZM

Fiber SMF
Link length = 10 km
Fiber Dispersion = 16 ps

nm km
Attenuation = 0.32 dB

km

Photoreceiver , 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑖𝑡𝑦 = 0.69 A/W

Table 2
Proposed architecture framework.

Architecture Type

Optimizer ADAM
Type activation ReLu
O/P Softmax
Type loss Mean Square Error (MSE)
N 5
𝐾𝑀𝐿 64
Regularization method Dropout
Regularization factor 0.001
Learning rate 0.01
Batch size 128, 256
Validation split 0.4
Training specimens 50,000
Testing specimens 10,000

The 3GPP has a standardized performance metric as the error vector

agnitude (EVM), where each received symbol gives the optimum

7

Fig. 7. Optimized selection with varying number of layers and number of neurons per
layer: (a) EVM (b) ACLR.

constellation location. The EVM is defined as:

𝐸𝑉𝑀 (%) =

√

√

√

√

√

1
𝑀

∑𝑀
𝑚=1

|

|

𝑆𝑚 − 𝑆0,𝑚
|

|

2

1 ∑𝑀
| |

2
(13)
𝑀 𝑚=1 |𝑆𝑚|
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Fig. 8. EVM metric comparison for 5G NR at 0 dBm: (a) with GMP, MSA, DNN, ILWCNN and without DPD while (b) with DPD and No DPD for B2B and RoF, while (c) represents
a comparison of with and without linearization.

8
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Fig. 9. EVM performance evaluation for 5G NR and F-OFDM waveforms vs received
optical power.

Here 𝑀 represents constellation symbols, 𝑆𝑚 gives the constellation’s
real symbol associated with the symbol ‘‘𝑚’’ and 𝑆0,𝑚 denotes the real
symbol linked with 𝑆𝑚. The EVM standardized limit for the 256 QAM
modulation type for 3GPP is set to be 3.5% [55]. Adjacent Channel
Leakage Ratio (ACLR) determines the signal impairment components
which are stated as [5]:

𝐴𝐶𝐿𝑅𝑑𝐵𝑐 = 10 log10
⎡

⎢

⎢

⎣

∫ 𝑎𝑑𝑢
𝑎𝑑𝑙

𝑃 (𝑓 ) 𝑑𝑓

∫ 𝑢𝑏𝑢
𝑢𝑏𝑙

𝑃 (𝑓 ) 𝑑𝑓

⎤

⎥

⎥

⎦

(14)

where 𝑃 (𝑓 ) implies Power Spectral Density (PSD) while 𝑎𝑑𝑢 and 𝑎𝑑𝑙
hows upper and lower adjacent channel frequency bounds while 𝑢𝑏𝑙
nd 𝑢𝑏𝑢 are upper and lower frequency useful bands of the output
ignal.

To determine the number of neurons per layer and the number of
idden layers in the proposed neural network, the EVM and ACLR are
valuated. In Fig. 7(a) and Fig. 7(b), the EVM and ACLR are evaluated.
t can be seen that 64 neurons per layer (𝐾𝑀𝐿) and five hidden layers
𝑁) give the maximum performance, due to which these settings are
tilized.

In Fig. 8(a), we assess a back-to-back (B2B) configuration with a
ength of patch cable less than 1 m SMF making a back-to-back case.
t can be observed that B2B has a 2.3% EVM which is the lowest EVM.
he system’s performance for 10 km is 10 km and has a 7.4% EVM
hile the ILWCNN -based DPD method further improved the EVM value

o 1.65 percent. Fig. 8(b) shows the comparison of the EVM with No
9

DPD, using the GMP technique first, then the MSA approach followed
by the DNN DPD approach proposed in [17] and lastly, we compare the
results with our latest proposed lightweight ILWCNN DPD approach.
It is worth noting that the ILWCNN DPD technique delivers better
performance by reducing EVM as compared to the last proposed DNN
approach, GMP and MSA. This reduction in EVM is useful in terms
of performance but also the less complexity of ILWCNN is useful for
deployment purposes. Similarly, in Fig. 8(c), the EVM PDSCH channel
is shown for a varying RF input power with and without DPD. It is
observed that in the convention methods, MSA-and DNN-based DPD
outperforms GMP based DPD method while the ILWCNN-based DPD
method outperforms the MSA and recently proposed DNN methods as
well. At the RF input power of 5 dBm, MSA has an EVM of 3.61% while
the ILWCNN method has a 3.05% of EVM.

