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 

Abstract— Extracting a fingerprint of a digital camera has 
fertile applications in image forensics, such as source camera 
identification and image authentication. In the last decade, Photo 
Response Non_Uniformity (PRNU) has been well established as a 
reliable unique fingerprint of digital imaging devices. The PRNU 
noise appears in every image as a very weak signal, and its 
reliable estimation is crucial for the success rate of the forensic 
application. In this paper, we present a novel methodical 
evaluation of 18 state-of-the-art PRNU estimation/enhancement 
techniques that have been proposed in the literature in various 
frameworks. The techniques are classified and systematically 
compared based on their role/stage in the PRNU estimation 
procedure, manifesting their intrinsic impacts. The performance 
of each technique is extensively demonstrated with over �. � 
million test images to conclude this case-sensitive study. The 
experiments have been conducted on our created database and a 
public image database, the 'Dresden image database'.  
 

Index Terms—Authentication, camera identification, digital 
forensics, photo response non-uniformity (PRNU), sensor pattern 
noise (SPN).  
 

I. INTRODUCTION 

A.  Background 

Nowadays, digital cameras have increasingly become 
affordable and available for almost everyone in the society, 
and hence millions of pictures are being taken, transmitted and 
saved digitally on a daily basis.  In the file headers of these 
digital images, there is useful information about the source 
camera, time and data, camera settings, exposure, etc. 
However, this information can be easily stripped off and 
tampered, and hence it cannot be used as a trustworthy source 
for sensitive issues, such as courtrooms and criminal evidence.  

Digital cameras leave traces in the pixel data of their 
images.  Researchers have found and extracted traces and 
features of different types and origins to use for various image 
forensic analyses. Forensic applications in general demand a 
substantially high accuracy, and one of the most reliable 
features that can provide such accuracy was first exploited by 
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Lukas et al. [1] and it is known as the Photo Response 
Non_Uniformity (PRNU). It results from the variations of the 
sensor pixels at collecting the light energy (this is due to 
imperfections in the manufacturing of the pixels' physical 
dimensions as well as the non homogeneity that is naturally 
present in the silicon in sensors). The variations in quantum 
efficiency among pixels can be captured and denoted with a 
matrix � א ℝெ×ே, where ܯ ×ܰ  are the dimensions of the 
sensor. � follows a (zero-mean) white Gaussian distribution. 
When an imaging sensor is illuminated with light intensity ܇� א ℝெ×ே, in the absence of other noise sources, the sensor 
generates a signal ܇ +  The product of the matrices herein) .܇�
is elementwise.) 

With the described underlying mechanism of generating 
the aforementioned non-uniformity, a unique pattern of spatial 
noise that is fixed for an individual camera is integrated in 
every image. In contrast to other sources of random noises, 
this noise is of a deterministic nature and cannot be eliminated 
by averaging (‘pattern noise’ is the term used in the literature 
to describe such systematic noise). However, whilst other 
sources of noise are added and the generated signal is gamma 
corrected, colour de-mosaicked and corrected, de-noised and 
subjected to few other operations in the pipeline of digital 
cameras, the PRNU noise can still survive for estimation [2]. 
In general, forensic applications of PRNU fingerprint fall in 
two categories: 
1) Image Origin Identification : There are various 
applications under this category. The most popular 
applications are source camera identification and source 
camera verification. For the former, the main goal is to 
identify the exact camera that was used to take a query image 
among other cameras provided to the analyst. In verification, 
however, the forensic analyst aims to determine whether an 
image was taken by a certain camera or not.  In both cases, the 
cameras or sets of images taken by the cameras are available 
to the analyst. Another application, known as fingerprint 
matching, is to link a set of images to another set among a 
large database. This scenario could be met when a set of 
malicious images become available to the analyst to search a 
public database to find images taken by the same camera.  
More applications include video clip linking in which the aim 
is to attribute a set of images to another set where the set is 
taken from a video clip. The problem of image origin has been 
attempted in the literature using different approaches, such as 
[3]-[7]. However, a key characteristic of PRNU fingerprint is 
that it serves as an intrinsic feature that can represent the 
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individual imaging device sensor. So that, it is not only 
possible to identify and differentiate device models of the 
same make, but also individual devices of the same model. 
Other methods such as [8] incorporate the PRNU ingredient 
with another camera model identification approach to refine 
the final results. PRNU fingerprint has also been used in 
scanner identifications in [9] and [10].   
2) Image Forgery Detection: The PRNU can serve as a kind 
of watermark for image forgery detection. The idea is that 
forgery operations such as object copy-move will change or 
destroy the PRNU in the forgery area. This is met when the 
forged object comes from another camera or the spatial 
location is changed when compared to the original image. 
Indeed, some malicious acts may preserve the PRNU and 
cannot be detected using this approach. There are numerous 
image forgery detection techniques in the literature [11]-[15], 
each has its assumption on the nature of manipulation. With 
no universal approach, the practical solution is to incorporate a 
set of approaches of different principles to detect forgeries of 
various types.  

Many studies have confirmed the reliability of the PRNU 
as a fingerprint for image forensic analysis, such as [16] where 
a large-scale experiment was conducted—over one million 
images were tested spanning 6896 individual cameras 
covering 150 models. The promising results of the PRNU 
fingerprint have drawn the attention of many research groups 
in the last decade. However, the success rates of its forensic 
applications are dedicated by the quality of the estimation of 
this weak signal. Correspondingly, many techniques appeared 
with the objective of improving the success rate of a PRNU 
forensic application through implicitly or explicitly enhancing 
the quality of the PRNU estimation. The efficiency of a 
proposed technique is usually demonstrated in a numerical 
experiment of a particular forensic application in a comparison 
with few other techniques. Although these concerned 
techniques go more or less in the same direction, they target 
different stages of the PRNU estimation procedure. Thus, the 
impacts of many of these improved PRNU estimation 
techniques are relatively unapparent, even for experts in the 
field. This calls for a study that collects and categorises all 
these techniques in order to systematically evaluate, compare 
and manifest their contributions. This paper is the first and 
most complete effort to classify all the techniques proposed in 
the literature based on their role/stage in the PRNU estimation 
procedure. And, under each category those techniques are 
reviewed and numerically evaluated through intensive 
experiments. The relatively large-scale experiments are crucial 

because of the high variations in the performances of the 
methods that can be seen among cameras and images.  

B.  The standard Procedure of PRNU Estimation 

The PRNU of a camera can be estimated using  ܮ��of its 
images: ۷௟ � א ℝெ×ே   ,  ݈ = ͳ,… ,  Each image is de-noising .ܮ
first to separate the “original” image from its noise: ̂ܚ ≔ ۷ −  ሺ۷ሻ .                                     (1)ܨ

where ܨሺ. ሻ is a filtering operation. The noise residual ̂ܚ 
contains the PRNU noise and other types of random noises 
that cannot be used in forensic applications. The noise 
residuals of the images are then typically averaged to suppress 
the random noises, and estimate the reference PRNU that 
serves as the camera fingerprint. For further refinement of the 
PRNU estimate, diverse additional signal processing strategies 
have been proposed and adopted in the literature.  

C.  Paper Evaluation System and Outline 

The diagram in Fig. 1 summarises the key stages of the 
PRNU estimation. The various techniques proposed in the 
literature are categorised in this paper according to these 
stages. The paper is organised as follows. We start with 
describing the numerical evaluation framework and the 
benchmark database in Section II. After we describe the 
PRNU-focused camera output model in Section III, we 
theoretically and numerically analyse the methods under each 
stage of the PRNU estimation procedure in each section 
respectively. In Section IV, we analyse several de-noising 
operations, and provide our findings. We investigate the 
standard and the alternative approaches of noise residual 
combining in Section V. Section VI covers the various 
pre/post-calculation PRNU enhancement techniques. In 
Section VII, the various compact PRNU representation 
methods are studied and evaluated. Alternative enhancement 
strategies are examined in Section VIII. In Section IX, we 
look over the different similarity measures that are used to 
compare and link the estimated PRNUs in forensic 
applications. In Section X, conclusions are drawn.  

D.  Notation 

We remark that throughout the paper the boldface font 
denotes matrices. Unless otherwise stated, operations 
among/on matrices such as product, raising to a power, ratio, 
and summation are elementwise. Also, ሺ݉, ݊ሻ, ݉ =ͳ,… ,ܯ, ݊ = ͳ,…ܰ, where ܯ ×ܰ are the dimensions of the 
sensor, represent the pixel positions, and they are used as 
indices for matrices to designate their (pixel) components.

 

Fig. 1. A diagram of the typical PRNU estimation procedure.
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II. NUMERICAL EVALUATION FRAMEWORK 

A. Performance Metric 

As we mentioned earlier, the quality of the PRNU 
estimation is the performance characteristic that we seek to 
evaluate. To quantify the quality of the estimated PRNU, we 
measure the similarity between PRNUs extracted from the 
same cameras, i.e. intraclass PRNU estimates, as well as the 
dissimilarity between PRNU estimates of different camera 
sources, interclass PRNUs. The standard correlation 
coefficient, i.e. the normalized cross-correlation, is used as a 
similarity measure.  

