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ABSTRACT

Sensor Pattern Noise (SPN) is an inherent fingerprint of
imaging devices, which has been widely used in the tasks of
digital camera identification, image classification and forgery
detection. In our previous work, a feature extraction method
based on PCA denoising concept was applied to extract a
set of principal components from the original noise residual.
However, this algorithm is inefficient when query cameras are
continuously received. To solve this problem, we propose an
extension based on Candid Covariance-free Incremental PCA
(CCIPCA) and two modifications to incrementally update the
feature extractor according to the received cameras. Experi-
mental results show that the PCA and CCIPCA based features
both outperform their original features on the ROC perfor-
mance, and CCIPCA is more efficient on camera updating.

Index Terms— Digital forensics, sensor pattern noise,
camera identification, PCA denoising

1. INTRODUCTION

Digital camera identification is the process of linking digital
images to the cameras that acquired them. Sensor pattern
noise has been proved to be a reliable fingerprint of imaging
device for digital camera identification. The deterministic
component of SPN is the photo-response nonuniformity
(PRNU) noise, which is primarily caused by the variable
sensitivity of each sensor pixel to light. It is essentially slight
variations in the intensity of individual pixels and an unique
pattern deposited in every image taken by a sensor.

To determine whether a query image is taken by a suspect
camera, three steps have to be taken. 1) The first step is the
SPN extraction from the query image. Lukas et al. [1] first
adopted a wavelet-based Wiener filter to extract SPN from
digital image. After that several methods for SPN extraction
or enhancement have been proposed. Dabov et al. [2] pro-
posed a sparse 3D transform-domain collaborative filtering to
extract SPN. Since PRNU is a kind of multiplicative noise,
Chen et al. [3] proposed a Maximum Likelihood Estimation
(MLE) method to estimate the corresponding multiplicative
factor from the reference images. In [4], Li introduced
a SPN enhancer to suppress the contamination caused by
image content. A further investigation into SPN’s location-

dependent quality is reported by Li and Satta in [5]. In [6], Li
et al. proposed a Colour-Decoupled PRNU extraction method
to prevent the CFA interpolation noise from propagating into
the physical components. In [7], Kang et al. introduced a con-
text adaptive SPN predictor to suppress the impact of image
content. 2) The second step is to estimate the reference SPN
from the suspect camera, usually done by averaging multiple
SPNs extracted from smooth images taken by that camera. 3)
The final step is to detect whether the query SPN correlates to
the suspect camera. Normalized cross-correlation is usually
adopted as the detector statistics [1]. Later, Goljan et al. [8]
introduced the Peak to Correlation Energy ratio (PCE) as a
replacement for the normalized correlation detector. Another
detection statistic CCN (correlation over circular correlation
norm) is then proposed by Kang et al. [9].

There have been many efforts to improve the performance
of digital camera identification. Some aimed at improving
accuracy, others aimed at improving efficiency. In real
applications, sensor fingerprint is usually extracted from large
image blocks, since large image blocks contain more SPN
information. However, the complexity of both SPN extraction
and correlation detection are proportional to the number of
pixels in noise residual. Hence the high dimensionality will
make the process of camera identification time consuming. To
solve this problem, Goljan et al. [10] proposed a fingerprint
digest, which is formed by keeping only a small number of
the largest fingerprint values and their positions. Later, Hu et
al. [11] proposed a fast fingerprint digest search algorithm to
further improve the identification efficiency. In [12], Bayram
et al. proposed to represent sensor fingerprint in binary-
quantized form, which speeds-up the correlation detection
and also greatly reduce the size of fingerprint.

In a previous work, we employed the concept of PCA
denoising [13] in digital camera identification. A feature
extractor based on this concept was applied to extract a small
number of components which contain most of the discrimina-
tive information of sensor fingerprint [14]. However, in real
applications images taken by new cameras may be added to
the database. In this case, it is infeasible to re-conduct PCA
every time when a new data arrives. To address this problem,
we propose an extension based on CCIPCA and two relevant
modifications to incrementally update our feature extractor
with the new images taken into account.