In Fig. 9, we also present EVM values for the optical power received
𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙 for the 5G NR waveforms and F-OFDM. The 𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙 does not
fulfill the 3GPP standards, resulting in a reduction in dynamic range.
As a result, improving performance through DPD becomes critical.
DPD guarantees that EVM stays within the −8 to −6 dBm range.
The dynamic range of the F-OFDM waveform is 2 dB within 3GPP
restrictions, however, the dynamic range of F-OFDM with DPD has been
expanded to 10 dB within 3GPP constraints.

In addition to EVM, the Adjacent Channel Leakage Ratio (ACLR) is
evaluated which establishes the interference outside the useful band-
width. Since RF input power varies the performance, therefore it is
critical to see the effect of DPD. Fig. 10 shows that the ILWCNN
procedure outperforms the MSA and GMP-based DPD approach. Still,
MSA has also good improvement but is not better than ILWCNN. The
ACLR is −28 dBc without DPD, −42 dBc with DPD-GMP, and −45 dBc
with MSA DPD while ILWCNN DPD has −47 dBc.

The power spectral density in addition to EVM is assessed in Fig. 11.
The PSD is a metric that compares the power in the usable band to the
power in neighboring bands. The case without DPD has −25 dBc, as
shown in Fig. 11. These restrictions have been established at 35 dBc
by the 3GPP. DPD with GMP, MSA and ILWCNN are used to increase
performance, and it is shown that ILWCNN improves performance
better than GMP by a large margin and 1 dB better than MSA.

Similarly, Fig. 12 summarizes the efficacy of DPD ILWCNN in terms
of amplitude-to-amplitude (AM/AM) and amplitude-to-phase (AM/PM)
for the RoF link in comparison to the case without DPD. In Table 3, the
performance metric at 0 dBm is summarized.

6. Complexity considerations

The complexity consideration of machine learning methods is an
important consideration, hence, it is mandatory to bring it into account.
Fig. 10. ACLR performance evaluation with DPD (GMP, MSA and ILWCNN) and without DPD for varying RF input power.
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Fig. 11. Spectral density performance comparison with and without DPD.
Fig. 12. Efficacy with and without DPD in terms of (a) AM/AM and (b) AM/PM.
Table 3
Summary of the performance metrics.

Methodology EVM (%) ACLR (dBc)

No-DPD 7.4 −28
GMP DPD 4.1 −40
MSA DPD 3.01 −45.4
DNN DPD 1.9 −46.1
ILWCNN DPD 1.65 −47.4

The MSA-DPD makes a substantial contribution by reducing complexity
while achieving comparable performance to the CPWL or GMP ap-
proach. Multiplication operation is generally considered a complexity
10
Table 4
Complexity comparisons.

DPD method Coefficients # Coefficients

GMP 𝐾𝑎
(

𝑄𝑎 + 1
)

+𝐾𝑏
(

𝑄𝑏 + 1
)

𝑅𝑏 +𝐾𝑐
(

𝑄𝑐 + 1
)

𝑅𝑐 84
CPWL (𝐾 + 1) ∗ (4𝑀 + 1) ∗ 𝐿 260
MSA (𝐾 + 1) ∗ 2(4𝑀 + 1) ∗ 𝐿 520
DNN [17] (4 +𝑁) ∗ 𝐾𝑀𝐿 + (𝑁 − 1) ∗ 𝐾2

𝑀𝐿 + 6 16966
ILWCNN
[proposed]

((2𝐿 + 1) ∗ 𝑁 ∗ 𝐿 + 1) ∗ 𝑁 255

measure [56]. Hence, Table 4 reports the calculation of the coefficients
for the architectures discussed in this work. MSA DPD has 220 mul-
tiplications which are significantly fewer than CPWL which has 880
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Fig. 13. Comparison of different DPD architectures with optimized complexities and similar complexities (parameters).
multiplications. The variation in memory depth and nonlinearity orders
can lead to sophisticated variants. However, as indicated in Equation,
the computing complexity must be taken into account. This means that
a wise trade-off between performance and complexity may be made in
choosing the DPD complexity.

In the same way, the performance of the ILWCNN design is equiv-
alent to MSA, which has similar ratios to ILWCNN, but the number of
coefficients rises to 16,966 and the number of multiplications rises to
16,644. ILWCNN complexity is decreased as the proposed architecture
has optimized the number of hidden layers and neurons per layer, as
demonstrated in Fig. 8(a) and Fig. 8(b) respectively. For an optimized
performance of each architecture, as discussed in [13], 𝐾𝑎 = 𝐾𝑏 = 𝐾𝑐 =
𝑄𝑎 = 𝑄𝑏 = 𝑄𝑐 = 𝑅𝑏 = 𝑅𝑐 = 3 which results in the 84 coefficients for
GMP. Similarly, in CPWL and MSA-DPD, the coefficients with optimized
performance were chosen to be 𝐾 = 𝐿 = 4 and 𝑀 = 3 which results
in 260 and 520 coefficients for CPWL and MSA respectively. For DNN
and ILWCNN, we have experimentally shown that the best results are
shown at 𝑁 = 5 and 𝐾𝑀𝐿 = 64 resulting in total coefficients estimated
to be 16,966 and 255 respectively.