The estimated PRNU can contain different types of 
contaminations; camera-model specific noise can be one of 
them.  The presence of this noise in estimated PRNUs can 
potentially increase the dissimilarity between some interclass 
PRNU estimates, as opposed to more accurate and unique 
PRNU estimates with less camera model noises. Accordingly, 
the numerical results would be influenced by the choice of the 
interclass cameras in the experiments. Therefore, in our 
evaluation, we set the interclass experiments to PRNUs 
extracted from the same camera model.  

Ideally speaking, the distribution of the correlation 
coefficients between interclass PRNU estimates should be 
concentrated around zero, whereas the intraclass PRNU 
estimates should provide a correlation close to one. 
Nonetheless, the high impurity of the estimated PRNUs causes 
the two distributions to come near each other and overlap. An 
example of the distributions of the intraclass and interclass 
correlation coefficients of the PRNU estimates for a certain 
camera is shown in Fig. 2. These distributions could be 
modelled for each camera as generalized Gaussian 
distributions. However, the correlations cannot be described 
precisely using this model or any other model; accordingly we 
cannot exploit the model’s parameters as reliable performance 
metrics. Nonetheless, the “distance” between the two 
distributions echoes the quality of the estimated PRNU 
signals. Therefore, the rate of overlap would be considerable 
for a performance marker. To this end, we draw and exploit 
the ROC curve to discriminate the interclass and intraclass 
correlation coefficients and drive two well-established 
performance measures. Since most of our studied techniques 
are developed to achieve low false positive rates in their 
forensic application, the  first  metric we evaluate is the true 
positive rate at �� = ͳͲ−ଷ false positive rate in the ROC curve. 
We denote this  metric for  the c-th camera by �௖. As  a  

 
Fig 2. The distributions of the intraclass and interclass correlation coefficients 

of the PRNU estimates for an example camera. 

second metric to provide a more complete picture, we evaluate 
the false positive (or negative) rate at the point where the false 
positive and false negative rates are equal in the ROC curve, 
which is known as the equal error rate (EER). We use the 
notation ℛ௖ to represent this performance measure for the c-th 
camera. 

B. Dataset and Experimental Setup 

Forty-five cameras, listed in Table I and II  below, from our 
database and the 'Dresden image database' [17], [18] are used 
to benchmark all the studied techniques. (We note that some 
images from Dresden image database do not have the original 
resolution of their cameras because of digital zooming, and 
they must be excluded in PRNU based applications.) For each 
camera, we create 144 sets of non-overlapping sub-images of 
size ͸Ͷ ×64 cropped from the original images. Such cropping 
would allow us to expand our database, and it would increase 
the challenge on the PRNU-based discrimination in order to 
noticeably differentiate between the performances of the 
studied methods. The sub-images of each set of each camera 
are grouped into  ܮ = ͷͲ  sub-images, and they are de-noised 
and combined to yield a PRNU fingerprint estimate (for a 
camera in our database for example, this would yield 10 
PRNU estimates within each of the 144 sets and hence 1440 
estimates per camera). The PRNU estimates within each set 
are compared with each other as intraclass experiments. On 
the other hand, the similarities between PRNU estimates of 
different cameras but of the same model are measured as 
interclass experiments (for one camera in our database, this 
would lead to 6480 intraclass experiments and over ʹ × ͳͲ଺ 
interclass experiments). For unique cameras in Table I which 
have no other cameras of the same model, since sub-images 
cropped from non-overlapping parts of the original images are 
meant to contain different PRNU signals, the similarities of 
those PRNU estimates are measured as interclass experiments. 
We can observe that the number of experiments per camera is 
much larger than ͳ/�, which would lead to a much reliable 
measure of the delicate metric �௖, i.e. the true positive rate at �� = ͳͲ−ଷ false positive rate in the ROC curve.  

All experiments are performed in MATLAB on 45 
computers in parallel with an Intel Core Duo i7-4770 @ 
3.40GHz processor and 16 GB of memory. Before we close 
this section, we note that in colour images, the PRNUs can be 
estimated from the three colour channels separately and then 
combined using the standard RGB to grey scale conversion. 
Or, PRNU extraction can be performed once on the 
combination of the three colour channels, i.e. luminance 
channel. An alternative approach is to focus solely on the 
green channel since it carries most of the PRNU information 
and the least interpolation noise (a further discussion is 
included in Section VIII). We adopt the last approach herein to 
ease our long experiments. 

III.  (PRNU-Focused) Camera Model 

Regardless of the sensor type, the average signal generated 
at a sensor from ܇ א ℝெ×ே illumination is ܇ +  (2)                                      , ܇�

where � א ℝெ×ே�represents the PRNU that follows a white 
Gaussian   distribution.  Another   source  of  pattern  noise  is 

0 0.04 0.08 0.12 0.16 0.2

Intraclass

Interclass
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TABLE I. THE LIST OF CAMERAS FROM DRESDEN IMAGE DATABASE USED 

IN OUR NUMERICAL EVALUATION . 

Camera No.    Camera Name No. of Images 

1.  SONYDSC-HX200V 630 
2.  Kodak_M1063_4 571 
3.  Kodak_M1063_0 464 
4.  Kodak_M1063_3 460 
5.  Kodak_M1063_1  458 
6.  Kodak_M1063_2 438 
7.  SamsungL301 522 
8.  Panasonic_DMC-FZ50_1 415 
9.  Panasonic_DMC-FZ50_0 265 

10.  Panasonic_DMC-FZ50_2 251 
11.  Nikon_D200_1 380 
12.  Nikon_D200_0 372 
13.  Agfa_Sensor530s 373 
14.  Agfa_DC-830I 363 
15.  Sony_DSC-H50_0 284 
16.  Agfa_DC-733S 281 
17.  Samsung_L74wide_0 232 
18.  Samsung_L74wide_2 231 
19.  Samsung_L74wide_1 224 
20.  Canon_Ixus55 224 
21.  Olympus_mju_1050SW_2 218 
22.  FujiFilm_J50_2 215 
23.  FujiFilm_J50_1 205 
24.  FujiFilm_J50_0 210 
25.  Sony_DSC-H50_1 257 
26.  Samsung_NV15_0 214 
27.  Samsung_NV15_1 211 
28.  Samsung_NV15_2 211 
29.  Olympus_mju_1050SW_1 209 
30.  Olympus_mju_1050SW_3 207 
31.  Praktica_DCZ5.9_0 209 
32.  Praktica_DCZ5.9_3 206 
33.  Praktica_DCZ5.9_1 205 
34.  Praktica_DCZ5.9_2 205 
35.  Sony_DSC-W170_0 205 

 
TABLE II . THE LIST OF OUR CAMERAS USED IN THE NUMERICAL 

EVALUATION . 
Camera 

No. 
 Camera Name No. of Images 

1.  Nikon L330_0 500 
2.  Nikon L330_1 500 
3.  Panasonic TZ20_0 500 
4.  Panasonic TZ20_1 500 
5.  Fujifilm S2950_0 500 
6.  Fujifilm S2950_1 500 
7.  Canon IXUS_0  500 
8.  Canon IXUS _1 500 
9.  Samsung PL120_0 500 

10.  Samsung PL120_1 500 

 
introduced at the imaging sensors, known as dark currents. 
This is due to thermal energy that can generate free electrons 
in silicon with no illumination exposed on the sensor. There 
are small fluctuations in the number of generated dark 
electrons from pixel to another. Yet, this sensor pattern 
imperfection cannot be used in image forensic. This is due to 
its high dependence on the temperature and its direct 
proportionality to the exposure time setting in the camera that 
is not always available for the analyst. Also, the dark currents 
are suppressed in some cameras by subtracting a dark frame 
from the final image. The two sensor imperfections are known 
combined as sensor pattern noise (SPN). However, PRNU 
noise is the most dominant part of SPN, and unlike the other 

component it is always present in an image and cannot be 
subtracted in common consumer cameras. Hence, several 
papers in the field recognise SPN as the fingerprint of a 
camera sensor. With slight abuse of terms, we use the terms 
exchangeably to maintain the consistency of the terminology 
in this paper.  

