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On the Sensor Pattern Noise Estimation ir
Image Forensics: A Systematic Empirical
Evaluation

Mustafa Al-Ani, and Fouad Khelifivlember, IEEE

Lukas et al. [1] and it is known as the Photo Response
Abstract— Extracting a fingerprint of a digital camera has Non_Uniformity (PRNU). It results from the variations of the
fertile applications in image forensics, such as source camera sensor pixels at collecting the light energy (this is due to
identification and image authentication. In the last decade, Photo jmperfections in the manufacturing of the pixels' physical
Response Non_Uniformity (PRNU) has been well established as agimensions as well as the non homogeneity that is naturally
reliable unique fingerprint of digital imaging devices. The PRNU  resant in the silicon in sensors). The variations in quantum

noise appears in every image as a very weak signal, and its . . . .
reliable estimation is crucial for the success rate of the forensic effICI_ency amﬂ/?xrllvg pl);els can be Captuhredd_and d_enoteci Vﬁlth a
application. In this paper, we present a novel methodical Matrix K€ RT, whereM X N are the dimensions of the
evaluation of 18 statesf-the-art PRNU estimation/enhancement S€nsorK follows a (zero-mean) white Gaussian distribution.

techniques that have been proposed in the literature in vasus ~When an imaging sensor is illuminated with light intensity
frameworks. The techniques are classified and systematically Y € RM*V, in the absence of other noise sources, the sensor
compared based on their role/stage in the PRNU estimation generates a sign¥il+ KY. (The product of the matrices herein
procedure, mar_lifesti_ng their in_trinsic impacts. The p(_arformarce is elementwise.)
of each technique is extensively demonstrated with ovez.2 With the described underlying mechanism of generating
million test images to conclude this case-sensitive study. The o aorementioned non-uniformity, a unique pattern of spatial
experiments have been conducted on our created databamed a : L s L .
public image database, the 'Dresden image database'. noise Fhat is fixed for an individual camera is mtegrated_ in
every image. In contrast to other sources of random noises,
Index Terms—Authentication, camera identification, digital  this noise is of a deterministic nature and cannot be eliminated
forensics, photo response non-uniformity (PRNU), sensor pattern by averaging (‘pattern noise’ is the term used in the literature
noise (SPN). to describe such systematic noise). However, whilst other
sources of noise are added and the generated signal is gamma
corrected, colour de-mosaicked and corrected, de-noised and
I. INTRODUCTION subjected to few other operations in the pipeline of digital
cameras, the PRNU noise can still survive for estimation [2].

In general, forensic applications of PRNU fingerprint fall in
Nowadays, digital cameras have increasingly becomgo categories:

affordable and available for almost everyone in the society) |mage Origin Identification: There are various

and hence millions of pictures are being taken, transmitted aggplications under this category. The most popular
saved digitally on a daily basis. In the file headers of theggplications are source camera identification and source
digital images, there is useful information about the sourG&mera verification. For the former, the main goal is to
camera, time and data, camera settings, exposure, &fgntify the exact camera that was used to take a query image
However, this information can be easily stripped off angmong other cameras provided to the analyst. In verification,
tampered, and hence it cannot be used as a trustworthy soygRever, the forensic analyst aims to determine whether an
for sensitive ISSUES, such as courtrooms and criminal eVIdenﬁﬂage was taken by a certain camera or not. In both cases, the
~ Digital cameras leave traces in the pixel data of thegameras or sets of images taken by the cameras are available
images. Researchers have found and extracted traces gndhe analyst. Another application, known as fingerprint
features of different types and origins to use for various imaggatching, is to link a set of images to another set among a
forensic analyses. Forensic applications in general demanghgge database. This scenario could be met when a set of
substantially high accuracy, and one of the most reliabjgalicious images become available to the analyst to search a
features that can provide such accuracy was first exploited gyblic database to find images taken by the same camera.
More applications include video clip linking in which the aim
This work is supported by the EPSRC Research Grant (EP/LR1§81 is to attribute a set of images to another set where the set is
Mustafa Al-Ani is with the Facqlty of Science andchiaology, Univers!ty taken from a video clip. The problem of image origin has been
?nfg:ﬁf?énjgztr;ﬁitsf;iive”d'Sh Street, London, VELWY, UK. Email: - tempted in the literature using different approaches, such as
Fouad Khelifi is with the Department of Computer 8cie and Digital  [3]-[7]. However, a key characteristic of PRNU fingerprint is

Technology, University of Northumbria, Newcastle, NEE, UK. Email: that it serves as an intrinsic feature that can represent the
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A. Background



individual imaging device sensor. So that, it is not onlpecause of the high variations in the performances of the
possible to identify and differentiate device models of thmethods that can be seen among cameras and images.
same make, but also individual devices of the same modgl. Lo
Other methods such as [8] incorporate the PRNU ingredient The standard Procedure of PRNU Estimation
with another camera model identification approach to refine The PRNU of a camera can be estimated usingf its
the final results. PRNU fingerprint has also been used images1, € R™*" , I=1,.., L. Eachimage is de-noising
scanner identifications in [9] and [10]. first to separate the “original” image from its noise:
2) Image Forgery Detection The PRNU can serve as a kind fi=1—F(I). )
of watermark for image forgery detection. The idea is that
forgery operations such as object copy-move will change wtere F(.) is a filtering operation. The noise residual
destroy the PRNU in the forgery area. This is met when tigentains the PRNU noise and other types of random noises
forged object comes from another camera or the spattht cannot be used in forensic applications. The noise
location is changed when compared to the original imagegsiduals of the images are then typically averaged to suppress
Indeed, some malicious acts may preserve the PRNU aiti¢ random noises, and estimate the reference PRNU that
cannot be detected using this approach. There are numerg@g/es as the camera fingerprint. For further refinement of the
image forgery detection techniques in the literature [11]-[15PRNU estimate, diverse additional signal processing strategies
each has its assumption on the nature of manipulation. Whave been proposed and adopted in the literature.
no universal approach,_the practipal_solution is to incorpo.rateCa Paper Evaluation System and Outline
set of approaches of different principles to detect forgeries of . o i
various types. The diagram in Fig. 1 summarises the key stages of the
Many studies have confirmed the reliability of the PRNUPRNU estimation. The various techniques proposed in the
as a fingerprint for image forensic analysis, such as [16] wheérature _are categorised in this paper according to these
a large-scale experiment was conducteder one million Stages. The paper is organised as follows. We start with
images were tested spanning 6896 individual camerd§Scribing the numerical evaluation framework and the
covering 150 models. The promising results of the PRNBENchmark database in Section II. After we describe the
fingerprint have drawn the attention of many research groug%NU'_focused camera output model in Section III, we
in the last decade. However, the success rates of its forerisigoretically and numerically analyse the methods under each
applications are dedicated by the quality of the estimation 8f29e Of the PRNU estimation procedure in each section
this weak signal. Correspondingly, many techniques appeaf&g§Pectively. In Section IV, we analyse sevedainoising
with the objective of improving the success rate of a BRNOPeratons and provide our findings. We investigate the
forensic application through implicitly or explicitly enhancingStandard and the alternative approachesnaise residual
the quality of the PRNU estimation. The efficiency of £0mPpining in Section V. Section VI covers the various
proposed technique is usually demonstrated in a numeri@4f/Post-calculation PRNU ~ enhancement — techniquesn
experiment of a particular forensic application in a comparisopfction VI, the variouscompact PRNU representation
with few other techniques. Although these concerngdiethodsare studied and evaluatedternative enhancement
techniques go more o less in the same direction, they targfi@tegiesare examined in Section VIII. In Section IX, we
different stages of the PRNU estimation procedure. Thus, iRk over the different similarity measures that are used to
impacts of many of these improved PRNU estimatioRompare and link the estimated PRNUs in forensic
techniques are relatively unapparent, even for experts in tRBPlications. In Section X, conclusions are drawn.
field. This calls for a study that collects and categorises gl Notation

