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Sensor Pattern Noise Estimation Based on Improved

Locally Adaptive DCT Filtering and Weighted

Averaging for Source Camera Identification and

Verification
Ashref Lawgaly, and Fouad Khelifi, Member, IEEE

Abstract—Photo Response Non-Uniformity (PRNU) noise is a
sensor pattern noise characterizing the imaging device. It has
been broadly used in the literature for source camera iden-
tification and image authentication. The abundant information
that the sensor pattern noise carries in terms of the frequency
content makes it unique, and hence suitable for identifying
the source camera and detecting image forgeries. However, the
PRNU extraction process is inevitably faced with the presence of
image-dependent information as well as other non-unique noise
components. To reduce such undesirable effects, researchers have
developed a number of techniques in different stages of the
process, i.e., the filtering stage, the estimation stage, and the post-
estimation stage. In this paper, we present a new PRNU-based
source camera identification and verification system and propose
enhancements in different stages. First, an improved version
of the Locally Adaptive Discrete Cosine Transform (LADCT)
filter is proposed in the filtering stage. In the estimation stage, a
new Weighted Averaging (WA) technique is presented. The post-
estimation stage consists of concatenating the PRNUs estimated
from color planes in order to exploit the presence of physical
PRNU components in different channels. Experimental results
on two image datasets acquired by various camera devices have
shown a significant gain obtained with the proposed enhance-
ments in each stage as well as the superiority of the overall
system over related state-of-the-art systems.

Index Terms—Photo Response Non-Uniformity noise, Source
Camera Identification, digital image forensics.

I. INTRODUCTION

O
VER the last decade, the use of digital image devices

has incredibly become widespread due to the advance

of digital technologies. Nowadays, every digital multimedia

device incorporates a camera for taking good quality pictures

at no cost. As a result, digital pictures constitute a reliable

means for testifying incidents and providing legally acceptable

evidence in courtroom. However, a digital picture can be

edited, transmitted and distributed easily with recent technolo-

gies such as Bluetooth and Internet. Therefore, knowing the

source of the image and verifying its integrity is essential in

forensic applications. The field of image forensics is concerned

with authentication, integrity verification and Source Camera

Identification (SCI) [1]. Over the last decade, a significant

number of attempts to extract features which characterize the

Ashref Lawgaly and Fouad Khelifi are with the Department of Com-
puter Science and Digital Technologies, Northumbria University, UK. (e-
mail: ashref.lawgaly@northumbria.ac.uk; fouad.khelifi@northumbria.ac.uk).

camera device have been reported in the literature [1]–[27].

Fig. 1 shows the common process to produce a picture via a

digital imaging device. A digital device fingerprint could be

characterizing some of the following components; the Color

Filter Array (CFA) interpolation artifacts [2], [3], the lens

aberration noise [4], [5], sensor dust [6], Photo Response Non-

Uniformity(PRNU) noise [7]–[27].

This work addresses the problem of source camera identi-

fication and verification in image forensics based on PRNU

estimation. It is worth mentioning that the PRNU is the result

of imperfections caused by the manufacturing process due to

the lack of homogeneity of the silicon area in the imaging

sensor [28]. The noise due to sensor imperfections is a weak

signal of the same size as the output image denoted here by

K ∈ ℜω×ν , where ω × ν represent the dimension of the

sensor. Regardless of the sensor type, the final camera output

is expressed as [8] [10]

I = I0 + I0K +Θ (1)

where I0 is the original input image. I0K represents the

PRNU term and Θ is a random noise factor respectively. Note

that the effect of the sensor pattern noise K on the original

image follows a multiplicative rule. It has been reported in the

literature that the PRNU is very similar to a white Gaussian

noise and hence abundant in terms of the frequency content

and unique to every sensor allowing for reliable identification

even if the camera devices under investigation are of the same

brand and model. This also enables the investigator to verify

the authenticity of digital images and detect forgeries.

In the literature, there has been a growing body of research

devoted to source camera identification using the PRNU. The

PRNU estimation process can be divided into three stages, i.e.,

the filtering stage, the estimation stage, and finally the post-

estimation (enhancement) stage. In the filtering stage, a pattern

residual signal, also called the noise residue is obtained from

each image through the difference between the input image

and its filtered version.

r = I − F (I) (2)

where r is the noise residue containing the PRNU and F (·)
is the filtering process. In the estimation stage, the PRNU is

estimated from a set of noise residues. In the post-estimation

stage, the PRNU is enhanced further for better camera identifi-
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Fig. 1. Image acquisition process for an ordinary digital camera.

cation. The most widely known system was initially developed

by Lukas et al. [7] [8] in order to identify the origin of digital

images using the PRNU. It uses a set of images to extract a

noise residue from each image. The estimated noise residues

are then averaged to obtain a camera reference PRNU noise.

In [9] [10], the Maximum Likelihood Estimator (MLE ) was

applied to estimate the camera reference PRNU. In [10], the

authors proposed preprocessing steps to enhance the com-

monly used PRNU through Wiener filtering and zero-mean

operations. The rational is that there are artefacts which may

be shared by different cameras of the same model or brand

and this leads to a rise in false identification rates. In [11], the

authors noticed that the estimated PRNU with a commonly

used technique [8] does not have the characteristics of white

Gaussian noise. They proposed to whiten the noise residues

by using only the phase component in the Fourier domain.

The author in [12] pointed out that the PRNU obtained from

an image may be contaminated by its content especially if it

is characterized by edges, contours, and texture. His idea is

based on the assumption that the less trustworthy components

are the stronger signals components in a PRNU, and therefore

they should be attenuated. Nevertheless, attenuating strong

components from a signal may lead to reduction of the useful

PRNU components too [11]. In [13], an image sharpening

idea is used to amplify the high frequency content of PRNU

noise in images. This process can ensure a strong presence

of PRNU before estimation. In [14], the authors proposed an

improved technique based on the assumption that the large

element of the PRNU is more trustworthy and consequently

should be utilized in the matching stage, while other elements

are discarded. Another technique has been proposed in [15]

for suppressing the random noise contamination in the PRNU

noise. The aim of this approach is achieved by clustering

the PRNU pixels of similar values, the pixels of PRNU are

sorted a descending/ascending order. Next, every number of

pixels is averaged and the positions of the clustered pixels are

saved, in order to be applied noise residue of the tested image.