As we mentioned above, (2) represents the average number 
of collected electrons. The actual number can be more/less 
than or equal to the average, and its distribution about the 
average follows a Poisson distribution (where its variance 
equals its mean). It is usually referred to as shot noise or 
photonic noise. From above, the number of collected electrons 
can be expressed as 

܇  + ܇� + �۲۱ +  (3)                          , ܛ�
where �۲۱ א ℝெ×ே is the number of electrons due to thermal 
energy, and �ܛ א ℝெ×ே is the zero-mean result of the Poisson 
shot noise. The output amplifier that transforms the photon-
induced electrons at the sensors into a measurable signal adds 
a zero-mean read-out noise that is independent of the value of 
the signal. The signal is then gamma corrected to adjust to 
human vision and quantised with an ADC before saving. The 
final image can be expressed as    ۷ = ��ሺ܇ + ܇� + ܛ� + �۲۱ሻ� + �� ,            (4) 
where � is the amplifier gain, �(=0.45 typically) is the gamma 
factor, and �� א ℝெ×ே is the quantisation noise (the reader 
can refer to [19] for more details about camera noise sources 
and characteristics). With the Taylor expansion ሺͳ + �ሻݔ =ͳ + ݔ� + ܱሺݔଶሻ at ݔ = Ͳ, and by re-arranging the bracket in 
(4) into the former, we reach 

   ۷ = �܇�� [ͳ + �� + ܛ�� + ��۲۱ + ܱ (|� + ܇۲۱�+ܛ� |ଶ)]������� +��.    (5) 
The last term in the square bracket is small and can be 
ignored. Let   ۷� ≔ �� and �܇�� ≔ ܛ�� + ��۲۱ + �� 
denotes the combination of the independent random noise 
components. To avoid introducing many notations, the 
symbols are absorbed as follows  � ≔ ��. This leads to �۷ = ۷� + �۷� + �� .                             (6) 
The model is more or less adopted in all the existing PRNU-
based techniques despite the various terminologies. And, 
many techniques model �۷� + ��� combined as white 
Gaussian process. In the literature, some authors distinguish � 
by the PRNU factor and �۷� by the PRNU signal. 
Nonetheless, � is the actual fingerprint of a camera, and all 
the techniques implicitly or explicitly seek to estimate this 
quantity or a scaled version of it—which we simply refer to by 
the PRNU. 

IV.  DE-NOISING OPERATIONS 

Various de-noising methods have been exploited in the 
PRNU extraction in the image forensics research literature. In 
the next subsections, we discuss all the techniques developed 
and adopted in the estimation of this weak signal.  

A. Wavelet-Based Filter 

This filter was originally proposed in [20], and it operates 
as follows. The fourth-level wavelet decomposition of the 
image with the 8-tap Daubechies quadrature mirror filter is 
first calculated. Let the wavelet coefficients in the vertical, 
horizontal, and diagonal subbands be respectively denoted by 



 5 

�ሺ݅, ݆ሻ, �ሺ݅, ݆ሻ, �ሺ݅, ݆ሻ, ሺ݅, ݆ሻ א �, where � is the index set of 
the wavelet coefficients that depends on the decomposition 
level. The de-noised wavelet coefficients are obtained using 
the Wiener filter: �௪ሺ݅, ݆ሻ ≔ �ሺ݅, ݆ሻ �̂ଶሺ݅, ݆ሻ�̂ଶሺ݅, ݆ሻ + �଴ଶ �,����������������������ሺ͹ሻ� 
and similarly for �ሺ݅, ݆ሻ and �ሺ݅, ݆ሻ. �଴ଶ is the variance of the 
noise that is assumed to be a white Gaussian process, and  �̂ଶሺ݅, ݆ሻ represents the estimated local variance of the wavelet 
coefficients of the “original” noise-free image—these 
coefficients are modelled as locally stationary iid variables 
with zero mean. The maximum a posteriori (MAP) estimation 
is used to obtain the local variance: �̂ଶ௤ሺ݅, ݆ሻ = maxቌͲ, ͳ�ଶ ∑ �ଶሺݔ, �ሻ − �଴ଶሺ௫,�ሻאℬ� ቍ,������������ሺͺሻ 
where � × � is the size of the window ℬ௤ �around ሺ݅, ݆ሻ; it was 
proposed to set � א {͵,ͷ,͹,ͻ}. The minimum of the four 
variances is used in (7), i.e. �̂ଶሺ݅, ݆ሻ = min(�̂ଶଷሺ݅, ݆ሻ, �̂ଶହሺ݅, ݆ሻ, �̂ଶ଻ሺ݅, ݆ሻ, �̂ଶ9ሺ݅, ݆ሻ) . (9) 
The de-noised image is then obtained by applying the inverse 
wavelet transform on the de-noised coefficients. It was shown 
in [1] that the choice of �଴ଶ has little impact on the 
performance of the filter in PRNU extraction. The authors, 
throughout their various versions of this work, suggested 
setting  �଴ between 2 and 5. 

B. Context-Adaptive Interpolator (CAI)  

    In [21] the authors proposed an estimator based on an eight-
neighbour context-adaptive interpolation algorithm to supress 
the effect of image scenes (a four-neighbour version was 
proposed in their conference paper [22]). It aims to identify 
edges and to produce a high-quality PRNU estimate. 
According to this method, the local regions are classified into 
six types: smooth, horizontally edged, vertically edged, 
forward-diagonally edged, backward-diagonally edged, and 
other. A mean filter is used to estimate the centre pixel value 
in the smooth regions. In edge regions the centre pixel is 
predicted along the edge. In other regions a median filtering is 
used. To put this in a concise equation, the pixels  ۷ሺ݉, ݊ + ͳሻ 
are designated by ℯ, ۷ሺ݉ + ͳ, ݊ + ͳሻ by �ℯ, ۷ሺ݉ + ͳ, ݊ሻ by �, ۷ሺ݉ + ͳ, ݊ − ͳሻ by ��, ۷ሺ݉, ݊ − ͳሻ by �, ۷ሺ݉ − ͳ, ݊ − ͳሻ 
by ��, ۷ሺ݉ − ͳ, ݊ሻ by �ℴ, and�۷ሺ݉ − ͳ, ݊ + ͳሻ by �ℯ, and � = [ℯ, �ℯ, �, ��,�,��,�ℴ,�ℯ]′. The centre pixel value is 
given by: ̂ܚሺ݉, ݊ሻ =

{   
  
   ۷ሺ݉, ݊ሻ − meanሺ�ሻ,���(maxሺ�ሻ − minሺ�ሻ) ൑ ʹͲ�������������۷ሺ݉, ݊ሻ − ሺ�+�ℴሻଶ ,���������ሺ|ℯ −�| − |�ℴ − �|ሻ > ʹͲ����������۷ሺ݉, ݊ሻ − ℯ+�ଶ ,�������������ሺ|� − �ℴ|, −|ℯ −�|ሻ > ʹͲ����������۷ሺ݉, ݊ሻ − �ℯ+��ଶ ,���������ሺ|�� − �ℯ| − |�ℯ − ��|ሻ > ʹͲ۷ሺ݉, ݊ሻ − ��+�ℯଶ ,��������ሺ|�ℯ − ��| − |�� − �ℯ|ሻ > ʹͲ�۷ሺ݉, ݊ሻ −medianሺ�ሻ,��������������������otherwise�.���������������������

   (10) 
Then spatial Wiener filtering operation is exploited to 
eliminate the impact of the image scenes leaked in (10), where ̂ܚ is modelled as an additive mixture of the locally stationary 
iid zero-mean signal of image content and white Gaussian 

noise. The noise variance in this operation is set to 9 and the 
MAP estimation, described in Subsection IV.A above, is used 
to obtain the local variance of the image content with a 
window of size ͵ × ͵. 

C. 2-Pixel Approach 

Modern low-medium end cameras have high sensor pixel 
density, and it is very likely that two pixels in the same 
vicinity have close values in  natural images. This method [23] 
capitalises on this observation in spatial domain filtering. It 
counts on engaging as little as one adjacent pixel at estimating 
the PRNU at a pixel location in order to suppress the 
correlation between neighbouring pixels in the estimated 
(supposedly white) signal. Let ሺݔ, �ሻ designate a pixel location 
in the close vicinity of ሺ݉, ݊ሻ. Simply speaking, based on the 
model of ۷ in (6), a noisy estimate of��ሺ݉, ݊ሻ۷�ሺ݉, ݊ሻ�at an 
individual pixel can be produced by subtracting its value ۷ሺ݉, ݊ሻ�by another pixel of the same (amplified and gamma 
corrected) illumination ۷�ሺݔ, �ሻ�but with opposite signed �ሺݔ, �ሻ. Thus to obtain a rough PRNU estimate, i.e. noise 
residual, at a certain pixel of an image, this technique searches 
the 16 next-to-the-adjacent pixels to find one pixel with a 
comparable value ۷ሺݔ, �ሻ�and an alternative signed �ሺݔሻ۷�ሺݔ, �ሻ. We saw in Section III that the level of a 
considerable part of the random noise at a pixel ሺ݉, ݊ሻ 
depends on its illumination. This search considers this pixel 
dependent noise in finding a neighbouring pixel with a close 
value ۷�ሺݔ, �ሻ. The noise residual at pixel ሺ݉, ݊ሻ of an image 
is estimated as     ̂ܚሺ݉, ݊ሻ = ۷ሺ݉, ݊ሻ − ۷ሺݔ, �ሻʹ ,����� |۷ሺ݉, ݊ሻ − ۷ሺݔ, �ሻ| < √۷ሺ݉, ݊ሻ�and��ሺ݉, ݊ሻ�ሺݔ, �ሻ < Ͳ.  (11) 
Starting from the pixel on the (let’s say) top right corner, the 
search runs (anti)clockwise to find the first pixel that fulfills 
the conditions in (11). Otherwise, ̂ܚሺ݉, ݊ሻ is set to no value 
and not considered in the combining process. The add-hoc 

threshold √۷ሺ݉, ݊ሻ�in (11) reflects the standard deviation of 
the shot noise at the addressed pixel. The method exploits a 
prior rough estimate of the signs of �, which can be obtained 
by any basic filtering operation such as median filtering of few 
images of  ܮ. In the original paper, the 8 adjacent pixels are 
engaged instead. It has been modified because of the high 
correlation in adjacent pixels resulted from the interpolation 
operation that has been observed in a few cameras.  