these techniques in order to systematically evaluate, compare,, .. omark that throughout the paper the boldface font
and manifest their contributions. This paper is the first anéjenotes matrices. Unless otherwise stated, operations

most complete effort to classifl the techniques proposed mamong/on matrices such as product, raising to a power, ratio,

the literature based on their role/stage in the PRNU estimatign : X
; and summation are elementwise. Alsdyn,n), m =
procedure. And, under each category those techniques are

reviewed and numerically evaluated through intensivi - Mn=1,.N, whereMxN are the dimensions of the
. . . sensor, represent the pixel positions, and they are used as

experiments. The relatively large-scale experiments are crucial,. . . . )

indices for matrices to designate their (pixel) components.

Images from the

Y —— Noise residuals Enhanced noise residuals PRMU estimate Enhanced PRNU estimatel

Image De-nalsing and [Optional) Enhancemer;t\‘) Nolse Reslduals » (Optional) Enhancement\

Subtracting e Dperation Combining Qperation /-/
- 4

Fig. 1. A diagram of the typical PRNU estimation praged



[I. NUMERICAL EVALUATION FRAMEWORK second metric to provide a more complete picture, we evaluate

the false positive (or negative) rate at the point where the false

ositive and false negative rates are equal in the ROC curve,
hich is known as the equal error rate (EER). We use the

8tation?€c to represent this performance measure forcttie
mera.

A. Performance Metric

As we mentioned earlier, the quality of the PRN
estimation is the performance characteristic that we seekﬁ
evaluate. To quantify the quality of the estimated PRNU, w
measure the similarity between PRNUs extracted from the _
same cameras, i.e. intraclass PRNU estimates, as well as e Datasetand Experimental Setup
dissimilarity between PRNU estimates of different camera Forty-five cameras, listed in Table | alidbelow, from our
sources, interclass PRNUs. The standard correlatiolatabase and the 'Dresden image database' [17], [18] are used
coefficient, i.e. the normalized cross-correlation, is used as@benchmark all the studied techniques. (We note that some
similarity measure. images from Dresden image database do not have the original

The estimated PRNU can contain different types ofsolution of their cameras because of digital zooming, and
contaminations; camera-model specific noise can be one tbéy must be excluded in PRNU based applications.) For each
them. The presence of this noise in estimated PRNUs cemimera, we create 144 sets of non-overlapping sub-images of
potentially increase the dissimilarity between some interclasize 64 x64 cropped from the original images. Such cropping
PRNU estimates, as opposed to more accurate and uniguuld allow us to expand our database, and it would increase
PRNU estimates with less camera model noises. Accordingtie challenge on the PRNU-based discrimination in order to
the numerical results would be influenced by the choice of tmeticeably differentiate between the performances of the
interclass cameras in the experiments. Therefore, in osiudied methods. The sub-images of each set of each camera
evaluation, we set the interclass experiments to PRNl@se grouped intol = 50 sub-images, and they are de-noised
extracted from the same camera model. and combined to yield a PRNU fingerprint estimate (for a

Ideally speaking, the distribution of the correlationcamera in our database for example, this would yield 10
coefficients between interclass PRNU estimates should P&NU estimates within each of the 144 sets and hence 1440
concentrated around zero, whereas the intraclass PRNElimates per camera). The PRNU estimates within each set
estimates should providea correlation close to one. are compared with each other as intraclass experiments. On
Nonetheless, the high impurity of the estimated PRNUs caudbe other hand, the similarities between PRNU estimates of
the two distributions to come near each other and overlap. Aifferent cameradut of the same model are measured as
example of the distributions of the intraclass and interclagsterclass experiments (for one camera in our database, this
correlation coefficients of the PRNU estimates for a certaiwould lead to 6480 intraclass experiments and @ver10°®
camera is shown in Fig. 2. These distributions could beterclass experiments). For unique cameras in Table | which
modelled for each camera as generalized Gaussihave no other cameras of the same model, since sub-images
distributions. However, the correlations cannot be describedopped from non-overlapping parts of the original images are
precisely using this model or any other model; accordingly waeant to contain different PRNU signals, the similarities of
cannot exploit the model’s parameters as reliable performance  those PRNU estimates are measured as interclass experiments.
metrics. Nonetheless, the “distance” between the two We can observe that the number of experiments per camera is
distributions echoes the quality of the estimated PRNbhiuch larger thanl/y, which would lead to a much reliable
signals. Therefore, the rate of overlap would be considerabteasure of the delicate metti, i.e. the true positive rate at
for a performance marker. To this end, we draw and explojt = 1073 false positive rate in the ROC curve.
the ROC curve to discriminate the interclass and intraclass All experiments are performed in MATLAB on 45
correlation coefficients and drive two well-establishedomputers in parallel with an Intel Core Duo i7-4770 @
performance measures. Since most of our studied technig@e40GHz processor and 16 GB of memory. Before we close
are developed to achieve low false positive rates in thehis section, we note that in colour images, the PRNUs can be
forensic application, the first metric we evaluate is the trusstimated from the three colour channels separately and then
positive rate aty = 1073 false positive rate in the ROC curve.combined using the standard RGB to grey scale conversion.
We denote this metric for theth camera byP.. As a Or, PRNU extraction can be performed once on the

combination of the three colour channels, i.e. luminance
‘ ‘ channel. An alternative approach is to focus solely on the
I Intraclass . . . . .
B nterclass green channel since it carries most of the PRNU information
and the least interpolation noise (a further discussion is
included in Section VIII). We adopt the last approach herein to
ease our long experiments.

lll. (PRNU-Focused) Camera Model

Regardless of the sensor type, the average signal generated
at a sensor frord € R”*¥ illumination is
Y + KY, 2)
0 004 008 012 016 02 whereK € R”*N represents the PRNU that follows a white

Fig 2. The distributions of the intraclass and interclasslzdion coefficients : TR, ..
of the PRNU estimates for an example camera. Gaussian distributionAnother source of pattern noige




TABLE |. THE LIST OF CAMERAS FROMDRESDENIMAGE DATABASE USED Component it is a|WayS present in an image and cannot be
IN OUR NUMERICAL EVALUATION. subtracted in common consumer cameras. Hence, several

Camera No. Camera Name No. of Images papers in the field recognise SPN as the fingerprint of a
camera sensor. With slight abuse of terms, we use the terms