2. PROPOSED METHOD

2.1. PCA-based feature extraction
In SPN based camera identification, we usually extract noise
residual from large image blocks to improve the identifica-
tion accuracy, since large image blocks contain more SPN
information. As a result, noise residual usually has a very
high dimensionality (e.g. 1024×1024 pixels). However, the
high-dimensional noise residual also tends to contain more
redundancy and interfering components. For example, noise
residual can be contaminated by color interpolation, JPEG
compression, distortion introduced by denoising filter and
other artifacts. Most of these artifacts are non-unique, redun-
dant and less discriminant. Removing them will enhance the
SPN signal in noise residual and improve the identification
accuracy. Nevertheless, they are mixed with the real SPN
signal in noise residual and it is very hard to separate them.

PCA [15] is a decorrelation method which has been
widely used for dimensionality reduction and redundancy
removal. In our case, we attempt to find a PCA transformed
domain which can better separate the real SPN signal and
these redundant features. By excluding these redundant
features, we can extract a set of features which contain most
of the discriminative information of SPN signal.

2.1.1. Optimization of training samples

However, SPN is a subtle signal which can be severely
contaminated in noise residual by scene details. These scene
details may significantly increase the number of irrelevant
components. And these components will be more dominant
than SPN signal. Without removing these strong contamina-
tions from the training set, PCA is more likely to find a set of
components that will represent these noisy components rather
than the real SPN signal. To avoid this problem, two strategies
are applied:

1) Sample selection. For training sample selection, we
give the priority to the noise residual extracted from low-
variation images. It is because such images are more close
to the evenly lit scene and contain less scene details. Hence
these images can better exhibit the changes caused by SPN in
intensity between individual pixels. By choosing this kind of
images for SPN extraction, it will capture the energy of true
SPN in the training set and guide PCA to find a set of features
that better represent the SPN signal rather than other noisy
components.

2) SPN extraction. Several SPN extraction methods in the
literature could be used here to further enhance the energy
of SPN signal in training set. Note that this step would be
more important when only natural images (with scene details)
instead of low-variation images are available for training.
Assume there are n images {Ii}ni=1 taken by c cameras
{Cj}cj=1 in the database. We first extract noise residual from
the N×N -pixels blocks cropped from the centre of these full-
sized images and reshape them into a set of column vectors

{xi ∈ RN2×1}ni=1 with zero mean. These n SPN vectors are
then used as the training set.

2.1.2. PCA-based extractor and limitation

PCA is performed to seek a set of orthonormal vectors vk and
their associated eigenvalues λk. The vectors vk and scalars
λk are the eigenvectors and eigenvalues, respectively, of the
covariance matrix S

S =
1

n

n∑
i=1

xix
T
i = AAT (1)

where A= 1√
n
[x1, . . . ,xn] ∈ RN2×n. Notice that the dimen-

sionality of SPN could be extremely high (e.g., N2=10242).
Therefore, directly solving the eigenvalue decomposition
problem of S ∈ RN2×N2

incurs a prohibitive computational
cost (with a complexity O(N6)). To make PCA feasible for
the high-dimensional SPN, we apply a fast method instead of
computing these eigenvectors (when n ≪ N2). Assume vk

′

is the unit eigenvector of ATA ∈ Rn×n with eigenvalue λ′
k.

We could obtain ATAvk
′ = λk

′vk
′. Multiplying both sides

by A, we have AAT (Avk
′) = λk

′(Avk
′), where Avk

′ are
the eigenvectors of AAT = S with eigenvalues λk

′. Thus,
instead of solving the eigenvalue decomposition of matrix
S directly, we can calculate the eigenvectors vk

′ via the
smaller matrix ATA ∈ Rn×n and obtain the objective vk by
vk = Avk

′. The obtained {vk}nk=1 are then normalized and
sorted in the descending order according to their associated
eigenvalues λ1 ≥ λ2 ≥ ...λn. Note that only when n ≪ N2,
computing eigenvectors via this method (with a complexity
O(n3)) would be more effective than the traditional way.

The eigenvectors with the d largest eigenvalues are select-
ed to form a feature extractor M = [v1, ...,vd] ∈ RN2×d.
We keep the top d eigenvectors corresponding to 99% of the
variance as it could give us the best result. Based on this
feature extractor M , we can obtain a new feature with much
lower dimensionality by

yi = MTxi, i = 1, 2, ..., n. (2)

where yi ∈ Rd×1 is the compact version of the original vector
xi. The experimental results in Section 3 show that this PCA-
based feature could outperform its original feature according
to the ROC analysis, which means the SPN signal has been
further purified during this feature extraction.