Theoretically, such process could generate a higher quality

reduced-size PRNU, which may lead to a more trustworthy

PRNU than its original full-size one. In [16] an approach based

on a Weighted Averaging (WA) technique to optimize PRNU

estimation was applied. The idea is based on the assumption

that images are acquired under different conditions making

the corresponding residual signals different from each other.

For instance, bright images provide better sensor pattern noise

estimation than dark images. Also, saturated pixels cause

undesirable noise in residual signals. In this approach the steps

of removing undesirable components are applied as proposed

in [10]. In [17], the Principal Component Analysis (PCA)

method was used to reduce the dimensionality of the PRNU

noise and attenuate the effect of scene details on the filtering

process. The idea underlying this algorithm is that the energy

of the noise residuals characterizing the reference PRNU is

concentrated in a small subspace of the entire eigenspace,

while the remaining energy represents undesirable (image-

dependent) noise components. Therefore, by preserving only

the most important subspace (characterized by the eigenvectors

which are associated to the most significant eigenvalues)

and then conducting the inverse PCA transform, the image-

dependent noise could be significantly attenuated. In [18],

the authors showed that the use of random projections can

significantly reduce the dimension of fingerprints without

affecting the camera identification performance. The authors

adopted a compressive sensing method to represent the sensor

fingerprints space by a dictionary.

Since the filtering stage contributes significantly to the

accuracy of PRNU estimation, the influence of denoising filter

has been discussed in [29] for forgery detection and [30] for

source camera identification. The authors show that the Block-

matching and 3D filtering (BM3D) algorithm [31] outperforms

the wavelet-based Mihcak’s filter [32] which was initially

adopted in [8]. In [33], it has been shown that the accuracy

of sensor pattern noise estimation can also be improved by

removing the denoising distortions. In [19], the author pointed

out that although the wavelet-based Mihcak’s filter has been

commonly accepted in the literature for estimating the noise

residue, it may spread the details and edges of an image

creating various disturbing signals around such areas. This

leads to a decrease in correlation between the noise residue and

the right PRNU. He introduced a PRNU estimation technique

using a combination of adaptive Wiener and median filtering in

the pixel domain. This suggested filtering approach is followed

by an enhancement strategy where only the pixels with high

probabilities of significant noise residue bias are retained.

Kang et al. [20] developed a filter based on an eight-neighbor

context-adaptive interpolation algorithm. In this technique the

local regions are classified into six types: vertically edged,

horizontally edged, smooth, right-diagonal edge, left-diagonal

edge and others. The method can estimate the center-pixel

values in different local regions since it is adaptive to local

image context. Consequently, the difference between the actual

values and the predicted ones could reduce the effect of the

edges while PRNU components are preserved.

Other attempts focused on color combination to exploit the

presence of the PRNU in different color planes. Indeed, the

authors in [21] proposed a color decoupling algorithm prior
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to the filtering stage to reduce the color interpolation noise

which is caused by the CFA. In [22], three color combination

schemes were proposed to obtain the final PRNU using the

red, green and blue channels. The basic idea is to extract the

PRNU from each color channel separately and then select the

pixel with the largest magnitude. Furthermore, the similarity

between the estimated PRNU and the noise residue is another

parameter which may affect the performance of the source

camera identification system. Initially, researchers adopted the

normalized correlation as in [7]–[10] and [12]–[19]. Then,

with the aim of reducing the effect of periodic noise contami-

nation and hence enhancing the false positive rate in SCI, the

peak to correlation energy (PCE) was proposed [23] [34]. The

main idea behind PCE is to consider the correlation between

the PRNU and shifted versions of the noise residue in order to

lessen the similarity which may exist between the PRNU of a

specific camera and the noise residue of an image taken by a

different camera. In [11], the authors used an improved version

of PCE called the correlation over circular cross-correlation

norm (CCN) by taking into account the negative values of

correlation between the PRNU and noise residues estimated

from images of different cameras. The CCN has been shown to

reduce the false positive rate to half of that with PCE. In [24],

a pre-processing technique based on spectrum equalization has

been developed to decrease the false identification rate. The

idea is to equalize the magnitude spectrum of the PRNU by

detecting and suppressing the memorable peaks according to

the local characteristics because such peaks in the spectrum

are likely to be created by periodic artifacts. More recently,

the PRNU has been used to detect forgeries caused by Hue

modification [35].

As discussed earlier, the process of source camera identi-

fication and/or verification has different stages. In this paper,

we present a new PRNU-based source camera identification

and verification system and propose enhancements in different

stages of the process. First, an improved version of the

Locally Adaptive Discrete Cosine Transform (LADCT) filter

is proposed in the filtering stage. In the estimation stage, a

new weighted averaging technique is presented. The post-

estimation stage consists of combining PRNU signals where

each is estimated from a color plane in order to exploit the

presence of physical PRNU components in different chan-

nels. Experimental results on two image datasets, acquired

by various camera devices, have shown a significant gain

obtained with the proposed enhancements in each stage and the

superiority of the overall system over related state-of-the-art

systems. The rest of this paper is structured as follows; Section

II describes the proposed system and discusses its different

components in detail. Experimental results and analysis are

provided in Section III. A conclusion is drawn in Section IV.

II. PROPOSED SYSTEM

Fig. 2 illustrates the proposed source camera identification

system. First, digital images are considered in the form of sep-

arate color channels. Then, an improved version of the LADCT

de-noising filter is applied to reduce the effect of scene details

on noise residues. Next, for efficient sensor pattern noise

estimation, the obtained noise residues are averaged using the

proposed WA technique. Finally, we propose to concatenate

the PRNUs estimated from the primary color planes in order

to exploit the presence of physical PRNU components in

different color channels. In camera identification, the noise

residue of a query image is compared to all PRNUs stored

in the database. The closest PRNU corresponds to the camera

which has been used to take the image. In camera verification,

however, the similarity between the noise residue and the

PRNU of a certain camera is compared to a given threshold in

order to verify whether the image is originated by the camera.

The system’s components will be discussed in more detail in

the next subsections.

A. Improved Locally Adaptive DCT filter

The Discrete Cosine Transform (DCT) has been broadly

adopted in applications of image processing including feature

extraction, quality assessment, filtering, and compression [36].