1. SONYDSC-HX200V 630 P i ;
xchan ly to maintain th nsisten f the terminol
5 Kodak M1063 4 71 e ::h_a geably to maintal e consistency of the te ology
3. Kodak_M1063_0 464 in this paper.
4, Kodak_M1063_3 460 As we mentioned above, (2) represents the average number
5. Kodak_M1063_1 458 of collected electrons. The actual number can be more/less
?' ggfniﬁ}hgiggf‘z ;‘gg than or equal to the average, and its distribution about the
8 Panasonic. DMC-FZ50_1 215 average follows a Poisson distribution (where its variance
9. Panasonic_DMC-FZ50_0 265 equals its mean). It is usually referred to as shot noise or
10. Panasonic_DMC-FZ50_2 251 photonic noise. From above, the number of collected electrons
1. Nikon_D200_1 380 can be expressed as
12. Nikon_D200_0 372 Y+ KY+N N 3
13. Agfa_Sensor530s 373 Y+ KY+Npc+Ns, 3)
14. Agfa_DC-830I 363 whereNp¢ € RV is the number of electrons due to thermal
15. Sony_DSC-H50_0 284 energy, andNg € R¥*V is the zero-mean result of the Poisson
13' /S*gfr;‘ga%'?ffwi e o %g; shot noise. The output amplifier that transforms the photon-
18. Samsung_L74wide_2 231 induced electrons at the _sensors.in'go a measurable signal adds
19. Samsung_L74wide_1 224 a zero-mean read-out noise that is independent of the value of
20. Canon_|Ixus55 224 the signal. The signal is then gamma corrected to adjust to
g; S&i.’irpiﬁ’;saggualowsw—z ﬁg human vision and quantised with an ADC before saving. The
23 FujiFilm_J50_1 205 final image can be expressed as
24. FujiFilm_J50_0 210 I=g"(Y+KY+Ng+ Npc)’ +Ng, (4)
gg- gony_DSC';lF\'/i%_t giz whereg is the amplifier gainy(=0.45 typically) is the gamma
. amsung_ B MXN . . .
27 Samsung_NV15_1 511 factor, andN, € R is the qganhsatlon noise (the reader
28. Samsung_NV15_2 211 can refer to [19] for more details about camera noise sources
29. Olympus_mju_1050SW_1 209 and characteristics). With the Taylor expansidt+ x)* =
g(lJ' ggﬂfé‘f—gg;glfgsw—s %8; 1+ ax + 0(x?) atx = 0, and by re-arranging the bracket in
32. Praktica_DCZ5.9_3 206 (4) into the former, we reach ,
33. Praktica_DCZ5.9_1 205 — | NS+NDC|
34, Praktica_DCZ5.9_2 205 I=g"Y [1 +yK+yNs +yNpc + 0 ( K+——
35. Sony_DSC-W170_0 205 +N (5)
-

The last term in the square bracket is small and can be
TABLE Il. THE LIST OFOUR CAMERAS USED INTHE NUMERICAL

EVALUATION.. ignored. Let  Ip:=g"Y" and N;:=yNg+yNpc+ N,

Camera denotes the combination of the independent random noise

No. Camera Name No. of Images components. To avoid introducing many notations, the

1 Nikon L330 0 500 symbols are absorbed as follos:= yK. This leads to

2. Nikon L330 1 500 I=1I,+KIy, +N,. (6)

3. Panasonic TZ2Q0 500 The model is more or less adopted in all the existing PRNU-

g' El"jj?fﬁ;"ggggzozgl 288 based techniques despite the various terminologies. And,

6. Fuijifilm S2950 1 500 many techniques modeKl, + N, combined as white

7. Canon IXUS 0 500 Gaussian process. In the literature, some authors distinjuish

8. Canon IXUS_1 500 by the PRNU factor andKI, by the PRNU signal.

S Samsung PL1200 200 NonethelesskK is the actual fingerprint of a camera, and all

10. Samsung PL120L 500 !

the techniques implicitly or explicitly seek to estimate this

introduced at the imaging sensors, known as dark curreny uear;tgyN(L)Jrascaled version c hich we simply refer to by

This is due to thermal energy that can generate free electrons
in silicon with no illumination exposed on the sensor. There
are small fluctuations in the number of generated dark Various denoising methods have been exploited in the
electrons from pixel to another. Yet, this sensor pattefdRNU extraction in the image forensics research literature. In
imperfection cannot be used in image forensic. This is due tfee next subsections, we discuss all the techniques developed
its high dependence on the temperature and its direund adopted in the estimation of this weak signal.
proportionality to the exposure time setting in the camera thgt
is not always available for the analyst. Aldie dark currents ~~ "~ "~ o _ ]
are suppressed in some cameras by subtracting a dark framel Dis filter was originally proposed in [20], and it operates
from the final imageThe two sensor imperfections are knowrS follows. The fourth-level wavelet decomposition of the
combined as sensor pattern noise (SPN). However, PRN)20€ with the 8-tap Daubechies quadrature mirror filter is

noise is the most dominant part of SPN, and unlike the otHféist calculated. Let the wavelet coefficients in the vertical,
horizontal, and diagonal subbands be respectively denoted by

IV. DE-NOISING OPERATIONS

Wavelet-Based Filter



h(, ), v(i, ), d(, ), (i,j) € T, whereT is the index set of noise. The noise variance in this operation is set to 9 and the
the wavelet coefficients that depends on the decomposititfAP estimation, described in Subsection IV.A above, is used

level. The de-noised wavelet coefficients are obtained usitg obtain the local variance of the image content with a

the Wiener filter: window of size3 x 3.

/\2 . o
hy, G, ) = h(i,j)azéj%, (7)  C. 2-Pixel Approach
, 0

and similarly forv(i,j) andd(i, j). o¢ is the variance of the Modern low-medium end cameras have high sensor pixel

noise that is assumed to be a white Gaussian process, GRBSItY, and it is very likely that two pixels in the same
Meinity have close values in natural images. This method [23]

capitalises on this observation in spatial domain filtering. It
ounts on engaging as little as one adjacent pixel at estimating
e PRNU at a pixel location in order to suppress the
correlation between neighbouring pixels in the estimated
(supposedly white) signal. Lék, z) designate a pixel location
2,(i,j) = max (0’12 h2(x,2) — o2 |, ®) in the cIosg vicinity of(r_n, n). Simply speaking, based on the
model ofI in (6), a noisy estimate &(m,n)I,(m,n)at an
individual pixel can be produced by subtracting its value
I(m,n) by another pixel of the same (amplified and gamma
corrected) illumination Iy(x,z) but with opposite signed
PP S N NP S K(x,z). Thus to obtain a rough PRNU estimate, i.e. noise
°(0,J) — ml.n(023(.l’])’ aZS(l’J)I027(1’1)’029(}’])) ' (9) residual, at a certain pixel of ar?image, this technique searches
The de-noised image is then obtained by applying the inverse, 16 nexto-the-adjacent pixels to find one pixel with
wavelet transform on the de-noised coefficients. It was Sho"&'amparable value I(x,z)and an alternative signed

in [1] that the choi_ce Qfaoz haslittle i'mpact on the K(x)Ip(x,2z). We saw in Section Ill that the level of a
performance of the filter in PRNU extraction. The author% nsiderable part of the random noise at a pigeln)
throughout their various versions of this work, suggestq pends on its illumination. This search considers this pixel

setting g, between 2 and 5. dependent noise in finding a neighbouring pixel with a close
B. Context-Adaptive Interpolator (CAI) valuely(x,z). The noise residual at pixéin,n) of an image