However, there is a limitation of this PCA-based feature
extraction algorithm. This system requires that all the training
samples be available before feature extractor M is estimated.
In real applications, new images taken by unknown cameras
will be added to the database continuously. To ensure the
accuracy, we have to repeat the entire training that includes
these new images/cameras. This would incurs a costly re-
computation and exorbitant memory-requirement burden. To
overcome this limitation, an extension based on incremental
learning scheme is employed in this work.



2.2. Incremental camera learning
Incremental learning method is usually adopted to add new
samples to the original training set and update the PCA
representation with less computational burden. CCIPCA
was introduced in [16] to incrementally update the leading
eigenvectors without estimating the covariance matrix. In this
work, we propose a method based on CCIPCA to incremen-
tally update feature extractor so as to accommodate the new
received images/cameras. Assume we have already computed
the initial feature extractor M from the original training set
{xi}ni=1. We can generate n̂ noise residual vectors {x̂i}n̂i=1

from the continuously received ĉ cameras. To incrementally
update the feature extractor according to these new cameras,
we can use the following algorithm

Algorithm
Input:The initial feature extractor M = [v0

1 ,v
0
2 , ...,v

0
d], the

new received SPN vectors {x̂i ∈ RN2×1}n̂i=1 from ĉ cameras;
Output: The new feature extractor M̂ = [vn̂

1 ,v
n̂
2 , ...,v

n̂
d̂
]

updated by n̂ samples;
for i = 1 to n̂ do

step 1: v0
d+i =

x̂i

∥x̂i∥ , M=[v0
1 ,v

0
2 , ...,v

0
d+i]∈ RN2×(d+i);

step 2: Initializing x̂1
i = x̂i;

for k = 1 to d+ i do
step 3: vi

k = n−l−1
n vi−1

k + l+1
n x̂k

i x̂
kT
i

vi−1
k

∥vi−1
k ∥ ;

step 4: x̂k+1
i = x̂k

i − x̂kT
i

vi
k

∥vi
k∥

vi
k

∥vi
k∥

;

end for
end for
step 5: After normalizing [vn̂

1 ,v
n̂
2 , ...,v

n̂
d+i], selecting the first

d̂ leading eigenvectors to form a new feature extractor M̂ =

[vn̂
1 ,v

n̂
2 , ...,v

n̂
d̂
] ∈ RN2×d̂.

In this algorithm, vi
k is the k-th eigenvector derived from

the first received i sample vectors. x̂k+1
i means the residual

of the sample x̂i after subtracted by the projections in the first
k eigenvectors [vi

1,v
i
2, ...,v

i
k], and serves as the input data for

the next iteration. By doing so, the residual left by the first k
eigenvectors will be complemented in the computation of the
higher order eigenvectors.

Compare to the algorithm in [16], the main contributions
of our method are: 1) step 1 is introduced in this algorithm
to support more eigenvector candidates for constructing the
new feature extractor M̂ , which could improve the accuracy
of extractor estimation for accommodating the new cameras.
At the meantime, step 5 is proposed to keep the extractor low
dimensionality by discarding the less important eigenvectors
from all the candidates. 2) l is the weighting parameter. We
run this algorithm with l=−0.8 to prevent from assigning too
much weight to the new cameras and diluting the effect of
old cameras. For each new arrived sample, the direction of
every eigenvector will be adjusted once. To avoid too much
adjustment for a signal camera, we use at maximum 5 samples
from each newly received camera for updating.

3. EXPERIMENTS

3.1. Experimental setup
In this work, the noise residuals extracted by the methods
in [3] (MLE) and [7] (Kang) are used as the original features.
In order to testify the feasibility of the proposed method, the
performance of these original features combined with and
without the proposed scheme are compared. The experimen-
tal work are conducted over the Dresden Image Database [17].
A total of 1600 images from 8 cameras are involved in our
experiments, each responsible for 200. These 8 cameras
belong to 3 camera models, each camera model has 2∼3
different devices. These cameras are listed in Table 1. For
each camera, we have 50 low-variation images for training
and 150 images with scene details for testing. Hence there are
150×8 matching and 1050×8 mismatching pairs in total. In
our experiments, MLE/Kang+8C-PCA indicates that all the
noise residual are extracted by MLE/Kang method and the
feature extractor is estimated by PCA which includes all the
8 cameras in the training process; 5C-PCA means only the
5 initial-cameras are involved in PCA training; and 5(3)C-
CCIPCA denotes that the 5 initial-cameras are first applied
by PCA to estimate the initial feature extractor and the rest
3 added-cameras are then sequentially added to update the
initial feature extractor via our CCIPCA-based method.