The Locally Adaptive DCT filter (LADCT) has a range of

advantages exceeding other filters that operate on full images,

such as wavelets and is meant to perform well on images

affected by image-dependent noise including the multiplicative

noise [37]. This gives a good reason for adopting this filter

because the PRNU is also multiplicative. The LADCT filter

operates on sliding blocks (local action filter), which could

offer more information about the local effect of noise on

the image in a better fashion [38]. Furthermore, it performs

well on different noise models such as Poisson and film-grain

types [39]. Finally, averaging multiple de-noised estimates for

each pixel in the block will overcome the problem of under-

shoots and overshoots which occur around the neighborhood

of discontinuities as a result of the Gibbs Phenomenon [40]

and this is directly related to the problem of scene details in the

estimated sensor pattern noise. The authors in [37] introduced

the LADCT filter for a type of noise that contaminates the

signal through a multiplicative rule. They used a sliding block

window to obtain de-noised estimates of neighboring and

overlapping blocks. The multiple estimates are then averaged

to suppress artifacts caused by undershoots and overshoots

around the highly textured regions. The threshold for each

block depends on the local mean of the block and the local

noise variance. This filter was referred to as LADCT1 in [37]

and is improved here. Since we are concerned with the

extraction of PRNU, which is a multiplicative noise, for source

camera identification, we take advantage of the LADCT1 filter.

To the best of our knowledge, this filter has not been used in

the field of image forensics. The main steps of LADCT1 are

summarized below.

1) The image is first divided into blocks of u × u pixels.

Let S be a horizontal or vertical shift (S = 1) between

two consecutive blocks. According to [37], the best

performance of the filter can be achieved when u = 8
and S = 1 (This is why number 1 is included in the

notation of LADCT1).

2) For each block b whose upper left corner is at (m, l),
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Fig. 2. Proposed source camera identification and verification system.

DCT coefficients are computed as

B(p, q) = c(p) c(q) ×
u−1∑

m=0

u−1∑

l=0

b(m, l) cos(
(2m+ 1)pπ

2u
) cos(

(2l + 1)qπ

2u
) (3)

where

c(i) =

{ √
2
u if 1 ≤ i ≤ u− 1

1√
u

i = 0

3) A threshold is computed for each block as

T = k σ b (4)

where k = 2.6 is a constant which controls the threshold

value. b refers to the local mean of the block and σ

represents the noise standard deviation.

4) Hard thresholding is applied on each DCT coefficient as

B′(p, q) =

{
B(p, q) if |B(p, q)| > T

0 Otherwise
(5)

where B′(p, q) is the result of thresholding B(p, q).
5) The processed blocks are reconstructed in the pixel

domain using the inverse DCT as

b′(m, l) = c(p) c(q) ×
u−1∑

p=0

u−1∑

q=0

B′(p, q) cos(
(2m+ 1)pπ

2u
) cos(

(2l + 1)qπ

2u
) (6)

6) The final estimate for a pixel at (m, l) is computed by

averaging the multiple estimates at the same location

which were obtained from overlapping blocks due to

the shifting process.

It is worth mentioning that the conventional LADCT1 filter

uses the same threshold on blocks that are characterized with a

similar statistical mean regardless of their textural information

(see (4)). However, the filtering process inevitably removes a

portion of the image content along with the SPN and because

natural images are not stationary, it is sensible to set a varying

threshold, especially across blocks of small size (8×8), which

depends on their textural content that has been removed by

the filter. In order to adjust the LADCT1 filter for PRNU

estimation, we propose an improved version of the filter in

the following.

As illustrated by Fig. 3, we introduce two improvements

of LADCT1. The first improvement is based on estimating

the noise variance for every block independently using the

threshold as described above (Steps 1-6). This is to estimate a

block-dependent threshold which will be used in another stage

of the LADCT1 filtering. The proposed method for estimating

a threshold for each block consists of two phases as follows.

Let us define an estimate of the sensor pattern noise K as

K̂ =

∑N
i=1(Ii − f(Ii))∑N

i=1 f(Ii)
(7)

where Ii is the ith observed image and f(Ii) represents

its filtered version with the conventional LADCT1 where

σ2 = 0.002. Denote by nK the estimation noise for K where

K̂ = K + nK . In practice, the estimation noise nK is more

significant than the actual K since the correlation between

various estimates of k̂ obtained from different sets of images

of the same camera is normally very small (i.e. less than 0.2).

Given a block b, let us consider only the dominant portion of
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Fig. 3. Extraction of noise residues corresponding to a single color plane for PRNU estimation based on improved LADCT1.

noise in the model given in (1) as

Ib ≈ I0b + I0bKb (8)

If I0bKb is viewed as an additive noise, the block-dependent

threshold Tb can be given as [41]

Tb = k σb (9)

where k is a constant which can be determined empirically

(see (4)). σ2
b is the additive noise variance which can be

expressed approximately as1

σ2
b ≈ E[b2]σ2

Kb
(10)

where σ2
Kb

represents the variance of K within the block b. It

follows

Tb = k
√
E[b2] σKb

(11)

However, the estimate of σ2
Kb

cannot be obtained from (7)

because of the significance of nK as mentioned earlier. Indeed,

σ2
K̂

= σ2
K + σ2

nK
(12)

and likewise

σ2
K̂b

= σ2
Kb

+ σ2
nKb

(13)

where σnKb
represents the standard deviation of nK within

the block b. To overcome this issue, we instead take into

account the local presence of textural image content nKb
in

the estimate of K̂ by the conventional filter. The following

threshold is proposed for each block b

Tb = k
√
E[b2] σ

σK̂
σK̂b

(14)

where σ is the noise standard deviation as used in (4). The

idea underlying this threshold value is based on the fact

that the statistical variance of the estimated noise may vary

significantly across blocks. Therefore, blocks in which the

estimated noise K̂b has high variance should be filtered with

a relatively small threshold in the DCT domain to retain the

image content because the high activity in such blocks is likely

1In (10), the second moment of the observed image block Ib is assumed
to be equal to that of the original image block I

0

b
.

to be from edges and texture (i.e. nKb
). On the other hand, a

low variance estimate of noise in a block could well represent

the actual sensor pattern noise and thus should be filtered out

with a relatively large threshold. σK̂ is used in the ratio as a

reference to measure the extent to which the estimated noise

has high or low activity in a specific block. Finally, the second

moment in (14) enables us to exploit bright regions more than

dark ones since the multiplicative nature of the sensor pattern

noise makes its presence stronger in bright regions. As for

the second method of enhancement, it is worth noting that the

LADCT1 filter was initially used [37] in just one direction.