In [21] the authors proposed an estimator based on an eigfitéStimated as
neighbour context-adaptive interpolation algorithm to SUPreggm, n) = IGm,n) — 1Cx, Z)'
the effect of image scenes (a four-neighbour version was 2
proposed in their conference paper [22]). It aims to identiffi(m,n) — I(x, z)| < y/I(m,n) and K(m, n)K(x,z) < 0. (11)
edges and to produce a high-quality PRNU estimat8tarting from the pixel on the (let’s say) top right corner, the
According to this method, the local regions are classified ingearch runs (anti)clockwise to find the first pixel that fulfills
six types: smooth, horizontally edged, vertically edgedhe conditions in (11). Otherwis€(m,n) is set to no value
forward-diagonally edged, backward-diagonally edged, arahd not considered in the combining process. The add-hoc

other. A mean filter is used to estimate the centre pixel valggreshold./I(m, n) in (11) reflects the standard deviation of

in the smooth regions. In edge regions the centre pixel ige shot noise at the addressed pixel. The method exploits a
predicted along the edge. In other regions a median f“teringﬂﬁor rough estimate of the signs Kf which can be obtained
used. To put this in a concise equation, the pi€is,n + 1)  py any basic filtering operation such as median filtering of few
are designated by, I(m + 1,n + 1) by se, I(m + 1,n) by 5, images of L. In the original paper, the 8 adjacent pixels are
I(m+1,n—-1) by sw, I(m,n—1) by w, I(m —1,n—1) engaged instead. It has been modified because of the high
by nw, I(m — 1,n) by no, andI(m — 1,n + 1) by ne, and  correlation in adjacent pixels resulted from the interpolation

A = [e, se, s, 5w, w,nw,no, ne]'. The centre pixel value is operation that has been observed in a few cameras.
given by:

coefficients of the “original” noise-free image-these
coefficients are modelled as locally stationary iid variable
with zero mean. The maximum a posteriori (MAP) estimatio
is used to obtain the local variance:

(x,2)EB,
wheregq x q is the size of the windo®, around(i, j); it was

proposed to sey € {3,5,7,9}. The minimum of the four
variances is used in (7), i.e.

D. Adaptive Spatial (AS) Filtering

f(m,n) = . . .
LG, )~ mean(A), (max(A) = min(4) < 20 ftering technique. may be more useiul ' estmating e
(8+n0o) g a y . .. g
Im,n) ———,  (le-—w|—|no—s])>20 PRNU because of the relaxed requirement of de-noising every
I(m,n) — <% (ls = nol, —le — w]) > 20 image entlre_ly. Their work is based_ on tvv_o stage_ filtering. The
o first stage is the standard adaptive Wiener filter [25] that
Imn) ———,  (lsw —ne| - |se — nwl) > 20 operates directly in the spatial domain:
I0m,n) -2, (lse — nw| - [sw — nel) > 20 £(m,n) =1(m,n) - U(m,n)2
I(m,n) — median(A), otherwise . +I1 —Uu G°(m,n) 12
(10) ) = Um W e e, (2)

Tf_‘ef‘ spatial_ Wiener fiIte_ring operation s e_xploited Qyvhere o is the variance of the noise that is assumed ta be
eliminate the impact of the image scenes leaked in (10), Wh%ﬁ

o - 4 : ite process, anti(m,n) anda?(m,n) are the local mean
f is modelled as an additive mixture of the locally stationary, \ ,2riance of the original image within thex g pixel-

iid zero-mean signal of image content and white Gaussug&e windowB,, around the pixe(m, n), respectively:
q ] H .



U(m,n) = lz 1(x,2), (13) VIVII* + €%, wheree is inserted to avoid singularities (we set
4 (x2)EB, £ =102 in our implementation). To simplify it further, the

authors recommended using only one step in the gradient-
decedent optimization, which they hence ndtnas the first

| ded in 124 ind ¢ sz step total variation (FSTV) filter. The noise residual for this
t was recommended in [24] to use a window o B case will be giverby f = —V.(VI/|VI|,). Whilst the authors

) pixgls and setog to 5 in extracting the noise residuals fromprimary aim is to adopt a simple, fast de-noising operation in
the L images. The second stage consists ofawoz cascaded prNU extraction, they also seek a more accurate estimate of
median filters to suppress the impulse pixels.in the PRNU compared to other filters.

E. Other Image De-Noising Filters 3) Block-matching and 3D (BM3D) algorithm The filter,

. L ' t was introduced in [31], has been explored in PRNU
Renowned image de-noising filters that have beetth'a. o : X .
explored in thousands of studies and applications have a%sotmatlon in [32] and [33]. The filter combines sliding-

been adopted in PRNU extraction. In this subsection Wvgndow transform proce'ssing'Withlock-matchir_]g Wherga
briefly outline these seminal filters: ' " “pixel of the true image is estimated from regions which are

1) Perona-Malik diffusion (PMD) filter: The filter was found similar to the region centered at the estimated.pikel

adopted in PRNU estimation in [26]. Perona and Malilﬂlter operatesin the following steps. Image blocks are

presented this filter in [27] based on the anisotropic diﬁusiowo?es.SEd in a sliding manrtersearch for blocks that exhibit
equation: similarity to the currently-processed one. The matched blocks

Al(mn,) are stacked together to form a 3D array. A 3D transformation
o = V- (c(IVI(m,n, )HVI(m, n, 1)) , (15) of the array is applied to produce a sparse representation of the
whereV andV. are the gradient and divergence operationsue signal in 3D transform domaimhen efficient noise
respectively. In their discrete form of (19, n,t) is a de- attenuation is achieved by applying a shrinkage operator (e.g.
noised version of the image at scalévherel(m,n,0) is the hardthresholding or Wiener filtering) on the transform
original image), and 210mn.t) =I(m,n, t + 1) — I(m, n, £). cpefficients. Inverse. 3D transform of the fiIter_ed coefficignts
. Lot - . yields the local estimates of the blocks. This results in an
c(IVI(m,n, O)]) is the diffusion coefficient that is chosen 10j5 5veq de-noising performance and preserves the finest

breserve edges and 'Fextures. One Qf the tW9 Pergna Y&ails in the local estimates of the matched kHodkter
Malik’s diffusion coefficients was chosen in [26] owing 1O ItS  , cessing all blocks, the final estimate is the weighted
hetter performance in PRNU e’ﬁt{ljf“)?”- Thatls, average of all overlapping local block-estimates. To maintain
_ () = —em A, _ (16)  the clarity and precession in this limited-space paper, the
wherey is a gradient threshold parameter that is determined @ader is referred to the original paper and its web page for the

each iteration; it represents the value below which 90% of thtails of the implementation of this innovative filter [31].
absolute value of the whole image gradient occur. The Peroga- Results Analysis

Malik’s discrete form of the right hand side of (15) is B . .

