9,101 research outputs found

    Sensor Pattern Noise Estimation Based on Improved Locally Adaptive DCT Filtering and Weighted Averaging for Source Camera Identification and Verification

    Get PDF
    Photo Response Non-Uniformity (PRNU) noise is a sensor pattern noise characterizing the imaging device. It has been broadly used in the literature for source camera identification and image authentication. The abundant information that the sensor pattern noise carries in terms of the frequency content makes it unique, and hence suitable for identifying the source camera and detecting image forgeries. However, the PRNU extraction process is inevitably faced with the presence of image-dependent information as well as other non-unique noise components. To reduce such undesirable effects, researchers have developed a number of techniques in different stages of the process, i.e., the filtering stage, the estimation stage, and the post-estimation stage. In this paper, we present a new PRNU-based source camera identification and verification system and propose enhancements in different stages. First, an improved version of the Locally Adaptive Discrete Cosine Transform (LADCT) filter is proposed in the filtering stage. In the estimation stage, a new Weighted Averaging (WA) technique is presented. The post-estimation stage consists of concatenating the PRNUs estimated from color planes in order to exploit the presence of physical PRNU components in different channels. Experimental results on two image datasets acquired by various camera devices have shown a significant gain obtained with the proposed enhancements in each stage as well as the superiority of the overall system over related state-of-the-art systems

    Mitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimation

    Full text link
    The photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos

    Incremental updating feature extracion for camera identification

    Get PDF
    Sensor Pattern Noise (SPN) is an inherent fingerprint of imaging devices, which has been widely used in the tasks of digital camera identification, image classification and forgery detection. In our previous work, a feature extraction method based on PCA denoising concept was applied to extract a set of principal components from the original noise residual. However, this algorithm is inefficient when query cameras are continuously received. To solve this problem, we propose an extension based on Candid Covariance-free Incremental PCA (CCIPCA) and two modifications to incrementally update the feature extractor according to the received cameras. Experimental results show that the PCA and CCIPCA based features both outperform their original features on the ROC performance, and CCIPCA is more efficient on camera updating

    Detecting animals in African Savanna with UAVs and the crowds

    Full text link
    Unmanned aerial vehicles (UAVs) offer new opportunities for wildlife monitoring, with several advantages over traditional field-based methods. They have readily been used to count birds, marine mammals and large herbivores in different environments, tasks which are routinely performed through manual counting in large collections of images. In this paper, we propose a semi-automatic system able to detect large mammals in semi-arid Savanna. It relies on an animal-detection system based on machine learning, trained with crowd-sourced annotations provided by volunteers who manually interpreted sub-decimeter resolution color images. The system achieves a high recall rate and a human operator can then eliminate false detections with limited effort. Our system provides good perspectives for the development of data-driven management practices in wildlife conservation. It shows that the detection of large mammals in semi-arid Savanna can be approached by processing data provided by standard RGB cameras mounted on affordable fixed wings UAVs

    Coherence of PRNU weighted estimations for improved source camera identification

    Get PDF
    This paper presents a method for Photo Response Non Uniformity (PRNU) pattern noise based camera identification. It takes advantage of the coherence between different PRNU estimations restricted to specific image regions. The main idea is based on the following observations: different methods can be used for estimating PRNU contribution in a given image; the estimation has not the same accuracy in the whole image as a more faithful estimation is expected from flat regions. Hence, two different estimations of the reference PRNU have been considered in the classification procedure, and the coherence of the similarity metric between them, when evaluated in three different image regions, is used as classification feature. More coherence is expected in case of matching, i.e. the image has been acquired by the analysed device, than in the opposite case, where similarity metric is almost noisy and then unpredictable. Presented results show that the proposed approach provides comparable and often better classification results of some state of the art methods, showing to be robust to lack of flat field (FF) images availability, devices of the same brand or model, uploading/downloading from social networks

    On the Sensor Pattern Noise Estimation in Image Forensics: A Systematic Empirical Evaluation

    Get PDF
    Extracting a fingerprint of a digital camera has fertile applications in image forensics, such as source camera identification and image authentication. In the last decade, Photo Response Non_Uniformity (PRNU) has been well established as a reliable unique fingerprint of digital imaging devices. The PRNU noise appears in every image as a very weak signal, and its reliable estimation is crucial for the success rate of the forensic application. In this paper, we present a novel methodical evaluation of 21 state-of-the-art PRNU estimation/enhancement techniques that have been proposed in the literature in various frameworks. The techniques are classified and systematically compared based on their role/stage in the PRNU estimation procedure, manifesting their intrinsic impacts. The performance of each technique is extensively demonstrated over a large-scale experiment to conclude this case-sensitive study. The experiments have been conducted on our created database and a public image database, the 'Dresden image databas
    corecore