This is sensible for image de-noising purposes since the size

of the filtered image has to be the same as the original one.

In our application, however, we can have two versions of the

filtered image and hence two PRNUs each estimated in one

direction (horizontal and vertical). The rationale behind this

process is to increase the size of the PRNU camera reference

and noise residue in order to reduce to probability of false

alarms (i.e. reduce the similarity between PRNUs and noise

residues of different cameras). Indeed, there could be some

components of the PRNU that are hard to estimate in the

horizontal direction but estimable in the vertical direction and

vice versa. We refer to the combination of the PRNU estimates

in the horizontal and vertical directions as LADCTHV
1 .

B. Weighted Averaging

The WA technique relies on the principle of unknown

signal estimation from noisy observations [42] [43]. As dis-

cussed earlier, the PRNU is estimated using N images Ii,

i = 1, 2 · · · , N . Denote by L the number of samples of

each image rearranged in one direction (i.e. vertically or

horizontally). In view of (1) and (2), the corresponding noise

residue can be expressed as

ri(j) ≈ I0i (j)K(j) + Φi(j) (15)

j = 1, 2 · · · , L

where Φi is an independent noise. For the sake of demon-

stration, let us assume that the images used for estimating the

PRNU represent smooth regions describing the same color
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information such as blue sky content (i.e., the variance of

I0i (j) is extremely small σ2
I0

i
(j)

≪ 1). This may not be

true in practice but the development given below remains

valid to some extent as will be shown in experiments on

natural images of various content. Let ξ be a constant so that

ξ = 1
NL

∑N
i=1

∑L
j=1 I

0
i (j). It follows

ri(j) ≈ ξK(j) + Ψi(j)

= s(j) + Ψi(j) (16)

where s(j) = ξK(j) and

Ψi(j) = Φi(j)−K(j)(ξ − I0i (j))

≈ Φi(j) (17)

Here we are mainly interested in the sensor pattern noise

K. In view of (16) and (17), the problem of estimating the

PRNU from a set of N images can be seen as an estimation

of an unknown signal s(j) with j = 1, 2 · · · , L in a

noisy environment, i.e., using N noisy observations. The ith

observation ri is the sum of a signal s and a random noise

Ψi with zero mean and a variance for each observation equal

to σ2
i . The conventional method to estimate s consists of

averaging the observations [44]

ŝ(j) =
1

N

N∑

i=1

ri(j) (18)

In the rest of the paper, this technique is referred to as constant

averaging because each observation is equally multiplied by

the same weight which is a constant factor of 1/N. Most

state-of-the-art systems use the idea of constant averaging for

estimating the PRNU; this is based on the assumption that

each noise residue is a noisy observation of the PRNU because

images are acquired under different conditions, making the

corresponding noise residues distinct from each other. For

example, bright images provide better PRNU estimation than

dark images. Also, saturated pixels raise estimation errors

in residual signals [8]. However, constant averaging is not

optimal if the noise variance σ2
i changes from one observation

to another. Theoretically speaking, the WA technique offers

the closest estimation to the actual signal in terms of the

mean squared error [42] [45]. The estimated signal with WA

is described as

ŝ(j) =
N∑

i=1

wiri(j) (19)

where wi is a weight corresponding to the ith noise residue

ri. The optimal weight for the ith observation is given

by (See Appendix A)

wi =
1

σ2
i


 1
∑N

k=1
1
σ2

k


 (20)

Obviously, the weights depend on the variance of undesirable

noise Ψi in each observation. As proposed in [42], the esti-

mated noise variance can be computed as

σ2
i =

∑L
j=1(n̂i(j)− n̄i)

2

L
(21)

with

n̂i(j) = ri(j)− r̄(j) (22)

where n̄i denotes the mean of the estimated noise n̂i and

r̄(j) = 1
N

∑N
i=1 ri(j) represents the average signal. The

estimated PRNU term with WA can be computed as

PRNU(j) =

N∑

i=1

wiri(j) (23)

C. Color PRNU concatenation

A challenging task for estimating the PRNU consists of the

color channel to take into consideration at each pixel location.

This is because of the three primary colors (Red, Green and

Blue), the sensor exhibits a physical noise pattern in one

color component only at each pixel location, while the other

components are estimated through interpolation involving the

neighboring pixels [8]. Some PRNU estimation techniques,

such as [19], [25], rely on the gray scale version of images to

extract the PRNU. Alternatively, the authors in [8], [17], [26]

estimated the PRNU from each channel separately and then

combined them linearly to derive a color-to-luminance PRNU.

The common rule for calculating the Luminance component

Y is

Y = 0.30 IR + 0.59 IG + 0.11 IB (24)

where IR, IG, and IB represent the red, green, and blue

channels respectively. Other techniques use only the green

channel in order to extract the PRNU as it contains more

physical PRNU information when compared to the other

channels [11] [27]. However, the linear combination of color

channels with fixed weights would include some interpolation

noise if a certain color location does not correspond to the

physical light information. Indeed, the combination of three

PRNU estimates may have an adversary effect on performance

because only one estimate corresponds to the actual PRNU

component while the two other estimates represent noise.

The noise estimates may cancel the actual one due to the

linear combination. On the other hand, if the green channel

only is used, the physical PRNU information which could

exist in other color components (red and blue) is not taken

into account. In [22], a non-linear combination is applied by

extracting the PRNU from each color channel separately, and

then the largest coefficient in magnitude at each location is

chosen. In this work, the PRNU is estimated from each channel

separately and then the resulting PRNUs are concatenated to

form a color PRNU. Similarly, a color noise residue can be

obtained from the test image through concatenation of the

three noise residues, each corresponding to a color plane. This

way the physical information characterizing the PRNU can be

exploited efficiently.