1 ecause of the dlfferent sensor types and images, gach
— c(Itm,n,t) — I(x, z, ) DA, n, t) — I(x, z, t)) camera produces a different ROC curve and hence various
| I(m)eM values ofP, andR, for each method. To reach a conclusion
where M ={mn+1),(mn-1),(m+1,n),(mn)}, under an evaluated method, we average the two mé}riasd
|M| = 4 (an 8-neighbouring pixel approximation can also b&,. across all the cameras, respectively, yieldhgndR. The
adopted) andt € (0,1] determines the rate of diffusion. Inresults for the aforementioned de-noising operations are listed
[26], 1 was fixed to 1/7, and the number of scatesvas set to in Table Ill. The filters are listed and arranged in order
three, i.ef(m,n) = I(m,n,3) — I(m,n, 0). according to their performances. At the top, we can observe
2) Total variation (TV) filter : In the classical definition of the excelling performance of the block-matching and 3D
this filter that was introduced in [28], the total variation of thédBM3D) filter with significant improvement that can be seen
image is minimized subject to constraints involving th@t both metrics (it was also observed that the excelling
statistics of the noise. The constraints are imposed usifgrformance is consistent across all the 45 cameras unlike any
Lagrange multipliers. The solution is obtained using thether method studied in this paper). It is respectively followed
gradient-decedent method (many new other optimizatidy the popular wavelet-based (WB) filter. The
techniques have appeared in the compressive sensing fiei@mputationally undemanding total variation (TV) filter, at
The filter preserves edges whilst smooth away noise in fla¥o iteration steps, falls slightly behind the WB filter. We
regions, even at low sign&d-noise ratios. The PRNU tested the TV filter with less/more steps; and the results were
estimation work of [29] is based on a simplified version of theimilar or inferior. The basic operation of adaptive spatial
total variation filter. The authors adopted the unconstraind&S) does not fall much behind the WB and TV filters. The 2-
total variation method proposed in [30] and used the gradiefixel (2P), the context-adaptive interpolator (CAIl) and the
decedent optimization. With each step Perona-Malik diffusion (PMD) come sequentially. We remark

I that the last three filters have been shown to provide superior
I(m,n,t) = -V. (m)"‘l(m'n't_l)' (17)  performances in the forensic applications in the original
I(m,n,t) is a de-noised version of the image at iteration stepP@pers. We mainly attribute that to the imperfection of the

(where I(m,n,0) is the original image) and|VI|, = filters_e_at §uppressing specific types of noise that can be
beneficial in some experimental setups, whereas in our study

#2(m,n) = [i2 Z 12(x,z) —U%?(m,n)] — o¢. (14)

(x,2)€By




we are evaluating the estimation quality of the supposedly TABLE V. CPUTIMES OF THELISTED FILTERING OPERATIONS

unique PRNL_J fingerprint. _ _ Method CPU Time (ms)
It was pointed out in various works that the filters operate

different amount of de-nosing and hence the number of noise CAl 4344

residualsL used to estimate the reference PRNU would affect BM3D 3155

the filters' relative performances. Therefore, we evaluate the wB 851

filters for L = 100 andL = 150. We note that only cameras P;V'PD 27928

with more than 300 images in Table | aihchave been used
for those experiments. Also, since the PRNU estimates would
give very high accuracy with such largewe crop the images
to size32 x 32 . This would allow us to expand the numerical

experiments and manifest the relative performances of the

filters. The results are listed in Tallé. We can observe that V.  COMBINING PROCESS
the ranking of the filters persist. But, the performances of
some of the filters seem to climb up.

Although our main focus is on the quality of the PRN
estimation, the computational time of the filtering operation i
a worth considering aspecespecially with the large number ;=" X .
of images usually involved in forensic applications. The CP{ftering process-which are referred to by image
time of the implementation of a filter in MATLAB could serveContamination. Thus, to provide a reliable estimate of the
as a good measure of this aspect. The CPU times of fARRNU: the noise residuals of images taken by the same
fitersare listed in Table M-all the computations are camera are C.O”?b'”?d.- The underl.ymg model of thg noise
performed on the same machine of Intel Core Duo i7-4770 gSidual that is implicitly adopted in a lot of Vl‘ﬁﬁf in the
3.40GHz processor and 16 GB of memory on images of siZgrature is given by r =Kl, + 6, where 8 € R™""is a

512 x 512. 1t is highlighted that the strong performance of®mpination of the random noises and image contammatio
BM3D comes at the cost of relatively demandindhat is independent oKI, and has constant mean and

computations. Whereas, the FSTV requires minimafariance. Sincdo(m,n) andK(m,n) are i?dePendent at a
computations. Before we close this section, we remark feRiXe! location, a pixel-wise averag® := ., f,/L, where
notes about our implementations of the filters. The 8f, ! =1,..,L are the noise residuals extracted from the
neighbouring pixel approximation of PMD was adopted herénagesl;, [ =1,..., L, respectively, converges to the (scaled
And, we implemented the central difference approximation, &d DC-shifted) PRNU with increasind.. Alternative
described in the appendix of [26], which astouch different Combining approaches have been adopted in the field, which
from the original work [27]. In the TV filters, the forward We discuss below.

finite difference approximation of the gradient was used in OUR  Maximum Likelihood Estimator (MLE)

implementation

AS 44
FSTV 12

As we mentioned earlier the noise residual of the filtering

(process (1) containa considerable amourtf random noises

g1at cannot be used in image forensics, as well as partial scene
etails of the image itself caused by the imperfections of the

The work of Cheret al [34] models the extracted noise

TABLE IIl. THE PERFORMANCE RESULTIN %) OF THE LisTED FILTErs  fesidual asf = KI + 0. The authors accept that the random

USING L=50 IMAGES noises acrosall the L images at a certain pixel location, i.e.

Method P R 0,(m,n), 1=1,..,L, are (zero-mean, fixed variance) white
Gaussian process. Correspondingly, a maximum likelihood

BM3D 82.4 51 estimator can be simply adopted to estinKite

wB 66.7 76 L

(2S)TV 54.9 8.8 Ryie = s (18)
AS 54.9 8.9 The assumption of fixed (random) noise variance per pixel in
2P 40.2 156 the L images can be met in uniformly illuminated images
cA 24.3 197 taken under controlled conditions.

PMD 16.3 18.1

FSTV 13 24.6 B. Weighted Averaging (WA)

The variance of the random noise is not constant in all
TABLE IV. THE PERFORMANCE(IN %) OF THE LISTED FILTERS USING natural uncontrolled images taken by a camera, even for fixed

L=100 AND L=150 FOR AN ALTERED EXPERIMENTAL SETUP ISO sensitivity. This is due to several reasons among which is
Method P R the variation of the camera settings such as integration time,
L =100 L =150 L =100 L=150 shutter speed and focal length at the times of taking the
BM3D 86.2 86.2 3.6 3.2 pictures. Relying on this fact, it was proposed in [35] to
WB 69.1 79 6.5 4.8 capitalise on a weighted averaging operation to reduce the
@31V 60.1 74 7 52 estimation error:
AS 49.4 59.4 9.7 7.8 L
2P 42.8 58.6 14.0 10.3 -
CAl 34.0 50.2 162 8.8 Ry = Z Wit (19)
PMD 20.9 50.5 15.8 10.0 =

wherew; is the weight for thé-th image, and it is given by
FSTV 11 34.0 25.1 16.8




1 /& -1 techniques have been adopted in the literature to improve the
w, = — — (20)  purity of the estimated signal, which are described in the next
o} o? :
LAs=s subsections.

where g/ is the variance of the undesirable noisefin In , )

[35], the noise variances are estimated usingdifference # Reémoving the Sharing Components (RSC)

signal estimationapproach proposed in [36]. Based on the The estimated PRNU contains all the components that are

assumption that the PRNU is deterministic and invariant for systematically present in every image of an individual camera.

individual pixel of a camera from image to another, thdhese components include the sought PRNU and other

random noise component can be obtained by subtracting #i&facts that are not unique for a camera, not even for a model
noise residual by th&I, . But since the latter is not known, or make. These usually appear because of cameras employing

the estimated PRN®R is used: the same processing algorithms in their pipelines. Hence these

n:=f—-R (21) artifacts cannot serve as a reliable forensic tool and must be
Then, the variance estima#¢ is simply calculated using the removed from the estimated PRNU to improve its quality.
following. There are various types of artifacts; although the following
o D@ (m,n) —7)? two operations were not originally developed in [34] to tackle