D. Adaptive Spatial (AS) Filtering 

 In [24], it was suggested that a rather simple space variant 
filtering technique may be more useful in estimating the 
PRNU because of the relaxed requirement of de-noising every 
image entirely. Their work is based on two stage filtering. The 
first stage is the standard adaptive Wiener filter [25] that 
operates directly in the spatial domain:  
,ሺ݉ܚ̂                    ݊ሻ = ۷ሺ݉, ݊ሻ − ,ሺ݉܃ ݊ሻ +[۷ሺ݉, ݊ሻ − ,ሺ݉܃ ݊ሻ] �̂ଶሺ݉, ݊ሻ�̂ଶሺ݉, ݊ሻ + �଴ଶ �,�������ሺͳʹሻ 
where  �଴ଶ  is the variance of the noise that is assumed to be a 
white process, and ܃ሺ݉, ݊ሻ and �̂ଶሺ݉, ݊ሻ are the local mean 
and variance of the original image within the  � × ��  pixel-
size window ℬ௤ around the pixel ሺ݉, ݊ሻ, respectively: 
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,ሺ݉܃ ݊ሻ = ͳ�ଶ ∑ ۷ሺݔ, �ሻሺ௫,�ሻאℬ� ,���������������������������ሺͳ͵ሻ 
�̂ଶሺ݉, ݊ሻ = [ ͳ�ଶ ∑ ۷ଶሺݔ, �ሻ −ሺ௫,�ሻאℬ� ,ଶሺ݉܃ ݊ሻ] − �଴ଶ.����ሺͳͶሻ 

It was recommended in [24] to use a window of size ͻ ×ͻ�pixels and set  �଴ଶ  to 5 in extracting the noise residuals from 
the ܮ images. The second stage consists of two ʹ × ʹ cascaded 
median filters to suppress the impulse pixels in ̂ܚ. 
E. Other Image De-Noising Filters   

Renowned image de-noising filters that have been 
explored in thousands of studies and applications have also 
been adopted in PRNU extraction. In this subsection, we 
briefly outline these seminal filters: 
1)  Perona-Malik diffusion (PMD) filter : The filter was 
adopted in PRNU estimation in [26]. Perona and Malik 
presented this filter in [27] based on the anisotropic diffusion 
equation: 

  
�۷ሺ௠,௡,௧ሻ�௧ = .׏ ሺܿሺ|۷׏ሺ݉, ݊, �ሻ|ሻ۷׏ሺ݉, ݊, �ሻሻ ,         (15) 

where ׏ and ׏. are the gradient and divergence operations, 
respectively. In their discrete form of (15), ۷ሺ݉, ݊, �ሻ is a de-
noised version of the image at scale � (where ۷ሺ݉, ݊, Ͳሻ is the 

original image), and 
�۷ሺ௠,௡,௧ሻ�௧ � =۷ሺ݉, ݊, � + ͳሻ − ۷ሺ݉, ݊, �ሻ. ܿሺ|۷׏ሺ݉, ݊, �ሻ|ሻ is the diffusion coefficient that is chosen to 

preserve edges and textures. One of the two Perona and 
Malik’s diffusion coefficients was chosen in [26] owing to its 
better performance in PRNU extraction. That is, ܿሺ�ሻ ≔ −݁−ሺ|υ|/�ሻమ�,�����������������������������ሺͳ͸ሻ 
where ��is a gradient threshold parameter that is determined at 
each iteration; it represents the value below which 90% of the 
absolute value of the whole image gradient occur. The Perona-
Malik’s discrete form of the right hand side of (15) is �|ℳ| ∑ ܿሺ|۷ሺ݉, ݊, �ሻ − ۷ሺݔ, �, �ሻ|ሻሺ۷ሺ݉, ݊, �ሻ − ۷ሺݔ, �, �ሻሻሺ௫,�ሻאℳ ��� 
where ℳ = {ሺ݉, ݊ + ͳሻ, ሺ݉, ݊ − ͳሻ, ሺ݉ + ͳ, ݊ሻ, ሺ݉, ݊ሻ},� |ℳ| = Ͷ (an 8-neighbouring pixel approximation can also be 
adopted) and � א ሺͲ,ͳ] determines the rate of diffusion. In 
[26], � was fixed to 1/7, and the number of scales  �� was set to 
three, i.e. ̂ܚሺ݉, ݊ሻ = ۷ሺ݉, ݊, ͵ሻ − ۷ሺ݉, ݊, Ͳሻ. 
2) Total variation (TV) filter : In the classical definition of 
this filter that was introduced in [28], the total variation of the 
image is minimized subject to constraints involving the 
statistics of the noise. The constraints are imposed using 
Lagrange multipliers. The solution is obtained using the 
gradient-decedent method (many new other optimization 
techniques have appeared in the compressive sensing field). 
The filter preserves edges whilst smooth away noise in flat 
regions, even at low signal-to-noise ratios. The PRNU 
estimation work of [29] is based on a simplified version of the 
total variation filter. The authors adopted the unconstrained 
total variation method proposed in [30] and used the gradient-
decedent optimization. With each step ۷ሺ݉, ݊, �ሻ = .׏− ( (�|۷׏|۷׏ + ۷ሺ݉, ݊, � − ͳሻ,���������ሺͳ͹ሻ ۷ሺ݉, ݊, �ሻ is a de-noised version of the image at iteration step � 
(where ۷ሺ݉, ݊, Ͳሻ is the original image) and |۷׏|� =

ଶ|۷׏|√ + �ଶ, where ��is inserted to avoid singularities (we set � = ͳͲ−ଷ in our implementation). To simplify it further, the 
authors recommended using only one step in the gradient-
decedent optimization, which they hence name it as the first 
step total variation (FSTV) filter. The noise residual for this 
case will be given by  ̂ܚ = .׏− ሺ۷׏|/۷׏|�ሻ.��Whilst the authors’ 
primary aim is to adopt a simple, fast de-noising operation in 
PRNU extraction, they also seek a more accurate estimate of 
the PRNU compared to other filters.  
3) Block-matching and 3D (BM3D) algorithm: The filter, 
that was introduced in [31], has been explored in PRNU 
estimation in [32] and [33]. The filter combines sliding-
window transform processing with block-matching, where a 
pixel of the true image is estimated from regions which are 
found similar to the region centered at the estimated pixel. The 
filter operates in the following steps. Image blocks are 
processed in a sliding manner to search for blocks that exhibit 
similarity to the currently-processed one. The matched blocks 
are stacked together to form a 3D array. A 3D transformation 
of the array is applied to produce a sparse representation of the 
true signal in 3D transform domain. Then efficient noise 
attenuation is achieved by applying a shrinkage operator (e.g. 
hardthresholding or Wiener filtering) on the transform 
coefficients. Inverse 3D transform of the filtered coefficients 
yields the local estimates of the blocks. This results in an 
improved de-noising performance and preserves the finest 
details in the local estimates of the matched blocks. After 
processing all blocks, the final estimate is the weighted 
average of all overlapping local block-estimates. To maintain 
the clarity and precession in this limited-space paper, the 
reader is referred to the original paper and its web page for the 
details of the implementation of this innovative filter [31].  
F. Results Analysis 

Because of the different sensor types and images, each 
camera produces a different ROC curve and hence various 
values of �௖ and ℛ௖ for each method. To reach a conclusion 
under an evaluated method, we average the two metrics �௖ and ℛ௖ across all the cameras, respectively, yielding �̅ and ℛ̅. The 
results for the aforementioned de-noising operations are listed 
in Table III . The filters are listed and arranged in order 
according to their performances. At the top, we can observe 
the excelling performance of the block-matching and 3D 
(BM3D) filter with significant improvement that can be seen 
at both metrics (it was also observed that the excelling 
performance is consistent across all the 45 cameras unlike any 
other method studied in this paper).  It is respectively followed 
by the popular wavelet-based (WB) filter. The 
computationally undemanding total variation (TV) filter, at 
two iteration steps, falls slightly behind the WB filter. We 
tested the TV filter with less/more steps; and the results were 
similar or inferior. The basic operation of adaptive spatial 
(AS) does not fall much behind the WB and TV filters. The 2-
pixel (2P), the context-adaptive interpolator (CAI) and the 
Perona-Malik diffusion (PMD) come sequentially. We remark 
that the last three filters have been shown to provide superior 
performances in the forensic applications in the original 
papers. We mainly attribute that to the imperfection of the 
filters at suppressing specific types of noise that can be 
beneficial in some experimental setups, whereas in our study 
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we are evaluating the estimation quality of the supposedly 
unique PRNU fingerprint. 