D. CCN similarity measure

Finally, the proposed system performs the Circular Correla-

tion Norm (CCN) as proposed in [11] to measure the similarity

between the PRNU x and the noise residue y estimated from

a query image. For a ω×ν query image, the size of the PRNU
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is ω′ × ν′ where ω′ = 2ω and ν′ = 3ν. The CCN measure is

defined as

CCN(x, y) =
ψxy(0, 0)√

1
ω′×ν′−|A|

∑
m1,m2 /∈A ψ

2
xy(m1,m2)

(25)

where A is a small neighbor area typically of size 11 × 11
around the central point at (0, 0), |A| is the number of pixels in

A, and ψxy(m1,m2) represents the circular cross-correlation

expressed as

ψxy(m1,m2) =

∑ω′−1
i=0

∑ν′−1
j=0 x(i, j)y(i⊕m1, j ⊕m2)

ω′ × ν′
(26)

where ⊕ is the modulo addition with i ⊕ m1 = (i + m1)
mod ω′ and j ⊕m2 = (j +m2) mod ν′.

III. EXPERIMENTAL RESULTS

In this section, a number of experiments have been con-

ducted to assess the performance of the proposed system. The

evaluation has been conducted using two different datasets;

our dataset and the Dresden Dataset [46]. Tables I and II list

the cameras used in each dataset with the technical properties

of each camera sensor. In this experimental evaluation, each

TABLE I
DIGITAL CAMERAS IN OUR DATASET.

Brand Resolution Sensor Images

Canon IXUS115HS-1 4000× 3000 1/2.3”, CMOS 250
Canon IXUS115HS-2 4000× 3000 1/2.3”, CMOS 250

Canon G10 4416× 3312 1/1.7”, CCD 250
Fujifilm S2950-1 4288× 3216 1/2.3”, CCD 250
Fujifilm S2950-2 4288× 3216 1/2.3”, CCD 250

Nikon Coolpix L330-1 5152× 3864 1/2.3”, CCD 250
Nikon Coolpix L330-2 5152× 3864 1/2.3”, CCD 250

Panasonic DMC TZ20-1 4320× 3240 1/2.33”, CMOS 250
Panasonic DMC TZ20-2 4320× 3240 1/2.33”, CMOS 250

Samsung pl120-1 4320× 3240 1/2.33”, CCD 250
Samsung pl120-2 4320× 3240 1/2.33”, CCD 250

Samsung L301 4000× 3000 1/2.3”, CCD 250
Sony DSC HX200V 4896× 3672 1/2.3”, CMOS 250

TABLE II
DIGITAL CAMERAS IN DRESDEN DATASET.

Brand Resolution Sensor Images

AgfaPhoto DC-733s 3072× 2304 1/2.5”, CCD 281
AgfaPhoto DC-830i 3264× 2448 1/1.8”, CCD 363

Kodak M1063-0 3664× 2748 1/2.33”, CCD 464
Kodak M1063-1 3664× 2748 1/2.33”, CCD 458
Nikon D200-0 3872× 2592 372.9 mm2, CCD 372
Nikon D200-1 3872× 2592 372.9 mm2, CCD 380

Panasonic DMC-FZ50-0 3648× 2736 1/1.8”, CCD 265
Panasonic DMC-FZ50-1 3648× 2736 1/1.8”, CCD 415

Sony DSC-H50-0 3456× 2592 1/2.33”, CCD 284
Sony DSC-H50-1 3456× 2592 1/2.33”, CCD 257

PRNU is estimated from 50 natural images captured by the

same sensor. To measure the effect of the image size on

performance, the extraction of PRNU has been carried out

by considering cropped blocks from the images with different

sizes,i.e., 128 × 128, 256 × 256 and 512 × 512. The blocks

are taken from the center of each image without affecting its

content.

A. Analysis of the system’s components

Since there are three contributions in the proposed system,

i.e. improvement of the LADCT1 filter, weighted averaging,

and color combination, it is sensible to assess each part

separately to highlight the improvements gained at each stage.

As mentioned earlier, 50 images have been used to estimate

the PRNU while the remaining ones are used as test images.

A pattern noise residue is estimated from each test image and

compared with the extracted PRNUS. For fair comparison,

however, the normal correlation coefficient is used at the

matching stage in this section since it was adopted in related

competing techniques. This also enables us to measure the gain

obtained when the CCN is used, instead, in subsection III-B. In

the identification experiments, the False Negative Rate (FNR)

and False Positive Rate (FPR) are computed to evaluate the

performance. Denote by y
j
i the noise residue of a test image

i taken by a camera Cj whose PRNU is xj . Let ρ(yji ) be the

closest PRNU to y
j
i according to the similarity measure used.

Given M different cameras where Nj is the number of test

images per camera Cj , the FNR for the jth camera is defined

as

FNR(j) = 100× Prob(ρ(yji ) ̸= xj) (27)

i ∈ {1, 2, · · · , Nj}

Likewise, the FPR for the jth camera is given by

FPR(j) = 100× Prob(ρ(yki ) = xj |yki ̸∈ Cj) (28)

k ∈ {1, 2, · · · ,M} ; i ∈ {1, 2, · · · , Nj}

The overall FNR and FPR given as FNR= 1
M

∑M
j=1 FNR(j)

and FPR= 1
M

∑M
j=1 FPR(j), respectively, are used in our

identification experiments.

1) Enhanced LADCT1 filtering: In this part, the advantage

of the proposed enhancements to the conventional LADCT1

filter for camera identification is demonstrated. The perfor-

mance LADCT1 and its improved versions are evaluated. Note

that the constant averaging is used to obtain the PRNU in

this part as we are concerned with the filtering process only.

With regards to the conventional LADCT1, the noise variance

for each image block is constant. In order to get the optimal

parameter setting for LADCT1, we tested different values for

the noise variance σ2 (see (4)). On both datasets, table III

shows that the best results can be achieved with a value2 of

σ2 = 0.002. Table IV depicts the identification performance

obtained when using LADCT1 in two directions, i.e., hori-

zontal and vertical which is referred here to as LADCTHV
1 as

well as the gain of the proposed enhancement with block-based

noise variance (i.e. using (14) ). For the sake of comparison,

three other filters used in the literature for PRNU estimation

have been listed, namely the wavelet-based Mihcak’s filter [8],

[32], the BM3D filter [31], and the predictive filter based on

eight-neighbor context-adaptive interpolation (PCAI8) [20]. It

can be seen that the proposed enhancements significantly re-

duce the FNR and FPR when compared with the conventional

2This optimal value ( σ2 = 0.002) is very likely to be the same on datasets
with different cameras. Otherwise, the forensic analyst may create two sub-
sets from the available images. One sub-set to estimate the PRNU and another
sub-set (i.e., a validation sub-set) to find σ.
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TABLE III
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH VARIOUS σ

2 .