9= MN ’ (22)  all the different types, they seem to effectively suppress them

wherer; is the mean of the random noise component irfthe [37].
5 fi,(m,n) The first step is the ‘zero-mean’ operation, denoted by
= Smn) 2 (23)  Z(.), where the column average is subtracted from each pixel

MN ' : .
It was recommended in [35] to divide each image into & the column and then the row average is taken from every

number of sub-images, where the noise is rather stationaWel in the row. It targets the artifacts induced due to colour
and run the above procedure on each sub-image yie|dimerpolatlon and the row-wise/column-wise operations of

different weights. processing circuits and sensors.
. The second operation is Wiener filtering the PRNU
C. Results Analysis estimate in the Fourier domain. It operates by filtering the

The performance results of the maximum likelihoodnagnitude of the Fourier transform, keeping the only noise
estimator (MLE) and weighted averaging (WA), over the basigomponents. This would result into a flatter frequency
averaging approach are considered here. As the wavelet-basectrum. These can be summariasd
filter was originally implemented by the first PRNU-based F(Z®R)
work [1] and it is still the most popular filter in this forensic real [T‘l (—[|T(Z(R))| - w(|7—"(z(R))|)]>] (24)
field, we use this filter in all the noise residuals combining [F(z®)]
approaches. For easy interpretation of the results, WgereF(.) andw(.) are the Fourier transform and the Wiener
benchmark the studied methods against the basic averagfi@ring, respectively. The noise variance in the latter is set as
approach. That is, the performance results are calculaip@d sample variance of the magnitude of the Fourier transform
through P = Y¢Z1°(P. — Pyp)/45 and R = REZP(Ryp — |F(Z(R))|- And, the assumption is that the non-unique
R:)/45, where Py, and Ry, are the overall performance ,pitacts in|7 (2 (R))| are locally stationary iid variables with

results of the basic averaging with the wavelet-based filt ;
which are equal to 66% and 7.6%, respectively. In fact, for tfgﬁ ro mean. Indeed, PRNU estimates constructed from any of

rest of the paper, we will use the basic averaging with ﬂh?aealozzrsblymg techniques can be plugged in above
wavelet-based filter to evaluate the studied techniques an '

benchmark them accordingly. We can see in Table VI that thB. Phase-Only Operation

MLE and the WA approaches provide clear improvements on gimilar to the approaches above, the authors in [38], [39]
the PRNU estimation. But, they seem to deliver similar resulggoposed a method to clear the noise residue in the frequency

to each other. domain from image contents and non-unique artifacts of JPEG
compression, on-sensor signal transfer, sensor design, and
VI. PRNUENHANCEMENT TECHNIQUES colour interpolation. The method counts on the established

The estimated PRNU can still contain considerable amo ﬁsumptmn that the sensor pattern noise is a white noise, and

of contamination even after combining the noise residuals Pjsr;gsziltsh:rse 3\/2;\;;reedq:cjiresr:%rzze%t.rum. To this end, the noise
a large numbepof images. Variousadditional enhancement gn-

Phy = ) o (25)
O]
whereF (.) denotes the Fourier transform as seen above, and
TABLE VI. THE PERFORMANCE |MPROVEMENT$|N %) OF THE NOISE hence Phl represents the phase Component Of the no|se
RESIDUALS COMBINING APPROACHES OVER BASIC AVERAGING residual fl of the I-th image The phase Components are then
Method P R combined before taking the inverse Fourier transform to yield
the PRNU estimate:
L Ph
MLE +3.9 +1.4 Rp == real [T_l (Zl—z l)] (26)

WA +4.8 +0.9




C. Sensor Pattern Noise Enhancer Models TABLE VII. THE PERFORMANCE IMPROVEMENTSIN %) OF THE LISTED
In [40], the author proposed an enhancing technique based METHODS OVER THE BASIC APPROACH

on the hypothesis that the stronger a signal component in noise ~ Method P R

residual is, the more likely that it is associated with stroeg

scene details, and hence the less trustworthy the component RSC +6.59 +0.9

should be. Working in conjunction with the wavelet-based de-  Phase-Only +2.5 +0.01

noising operation, the hypothesis suggests that an improved Modell 9.0 3.0

PRNU can be attained by assigning less weighting factors on
strong components of the noise residual in the digital wavelet
domain in order to supress the contamination of scene details.
To this end, the author proposed five models to be applied. Let
the wavelet coefficients of the noise residual be denojed that the phase-only operation is applied at each ofLthe

£,(i,/),(i,)) €T, whereT is the index set of the waveletimages, whereas the RSC operations are only applied once on
coefficients that depends on the decomposition level. The twiee reference PRNU estimate. As the two methods operate in
models (Model 3 and Model 5 in the original work) that werghe same Fourier domain, combining the two operations does

Model2 -13.9 -6.6

shown there to deliver the best results are, respectively: not improve the results further. Finally, the two enhancing
(1— e Twp) 0<t,(ij)<a models seem to have rather harmful impact on the
(1 — e~%), e®~Tw)) £.0,)) > performance of the basic approach (the user parameters

P . , w(ij) >« ; : -
(0, ) = { f(i)) T (27)  the numerical experiments are set to the optimal values for the
“l+e®, —as n(j) <0 addressed image size, as proposed in the original work). An
\L(~1 + e7®). ea*F@), £y (1)) < —a, explanation could be seen in (27) and (28); as they might
and suppress the significant contamination they also magnify the
o e-O-waz(i.j)/az’ £,(i,)) =0 small components which highlight the effect of the shared

fi2 (1)) = {_e_o,sfwz(i,j)/az £.() <0 (28) ' non-unique artifacts in the estimated PRNUS.

) w(l )

where « is a threshold to be decided by the user. The
enhanced noise residuals are then obtaineyd by applying the Vil CoMPACT PRNU-BASED FINGERPRINT

inverse wavelet transform on the coefficients of (27) and (28). In this section, we discuss methods that aim to exploit the
In the original work, these models were developed to supprégfrmation in the estimated PRNU by constructing a
the scene contamination in the noise residual of a singrodified PRNU-based fingerprint. These methods aim to
uncontrolled test image in camera identification/verificatiorgnhance the accuracy of the forensic application and lessen the
and they were not applied to the noise residuals used @@mputational and storage requirement. The latter is achieved
estimate the reference PRNU (the assumption there is that fhetapering the size of the PRNU-based fingerprint that is
camera is available to the analyst, and hence uniformigquired to be stored and engaged in the forensic calculations.
illuminated images can be taken which contain no scerdéese PRNU enhancing methods are exclusive for camera
details to suppress). It was implied in the original work tharigin identification applications, and cannot be incorporated
those models are applied in the pixel domain. This led felfy image forgery detections.