It was pointed out in various works that the filters operate 
different amount of de-nosing and hence the number of noise 
residuals L used to estimate the reference PRNU would affect 
the filters' relative performances. Therefore, we evaluate the 
filters for ܮ = ͳͲͲ� and ܮ = ͳͷͲ. We note that only cameras 
with more than 300 images in Table I and II  have been used 
for those experiments. Also, since the PRNU estimates would 
give very high accuracy with such large ܮ, we crop the images 
to size ͵ ʹ × ͵ʹ�. This would allow us to expand the numerical 
experiments and manifest the relative performances of the 
filters. The results are listed in Table IV. We can observe that 
the ranking of the filters persist. But, the performances of 
some of the filters seem to climb up.  
Although our main focus is on the quality of the PRNU 
estimation, the computational time of the filtering operation is 
a worth considering aspect—especially with the large number 
of images usually involved in forensic applications. The CPU 
time of the implementation of a filter in MATLAB could serve 
as a good measure of this aspect. The CPU times of the 
filters�are listed in Table V—all the computations are 
performed on the same machine of Intel Core Duo i7-4770 @ 
3.40GHz processor and 16 GB of memory on images of size ͷͳʹ × ͷͳʹ.�It is highlighted that the strong performance of 
BM3D comes at the cost of relatively demanding 
computations. Whereas, the FSTV requires minimal 
computations. Before we close this section, we remark few 
notes about our implementations of the filters. The 8-
neighbouring pixel approximation of PMD was adopted here. 
And, we implemented the central difference approximation, as 
described in the appendix of [26], which  is  a  touch different 
from the original work [27]. In the TV filters, the forward 
finite difference approximation of the gradient was used in our 
implementation.  

 
TABLE III . THE PERFORMANCE RESULTS (IN %) OF THE LISTED FILTERS 

USING L=50  IMAGES 

Method �̅ ℛ̅ 

BM3D 82.4 5.1 

WB 66.7 7.6 

(2S)TV 54.9 8.8 
AS 54.9 8.9 
2P 40.2 15.6 

CAI  24.3 19.7 
PMD 16.3 18.1 

FSTV 13 24.6 

 
TABLE IV . THE PERFORMANCE (IN %) OF THE LISTED FILTERS USING 

L=100  AND L=150  FOR AN ALTERED EXPERIMENTAL SETUP. 

Method 

 �̅ ℛ̅ ܮ = ͳͲͲ ܮ = ͳͷͲ ܮ = ͳͲͲ ܮ = ͳͷͲ 
BM3D 86.2 86.2 3.6 3.2 

WB 69.1 79 6.5 4.8 
(2S)TV 60.1 74 7 5.2 

AS 49.4 59.4 9.7 7.8 
2P 42.8 58.6 14.0 10.3 

CAI  34.0 50.2 16.2 8.8 
PMD 20.9 50.5 15.8 10.0 

FSTV 11 34.0 25.1 16.8 

TABLE V. CPU TIMES OF THE L ISTED FILTERING OPERATIONS. 

Method CPU Time (ms) 

CAI  4344 
BM3D 3155 

WB 851 
PMD 298 

2P 72 

AS 44 

FSTV 12 

 
 

V. COMBINING PROCESS 

As we mentioned earlier the noise residual of the filtering 
process (1) contains a considerable amount of random noises 
that cannot be used in image forensics, as well as partial scene 
details of the image itself caused by the imperfections of the 
filtering process—which are referred to by image 
contamination. Thus, to provide a reliable estimate of the 
PRNU, the noise residuals of  ܮ  images taken by the same 
camera are combined. The underlying model of the noise 
residual that is implicitly adopted in a lot of work in the 
literature is given by  ̂ܚ = �۷� + �, where � א ℝெ×ே�is a 
combination of the random noises and image contamination 
that is independent of���۷�  and has constant mean and 
variance. Since ۷�ሺ݉, ݊ሻ and �ሺ݉, ݊ሻ are independent at a 
pixel location, a pixel-wise average: � ≔ ∑ ௟ܚ̂� ௅௟=ଵ⁄ܮ , where �̂ܚ௟ , ݈ = ͳ, … ,  are the noise residuals extracted from the��ܮ
images  ۷௟ ,  ݈ = ͳ,… ,  respectively, converges to the (scaled ,ܮ
and DC-shifted) PRNU with increasing ܮ. Alternative 
combining approaches have been adopted in the field, which 
we discuss below.   

A. Maximum Likelihood Estimator (MLE) 

The work of Chen et al. [34] models the extracted noise 
residual as ̂ܚ = �۷ + �. The authors accept that the random 
noises across all the ܮ images at a certain pixel location, i.e. �௟ሺ݉, ݊ሻ,  ݈ = ͳ,… ,  are (zero-mean, fixed variance) white ,ܮ
Gaussian process. Correspondingly, a maximum likelihood 
estimator can be simply adopted to estimate �: �ெ௅ா ≔ 

∑ ∑భ=���۷�ܚ̂ ሺ۷�ሻమ��=భ   .                               (18) 

The assumption of fixed (random) noise variance per pixel in 
the ܮ images can be met in uniformly illuminated images 
taken under controlled conditions.  

B. Weighted Averaging (WA)  

The variance of the random noise is not constant in all 
natural uncontrolled images taken by a camera, even for fixed 
ISO sensitivity. This is due to several reasons among which is 
the variation of the camera settings such as integration time, 
shutter speed and focal length at the times of taking the 
pictures. Relying on this fact, it was proposed in [35] to 
capitalise on a weighted averaging operation to reduce the 
estimation error:    �௪ ≔∑w௟̂ܚ௟௅

௟=ଵ �,�����������������������������������ሺͳͻሻ 
where ݓ௟ is the weight for the l-th image, and it is given by 
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w௟ = ͳ�௟ଶ �(∑ ͳ�௦ଶ௅
௦=ଵ )−ଵ .�������������������������ሺʹͲሻ 

where �௟ଶ is the variance of the undesirable noise in ̂ܚ௟ . In 
[35], the noise variances are estimated using the difference 
signal estimation approach proposed in [36]. Based on the 
assumption that the PRNU is deterministic and invariant for an 
individual pixel of a camera from image to another, the 
random noise component can be obtained by subtracting the 
noise residual by the �۷� . But since the latter is not known, 
the estimated PRNU � is used:   �̂௟ ≔� ௟ܚ̂ − �������������������������������������������ሺʹͳሻ 
Then, the variance estimate �̂௟�ଶ is simply calculated using the 
following.  �̂௟�ଶ ≔�∑ ሺ�̂௟ሺ݉, ݊ሻ − ݊̅௟ሻଶሺ௠,௡ሻ ܰܯ �,�������������������������ሺʹʹሻ 
where ݊̅ ௟ is the mean of the random noise component in the ̂ܚ௟: ݊̅௟ ≔ ∑ �̂௟ሺ݉, ݊ሻሺ௠,௡ሻܰܯ .��������������������������������ሺʹ͵ሻ 
It was recommended in [35] to divide each image into a 
number of sub-images, where the noise is rather stationary, 
and run the above procedure on each sub-image yielding 
different weights.    

C. Results Analysis 

The performance results of the maximum likelihood 
estimator (MLE) and weighted averaging (WA), over the basic 
averaging approach are considered here. As the wavelet-based 
filter was originally implemented by the first PRNU-based 
work [1] and it is still the most popular filter in this forensic 
field, we use this filter in all the noise residuals combining 
approaches. For easy interpretation of the results, we 
benchmark the studied methods against the basic averaging 
approach. That is, the performance results are calculated 
through �̀ = ∑ ሺ�௖ − �̅�஻ሻ/Ͷͷ௖=ସହ௖=ଵ  and ℛ̀ = ∑ ሺℛ̅�஻ −௖=ସହ௖=ଵℛ௖ሻ/Ͷͷ, where �̅�஻ and ℛ̅�஻ are the overall performance 
results of the basic averaging with the wavelet-based filter 
which are equal to 66% and 7.6%, respectively. In fact, for the 
rest of the paper, we will use the basic averaging with the 
wavelet-based filter to evaluate the studied techniques and 
benchmark them accordingly. We can see in Table VI that the 
MLE and the WA approaches provide clear improvements on 
the PRNU estimation. But, they seem to deliver similar results 
to each other. 

VI.  PRNU ENHANCEMENT TECHNIQUES 

The estimated PRNU can still contain considerable amount 
of contamination even after combining the noise residuals of  
a large  number  of  images. Various   additional  enhancement  

 
 

TABLE VI. THE PERFORMANCE IMPROVEMENTS (IN %) OF THE NOISE 

RESIDUALS COMBINING APPROACHES OVER BASIC AVERAGING. 