Our Dataset Dresden Dataset
FNR FPR FNR FPR

σ
2 128 256 512 128 256 512 128 256 512 128 256 512

0.012 42.38 19.81 9.50 3.53 1.65 0.79 55.80 31.06 12.13 6.20 3.45 1.35
0.007 35.54 16.42 8.81 2.96 1.37 0.73 48.12 24.40 8.31 5.35 2.71 0.92
0.004 32.96 14.77 7.81 2.75 1.24 0.65 41.64 18.99 5.56 4.63 2.11 0.62
0.002 29.50 14.62 7.38 2.46 1.22 0.62 36.47 16.28 5.41 4.05 1.79 0.60

0.001 30.15 14.73 7.42 2.48 1.24 0.62 37.00 16.60 5.41 4.14 1.85 0.61

TABLE IV
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH DIFFERENT FILTERS.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Filter 128 256 512 128 256 512 128 256 512 128 256 512
Wavelet-based [8], [32] 24.96 12.15 7.08 2.10 1.06 0.61 30.48 11.40 2.95 3.37 1.20 0.37

BM3D [31] 27.85 13.00 7.08 2.38 1.04 0.61 34.64 14.65 3.00 3.97 1.55 0.40
PCAI8 [20] 43.58 22.15 9.92 3.47 1.91 0.85 44.93 23.53 6.81 4.92 2.89 0.95

Conventional (i.e. (4)) 29.50 14.62 7.38 2.46 1.22 0.62 36.47 16.28 5.41 4.05 1.79 0.60
LADCTH

1
with (14) 27.96 13.58 7.12 2.33 1.13 0.59 33.14 13.77 4.69 3.68 1.53 0.52

LADCTHV
1

with (4) 24.85 12.77 6.92 2.07 1.06 0.58 29.71 11.21 3.00 3.30 1.25 0.40
LADCTHV

1
with (14) 23.65 12.04 6.77 1.97 1.00 0.56 25.75 9.52 2.90 2.86 1.06 0.32

LADCT1 filter. With such enhancements, the proposed filter

outperforms other competing filters. Interestingly, BM3D and

PCAI8 perform worse than the wavelet-based Mihcak’s filter.

These findings are actually in perfect agreement with those

obtained in [24] (page 134, Fig. 5). This can be justified by

the fact that, in the original papers [20], [30] where these

filters were shown to outperform the wavelet-based Mihcak’s

filter, blue sky images were used to estimate the PRNU. This

suggests that the filters are very sensitive to the content of

images used. It is, however, worth noting that the assumption

on the availability of blue sky images may not be realistic in

practical forensic applications.

Since most of the computational complexity in PRNU

estimation is due to the filtering process, the computational

cost of the filters is evaluated here. The average running

time on a test image of size 512 × 512 is compared. All

the source codes were implemented in MATLAB and run on

a platform of an Intel Core Duo i7 − 4770 CPU 3.40GHz

with 16 GB of memory. We used the authors’ implementation

of the wavelet-based Mihcak’s filter and BM3D while we

implemented the other filters. The results in (ms) are depicted

in Table V. The computational cost of the proposed filter is low

TABLE V
CPU TIMES OF DIFFERENT FILTERING OPERATIONS.

Filter CPU Time (ms)

BM3D [31] 4344
PCAI8 [20] 3155

Wavelet-based [8], [32] 851
LADCTHV

1
1505

in comparison with PCAI8 and BM3D but is slightly higher

than that of the wavelet-based filter. It is, however, worth

mentioning that the main computational component in our

proposed filter is the DCT and inverse DCT applied on 8× 8
image blocks. Therefore, one can explore some parallelism to

run these transforms on image blocks of different locations

simultaneously since each block DCT (or inverse block DCT)

does not depend on the result of other block DCTs (or inverse

block DCTs).

2) Weighted averaging vs constant averaging: In the rest

of the paper, the improved LADCT1 filter, i.e., LADCTHV
1

with the proposed block-based adaptive threshold as given

in (14) is used unless otherwise stated. In this section, the

efficiency of the WA technique is illustrated. It is worth

noting that only the green channel is used for the PRNU and

noise residue estimation in this section. The analysis of color

combination methods will be discussed in the next experiment.

The results depicted in Table VI show that the WA LADCTHV
1

offers a clear improvement over the constant averaging-based

PRNU estimation with the LADCTHV
1 filter for both datasets.

This is true for all image sizes. As can be seen, significant

enhancements are obtained especially on the Dresden dataset

with image size 128×128 and 256×256, where the decrease

in FNR and FPR reaches 15% and 30% respectively. However,

smaller improvements have been achieved on our dataset.

3) Color PRNU evaluation: Here we adopt the WA tech-

nique discussed earlier. Different methods for combining color

channels in PRNU estimation are assessed. That is, the green

channel-based PRNU as suggested in [11] [27], the luminance

image-based PRNU estimation as mentioned in [19] [25],

the luminance PRNU method as proposed in [8] [17] [26],

and finally the color combination scheme developed in [22].

Note that the authors in [22] developed three schemes but

scheme 3 is used here because it has been found to deliver the

best performance. The results shown in Table VII reveal an

interesting finding in that the PRNU extracted from gray level

images seems to offer better source camera identification than

that of the green channel in both datasets. Also, it is clear that

the combination of the three RGB channels as proposed in [22]

outperforms the methods which use the green channel only,

the Luminance image and the luminance PRNU. Finally, the

proposed color concatenation achieves the best performance

among the tested methods.
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TABLE VI
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH CONSTANT AND WEIGHTED AVERAGING METHODS.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Averaging 128 256 512 128 256 512 128 256 512 128 256 512
Constant 23.65 12.04 6.77 1.97 1.00 0.56 25.75 9.52 2.90 2.86 1.06 0.32
Weighted 23.58 11.12 6.69 1.96 0.92 0.55 21.69 6.62 1.79 2.41 0.74 0.20

TABLE VII
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH DIFFERENT COLOR COMBINATION METHODS.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Method 128 256 512 128 256 512 128 256 512 128 256 512
Green plane [11] [27] 23.58 11.12 6.69 1.96 0.92 0.55 21.69 6.62 1.79 2.41 0.74 0.20

