13,530 research outputs found

    MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications

    No full text
    According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    Heterodyne range imaging as an alternative to photogrammetry

    Get PDF
    Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry

    A real parametric characterisation of ex-service compressor blade leading edges

    Get PDF
    In-service the degradation of compressor blade leading edges can have a disproportional effect on compressor efficiency. The high surface curvature in this region makes quantifying the surface finish of this sensitive and prominent region difficult. An automated technique that characterises the roughness of the leading edge in terms of areal parameters is presented. A set of ex-service blades of differing sizes are used to demonstrate the procedure. Improved characterisation of this blade region will allow engine companies to better understand where in-service deterioration has the greatest effect and inform them as to how they might minimise the effect. The present work shows that the leading edges of compressor blades exhibit a significantly higher characteristic surface roughness than other blade regions, and the spatial distribution of peaks in this characteristic roughness is detailed. In addition it is shown that peak wear and roughness are not uniformly correlated

    The optical very large array and its moon-based version

    Get PDF
    An Optical Very Large Array (OVLA) is currently in early prototyping stages for ground-based sites, such as Mauna Kea and perhaps the VLT site in Chile. Its concept is also suited for a moon-based interferometer. With a ring of bi-dimensionally mobile telescopes, there is maximal flexibility in the aperture pattern, and no need for delay lines. A circular configuration of many free-flying telescopes, TRIO, is also considered for space interferometers. Finally, the principle of gaseous mirrors may become applicable for moon-based optical arrays. Fifteen years after the first coherent linkage of two optical telescopes, the design of an ambitious imaging array, the OVLA, is now well advanced. Two 1.5 m telescopes have been built and now provide astronomical results. Elements of the OVLA are under construction. Although primarily conceived for ground-based sites, the OVLA structure appears to meet the essential requirements for operation on the Moon

    Numerical modeling and measurement by pulsed television holography of ultrasonic displacement maps in plates with through-thickness defects

    Get PDF
    We present a novel numerical modeling of ultrasonic Lamb and Rayleigh wave propagation and scattering by through-thickness defects like holes and slots in homogeneous plates, and its experimental verification in both near and far field by a self-developed pulsed TV holography system. In contrast to rigorous vectorial formulation of elasticity theory, our model is based on the 2-D scalar wave equation over the plate surface, with specific boundary conditions in the defects and plate edges. The experimental data include complex amplitude maps of the out-of-plane displacements of the plate surface, obtained by a two-step spatiotemporal Fourier transform method. We find a fair match between the numerical and experimental results, which allows for quantitative characterization of the defects

    Method for Characterization of Material Loss from Modular Head-Stem Taper Surfaces of Hip Replacement Devices

    Get PDF
    Assessment of the head-stem taper junction requires the estimation of material loss from the taper surfaces of both femoral head and stem. This paper describes a method for the measurement and analysis of material loss from the modular taper junction of hip replacements, in particular femoral stem tapers where generally the entire taper surface has been engaged. In such cases no direct unworn datum is readily identifiable to assess material loss. The highly anisotropic topology of some stem designs poses additional challenges to the measurement and analysis process. Estimation of material loss of retrieved femoral stems is further complicated by retrieval damage or surface deposits often present on the taper surface. The femoral head tapers typically exhibit areas of pristine surface attributed to the difference in taper length compared to the engaging stem. These areas can be selected as unworn when employed in the analysis process, provided they do not show surface damage or deposits. Measurement of the taper surfaces has been performed using a Talyrond (Ametek, Inc., US) out-of-roundness measurement instrument equipped with a 5”m diamond tip stylus. Vertical axial traces were employed to digitize the surface of the taper. Measurement data has been analyzed using a multi stage process that has been specifically adapted for stem tapers. The underlying stem taper geometry is determined by means of a morphological filter to remove the high aspect ratio microstructure. This paper presents a study of 40 retrieved LHMoM hip replacements that have been analyzed to ascertain the material loss at the modular taper junction. The purpose of this study was to ascertain the viability of characterizing material loss from the stem taper junction and to provide insight into the overall material loss contribution

    Alternative method for the metrological characterization of spur gears in the sub-millimeter range using optical equipment

    Get PDF
    The aim of this work is to develop a software that allows the inspection of spur gear manufactured in the sub-millimeter range. The measurements are made using a digital optical machine and using an analysis proprietary software implemented in MatlabÂź, which is able to handle images, captured using the digital optical machine. The software allows to evaluate the profile and pitch deviations as establish in the ISO/TR 10064-1:1992 standar

    Precision determination of absolute neutron flux

    Full text link
    A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using a method of an alpha-gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performed to determine the mean de Broglie wavelength of the beam to a precision of 0.024 %. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058 %. We discuss the principle of the alpha-gamma method and present details of how the measurement was performed including the systematic effects. We also describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.Comment: 44 page
    • 

    corecore