Method �̀ ℛ̀ 

MLE +3.9 +1.4 

WA +4.8 +0.9 

techniques have been adopted in the literature to improve the 
purity of the estimated signal, which are described in the next 
subsections. 

A. Removing the Sharing Components (RSC)  

The estimated PRNU contains all the components that are 
systematically present in every image of an individual camera. 
These components include the sought PRNU and other 
artifacts that are not unique for a camera, not even for a model 
or make. These usually appear because of cameras employing 
the same processing algorithms in their pipelines. Hence these 
artifacts cannot serve as a reliable forensic tool and must be 
removed from the estimated PRNU to improve its quality. 
There are various types of artifacts; although the following 
two operations were not originally developed in [34] to tackle 
all the different types, they seem to effectively suppress them 
[37].  

The first step is the ‘zero-mean’ operation, denoted by �ሺ. ሻ, where the column average is subtracted from each pixel 
in the column and then the row average is taken from every 
pixel in the row. It targets the artifacts induced due to colour 
interpolation and the row-wise/column-wise operations of 
processing circuits and sensors.  

The second operation is Wiener filtering the PRNU 
estimate in the Fourier domain. It operates by filtering the 
magnitude of the Fourier transform, keeping the only noise 
components. This would result into a flatter frequency 
spectrum. These can be summarised as  real [ℱ−ଵ ቆ ℱ(�ሺ�ሻ)|ℱ(�ሺ�ሻ)| [|ℱ(�ሺ�ሻ)| − �(|ℱ(�ሺ�ሻ)|)]ቇ]���ሺʹͶሻ 
where ℱሺ. ሻ and �ሺ. ሻ are the Fourier transform and the Wiener 
filtering, respectively. The noise variance in the latter is set as 
the sample variance of the magnitude of the Fourier transform |ℱ(�ሺ�ሻ)|. And, the assumption is that the non-unique 
artifacts in |ℱ(�ሺ�ሻ)|�are locally stationary iid variables with 
zero mean. Indeed, PRNU estimates constructed from any of 
the combining techniques can be plugged in above 
analogously.  

B. Phase-Only Operation 

Similar to the approaches above, the authors in [38], [39] 
proposed a method to clear the noise residue in the frequency 
domain from image contents and non-unique artifacts of JPEG 
compression, on-sensor signal transfer, sensor design, and 
colour interpolation. The method counts on the established 
assumption that the sensor pattern noise is a white noise, and 
hence it has a flat frequency spectrum. To this end, the noise 
residuals are whitened first through:    ��௟ ≔ ℱሺ�̂ܚ௟ሻ|ℱሺ�̂ܚ௟ሻ|� , ݈ = ͳ, … ,  ሺʹͷሻ�����������������ܮ
where ℱሺ. ሻ denotes the Fourier transform as seen above, and 
hence ��௟ represents the phase component of the noise 
residual �̂ܚ௟ �of the l-th image. The phase components are then 
combined before taking the inverse Fourier transform to yield 
the PRNU estimate: ��௣ ≔ real [ℱ−ଵ ቆ∑ ��௟௅௟=ଵܮ ቇ].�����������������������ሺʹ͸ሻ 
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C. Sensor Pattern Noise Enhancer Models 

In [40], the author proposed an enhancing technique based 
on the hypothesis that the stronger a signal component in noise 
residual is, the more likely that it is associated with strong 
scene details, and hence the less trustworthy the component 
should be. Working in conjunction with the wavelet-based de-
noising operation, the hypothesis suggests that an improved 
PRNU can be attained by assigning less weighting factors on 
strong components of the noise residual in the digital wavelet 
domain in order to supress the contamination of scene details. 
To this end, the author proposed five models to be applied. Let 
the wavelet coefficients of the noise residual be denoted by ̂ܚ�ሺ݅, ݆ሻ, ሺ݅, ݆ሻ א �, where � is the index set of the wavelet 
coefficients that depends on the decomposition level. The two 
models (Model 3 and Model 5 in the original work) that were 
shown there to deliver the best results are, respectively: 

,ெଵሺ݅ܚ̂ ݆ሻ ≔ {  
  ͳ − ሺ௜,௝ሻ,�������������������Ͳ�ܚ̂−݁ ൑ ,ሺ݅�ܚ̂ ݆ሻ ൑ ����ሺͳ − ݁−�ሻ. ,ሺ݅�ܚ̂�������������,ሺ௜,௝ሻ�ܚ̂−�݁ ݆ሻ > �����−ͳ + ݁ ሺ௜,௝ሻ�ܚ̂ ,�������������− � ൑ ,ሺ݅�ܚ̂ ݆ሻ < Ͳ���ሺ−ͳ + ݁−�ሻ. ,ሺ݅�ܚ̂����������,ሺ௜,௝ሻܚ̂+�݁ ݆ሻ < −�, (27) 

and  ̂ܚெଶሺ݅, ݆ሻ ≔ {݁−଴.ହ̂ܚ�మሺ௜,௝ሻ/�మ ,ሺ݅�ܚ̂�����������, ݆ሻ ൒ Ͳ−݁−଴.ହ̂ܚ�మሺ௜,௝ሻ/�మ ,ሺ݅�ܚ̂��������, ݆ሻ < Ͳ,              (28) 

where � is a threshold to be decided by the user. The 
enhanced noise residuals are then obtained by applying the 
inverse wavelet transform on the coefficients of (27) and (28). 
In the original work, these models were developed to suppress 
the scene contamination in the noise residual of a single 
uncontrolled test image in camera identification/verification, 
and they were not applied to the noise residuals used to 
estimate the reference PRNU (the assumption there is that the 
camera is available to the analyst, and hence uniformly 
illuminated images can be taken which contain no scene 
details to suppress). It was implied in the original work that 
those models are applied in the pixel domain. This led few 
researchers to adopt the models directly in the spatial domain 
in their implementation. 

D. Results Analysis 

The described enhancement operations are implemented 
here over the wavelet-based filter with basic averaging, and 
they are benchmarked against it as we described in Section V. 
The relative performances are listed in Table VII. Our findings 
highlight the effectiveness of removing the sharing 
components (RSC). In our experiments, we observed a certain 
amount of false correlation in the estimated PRNUs not only 
between cameras of the same model but also between other 
camera models. And, the RSC operations seem to efficiently 
suppress such adversary effect. In the original work of RSC, 
the Wiener filter is described as ͵ × ͵, however, in the 
authors' implementation they use the variance estimation 
procedure, described in Subsection IV.A, to obtain the 
minimum local variance within windows of sizes ͵ × ͵, ͷ × ͷ, ͹ × ͹,�and ͻ × ͻ. We adopt the same procedure in our 
implementation. The other Fourier-based operation, i.e. phase-
only operation, also seems to deliver sound performance. 
However, the improvement is not as significant (or consistent 
through different cameras) as the RSC results. This is despite   

TABLE VII.  THE PERFORMANCE IMPROVEMENTS (IN %) OF THE LISTED 

METHODS OVER THE BASIC APPROACH. 

Method �̀ ℛ̀ 

RSC +6.59 +0.9 

Phase-Only +2.5 +0.01 

Model1 -9.0 -3.0 

Model2 -13.9 -6.6 

 
 
that the phase-only operation is applied at each of the L 
images, whereas the RSC operations are only applied once on 
the reference PRNU estimate. As the two methods operate in 
the same Fourier domain, combining the two operations does 
not improve the results further.  Finally, the two enhancing 
models seem to have rather harmful impact on the 
performance of the basic approach (the user parameters � in 
the numerical experiments are set to the optimal values for the 
addressed image size, as proposed in the original work). An 
explanation could be seen in (27) and (28); as they might 
suppress the significant contamination they also magnify the 
small components which highlight the effect of the shared 
non-unique artifacts in the estimated PRNUs.  

VII.  COMPACT PRNU-BASED FINGERPRINT 

In this section, we discuss methods that aim to exploit the 
information in the estimated PRNU by constructing a 
modified PRNU-based fingerprint. These methods aim to 
enhance the accuracy of the forensic application and lessen the 
computational and storage requirement. The latter is achieved 
by tapering the size of the PRNU-based fingerprint that is 
required to be stored and engaged in the forensic calculations. 
These PRNU enhancing methods are exclusive for camera 
origin identification applications, and cannot be incorporated 
in image forgery detections.    

A. Significant Components (SC) Only Technique  

The authors in [41] proposed to only use the large 
components in the estimated PRNU to cut down the overall 
random noise. In theory, the large components carry more of 
the signal of interest in comparison to small components that 
are mainly random noise. Based on the magnitude, they sort 
the components (i.e. pixels) of the estimated PRNU in a 
descending order. Then, the first d largest components are 
used while masking the rest to yield a new reduced-size 
PRNU representation �௦௖ א ℝௗ×ଵ. Along with the new PRNU 
representation, the locations of those significant components 
in the original PRNU estimate are saved to apply on the other 
PRNU estimates engaged in the forensic application.  