researchers to adopt the models directly in the spatial doma}'ﬂ Significant Components (SC) Only Technique

in their implementation.
P The authors in [41] proposed tonly use the large

D. Results Analysis components in the estimated PRNU to cut down the overall

The described enhancement operations are implementé@dom noise. In theory, the large components carry more of
here over the wavelet-based filter with basic averaging, affee signal of interest in comparison to small components that
they are benchmarked against it as we described in Sectiona€ mainly random noise. Based on the magnitude, they sort
The relative performances are listed in Table VII. Our finding§e components (i.e. pixels) of the estimated PRNU in a
highlight the effectiveness of removing the sharinglescending order. Then, the firdtlargest components are
components (RSC). In our experiments, we observed a certdfed while masking the rest to yield a new reduced-size
amount of false correlation in the estimated PRNUs not onRRNU representatioR;. € R4**. Along with the new PRNU
between cameras of the same model but also between oftgfiresentation, the locations of those significant components
camera models. And, the RSC operations seem to efficientiythe original PRNU estimate are saved to apply on the other
suppress such adversary effect. In the original work of RSERNU estimates engaged in the forensic application.
the Wiener filter is described a3 x 3, however, in the

. . . . . B. Clustering Technique
authors' implementation they use the variance estimation g q
procedure, described in Subsection IV.A, to obtain the M [42] and [43], a new system was proposed to suppress
minimum local variance within windows of siz&s< 3, 5 X 5. the random noises in the reference PRNU estimation by

7x7,and 9x9. We adopt the same procedure in Ouplustering PRNU pixels of comparable values. The method

implementation. The other Fourier-based operation, i.e. phaSLarts by re-arranging the estimated PRNU pixels according to

only operation, also seems to deliver sound performandg€ir values in a descending/ascending order into a vHceor

; ; PRy ; 7x1 whereZ = MN is the size of the PRNU signal. Then
However, the improvement is not as significant (or consisteft : _ _ : '
through different cameras) as the RSC results. This is despiteV€"Y C Pixels are simply averaged to give a PRNU
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representation vectaR., € R4*1 where d = Z/C . Along TABLE VIII. THE PERFORMANCE IMPROVEMENTSIN %) OF THE LISTED

with R, a map of the locations of the clustered pixels in the METHODS OVER THE BASIC APPROACH

original PRNU is saved and used in the forensic application. Method P R

In theory, this procedure produces a suppressed-noise

reduced-size PRNU representation, which could serve as a  SCOnly -6.7 -1.4

more robust fingerprint than its original full-size counterpart. Clustering +0.1 0.3
PCA +6.9 +2.1

C. Principal Component Analysis (PCA) based Approach 1-Bit 5.5 2.6

In [44], the Principal Component Analysis (PCA) has been cD 6.4 0.3

DA -40.3 -15.7

used to reduce the dimensionality of the PRNU noise and
attenuate image content contamination and other undesired ) ] ]
noise components. The approach operates on the PRR@Nts in a vector space are prpjected on a sunable. lower

estimation ofS cameras. After collecting and reshaping th&imensional space then the distances are approximately
noise residuals of every camera into column vectors of sipgeserved [48]. And, since PRNU fingerprints from different

Z = MN, the technique forms a covariance matrix from th§@meras are highly uncorrelated and thus the angles

SL noise residuals. Then, the PCA is performed by Obtainir{&quwalent to the distance herein) between them are wide, the
the eigenvectors of the mean-centered covariance matrix¥gd/es between the compressed PRNUs are preserved to be
convert theZ-dimension noise residuals space into a smalldfide. Inspired by [45] and the 1-bit compressive sensing [49],

orthogonal space. The underlying idea is that the energy of # authors also considered binarizing the compressed PRNU,
noise residuals characterising the reference PRNU % ich could be seen as a generalized case of [45] with identity

concentrated in a small subspace of the attained orthogoRHp€Cting matrix. ~ Theoretical results ~ concerning the
space, while the (image-dependent) noise energy mprgssed PRNU matching accuracy show insignificant
represents undesirable components is spread over the wH&fUCtion.

space. Therefore, by preserving only the most important. Results Analysis

subspace (characterized by thle eigenvectors which are ) i ) ) i
associated to the most significant eigenvalues that correspond!t IS evident in Table VIII that the technique of keeping the
to 99% of the variance explained by the eigenvectors) afinificant components (SC) only does not benefit the PRNU
implementation, the 20% largest

projecting the re-arranged noise residuals of a camera into fgssification —(in - this

objective subspace, we obtain enhanced noise resid&gmpongnts. in magnitude are kept). This indicates that there is
representations P, € R, [ =1,..,L,where d « Z. The information in the small components of the estimated PRNU

reference  PRNU representation is then obtained Lr,ébat would be adversary to flush. The clustering gpp.roach i's
component-wise averaging tRg [ = 1, ..., L. valua’Feq on the RSC-PR!\IU as propo_sed and highlighted in
the original work. That is, the sharing components are

D. Fingerprint Compression removed before applying the clustering technique.

Unlike the other studied methods in this paper that seek B@nchmarked against the RSC resullts, the clustering technique
improve the accuracy of the PRNU estimation, the aim of tfgems to provide no improving effect on the classification of
addressed methods herein is to ease the potentially burderfifigy PRNU estimates. We recall and attribute these findings to
aspects of storage and computations of the PRNU signal intft¢ fact that the images used here in the estimation of the
applications. The PRNU compression techniques are visitégference PRNU are of random nature as opposed to the fixed
here for their relation to the studied methods. Indeed, tHBumination images used in the numerical experiments of the
PRNU Signa| cannot be Compressed using standard meth@ﬂlglnal work. Nonetheless, ConSidering that the clusters sizes
such as JPEG because of the signal’s lack of redundancy. In ~ are set to 64 pixels here, the clustering technique would
[45], the authors proposed to represent the PRNU signal irf@nstitute an excellent PRNU compression tool. In contrast,
binary-quantization form, i.e. 1-bit representation per pixeWe can see that the principle component analysis (PCA)
And, it was analytically shown that the reduction in théechnique can bring considerable improvements. We note that
accuracy of the PRNU matching is insignificant. A mor&CA technique is trained against the interclass and intraclass
thorough study in fingerprint compression can be found ithages prior to estimating their final PRNU signals. This
[46] based on random projection. The idea is to project tt@cility is not always available in forensic applications.
PRNU estimate, reshaped into the column vedtas RZ%  Finally, the results of the 1-Bit representation of the PRNU
whereZ = MN, using a random matri € R%*Z whered <  Show the expected slight reduction in the performance.

Z , to yield the PRNU representation:
Rey =@+ H (29) VIIl.  MobDIFIED PRNUESTIMATION PROCEDURES

of reduced size, i.¢y € R**'. Herein, designates matrix ~ There are other research developments in PRNU
multiplication. The same random matrix is used to project th&timation that cannot be categorised in one of the sections

other PRNU .eStim.ates in the application. The ConSider%o\/e_ They operate a modified strategy to the standard
random matrices in [46] are the most-studied Gaussighocedure in Fig. 1.