Table 1. Cameras from Dresden Database
Cameras Resolution Satatus
Canon Ixus70 A 3072× 2304 initial
Canon Ixus70 B 3072× 2304 initial
Nikon CoolPixS710 A 4352× 3264 initial
Samsung L74wide A 3072× 2304 initial
Samsung L74wide B 3072× 2304 initial
Canon Ixus70 C 3072× 2304 added
Nikon CoolPixS710 B 4352× 3264 added
Samsung L74wide C 3072× 2304 added

3.2. Performance evaluation
Fig.1 shows the histograms of correlation values obtained
from different methods. By comparing Fig. 1(a) with Fig.
1(b) and 1(c), we can see that after the feature extraction,
the separation between intraclass and interclass is clearer and
the overlapping area becomes smaller. It suggests that the
features extracted by 8C-PCA or 5(3)C-CCIPCA are both
superior than their original feature. But the performance of
8C-PCA is the upper bound of 5(3)C-CCIPCA. Such as in
Fig. 1(c), we can see the tail of the mismatching distribution
is wider than that in Fig. 1(b). This is mainly due to the
approximation error between the principal components of
PCA and those of CCIPCA. However, so far it still remains
an open question and beyond the scope of this paper.

We use the overall Receiver Operating Characteristic
(ROC) to compare the performances of different features, the
experimental results are shown in Fig. 2 and Fig. 3. We
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Fig. 1. Histogram for the correlation values obtained from different methods, 256× 256 pixels (Note the X-axis range).
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Fig. 2. ROC curves of different features based on MLE [3].
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Fig. 3. ROC curves of different features based on Kang [9].

can see that: 1) The ROC performance of features extracted
by 8C-PCA and 5(3)C-CCIPCA are both higher than that of
the original features. It is because that the proposed feature
extractor can further exclude the redundancy and interfering
features from the noise residual obtained by the MLE or
Kang method. 2) The ROC performance of 5C-PCA is the
worst among the four methods. This is mainly because that
this feature extractor is only estimated from the 5 initial-
cameras, which is not accurate enough to represent the rest
3 added-cameras. Thus, there will be a large number of
false positives from these 3 added-cameras. Repeating a
training that includes these 3 added-cameras can regain the

Table 2. Computational time for updating a single camera to
a training set with 10, 20 and 40 cameras, respectively.

Training time (Seconds)
10+1 cameras 20+1 cameras 40+1 cameras

PCA 2.91 9.65 45.84
CCIPCA 0.85 0.86 0.86

accuracy, but it will incur costly re-computation especially
when the number of overall cameras is huge. Therefore, our
CCIPCA-based method is proposed to improve the efficiency.
We can see from Table 2, the computational time can be
significantly reduced by applying CCIPCA to update new
cameras. 3) The ROC performance of 5(3)C-CCIPCA feature
is very close to that of 8C-PCA. This is a good indication
that the proposed incremental updating approach can not only
significantly improve the updating efficiency, but also well
preserve the identification accuracy.

4. CONCLUSION

In our previous work, a feature extraction algorithm based
on PCA denoising was proposed to extract a feature set with
much lower dimensionality from the original noise residual.
In order to improve the reliability of this estimated feature
extractor, in this work, two strategies are applied to optimize
the training samples. However, this algorithm requires that
all the cameras be available before feature extractor M is
estimated. It would incur costly computation of re-conducting
PCA whenever a new camera arrives. To solve this problem,
a CCIPCA-based extension and two modifications are pro-
posed to incrementally update the feature extractor so as to
accommodate the newly received cameras. The experimental
results show that PCA and CCIPCA based features both
outperform their original features on the ROC performance.
It suggests that the PCA-based feature extraction could serve
as a post-processing scheme to purify the noise residual
and further enhance the performance of other existing SPN
extraction methods. Moreover, when facing the real-time
online identification, our CCIPCA-based feature extraction
method is an effective extension which can significantly
reduce the computational complexity while preserving the
identification accuracy.
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