B. Clustering Technique 

In [42] and [43], a new system was proposed to suppress 
the random noises in the reference PRNU estimation by 
clustering PRNU pixels of comparable values. The method 
starts by re-arranging the estimated PRNU pixels according to 
their values in a descending/ascending order into a vector ۶ � ℝ�×ଵ whereא =  ,is the size of the PRNU signal. Then ܰܯ
every C pixels are simply averaged to give a PRNU 
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representation vector �஼௅ א ℝௗ×ଵ, where  ݀ =  Along . ܥ/�
with �஼௅, a map of the locations of the clustered pixels in the 
original PRNU is saved and used in the forensic application. 
In theory, this procedure produces a suppressed-noise 
reduced-size PRNU representation, which could serve as a 
more robust fingerprint than its original full-size counterpart. 

C. Principal Component Analysis (PCA) based Approach  

In [44], the Principal Component Analysis (PCA) has been 
used to reduce the dimensionality of the PRNU noise and 
attenuate image content contamination and other undesired 
noise components. The approach operates on the PRNU 
estimation of ܵ  cameras. After collecting and reshaping the 
noise residuals of every camera into column vectors of size  � =  noise residuals. Then, the PCA is performed by obtaining  ܮܵ  the technique forms a covariance matrix from the ,ܰܯ
the eigenvectors of the mean-centered covariance matrix to 
convert the �-dimension noise residuals space into a smaller 
orthogonal space. The underlying idea is that the energy of the 
noise residuals characterising the reference PRNU is 
concentrated in a small subspace of the attained orthogonal 
space, while the (image-dependent) noise energy that 
represents undesirable components is spread over the whole 
space. Therefore, by preserving only the most important 
subspace (characterized by the ݀ eigenvectors which are 
associated to the most significant eigenvalues that correspond 
to 99% of the variance explained by the eigenvectors) and 
projecting the re-arranged noise residuals of a camera into the 
objective subspace, we obtain enhanced noise residual 
representations  �௟ א ℝௗ×ଵ, ݈ = ͳ,… , ݀ where�,ܮ ≪ �. The 
reference PRNU representation is then obtained by 
component-wise averaging the �௟, ݈ = ͳ,… ,  .ܮ

D. Fingerprint Compression 

Unlike the other studied methods in this paper that seek to 
improve the accuracy of the PRNU estimation, the aim of the 
addressed methods herein is to ease the potentially burdening 
aspects of storage and computations of the PRNU signal in its 
applications. The PRNU compression techniques are visited 
here for their relation to the studied methods. Indeed, the 
PRNU signal cannot be compressed using standard methods 
such as JPEG because of the signal’s lack of redundancy. In 
[45], the authors proposed to represent the PRNU signal in a 
binary-quantization form, i.e. 1-bit representation per pixel. 
And, it was analytically shown that the reduction in the 
accuracy of the PRNU matching is insignificant. A more 
thorough study in fingerprint compression can be found in 
[46] based on random projection. The idea is to project the 
PRNU estimate, reshaped into the column vector ۶ א ℝ�×ଵ 
where � = � using a random matrix ,ܰܯ א ℝௗ×� where ݀ <� , to yield the PRNU representation: �஼ெ ≔ � ∗ ۶                                   (29) 
of reduced size, i.e. �஼ெ א ℝௗ×ଵ. Herein, ∗ designates matrix 
multiplication. The same random matrix is used to project the 
other PRNU estimates in the application. The considered 
random matrices in [46] are the most-studied Gaussian 
random matrices, which are practically addressed using 
circulant matrices (the requirements on the suitable � are 
thoroughly studied in the field of compressive sensing [47]). 
The  key  idea  is  based on  from  Johnson-Lindenstrauss: if  

TABLE VIII.  THE PERFORMANCE IMPROVEMENTS (IN %) OF THE LISTED 

METHODS OVER THE BASIC APPROACH. 

Method �̀ ℛ̀ 

SC Only -6.7 -1.4 

Clustering +0.1 +0.3 
PCA +6.9 +2.1 
1-Bit  -5.5 -2.6 
CD +6.4 -0.3 
DA -40.3 -15.7 

 
points in a vector space are projected on a suitable lower 
dimensional space then the distances are approximately 
preserved [48].  And, since PRNU fingerprints from different 
cameras are highly uncorrelated and thus the angles 
(equivalent to the distance herein) between them are wide, the 
angles between the compressed PRNUs are preserved to be 
wide. Inspired by [45] and the 1-bit compressive sensing [49], 
the authors also considered binarizing the compressed PRNU, 
which could be seen as a generalized case of [45] with identity 
projecting matrix. Theoretical results concerning the 
compressed PRNU matching accuracy show insignificant 
reduction.  

E. Results Analysis 

It is evident in Table VIII that the technique of keeping the 
significant components (SC) only does not benefit the PRNU 
classification (in this implementation, the 20% largest 
components in magnitude are kept). This indicates that there is 
information in the small components of the estimated PRNU 
that would be adversary to flush. The clustering approach is 
evaluated on the RSC-PRNU as proposed and highlighted in 
the original work. That is, the sharing components are 
removed before applying the clustering technique. 
Benchmarked against the RSC results, the clustering technique 
seems to provide no improving effect on the classification of 
the PRNU estimates. We recall and attribute these findings to 
the fact that the images used here in the estimation of the 
reference PRNU are of random nature as opposed to the fixed 
illumination images used in the numerical experiments of the 
original work. Nonetheless, considering that the clusters sizes 
are set to 64 pixels here, the clustering technique would 
constitute an excellent PRNU compression tool. In contrast, 
we can see that the principle component analysis (PCA) 
technique can bring considerable improvements. We note that 
PCA technique is trained against the interclass and intraclass 
images prior to estimating their final PRNU signals. This 
facility is not always available in forensic applications. 
Finally, the results of the 1-Bit representation of the PRNU 
show the expected slight reduction in the performance. 

VIII.  MODIFIED PRNU ESTIMATION PROCEDURES 

There are other research developments in PRNU 
estimation that cannot be categorised in one of the sections 
above. They operate a modified strategy to the standard 
procedure in Fig. 1.  

A. Colour-Decoupling (CD) Approach  

 The work [50] takes into the account the characteristics of 
the colour filter array (CFA) structure. That is, the lenses of 

https://en.wikipedia.org/wiki/Covariance
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most cameras let through rays of the three colour components, 
but for every pixel only the rays of one colour are passed 
through the CFA and subsequently captured by the sensor 
pixel. Then, a colour interpolation algorithm generates the 
other two colour components of every pixel. The artificial 
colours obtained through the colour interpolation process 
(known is de-mosaicking) are not physically acquired from the 
scene by the sensor. Therefore, it is assumed that the PRNU 
extracted from the physical components should be more 
reliable. The almost universal CFA in cameras is the Bayer 
filter where pixels in odd/even rows alternate between green 
and red, and pixels in even/odd rows alternate between blue 
and green. Based on this assumption, the authors proposed a 
new strategy that first decomposes each image into 4 sub-
images (interlaced along the two dimensions) and then 
extracts the PRNU from each sub-image. The PRNU noises of 
the sub-images are then assembled to obtain the final one. This 
method aims to prevent the interpolation noise from 
propagating into the PRNU estimation of the physically 
captured pixels. According to our numerical findings shown in 
Table VIII, the promising idea enhances the PRNU results 
notably. 

B. Direct  Average (DA) Technique  

Given the deterministic nature of the PRNU, as opposed to 
the other random noise components, the PRNU can be 
estimated by simply averaging a very large number of images 
without any de-noising step. The work in [51] counts on this 
concept to estimate the PRNU of an available camera by 
capturing a very large number of uniform random noise 
images displayed on a high-resolution monitor.  Using the 
model of  ۷  in (6), the pixel-wise mean of  ܮ  images is given 
by: ͳ۷�∑ܮ௟௅

௟=ଵ �= ሺͳ + �ሻܮ ∑�۷଴,௟௅
௟=ଵ + ͳܮ�∑��,௟௅

௟=ଵ .��������������������ሺ͵Ͳሻ 
When ܮ tends to infinity, the last term will be a negligible 
constant. The channel gains {��௟}௟=ଵ௅  and the image 
illuminations�{܇௟ሺ݉, ݊ሻ}௟=ଵ௅  are supposed to be mutually 
independent in �{۷଴,௟ሺ݉, ݊ሻ}௟=ଵ௅

. Hence, the expected value: ܧ [ͳ۷�∑ܮ଴,௟ሺ݉, ݊ሻ௅
௟=ଵ ] = ,ሺ݉�܇]ܧ[��]ܧ ݊ሻ].����������ሺ͵ͳሻ 

Since ��is a global variable for an image that is independent of 
the pixel location, and the random images are displayed on the 
monitor with constant mean, then the expectation of (31) is  
constant across all the pixels. As ��is zero mean, the PRNU 
can be simply extracted by removing the DC component from 
(30) when ܮ tends to infinity. In practice, we deal with a 
limited number of images and the conditions are not ideal. 
Hence, (31) does not hold strictly.  The work in [51] takes the 
logarithm of the mean of a very large number of images ܮ: ln (ͳ۷�∑ܮ௟௅

௟=ଵ ) ≅ − ln ܮ + lnሺͳ + �ሻ + ln (∑�۷଴,௟௅
௟=ଵ ).����ሺ͵ʹሻ 

Carrying out MacLaurin expansion ln (ͳ۷�∑ܮ௟௅
௟=ଵ ) ≅ − ln ܮ + � + ܱ(��) + ln (∑�۷଴,௟௅

௟=ଵ ),���ሺ͵͵ሻ 
and since the values of  ���are very small, the higher order 
term ܱሺ��ሻ�is of an insignificant value and can be ignored. 