Luminance image [19] [25] 23.35 10.73 6.42 1.95 0.89 0.54 20.10 6.09 1.64 2.23 0.68 0.18
Luminance PRNU [8] [17] [26] 22.46 10.40 6.40 1.87 0.90 0.52 19.28 5.60 1.60 2.14 0.60 0.20

RGB scheme 3 [22] 22.46 10.58 6.30 1.87 0.88 0.52 18.31 5.41 1.55 2.03 0.60 0.17
Color concatenation 21.35 10.20 6.10 1.78 0.85 0.52 14.40 4.15 1.45 1.72 0.51 0.16

B. Comparison with state-of-the-art systems

In this section, the proposed system, referred here to

as Color LADCTHV
1 +WA, is assessed in comparison with

existing state-of-the- art systems, namely Basic PRNU [8],

the Maximum Likelihood Estimator MLE3 [10], Phase

PRNU [11], Color Decoupling estimator (CD PRNU) [21],

wavelet-based Mihcak’s filter followed by Weighted Aver-

aging (Wavelet+WA) [16], and Wiener-median PRNU [19].

The comparative analysis covers three different aspects, i.e.,

source camera identification, source camera verification, and

the purity of PRNU estimation. It is worth mentioning that

CCN has been used in the proposed system as described in

subsection II-D.

1) Source camera identification: In source camera identifi-

cation, the forensic analyst possesses a number of cameras

and the objective is to identify the camera used to take a

picture. Here, it is assumed that the picture has been taken

by one of the cameras available. Therefore, a test image is

assigned to a specific camera if the corresponding PRNU

provides the highest similarity when compared with the noise

residue extracted from that image as described earlier in

section III-A. The results of FNR and FPR on our dataset and

the Dresden dataset are depicted in Table VIII. As can be seen,

the proposed system provides the best performance on the two

datasets for all image sizes. The difference is more significant

on the Dresden Dataset with clear enhancements to FPR and

FNR exceeding 50% when compared with other techniques.

If one takes the Basic PRNU technique [8] as a reference

point, the Wiener-median PRNU technique [19] does not bring

clear improvements. It is, however, worth highlighting some

improvements with larger size images which suggest that the

technique is sensitive to the image size.
2) Source camera verification: The task of the forensic

analyst in source camera verification is to verify whether
a source camera has been used to acquire a given picture.
Because a threshold must be set in order to reach such a
decision, one can use a range of values in order to measure
the performance of the system, i.e., the False Acceptance
Rate (FAR) and the True Acceptance Rate (TAR), for each

3We note that the MLE technique [10] delivered adversary results for σ = 5
as opposed to the best performance shown here with σ = 3.

threshold value as will be described later. This leads us to
what is known in the literature as the Receiver Operating
Characteristics (ROC) curve. Again, 50 images per camera
are used to estimate the PRNU while the remaining images
are used in the testing. In this experiment, 23 cameras (our
dataset combined with the Dresden dataset) have been used
to calculate the values of similarity between each source
camera PRNU and the noise residues extracted from images of
different cameras. This enables us to calculate FAR as follows.
Denote by CCN(xj , yki ) the measure of similarity between
the PRNU xj of a camera Cj and the noise residue yki of an
image i taken by the camera Ck. Given M different cameras
and Nj test images per camera Cj , the FAR for each threshold
T can be determined as

FAR(T ) = Prob(CCN(xj
, y

k
i ) > T |yk

i ̸∈ C
j) (29)

(k, j) ∈ {1, 2, · · · ,M} ; i ∈ {1, 2, · · · , Nj}

On the other hand, the values of similarity between each source
camera PRNU and the noise residues extracted from images of
the same camera have been calculated and compared against
the same threshold value T to determine TAR as

TAR(T ) = Prob(CCN(xj
, y

j
i ) > T ) (30)

j ∈ {1, 2, · · · ,M} ; i ∈ {1, 2, · · · , Nj}

It is worth mentioning here that the process of removing the

shared component is conducted as proposed in [10] to reduce

the correlation between the PRNUs extracted from different

cameras. The ROC curve performance of the proposed system

along with that of existing state-of-the-art techniques are dis-

played in Fig. 4, 5, and 6 for various image sizes respectively.

In practical applications, it is extremely important to ensure

a sufficiently low FAR (the ROC performance against low

FPR is more critical); consequently, the horizontal axis of

all the ROC curves is adjusted to illustrate the detail of the

ROC at low FAR accordingly. The experimental results show

that the proposed system performs better than its competitors.

This is true for all image sizes. In Tables IX and X, the

TAR at fixed values of FAR (10−2 and 10−3) are depicted.

As can be seen, the systems perform differently in source

camera verification when compared to the results of source

camera identification. Indeed, the CD PRNU technique is

outperformed by the basic PRNU technique. Interestingly, the

Wiener-median PRNU technique appears significantly more
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TABLE VIII
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH DIFFERENT TECHNIQUES.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Technique 128 256 512 128 256 512 128 256 512 128 256 512
Basic PRNU [8] 24.15 11.27 6.88 2.06 0.94 0.58 29.90 10.53 2.51 3.26 1.13 0.28

MLE [10] 23.54 11.04 6.35 1.96 0.91 0.53 28.45 10.34 2.46 3.16 1.12 0.27
Phase PRNU [11] 23.27 11.00 6.31 1.94 0.92 0.53 28.45 10.10 2.03 3.14 1.12 0.23
CD PRNU [21] 23.88 10.21 5.81 1.99 0.85 0.50 31.25 10.48 2.32 3.50 1.10 0.26

Wavelet+WA [16] 22.31 10.58 6.23 1.89 0.90 0.54 23.72 7.44 1.69 2.62 0.92 0.20
Wiener-median PRNU [19] 29.15 13.08 6.38 2.43 1.09 0.52 30.00 10.92 2.37 3.33 1.21 0.26

Color LADCTHV
1

+WA 21.27 9.85 5.46 1.77 0.82 0.48 14.11 3.96 0.93 1.74 0.70 0.10
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Fig. 4. Overall ROC curves with image size 128× 128.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

False Acceptance Rate

T
ru

e 
A

cc
ep

ta
n

ce
 R

at
e

 

 

Basic PRNU [8]

MLE  [10]

Phase PRNU [11]

Wavelet+WA [16]

Wiener & median PRNU [19]

CD PRNU [21]

Color LADCT
1
HV+WA

Fig. 5. Overall ROC curves with image size 256× 256.