random matrices, which are practically addressed using _

circulant matrices (the requirements on the suitableare A Colour-Decoupling (CD) Approach

thoroughly studied in the field of compressive sensing [47]). The work [50] takes into the account the characteristics of
The key idea is based on from Johnson-Lindenstrauss: ifthe colour filter array (CFA) structure. That is, the lenses of
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most cameras let through rays of the three colour componenaking in consideration the linear manipulations in the digital
but for every pixel only the rays of one colour are passeshmera pipeline, the authors modlel(Zlel 10_1) as the auto-
through the CFA and subsequently captured by the sengggressive and moving average (ARMA), wheteis the
pixel. Then, a colour interpolation algorithm generates thgjditive white Gaussian noise, and estinktesing

other two colour components of every pixel. The artificial

L L
colours obtained through the colour interpolation process Rp, = ln(Z lz>—w<ln(z ]l)> (34)
(known is de-mosaicking) are not physically acquired from the = =

scene by the sensor. Therefore, it is assumed that the PRikkre w(.) is the standard 3 x 3 Wiener filter. Thus, the
extracted from the physical components should be Mofigering operation is only applied once to estimate the
reliable. The almost universal CFA in cameras is the Baygiference PRNU, as opposed to the standard procedure. This
filter where pixels in odd/even rows alternate between gre@pnroach has been tested in our evaluation system, and the
and red, and pixels in even/odd rows alternate between bidRts are shown in Table VIIDur experiments indicate a
and green. Based on this assumption, the authors proposegasiderable inferiority of the direct averaging (DA) approach

new strategy that first decomposes each image into 4 sy- gpposed to the standard procedure when natural
images (interlaced along the two dimensions) and thgcontrolled images are used.

extracts the PRNU from each sub-image. The PRNU nofses o

the sub-images are then assembled to obtain the final one. This IX. SIMILARITY MEASURES
method aims to prevent the interpolation noise from
propagating into the PRNU estimation of the physical%
captured pixels. According to our humerical findings shown i
Table VIII, the promising idea enhances the PRNU resul
notably.

As we mentioned in previous sections, PRNU-based
rensic applications generally rely on measuring the
imilarity between the estimated PRNU signals in a binary
ypothesis test for decision-making. In this section, we outline
the various similarity measures used in PRNU-based forensics
B. Direct Average (DA) Technique because of its close relation to the studied methods. Since

Given the deterministic nature of the PRNU, as opposed fi@gost of the developments in the similarity measures are in
the other random noise components, the PRNU can Bamera identification/verification application (where the
estimated by simply averaging a very large number of imagegference PRNUWR and the noise residuaf, of the query
without any de-noising step. The work in [S1] counts on thisnage I, are compared), we present them in terms of this
concept to estimate the PRNU of an available camera Bpplication. LetX representR, R,,, R,, or the product
capturing a very large number of uniform random nois, . 1.. The basic measure is the normalized cross-
images displayed on a high-resolution monitor. Using th&, relation (after mean centering the two signals):

model of T in (6), the pixel-wise mean of. images is given X0
by: pi= (35)
L L L Xl rq||
lz I, = (1+_K)2 Iy, +l ZN”' 30) where® and||.|| are the dot product and norm operations,
o I o™ Lo respectively. A development was proposed in [52] where the

When L tends to infinity, the last term will be a negligibleaim is to eliminate the effect of contamination of the two
constant. The channel gain§g,}}_; and the image compared signals with the same periodic noise that could
illuminations{y,(m,n)}-_; are supposed to be mutuallyadversely increase their correlation. It is referred to by the

independent infl,,(m, m}"__. Hence, the expected value: peakto-correlation energy (PCE), and based on the circular
1=1 cross-correlation:

L
1
E ZZ I, (m,n)| = E[g"]E[Y" (m,n)]. (31) C(x,z) = ﬁ Z X(m,n) f;(m + x mod M, n

=1
Sinceg is a global variable for an image that is independent of (m'n)+ zmod N),
the pixel chation, and the random images are displayed on the x=0,..,M—1, z=0,..,N —1, (36)
monitor with constant mean, then the expectation of (31) isis given in
constant across all the pixels. Kss zero mean, the PRNU ¢2(0,0)
can be simply extracted by removing the DC component from P, = sign[€(0,0)] 1 . (37)
(30) whenL tends to infinity. In practice, we deal with a mz 2, C*(x,7)
limited number of images and the conditions are not ideal. (rz)gA

Hence, (31) does not hold strictly. The work in [51] takes thahereA is a small area around (0,0) aed| is its cardinality.
logarithm of the mean of a very large number of imadges The sign in (37) was not included in the first introduction of
1< L PCE,; it was inserted in their later work to eliminate the false
In <ZZ Il> =—InL+In(1+K)+1In (Z Io,l). (32) alarm of the negative correlations. The same idea appeared in
) 1=1 ) _ =1 [39] by considering €(0,0) (and a square root of the
Carrying out 'Z/'aCLaU”” expansion , dominator) rather than its squared value to retain its sign; the
In <lz I>z —InL+K+0(K2) +In <Z I ) 33) authors referred to it by the correlation over circular cross-
L = oL J» correlation norm (CCN).
=t o A more optimal and complex similarity measure was

and since the values oK are very small, the higher order ; . X
term 0(K?) is of an insignificant value and can be ignoredpurSUEd by Cheat al in [34]. It begins with a new model for
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f, . That is, a pixel-wise multiplicative shaping factbre Yo pese To /62 (Xp O £5)

RM*N is introduced to capture the de-noising process Ps = ' , (45)

imperfection and other operations on the PRNU signal. And, JZb,be}[”Tbxbnz/5§J2b,be}[||fb||2/5172

the random noises and image contamination are modeled as

coloured Gaussian noise: where H is the set of the indices of the most significant
£, = TX +9, (3) Plocks.

Despite that (41) represents the optimal detector, PCE is
where @ € R"*" is a matrix of independent Gaussianthe most favorite detection statistics for the two facts. First,
variables with unequal variance3he work divides the noise the assumption on the models to derive the optimal detector
residual signal intoB non-overlapping, equal sized blocks.may not be satisfied. Second, PCE can facilitate selecting the

The pixels (m,n) within the b-th block ,b=1,..,B are decision threshold to achieve the sought probability of false
allocated a fixedT (m,n) denoted by T, , and their noise detection.

0(m,n) are assumed to have a fixed variangg. The

similarity measure is the generalized matched filter that is V. CONCLUSION
given in; . . . .
3, T, /62 (X O Fy) In this paper, we introduced a systematic comparative
P = b bl b Th = b ,  (39) analysis of all the techniques concerned with the estimation of
~ 2, A2 /A PRNU noise. In order to conduct a profound study, we
T,X 2\/ f 2 . . : . '
\/Zb” bXl|” /67 | Zullfsll” /67 categorised the techniques based on their roles in the PRNU

wheref, andX, are the noise residual from the tested jmagéstimation procedure and analysed each category
and the PRNU terX within the b-th block, respectivelyl},  correspondingly. We created a large database of 45 cameras
and g represent estimates df, ando} respectively, which with effectively over 2.2 million test images for our numerical
are obtained from the normalized cross-correlation within évaluation; the relatively large experiments were necessary

block under the positive hypothesis: given the variant performance of the techniques across
_ X, O T cameras and images. The carefully selected performance

Po = 1Xp 111 £ 11 metrics were adequate to benchmark the techniques and

T, IXplI% + X, © 6, provide a conclusive study. Our findings provided some

= > - > , (40)  concrete conclusions whilst others can be extrapolated. We
||Xb||\/Tb X512 + 11811 + 2T, X), © 6 hope that the presented results can support the research
with 8, being white process that is independehtX, , the community in digital forensics in general and PRNU-based

termX, © 0,, will be small and can be ignored: image forensics in particular. With some practical aspects
1 considered here along with our insight, we hope that this paper
Py = ) (41)  would benefit forensic  practitoners  with  sharp
\[1 + CaZ /Ty 21X, |I2 implementation decisions.

where C is the number of pixels in each block. And, by using
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