Taking in consideration the linear manipulations in the digital 
camera pipeline, the authors model  ln(∑ �۷଴,௟௅௟=ଵ )�as the auto-
regressive and moving average (ARMA), where � is the 
additive white Gaussian noise,  and estimate � using  �஽஺ ≔ ln(∑�۷௟௅

௟=ଵ ) − �ቌln (∑�۷௟௅
௟=ଵ )ቍ�������������������ሺ͵Ͷሻ 

where �ሺ. ሻ is the standard 3 x 3 Wiener filter. Thus, the 
filtering operation is only applied once to estimate the 
reference PRNU, as opposed to the standard procedure. This 
approach has been tested in our evaluation system, and the 
results are shown in Table VIII. Our experiments indicate a 
considerable inferiority of the direct averaging (DA) approach 
as opposed to the standard procedure when natural 
uncontrolled images are used. 

IX.  SIMILARITY MEASURES 

As we mentioned in previous sections, PRNU-based 
forensic applications generally rely on measuring the 
similarity between the estimated PRNU signals in a binary 
hypothesis test for decision-making. In this section, we outline 
the various similarity measures used in PRNU-based forensics 
because of its close relation to the studied methods. Since 
most of the developments in the similarity measures are in 
camera identification/verification application (where the 
reference PRNU � and the noise residual �̂ܚ௤ of the query 
image �۷௤ are compared), we present them in terms of this 
application. Let ܆ represent �, �௪, �௣, or the product ��ெ௅ா۷௤. The basic measure is the normalized cross-
correlation (after mean centering the two signals):  � ≔ 

 (35)                                 ,  ‖�ܚ̂�‖‖܆‖�ܚ̂�⊙܆

where ⊙ and ‖. ‖�are the dot product and norm operations, 
respectively. A development was proposed in [52] where the 
aim is to eliminate the effect of contamination of the two 
compared signals with the same periodic noise that could 
adversely increase their correlation. It is referred to by the 
peak-to-correlation energy (PCE), and based on the circular 
cross-correlation: �ሺݔ, �ሻ ≔ ͳܰܯ ∑ ,ሺ݉܆ ݊ሻ�̂ܚ௤ሺ݉ + ,ܯ�mod�ݔ ݊ሺ௠,௡ሻ+ ��mod�ܰሻ,��������������� ݔ = Ͳ,… ܯ, − ͳ,���� = Ͳ,… , ܰ − ͳ,����������ሺ͵͸ሻ 
it is given in �௘ ≔ sign[�ሺͲ,Ͳሻ] �ଶሺͲ,Ͳሻͳܰܯ − |�| ∑ �ଶሺݔ, �ሻሺ௫,�ሻ,ሺ௫,�ሻב�

��,������ሺ͵͹ሻ 
where � is a small area around (0,0) and |�| is its cardinality. 
The sign in (37) was not included in the first introduction of 
PCE; it was inserted in their later work to eliminate the false 
alarm of the negative correlations. The same idea appeared in 
[39] by considering �ሺͲ,Ͳሻ (and a square root of the 
dominator) rather than its squared value to retain its sign; the 
authors referred to it by the correlation over circular cross-
correlation norm (CCN). 

A more optimal and complex similarity measure was 
pursued by Chen et al. in [34]. It begins with a new model for 
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܂ ௤ . That is, a pixel-wise multiplicative shaping factorܚ̂�  ℝெ×ே is introduced to capture the de-noising processא
imperfection and other operations on the PRNU signal. And, 
the random noises and image contamination are modeled as 
coloured Gaussian noise:  

௤ܚ̂�  = ܆܂ + �,�������������������������������������ሺ͵ͺሻ 
where  � א ℝெ×ே��is a matrix of independent Gaussian 
variables with unequal variances.  The work divides the noise 
residual signal into  B  non-overlapping, equal sized blocks. 
The pixels ሺ݉, ݊ሻ within the b-th block , ܾ = ͳ,… ,  are  ܤ
allocated a fixed ܂ሺ݉, ݊ሻ denoted by  ௕ܶ , and their noise �ሺ݉, ݊ሻ are assumed to have a fixed variance �௕ଶ. The 
similarity measure is the generalized matched filter that is 
given in: �௠ ≔ ∑ ܶ̂௕/�̂௕ଶ௕ ሺ܆�⊙ ∑√ሻ�ܚ̂ ‖ܶ̂௕܆�‖௕ ଶ /�̂௕ଶ√∑ ௕‖�ܚ̂‖ ଶ /�̂௕ଶ �,���������ሺ͵ͻሻ 
where ̂ܚ� and ܆� are the noise residual from the tested image 
and the PRNU term�܆ within the b-th block, respectively. ̂ܶ௕ 
and �̂௕ଶ represent estimates of  ௕ܶ � and �௕ଶ respectively, which 
are obtained from  the normalized cross-correlation within a 
block under the positive hypothesis: ������������௕ ≔ ⊙�܆ = ‖�ܚ̂‖‖�܆‖�ܚ̂ ௕ܶ‖܆�‖ଶ + √‖�܆‖��⊙�܆ ௕ܶଶ‖܆�‖ଶ + ‖��‖ଶ + ʹ ௕ܶ܆�⊙�� �,���ሺͶͲሻ 
with �� being white process that is independent of ܆� , the 
term ܆�⊙�� will be small and can be ignored: �௕ ≈ ͳ√ͳ + /௕ଶ�ܥ ௕ܶଶ‖܆�‖ଶ �,��������������������ሺͶͳሻ 
where  ܥ  is the number of pixels in each block. And, by using 
a predictor of  �௕ to give �̂௕, we have estimates of those 
parameters:  ܶ̂௕ = |�̂௕|‖̂ܚ�‖ ⁄‖�܆‖ �,������������������������ሺͶʹሻ 
 �̂௕ଶ = (ͳ − �̂௕ଶ)‖̂ܥ/‖�ܚ�.���������������������ሺͶ͵ሻ 
Chen et al. developed a simple predictor of �௕ �based on 
features derived from blocks of a few diverse images. They 
noted that other standard predictors and features provided the 
same performance. A more flexible, pixel-wise weighting 
approach based on similar features was proposed in [53]. In 
[54], it was proposed to only use the significant blocks of the 
query noise residual.  The significance of a block is measured 
by its signal to noise ratio (SNR). Indeed, the signal in SNR is 
the PRNU noise part that we seek, whilst the noise refers to all 
the other noise components and image contamination. The 
SNR of the b-th block is approximated using  SNR௕ ≔ ௕ଶ̂�ܥ�‖�܆�̂ܶ‖ ,��������������������������������ሺͶͶሻ 
Then, the SNR values of all the blocks are sorted and only the 
blocks with the largest SNR values are used: 

�௦ ≔ ∑ ܶ̂௕/�̂௕ଶ௕,௕אℋ ሺ܆�⊙ ∑√ሻ�ܚ̂ ‖ܶ̂௕܆�‖௕,௕אℋ ଶ /�̂௕ଶ√∑ ℋא௕,௕‖�ܚ̂‖ ଶ /�̂௕ଶ ��,������ሺͶͷሻ 
where ℋ is the set of the indices of the most significant 
blocks.  

Despite that (41) represents the optimal detector, PCE is 
the most favorite detection statistics for the two facts. First, 
the assumption on the models to derive the optimal detector 
may not be satisfied. Second, PCE can facilitate selecting the 
decision threshold to achieve the sought probability of false 
detection. 

V. CONCLUSION 

In this paper, we introduced a systematic comparative 
analysis of all the techniques concerned with the estimation of 
PRNU noise. In order to conduct a profound study, we 
categorised the techniques based on their roles in the PRNU 
estimation procedure and analysed each category 
correspondingly. We created a large database of 45 cameras 
with effectively over 2.2 million test images for our numerical 
evaluation; the relatively large experiments were necessary 
given the variant performance of the techniques across 
cameras and images. The carefully selected performance 
metrics were adequate to benchmark the techniques and 
provide a conclusive study. Our findings provided some 
concrete conclusions whilst others can be extrapolated. We 
hope that the presented results can support the research 
community in digital forensics in general and PRNU-based 
image forensics in particular. With some practical aspects 
considered here along with our insight, we hope that this paper 
would benefit forensic practitioners with sharp 
implementation decisions. 
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