TABLE IX
TAR AT FAR=10−2 .

Technique 128× 128 256× 256 512× 512
Basic PRNU [8] 0.5660 0.7113 0.7608

MLE [10] 0.5730 0.8081 0.9286
Phase PRNU [11] 0.5878 0.7839 0.9317

CD PRNU [21] 0.3079 0.6460 0.7392
Wavelet+WA [16] 0.5929 0.8178 0.9283

Wiener-median PRNU [19] 0.5251 0.7906 0.9214
Color LADCTHV

1
+WA 0.6238 0.8227 0.9317

powerful than CD PRNU and Basic PRNU on images of size

256 × 256 and 512 × 512 and close to the phase PRNU.
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Fig. 6. Overall ROC curves with image size 512× 512.

TABLE X
TAR AT FAR=10−3 .

Technique 128× 128 256× 256 512× 512
Basic PRNU [8] 0.3358 0.4230 0.5289

MLE [10] 0.3527 0.6578 0.8965
Phase PRNU [11] 0.4480 0.6772 0.8970
CD PRNU [21] 0.0300 0.1480 0.3947

Wavelet+WA [16] 0.3116 0.6728 0.8734
Wiener-median PRNU [19] 0.3827 0.6820 0.8850

Color LADCTHV
1

+WA 0.4647 0.7321 0.9026

Surprisingly, CD PRNU performs worse than the Basic PRNU

and MLE in camera verification. Note that CD PRNU has been

shown in [21] to outperform MLE in a number of PRNU-

based image authentication experiments but these were slightly

different from ours. Indeed, in the ROC curves plotted in [21],

the authors estimated the values of TAR and FAR for an

individual camera by varying a certain threshold. This is a

single camera verification problem and such a different setting

could justify the different performance here since our varying

threshold is applied to multiple cameras in order to estimate

the overall TAR and FAR. In this context, it is worth noting

that experiments on single and multiple camera verification

were conducted by Swaminathan et al. in [47] where it was

shown that the performance of their system differs in each

experiment. Overall, the results of source camera verification

confirm the superiority of the proposed system.

3) Purity of the PRNU: In this experiment, we aim to

quantify the purity of the estimated PRNU with the proposed

system as well as with other competing systems. The idea
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underlying this experiment is that the similarity between

PRNUs extracted from the same sensor must be equal to the

highest possible value while the similarity between PRNU’s

estimated from different cameras must be minimum because

the actual PRNUs are statistically independent and similar to

a white Gaussian noise. Five PRNUs have been estimated

for each digital camera where each uses 50 different images.

Different block size values have been considered (64 × 64,

128× 128 and 256× 256). Similar to sub-section III-B2, we

have combined our dataset with the Dresden dataset to obtain

a consistent number of similarity measures. These measures

have been collected by comparing each PRNU with all other

PRNUs. The Equal Error Rate (EER) has been adopted in this

experiment to illustrate the purity of PRNU estimation for each

technique. The EER defines the point in percentage where the

false rejection rate (i.e., 100(1 − TAR)) becomes equal to

the false acceptance rate. This can be determined by finding a

threshold T ∗ so that FAR(T ∗) = 100(1−TAR(T ∗)). As can

be seen in Table XI, the proposed system offers the smallest

EER values. Interestingly, PRNU estimation with the Basic

TABLE XI
EER (%) ILLUSTRATING THE PURITY OF ESTIMATED PRNUS.

Technique 64× 64 128× 128 256× 256
Basic PRNU [8] 2.62 2.60 2.18

MLE [10] 2.20 1.31 0.007
Phase PRNU [11] 2.54 0.87 0

CD PRNU [21] 3.09 0.90 0
Wavelet+WA [16] 2.28 1.83 0

Wiener-median PRNU [19] 2.64 0.95 0

Color LADCTHV
1

+WA 2.17 0.51 0

PRNU technique and MLE is less accurate than that with

other competing techniques for the block size of 128 × 128
and 256× 256. This suggests that the estimation of the noise

residue from individual images plays a crucial role in source

camera identification and verification.

IV. CONCLUSION

In this paper, an efficient source camera identification and

verification system has been introduced. The idea uses an

improved locally adaptive DCT Filter followed by a weighted

averaging method to exploit the content of images carrying

the PRNU efficiently. Furthermore, since the physical PRNU

is present in all color planes, the estimated color PRNUs have

been concatenated for better matching. The system has been

thoroughly assessed where the gain obtained with each of

its components has been highlighted through intensive exper-

iments on two different image datasets considering various

image sizes. Finally, an experimental analysis covering three

application scenarios in digital image forensics has shown

the superiority of the proposed system over state-of-the-art

techniques.
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APPENDIX A

PROOF OF (20)

First, to obtain an unbiased estimation, the weights are

assumed to sum up to 1; that is [45]

N∑

k=1

wk = 1 (31)

Let us define the Mean Square Error (MSE) as

e =
1

L

L∑

j=1

(ŝ(j)− s(j))2 (32)

where ŝ is the estimated version of s as given by (19). In a

matrix form, the MSE can be expressed as

e = E[(WTX − s)2]

= WTE[XXT ]W + E[s2]− 2WTE[sX] (33)

where T is the transpose operation. X = [x1, x2, · · · , xN ]T

and W = [w1, w2, · · · , wN ]T . The gradient of the MSE in

respect to W is

∆W (e) = 2E[XXT ]W − 2E[sX] (34)

Minimizing the MSE leads to the following estimate

E[XXT ]W ∗ = E[sX] (35)

Under the assumption that the noise Ψi is centered (i.e., zero

mean) and independent of the signal s, we obtain

E[XXT ] = UTE[s2]U +




σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...

0 0 · · · σ2
N


 (36)

where U = [1, 1, · · · , 1] and E[sX] = E[s2]UT . From (35)

and (36), it follows

w∗
1σ

2
1 = w∗

2σ
2
2 = · · · = w∗

Nσ
2
N (37)

In view of (31) and (37), the weights can be deduced as

w∗
i =

1

σ2
i


 1
∑N

k=1
1
σ2

k


 (38)
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