In order to evaluate that the performances and complexity of re-
spective networks are optimized, a study is included in Fig. 13 that
compares the EVM for different architectures with optimized complex-
ity versus the same complexity. This means that up till this point, we
have chosen the parameters for different architectures on our previous
experiences with optimization as reported in [57] to get decent per-
formance. However, it will be a significant study when complexities
are chosen as the same. Since the best performance is with ILWCNN,
we chose the parameters of ILWCNN as a benchmark and evaluate the
other architectures. For this, we use 𝐾 = 𝑄 = 𝑀 = 𝐿 = 𝑅 = 𝑁 = 5. The
results signify that the improvement in terms of performance for GMP
and MSA is not significantly improved. This confirms that conventional
methods with higher complexity will also result in a tiny improvement.

In addition to the computation complexity in terms of the number of
coefficients, complexity is also measured in terms of time consumption,
storage consumption and memory consumption as shown in Fig. 14.
ILWCNN attempt to reduce both the computation cost and the storage
cost by compression of parameters. Fig. 14 shows the impact in terms
of storage and time requirements where the ILWCNN requires signifi-
cantly less storage for the weights and is faster to train. The training
were run on a platform having Intel Core i9-10900K CPU @ 3.70 GHz

(20 CPUs), ∼3.7 GHz equipped with 130 GB RAM.

11
7. Real-time implementation

In a realistic scenario, linearization methodology is carried out at
the Central Office (CO) where the BBUs are placed and a periodical
re-training of the DPD system is performed. The training requires a con-
siderable amount of time with respect to the time of normal operation
of the RoF system. Recently, a Xilinx DPD kit has been developed that
can be used for this purpose [15]. The trained models can be directly
deployed to perform DPD operations. It should be noted that DPD
works as a black box. Hence, it counteracts the overall nonlinearities
of the system including that of MZM (laser), fiber and photodiode.
For tens of km, the combined effect of laser chirp and fiber dispersion
becomes a major nonlinearity issue [10]. Therefore, laser and possibly
photodiode are the primary sources of nonlinearity which is mitigated
in this proposed bench.

One of the most difficult tasks in the adaptive compensation of the
RoF connection is bringing feedback signals from the base station to
the remote antenna unit. This is owing to the feedback link’s potential
nonlinearity. The current study is predicated on the assumption that the
predistorter only perceives the signal impairments for which it must
perform DPD compensation. This means that the RoF connection is
first compensated for using a post distorter, with a known training
signal from the RAU being used. Following that, the previously adjusted
downlink RoF link can be utilized as a compensation feedback connec-
tion. Fig. 15 depicts a practical implementation of an adaptive DPD
that moves complicated signal processing to the Central Office/Base
Transmit Station as a hypothetical feedback situation (CO-BTS). It is
worth noting that DPD functions as a black box, counteracting the
system’s total nonlinearities, including those of the link components
ranging from laser, fiber, amplifiers and photodiodes. In the future,
increasing the fiber length and linearizing the link by minimizing the
Kerr effect would be intriguing. Indeed, increased modulation formats
and bandwidth will result in higher DPD complexity due to severe
PAPR, as described. Consequently, these will result in an overall rise
in the system model’s memory and complexity. Nonetheless, the IL-
WCNN method will still be valid. Moreover, it will be an important
enhancement to check the efficacy of the proposed method on 5G and
6G services [58].

8. Summary

The article shows a development of a DPD-equipped Radio over

Fiber system. The experimental bench consists of a 10 km SMF which
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Fig. 14. Time consumption, storage consumption and memory consumption demonstrating the significant savings in storage and time complexity.
ransports 5G NR multiband signals utilizing 3 GHz and 20 GHz. The
roposed convolutional neural network-based DPD achieves a substan-
ial performance in meeting the 3GPP requirements from Release 17.
imilarly, the proposed neural network-based DPD is compared with
SA and GMP methods, and it is shown that ILWCNN outperforms the

ther methods. However, the performance of the magnitude selective
ffine method is comparable to the neural network method and offers
uch lesser complexity. The proposed neural network diminishes EVM

o 1.65% and ACLR to −47.4 dBc. Similarly, ILWCNN -based DPD
maintains stability over a considerable amount of time without a DPD
coefficient update. Assimilation of RoF with wireless infrastructure and
12
improvements in linearization approaches for greater performance are
among the future prospects.
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Fig. 15. Realistic adaptive predistortion scheme.
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